A reformulation-enumeration MINLP algorithm for gas network design
Gas networks are used to transport natural gas, which is an important resource for both residential and industrial customers throughout the world. The gas network design problem is generally modelled as a nonconvex mixed-integer nonlinear integer programming problem (MINLP). The challenges of solvin...
Saved in:
Published in | Journal of global optimization Vol. 90; no. 4; pp. 931 - 963 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gas networks are used to transport natural gas, which is an important resource for both residential and industrial customers throughout the world. The gas network design problem is generally modelled as a nonconvex mixed-integer nonlinear integer programming problem (MINLP). The challenges of solving the resulting MINLP arise due to the nonlinearity and nonconvexity. In this paper, we propose a framework to study the “design variant” of the problem in which the variables are the diameter choices of the pipes, the flows, the potentials, and the states of various network components. We utilize a nested loop that includes a two-stage procedure that involves a convex reformulation of the original problem in the inner loop and an efficient enumeration scheme in the outer loop. We conduct experiments on benchmark networks to validate and analyze the performance of our framework. |
---|---|
AbstractList | Gas networks are used to transport natural gas, which is an important resource for both residential and industrial customers throughout the world. The gas network design problem is generally modelled as a nonconvex mixed-integer nonlinear integer programming problem (MINLP). The challenges of solving the resulting MINLP arise due to the nonlinearity and nonconvexity. In this paper, we propose a framework to study the “design variant” of the problem in which the variables are the diameter choices of the pipes, the flows, the potentials, and the states of various network components. We utilize a nested loop that includes a two-stage procedure that involves a convex reformulation of the original problem in the inner loop and an efficient enumeration scheme in the outer loop. We conduct experiments on benchmark networks to validate and analyze the performance of our framework. |
Author | Sahinidis, Nikolaos V. Li, Yijiang Dey, Santanu S. |
Author_xml | – sequence: 1 givenname: Yijiang surname: Li fullname: Li, Yijiang organization: School of Industrial and Systems Engineering, Georgia Institute of Technology – sequence: 2 givenname: Santanu S. orcidid: 0000-0003-0294-8287 surname: Dey fullname: Dey, Santanu S. email: santanu.dey@isye.gatech.edu organization: School of Industrial and Systems Engineering, Georgia Institute of Technology – sequence: 3 givenname: Nikolaos V. surname: Sahinidis fullname: Sahinidis, Nikolaos V. organization: School of Industrial and Systems Engineering, Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology |
BookMark | eNp9kMlOwzAQhi1UJNrCC3CKxDkwY8eJfSwVS6WyHOBsOY4TUrIUOxHl7QkNEhKHXjw-_N8s34xMmraxhJwjXCJAcuURhBQh0CgEjIZ3d0SmyBMWUonxhExBUh5yADwhM-83ACAFp1NyvQiczVtX95XuyrYJbdPX1u3_wcPqcf0c6KpoXdm91cGQCwrtg8Z2n617DzLry6I5Jce5rrw9-61z8np787K8D9dPd6vlYh0ahrILMdPAeJ5SKRLMY2tjlGmcsdSwCIygkdYGqUwyEUfIKeOgc0MhpVEGJtaGzcnF2Hfr2o_e-k5t2t41w0jFkKJAziUfUnRMGdd6P9ymtq6stftSCOrHlRpdqcGV2rtSuwES_yBTdnsHndNldRhlI-qHOU1h3d9WB6hvdIOASg |
CitedBy_id | crossref_primary_10_1016_j_compchemeng_2024_108897 |
