A reformulation-enumeration MINLP algorithm for gas network design

Gas networks are used to transport natural gas, which is an important resource for both residential and industrial customers throughout the world. The gas network design problem is generally modelled as a nonconvex mixed-integer nonlinear integer programming problem (MINLP). The challenges of solvin...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 90; no. 4; pp. 931 - 963
Main Authors Li, Yijiang, Dey, Santanu S., Sahinidis, Nikolaos V.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gas networks are used to transport natural gas, which is an important resource for both residential and industrial customers throughout the world. The gas network design problem is generally modelled as a nonconvex mixed-integer nonlinear integer programming problem (MINLP). The challenges of solving the resulting MINLP arise due to the nonlinearity and nonconvexity. In this paper, we propose a framework to study the “design variant” of the problem in which the variables are the diameter choices of the pipes, the flows, the potentials, and the states of various network components. We utilize a nested loop that includes a two-stage procedure that involves a convex reformulation of the original problem in the inner loop and an efficient enumeration scheme in the outer loop. We conduct experiments on benchmark networks to validate and analyze the performance of our framework.
AbstractList Gas networks are used to transport natural gas, which is an important resource for both residential and industrial customers throughout the world. The gas network design problem is generally modelled as a nonconvex mixed-integer nonlinear integer programming problem (MINLP). The challenges of solving the resulting MINLP arise due to the nonlinearity and nonconvexity. In this paper, we propose a framework to study the “design variant” of the problem in which the variables are the diameter choices of the pipes, the flows, the potentials, and the states of various network components. We utilize a nested loop that includes a two-stage procedure that involves a convex reformulation of the original problem in the inner loop and an efficient enumeration scheme in the outer loop. We conduct experiments on benchmark networks to validate and analyze the performance of our framework.
Author Sahinidis, Nikolaos V.
Li, Yijiang
Dey, Santanu S.
Author_xml – sequence: 1
  givenname: Yijiang
  surname: Li
  fullname: Li, Yijiang
  organization: School of Industrial and Systems Engineering, Georgia Institute of Technology
– sequence: 2
  givenname: Santanu S.
  orcidid: 0000-0003-0294-8287
  surname: Dey
  fullname: Dey, Santanu S.
  email: santanu.dey@isye.gatech.edu
  organization: School of Industrial and Systems Engineering, Georgia Institute of Technology
– sequence: 3
  givenname: Nikolaos V.
  surname: Sahinidis
  fullname: Sahinidis, Nikolaos V.
  organization: School of Industrial and Systems Engineering, Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
BookMark eNp9kMlOwzAQhi1UJNrCC3CKxDkwY8eJfSwVS6WyHOBsOY4TUrIUOxHl7QkNEhKHXjw-_N8s34xMmraxhJwjXCJAcuURhBQh0CgEjIZ3d0SmyBMWUonxhExBUh5yADwhM-83ACAFp1NyvQiczVtX95XuyrYJbdPX1u3_wcPqcf0c6KpoXdm91cGQCwrtg8Z2n617DzLry6I5Jce5rrw9-61z8np787K8D9dPd6vlYh0ahrILMdPAeJ5SKRLMY2tjlGmcsdSwCIygkdYGqUwyEUfIKeOgc0MhpVEGJtaGzcnF2Hfr2o_e-k5t2t41w0jFkKJAziUfUnRMGdd6P9ymtq6stftSCOrHlRpdqcGV2rtSuwES_yBTdnsHndNldRhlI-qHOU1h3d9WB6hvdIOASg
CitedBy_id crossref_primary_10_1016_j_compchemeng_2024_108897
Cites_doi 10.1080/10556788.2018.1556661
10.1007/s10589-019-00085-x
10.1016/j.ejor.2016.01.008
10.1007/s10107-005-0581-8
10.1287/mnsc.24.7.747
10.1007/s11081-015-9300-3
10.1137/110827387
10.1287/mnsc.46.11.1454.12087
10.1137/S1052623493260696
10.1007/11841036_62
10.1016/j.apenergy.2015.03.017
10.1007/s00186-016-0533-5
10.1007/s10107-010-0360-z
10.1080/14786445108561362
10.1007/s11081-011-9141-7
10.1007/s10898-020-00974-0