Cites_doi | 10.1080/10556788.2018.1556661 10.1007/s10589-019-00085-x 10.1016/j.ejor.2016.01.008 10.1007/s10107-005-0581-8 10.1287/mnsc.24.7.747 10.1007/s11081-015-9300-3 10.1137/110827387 10.1287/mnsc.46.11.1454.12087 10.1137/S1052623493260696 10.1007/11841036_62 10.1016/j.apenergy.2015.03.017 10.1007/s00186-016-0533-5 10.1007/s10107-010-0360-z 10.1080/14786445108561362 10.1007/s11081-011-9141-7 10.1007/s10898-020-00974-0 10.1007/978-3-030-54621-2_873-1 10.1007/s12532-018-0138-5 10.3390/data2040040 10.1287/ijoc.2017.0780 10.1080/10556788.2014.888426 10.1287/opre.1110.1001 10.1287/opre.44.4.596 10.1137/1.9781611973693 10.1287/ijoc.2016.0697 10.1007/s10107-005-0594-3 10.1016/j.compchemeng.2015.07.005 10.1007/s12532-008-0001-1 10.1016/j.ejor.2014.12.039 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10898-024-01424-x |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Computer Science |
EISSN | 1573-2916 |
EndPage | 963 |
ExternalDocumentID | 10_1007_s10898_024_01424_x |
GrantInformation_xml | – fundername: Office of Fossil Energy funderid: http://dx.doi.org/10.13039/100006120 |
GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c319t-1da035fb29871f6ee619b6d3bc340c824aac1297d864152350afc20b24d0c6ac3 |
IEDL.DBID | U2A |
ISSN | 0925-5001 |
IngestDate | Sat Aug 16 22:11:35 EDT 2025 Tue Jul 01 00:53:03 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Fri Feb 21 02:37:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Mixed-integer nonlinear program Global optimization Network design |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-1da035fb29871f6ee619b6d3bc340c824aac1297d864152350afc20b24d0c6ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0294-8287 |
PQID | 3121815595 |
PQPubID | 29930 |
PageCount | 33 |
ParticipantIDs | proquest_journals_3121815595 crossref_primary_10_1007_s10898_024_01424_x crossref_citationtrail_10_1007_s10898_024_01424_x springer_journals_10_1007_s10898_024_01424_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-00 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Humpola, J.: Gas Network Optimization by minlp. PhD Dissertation (2014) EIA, U.S.: Natural Gas Explained. https://www.eia.gov/energyexplained/natural-gas/natural-gas-pipelines.php. Accessed 21 Apr 2022 (2021) GeiblerBMorsiAScheweLSchmidtMSolving highly detailed gas transport minlps: block separability and penalty alternating direction methodsINFORMS J. Comput.2018302309323381332010.1287/ijoc.2017.0780 Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: Water network design by minlp. IBM Res. Rep. RC24495 (W0802-056) (2008) Collins, M., Cooper, L., Helgason, R., Kennington, J., LeBlanc, L.: Solving the pipe network analysis problem using optimization techniques. Manag. Sci. 24(7), 747–760 (1977/78) TawarmalaniMSahinidisNVA polyhedral branch-and-cut approach to global optimizationMath. Program.2005103225249214637910.1007/s10107-005-0581-8 Sahinidis, N.V.: BARON 22.9.1: Global Optimization of Mixed-Integer Nonlinear Programs. User’s Manual (2022) RoseDSchmidtMSteinbachMCWillertBMComputational optimization of gas compressor stations: Minlp models versus continuous reformulationsMath. Meth. Oper. Res.201683409444351319810.1007/s00186-016-0533-5 CherryCSome general theorems for non-linear systems possessing reactancePhilos. Mag.1951427116111774436510.1080/14786445108561362 ZhengQPRebennackSIliadisNAPardalosPPardalosPMRebennackSPereiraMVFIliadisNAOptimization Models in the Natural Gas IndustryHandbook of Power Systems I2010HeidebergySpringer Sullivan, S., Dlin, S.: Year in Pipelines: Growth in US Natural Gas Pipeline Assets Slowed Again in 2020. https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/year-in-pipelines-growth-in-us-natural-gas-pipeline-assetsslowed-again-in-2020-66386728. Accessed 21 Apr 2022 (2021) WolfDDSmeersYOptimal dimensioning of pipe networks with application to gas transmission networksOper. Res.199644459660810.1287/opre.44.4.596 Gurobi Optimization, L.: Gurobi Optimizer Reference Manual (2022) RobiniusMScheweLSchmidtMStoltenDThüraufJWelderLRobust optimal discrete arc sizing for tree-shaped potential networksComput. Optim. Appl.201973791819395353510.1007/s10589-019-00085-x FrangioniAGentileCPerspective cuts for a class of convex 0–1 mixed integer programsMath. Program.2006106225236220808210.1007/s10107-005-0594-3 GünlükOLinderothJPerspective reformulation of mixed integer nonlinear programs with indicator variablesMath. Program.2010124183205267998810.1007/s10107-010-0360-z GeiblerBMorsiAScheweLSchmidtMSolving power-constrained gas transportation problems using an mip-based alternating direction methodComput. Chem. Eng.20158230331710.1016/j.compchemeng.2015.07.005 ApS, M.: The MOSEK Optimization Toolbox for Python Manual. Version 9.3.10. (2022) Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Le Bodic, P., Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The Scip Optimization Suite 7.0. Technical Report, Optimization Online (March 2020). http://www.optimization-online.org/DB_HTML/2020/03/7705.html AchterbergTScip: solving constraint integer programsMath. Program. Comput.200911141252044210.1007/s12532-008-0001-1 Rio-MercadoRZBorraz-SanchezCOptimization problems in natural gas transportation systems: a state-of-the-art reviewAppl. Energy201514753655510.1016/j.apenergy.2015.03.017 SchmidtMSteinbachMCWillertBMHigh detail stationary optimization models for gas networks: validation and resultsOptim. Eng.201617437472351145110.1007/s11081-015-9300-3 Pfetsch, M.E., Fugenschuh, A., Geibler, B., Geibler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rovekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert, B.M.: Validation of nominations in gas network optimization: models, methods, and solutions. Optim. Methods Softw. 30(1), 15–53 (2015) ZhangJZhuDA bilevel programming method for pipe network optimizationSIAM J. Optim.199663838857140220810.1137/S1052623493260696 BurlacuRGeisslerBScheweLSolving mixed-integer nonlinear programs using adaptively refined mixed-integer linear programmesOptim. Methods Soft.2020351376410.1080/10556788.2018.1556661 KochTHillerBPfetschMEScheweLEvaluating Gas Network Capacities2015Philadelphia, PASociety for Industrial and Applied Mathematics10.1137/1.9781611973693 BragalliCD’AmbrosioCLeeJLodiATothPOn the optimal design of water distribution networks:a practical minlp approachOptim. Eng.201213219246292504010.1007/s11081-011-9141-7 SchmidtMAssmannDBurlacuRHumpolaJJoormannIKanelakisNKochTOucherifDPfetschMEScheweLSchewarzRSirventMGaslib - a library of gas network instancesData2015244010.3390/data2040040 LiersFMartinAMerkertMMertensNMichaelsDSolving mixed-integer nonlinear optimization problems using simultaneous convexification-a case study for gas networksJ. Glob. Optim.202180307340427019110.1007/s10898-020-00974-0 KhajaviradASahinidisNVA hybrid LP/NLP paradigm for global optimization relaxationsMath. Program. Comput.201810383421383497110.1007/s12532-018-0138-5 BabonneauFNesterovYVialJ-PDesign and operations of gas transmission networksOper. Res.20126013447291165510.1287/opre.1110.1001 D’AmbrosioCLodiAWieseSBragalliCMathematical programming techniques in water network optimizationEur. J. Oper. Res.2015243774788331614310.1016/j.ejor.2014.12.039 BragalliCD’AmbrosioCLeeJLodiATothPAzarYErlebachTAn minlp solution method for a water network problemAlgorithms - ESA 20062006Berlin, HeidelbergSpringer69670710.1007/11841036_62 WolfDDSmeersYThe gas transmission problem solved by an extension of the simplex algorithmManag. Sci.200046111454146510.1287/mnsc.46.11.1454.12087 Borraz-SanchezCBentRBackhausSHijaziHHentenryckPVConvex