10.1007/978-3-030-54621-2_873-1
10.1007/s12532-018-0138-5
10.3390/data2040040
10.1287/ijoc.2017.0780
10.1080/10556788.2014.888426
10.1287/opre.1110.1001
10.1287/opre.44.4.596
10.1137/1.9781611973693
10.1287/ijoc.2016.0697
10.1007/s10107-005-0594-3
10.1016/j.compchemeng.2015.07.005
10.1007/s12532-008-0001-1
10.1016/j.ejor.2014.12.039
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10898-024-01424-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 963
ExternalDocumentID 10_1007_s10898_024_01424_x
GrantInformation_xml – fundername: Office of Fossil Energy
  funderid: http://dx.doi.org/10.13039/100006120
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-1da035fb29871f6ee619b6d3bc340c824aac1297d864152350afc20b24d0c6ac3
IEDL.DBID U2A
ISSN 0925-5001
IngestDate Sat Aug 16 22:11:35 EDT 2025
Tue Jul 01 00:53:03 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
Fri Feb 21 02:37:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Mixed-integer nonlinear program
Global optimization
Network design
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1da035fb29871f6ee619b6d3bc340c824aac1297d864152350afc20b24d0c6ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0294-8287
PQID 3121815595
PQPubID 29930
PageCount 33
ParticipantIDs proquest_journals_3121815595
crossref_primary_10_1007_s10898_024_01424_x
crossref_citationtrail_10_1007_s10898_024_01424_x
springer_journals_10_1007_s10898_024_01424_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Humpola, J.: Gas Network Optimization by minlp. PhD Dissertation (2014)
EIA, U.S.: Natural Gas Explained. https://www.eia.gov/energyexplained/natural-gas/natural-gas-pipelines.php. Accessed 21 Apr 2022 (2021)
GeiblerBMorsiAScheweLSchmidtMSolving highly detailed gas transport minlps: block separability and penalty alternating direction methodsINFORMS J. Comput.2018302309323381332010.1287/ijoc.2017.0780
Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: Water network design by minlp. IBM Res. Rep. RC24495 (W0802-056) (2008)
Collins, M., Cooper, L., Helgason, R., Kennington, J., LeBlanc, L.: Solving the pipe network analysis problem using optimization techniques. Manag. Sci. 24(7), 747–760 (1977/78)
TawarmalaniMSahinidisNVA polyhedral branch-and-cut approach to global optimizationMath. Program.2005103225249214637910.1007/s10107-005-0581-8
Sahinidis, N.V.: BARON 22.9.1: Global Optimization of Mixed-Integer Nonlinear Programs. User’s Manual (2022)
RoseDSchmidtMSteinbachMCWillertBMComputational optimization of gas compressor stations: Minlp models versus continuous reformulationsMath. Meth. Oper. Res.201683409444351319810.1007/s00186-016-0533-5
CherryCSome general theorems for non-linear systems possessing reactancePhilos. Mag.1951427116111774436510.1080/14786445108561362
ZhengQPRebennackSIliadisNAPardalosPPardalosPMRebennackSPereiraMVFIliadisNAOptimization Models in the Natural Gas IndustryHandbook of Power Systems I2010HeidebergySpringer
Sullivan, S., Dlin, S.: Year in Pipelines: Growth in US Natural Gas Pipeline Assets Slowed Again in 2020. https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/year-in-pipelines-growth-in-us-natural-gas-pipeline-assetsslowed-again-in-2020-66386728. Accessed 21 Apr 2022 (2021)
WolfDDSmeersYOptimal dimensioning of pipe networks with application to gas transmission networksOper. Res.199644459660810.1287/opre.44.4.596
Gurobi Optimization, L.: Gurobi Optimizer Reference Manual (2022)
RobiniusMScheweLSchmidtMStoltenDThüraufJWelderLRobust optimal discrete arc sizing for tree-shaped potential networksComput. Optim. Appl.201973791819395353510.1007/s10589-019-00085-x
FrangioniAGentileCPerspective cuts for a class of convex 0–1 mixed integer programsMath. Program.2006106225236220808210.1007/s10107-005-0594-3
GünlükOLinderothJPerspective reformulation of mixed integer nonlinear programs with indicator variablesMath. Program.2010124183205267998810.1007/s10107-010-0360-z
GeiblerBMorsiAScheweLSchmidtMSolving power-constrained gas transportation problems using an mip-based alternating direction methodComput. Chem. Eng.20158230331710.1016/j.compchemeng.2015.07.005
ApS, M.: The MOSEK Optimization Toolbox for Python Manual. Version 9.3.10. (2022)
Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Le Bodic, P., Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The Scip Optimization Suite 7.0. Technical Report, Optimization Online (March 2020). http://www.optimization-online.org/DB_HTML/2020/03/7705.html
AchterbergTScip: solving constraint integer programsMath. Program. Comput.200911141252044210.1007/s12532-008-0001-1
Rio-MercadoRZBorraz-SanchezCOptimization problems in natural gas transportation systems: a state-of-the-art reviewAppl. Energy201514753655510.1016/j.apenergy.2015.03.017
SchmidtMSteinbachMCWillertBMHigh detail stationary optimization models for gas networks: validation and resultsOptim. Eng.201617437472351145110.1007/s11081-015-9300-3
Pfetsch, M.E., Fugenschuh, A., Geibler, B., Geibler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rovekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert, B.M.: Validation of nominations in gas network optimization: models, methods, and solutions. Optim. Methods Softw. 30(1), 15–53 (2015)
ZhangJZhuDA bilevel programming method for pipe network optimizationSIAM J. Optim.199663838857140220810.1137/S1052623493260696
BurlacuRGeisslerBScheweLSolving mixed-integer nonlinear programs using adaptively refined mixed-integer linear programmesOptim. Methods Soft.2020351376410.1080/10556788.2018.1556661
KochTHillerBPfetschMEScheweLEvaluating Gas Network Capacities2015Philadelphia, PASociety for Industrial and Applied Mathematics10.1137/1.9781611973693
BragalliCD’AmbrosioCLeeJLodiATothPOn the optimal design of water distribution networks:a practical minlp approachOptim. Eng.201213219246292504010.1007/s11081-011-9141-7
SchmidtMAssmannDBurlacuRHumpolaJJoormannIKanelakisNKochTOucherifDPfetschMEScheweLSchewarzRSirventMGaslib - a library of gas network instancesData2015244010.3390/data2040040
LiersFMartinAMerkertMMertensNMichaelsDSolving mixed-integer nonlinear optimization problems using simultaneous convexification-a case study for gas networksJ. Glob. Optim.202180307340427019110.1007/s10898-020-00974-0
KhajaviradASahinidisNVA hybrid LP/NLP paradigm for global optimization relaxationsMath. Program. Comput.201810383421383497110.1007/s12532-018-0138-5
BabonneauFNesterovYVialJ-PDesign and operations of gas transmission networksOper. Res.20126013447291165510.1287/opre.1110.1001
D’AmbrosioCLodiAWieseSBragalliCMathematical programming techniques in water network optimizationEur. J. Oper. Res.2015243774788331614310.1016/j.ejor.2014.12.039
BragalliCD’AmbrosioCLeeJLodiATothPAzarYErlebachTAn minlp solution method for a water network problemAlgorithms - ESA 20062006Berlin, HeidelbergSpringer69670710.1007/11841036_62
WolfDDSmeersYThe gas transmission problem solved by an extension of the simplex algorithmManag. Sci.200046111454146510.1287/mnsc.46.11.1454.12087
Borraz-SanchezCBentRBackhausSHijaziHHentenryckPVConvex relaxations for gas expansion planningINFORMS J. Comput.201628645656355002710.1287/ijoc.2016.0697
ShionoNSuzukiHOptimal pipe-sizing problem of tree-shaped gas distribution networksEur. J. Oper. Res.20162522550560346672010.1016/j.ejor.2016.01.008
RaghunathanAUGlobal optimization of nonlinear network designSIAM J. Optim.2013231268295303310810.1137/110827387
Hante, F.M., Schmidt, M.: Gas transport network optimization: mixed-integer nonlinear models. Optimization-online (2023)
1424_CR30
F Liers (1424_CR9) 2021; 80
J Zhang (1424_CR19) 1996; 6
A Frangioni (1424_CR24) 2006; 106
(1424_CR14) 2015
F Babonneau (1424_CR17) 2012; 60
1424_CR36
1424_CR37
1424_CR38
1424_CR10
B Geibler (1424_CR12) 2018; 30
1424_CR35
QP Zheng (1424_CR7) 2010
M Tawarmalani (1424_CR32) 2005; 103
M Schmidt (1424_CR16) 2016; 17
N Shiono (1424_CR20) 2016; 