relaxations for gas expansion planningINFORMS J. Comput.201628645656355002710.1287/ijoc.2016.0697 ShionoNSuzukiHOptimal pipe-sizing problem of tree-shaped gas distribution networksEur. J. Oper. Res.20162522550560346672010.1016/j.ejor.2016.01.008 RaghunathanAUGlobal optimization of nonlinear network designSIAM J. Optim.2013231268295303310810.1137/110827387 Hante, F.M., Schmidt, M.: Gas transport network optimization: mixed-integer nonlinear models. Optimization-online (2023) 1424_CR30 F Liers (1424_CR9) 2021; 80 J Zhang (1424_CR19) 1996; 6 A Frangioni (1424_CR24) 2006; 106 (1424_CR14) 2015 F Babonneau (1424_CR17) 2012; 60 1424_CR36 1424_CR37 1424_CR38 1424_CR10 B Geibler (1424_CR12) 2018; 30 1424_CR35 QP Zheng (1424_CR7) 2010 M Tawarmalani (1424_CR32) 2005; 103 M Schmidt (1424_CR16) 2016; 17 N Shiono (1424_CR20) 2016; 252 T Achterberg (1424_CR34) 2009; 1 DD Wolf (1424_CR3) 1996; 44 DD Wolf (1424_CR4) 2000; 46 C Borraz-Sanchez (1424_CR18) 2016; 28 A Khajavirad (1424_CR33) 2018; 10 R Burlacu (1424_CR13) 2020; 35 O Günlük (1424_CR25) 2010; 124 AU Raghunathan (1424_CR31) 2013; 23 1424_CR27 C Bragalli (1424_CR28) 2012; 13 C Bragalli (1424_CR29) 2006 C Cherry (1424_CR22) 1951; 42 1424_CR23 1424_CR1 1424_CR2 RZ Rio-Mercado (1424_CR6) 2015; 147 B Geibler (1424_CR11) 2015; 82 1424_CR8 M Robinius (1424_CR21) 2019; 73 C D’Ambrosio (1424_CR26) 2015; 243 M Schmidt (1424_CR5) 2015; 2 D Rose (1424_CR15) 2016; 83 |
References_xml | – reference: Borraz-SanchezCBentRBackhausSHijaziHHentenryckPVConvex relaxations for gas expansion planningINFORMS J. Comput.201628645656355002710.1287/ijoc.2016.0697 – reference: ZhengQPRebennackSIliadisNAPardalosPPardalosPMRebennackSPereiraMVFIliadisNAOptimization Models in the Natural Gas IndustryHandbook of Power Systems I2010HeidebergySpringer – reference: GeiblerBMorsiAScheweLSchmidtMSolving highly detailed gas transport minlps: block separability and penalty alternating direction methodsINFORMS J. Comput.2018302309323381332010.1287/ijoc.2017.0780 – reference: CherryCSome general theorems for non-linear systems possessing reactancePhilos. Mag.1951427116111774436510.1080/14786445108561362 – reference: BragalliCD’AmbrosioCLeeJLodiATothPAzarYErlebachTAn minlp solution method for a water network problemAlgorithms - ESA 20062006Berlin, HeidelbergSpringer69670710.1007/11841036_62 – reference: Collins, M., Cooper, L., Helgason, R., Kennington, J., LeBlanc, L.: Solving the pipe network analysis problem using optimization techniques. Manag. Sci. 24(7), 747–760 (1977/78) – reference: LiersFMartinAMerkertMMertensNMichaelsDSolving mixed-integer nonlinear optimization problems using simultaneous convexification-a case study for gas networksJ. Glob. Optim.202180307340427019110.1007/s10898-020-00974-0 – reference: WolfDDSmeersYThe gas transmission problem solved by an extension of the simplex algorithmManag. Sci.200046111454146510.1287/mnsc.46.11.1454.12087 – reference: ShionoNSuzukiHOptimal pipe-sizing problem of tree-shaped gas distribution networksEur. J. Oper. Res.20162522550560346672010.1016/j.ejor.2016.01.008 – reference: EIA, U.S.: Natural Gas Explained. https://www.eia.gov/energyexplained/natural-gas/natural-gas-pipelines.php. Accessed 21 Apr 2022 (2021) – reference: KochTHillerBPfetschMEScheweLEvaluating Gas Network Capacities2015Philadelphia, PASociety for Industrial and Applied Mathematics10.1137/1.9781611973693 – reference: KhajaviradASahinidisNVA hybrid LP/NLP paradigm for global optimization relaxationsMath. Program. Comput.201810383421383497110.1007/s12532-018-0138-5 – reference: SchmidtMAssmannDBurlacuRHumpolaJJoormannIKanelakisNKochTOucherifDPfetschMEScheweLSchewarzRSirventMGaslib - a library of gas network instancesData2015244010.3390/data2040040 – reference: ApS, M.: The MOSEK Optimization Toolbox for Python Manual. Version 9.3.10. (2022) – reference: WolfDDSmeersYOptimal dimensioning of pipe networks with application to gas transmission networksOper. Res.199644459660810.1287/opre.44.4.596 – reference: Gurobi Optimization, L.: Gurobi Optimizer Reference Manual (2022) – reference: Humpola, J.: Gas Network Optimization by minlp. PhD Dissertation (2014) – reference: Sahinidis, N.V.: BARON 22.9.1: Global Optimization of Mixed-Integer Nonlinear Programs. User’s Manual (2022) – reference: FrangioniAGentileCPerspective cuts for a class of convex 0–1 mixed integer programsMath. Program.2006106225236220808210.1007/s10107-005-0594-3 – reference: Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: Water network design by minlp. IBM Res. Rep. RC24495 (W0802-056) (2008) – reference: BabonneauFNesterovYVialJ-PDesign and operations of gas transmission networksOper. Res.20126013447291165510.1287/opre.1110.1001 – reference: RoseDSchmidtMSteinbachMCWillertBMComputational optimization of gas compressor stations: Minlp models versus continuous reformulationsMath. Meth. Oper. Res.201683409444351319810.1007/s00186-016-0533-5 – reference: Sullivan, S., Dlin, S.: Year in Pipelines: Growth in US Natural Gas Pipeline Assets Slowed Again in 2020. https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/year-in-pipelines-growth-in-us-natural-gas-pipeline-assetsslowed-again-in-2020-66386728. Accessed 21 Apr 2022 (2021) – reference: BragalliCD’AmbrosioCLeeJLodiATothPOn the optimal design of water distribution networks:a practical minlp approachOptim. Eng.201213219246292504010.1007/s11081-011-9141-7 – reference: D’AmbrosioCLodiAWieseSBragalliCMathematical programming techniques in water network optimizationEur. J. Oper. Res.2015243774788331614310.1016/j.ejor.2014.12.039 – reference: Pfetsch, M.E., Fugenschuh, A., Geibler, B., Geibler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rovekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert, B.M.: Validation of nominations in gas network optimization: models, methods, and solutions. Optim. Methods Softw. 30(1), 15–53 (2015) – reference: GeiblerBMorsiAScheweLSchmidtMSolving power-constrained gas transportation problems using an mip-based alternating direction methodComput. Chem. Eng.20158230331710.1016/j.compchemeng.2015.07.005 – reference: BurlacuRGeisslerBScheweLSolving mixed-integer nonlinear programs using adaptively refined mixed-integer linear programmesOptim. Methods Soft.2020351376410.1080/10556788.2018.1556661 – reference: AchterbergTScip: solving constraint integer programsMath. Program. Comput.200911141252044210.1007/s12532-008-0001-1 – reference: Rio-MercadoRZBorraz-SanchezCOptimization problems in natural gas transportation systems: a state-of-the-art reviewAppl. Energy201514753655510.1016/j.apenergy.2015.03.017 – reference: GünlükOLinderothJPerspective reformulation of mixed integer nonlinear programs with indicator variablesMath. Program.2010124183205267998810.1007/s10107-010-0360-z – reference: Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Le Bodic, P., Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The Scip Optimization Suite 7.0. Technical Report, Optimization Online (March 2020). http://www.optimization-online.org/DB_HTML/2020/03/7705.html – reference: SchmidtMSteinbachMCWillertBMHigh detail stationary optimization models for gas networks: validation and resultsOptim. Eng.201617437472351145110.1007/s11081-015-9300-3 – reference: RobiniusMScheweLSchmidtMStoltenDThüraufJWelderLRobust optimal discrete arc sizing for tree-shaped potential networksComput. Optim. Appl.201973791819395353510.1007/s10589-019-00085-x – reference: ZhangJZhuDA bilevel programming method for pipe network optimizationSIAM J. Optim.199663838857140220810.1137/S1052623493260696 – reference: Hante, F.M., Schmidt, M.: Gas transport network optimization: mixed-integer nonlinear models. Optimization-online (2023) – reference: RaghunathanAUGlobal optimization of nonlinear network designSIAM J. Optim.2013231268295303310810.1137/110827387 – reference: TawarmalaniMSahinidisNVA polyhedral branch-and-cut approach to global optimizationMath. Program.2005103225249214637910.1007/s10107-005-0581-8 – volume: 35 start-page: 37 issue: 1 year: 2020 ident: 1424_CR13 publication-title: Optim. Methods Soft. doi: 10.1080/10556788.2018.1556661 – volume: 73 start-page: 791 year: 2019 ident: 1424_CR21 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-019-00085-x – volume: 252 start-page: 550 issue: 2 year: 2016 ident: 1424_CR20 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2016.01.008 – volume: 103 start-page: 225 year: 2005 ident: 1424_CR32 publication-title: Math. Program. doi: 10.1007/s10107-005-0581-8 – ident: 1424_CR23 doi: 10.1287/mnsc.24.7.747 – volume: 17 start-page: 437 year: 2016 ident: 1424_CR16 publication-title: Optim. Eng. doi: 10.1007/s11081-015-9300-3 – volume-title: Handbook of Power Systems I year: 2010 ident: 1424_CR7 – volume: 23 start-page: 268 issue: 1 year: 2013 ident: 1424_CR31 publication-title: SIAM J. Optim. doi: 10.1137/110827387 – ident: 1424_CR1 – volume: 46 start-page: 1454 issue: 11 year: 2000 ident: 1424_CR4 publication-title: Manag. Sci. doi: 10.1287/mnsc.46.11.1454.12087 – volume: 6 start-page: 838 issue: 3 year: 1996 ident: 1424_CR19 publication-title: SIAM J. Optim. doi: 10.1137/S1052623493260696 – start-page: 696 volume-title: Algorithms - ESA 2006 year: 2006 ident: 1424_CR29 doi: 10.1007/11841036_62 – volume: 147 start-page: 536 year: 2015 ident: 1424_CR6 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.03.017 – ident: 1424_CR30 – volume: 83 start-page: 409 year: 2016 ident: 1424_CR15 publication-title: Math. Meth. Oper. Res. doi: 10.1007/s00186-016-0533-5 – volume: 124 start-page: 183 year: 2010 ident: 1424_CR25 publication-title: Math. Program. doi: 10.1007/s10107-010-0360-z – volume: 42 start-page: 1161 issue: 7 year: 1951 ident: 1424_CR22 publication-title: Philos. Mag. doi: 10.1080/14786445108561362 – ident: 1424_CR36 – ident: 1424_CR38 – volume: 13 start-page: 219 year: 2012 ident: 1424_CR28 publication-title: Optim. Eng. doi: 10.1007/s11081-011-9141-7 – volume: 80 start-page: 307 year: 2021 ident: 1424_CR9 publication-title: J. Glob. Optim. doi: 10.1007/s10898-020-00974-0 – ident: 1424_CR8 doi: 10.1007/978-3-030-54621-2_873-1 – volume: 10 start-page: 383 year: 2018 ident: 1424_CR33 publication-title: Math. Program. Comput. doi: 10.1007/s12532-018-0138-5 – volume: 2 start-page: 40 issue: 4 year: 2015 ident: 1424_CR5 publication-title: Data doi: 10.3390/data2040040 – volume: 30 start-page: 309 issue: 2 year: 2018 ident: 1424_CR12 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2017.0780 – ident: 1424_CR10 doi: 10.1080/10556788.2014.888426 – ident: 1424_CR2 – volume: 60 start-page: 34 issue: 1 year: 2012 ident: 1424_CR17 publication-title: Oper. Res. doi: 10.1287/opre.1110.1001 – ident: 1424_CR35 – volume: 44 start-page: 596 issue: 4 year: 1996 ident: 1424_CR3 publication-title: Oper. Res. doi: 10.1287/opre.44.4.596 – ident: 1424_CR27 – volume-title: Evaluating Gas Network Capacities year: 2015 ident: 1424_CR14 doi: 10.1137/1.9781611973693 – ident: 1424_CR37 – volume: 28 start-page: 645 year: 2016 ident: 1424_CR18 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2016.0697 – volume: 106 start-page: 225 year: 2006 ident: 1424_CR24 publication-title: Math. Program. doi: 10.1007/s10107-005-0594-3 – volume: 82 start-page: 303 year: 2015 ident: 1424_CR11 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2015.07.005 – volume: 1 start-page: 1 issue: 1 year: 2009 ident: 1424_CR34 publication-title: Math. Program. Comput. doi: 10.1007/s12532-008-0001-1 – volume: 243 start-page: 774 year: 2015 ident: 1424_CR26 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2014.12.039 |
SSID | ssj0009852 |
Score | 2.4124324 |
Snippet | Gas networks are used to transport natural gas, which is an important resource for both residential and industrial customers throughout the world. The gas... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 931 |
SubjectTerms | Algorithms Approximation Computer Science Construction costs Decomposition Enumeration Experiments Integer programming Mathematics Mathematics and Statistics Mixed integer Natural gas Nested loops Network design Network management systems Nominations Nonlinearity Operations Research/Decision Theory Optimization Real Functions |
Title | A reformulation-enumeration MINLP algorithm for gas network design |
URI | https://link.springer.com/article/10.1007/s10898-024-01424-x https://www.proquest.com/docview/3121815595 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0YuOhBBTWiSPbgQaNNyrZb6BEMiB8QD5LgqdnddtEEi6E18ec7224BjZp4adN02jSd3Z032TdvAE6FYL4WzLGkFwrLVXoddHnL4r4jVMtjijNd7zwceYOxezthE1MUlhRs92JLMlup14rd2rocjGrWhItHRI5lhrm7JnKNaWcltdvO-uzYPmUWw1XYlMr8_I6v4WiFMb9ti2bRpr8L2wYmkk7u1wpsRHEVdooWDMTMyCpsrekJ4tVwKcKaVKFirBJyZsSlz_eg2yH4EQhUTdsuS1Pho3wYkOHN6P6B8Nl0vnhJn18J2pEpT0icc8VJmNE99mHc7z1eDSzTR8GSOMFSqxly22FKUB-zI-VFESZNwgsdIR3Xlm3qci4x7LfCtqfDucNsriS1BXVDW3pcOgdQiudxdAgkUhJTqtBWgnuuxHDvIGISvlShVjJq0ho0i98ZSCMyrntdzIKVPLJ2QYAuCDIXBB81uFg-85ZLbPxpXS-8FJjplgROUyMVTI5YDS4Lz61u__62o_-ZH8Mm1YMno7PUoZQu3qMTBCWpaEC50-92R_p8_XTXa2Rj8hM2m9oT |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RS8MwED5kPqgP6qbidGoefFC00KZN1z5OUTZdhw8b7K0kaTOFuck6wZ_vpU23KSr4Uii9hJK75L4jd98BnAvBQk2YY0k_EZan9Dno8abFQ1eops8UZ7reOer57YH3MGRDUxSWldnu5ZVkflKvFLsFuhyM6qwJD5-IHNcRDATalge0taTaDfI-O3ZImcXwFDalMj_P8dUdLTHmt2vR3Nvc78K2gYmkVei1CmvppAY7ZQsGYnZkDbZW-ATxLVqQsGY1qBqpjFwYcunLPbhpEfwJBKqmbZelU-HTwgxI1Ol1nwgfj6azl_nzK0E5MuIZmRS54iTJ0z32YXB_179tW6aPgiVxg80tJ-G2y5SgIUZHyk9TDJqEn7hCup4tA-pxLtHtN5PA1-7cZTZXktqCeoktfS7dA6hMppP0EEiqJIZUia0E9z2Ji-8iYhKhVIlmMnJoHZxyOWNpSMZ1r4txvKRH1iqIUQVxroL4ow5XizFvBcXGn9KNUkux2W5Z7DoaqWBwxOpwXWpu-fn32Y7-J34GG-1-1I27nd7jMWxSbUh5aksDKvPZe3qCAGUuTnN7_AT5lNn2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kguhBbVWszz14UDQ03eymzbE-Sn209GCht7CPrAoaxUbw5zubbGwVFbwEQiZLyMzsfMPOfANwICWPLGGOp0ItPWbsPshEyxNRIE0r5EZw2-_cH4S9Ebsa8_FMF39e7V4eSRY9DZalKc0aL9o0Zhrf2rY1jNoKCoZXRJHzzHYDo0WPaGdKu9vOZ-74EeUexx3Ztc38vMbX0DTFm9-OSPPI012FZQcZSafQcRXmkrQGK-U4BuK8swZLM9yCeNf_JGSd1KDqpCbk0BFNH63BaYfgRyBodSO8PFsWnxQmQfqXg5shEY93z68P2f0TQTlyJyYkLerGic5LP9Zh1L24Pet5bqaCp9DZMq-phR9wI2mEmZIJkwQTKBnqQKqA-apNmRAKIUBLt0Mb2gPuC6OoLynTvgqFCjagkj6nySaQxChMr7RvpAiZwtAfIHqSkTLasho1aR2a5e-MlSMct3MvHuMpVbJVQYwqiHMVxO91OP5856Wg2_hTeqfUUuxcbxIHTYtaMFHidTgpNTd9_PtqW_8T34eF4Xk3vrkcXG_DIrV2lFe57EAle31LdhGrZHIvN8cPraPeKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reformulation-enumeration+MINLP+algorithm+for+gas+network+design&rft.jtitle=Journal+of+global+optimization&rft.au=Li%2C+Yijiang&rft.au=Dey%2C+Santanu+S.&rft.au=Sahinidis%2C+Nikolaos+V.&rft.date=2024-12-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=90&rft.issue=4&rft.spage=931&rft.epage=963&rft_id=info:doi/10.1007%2Fs10898-024-01424-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_024_01424_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |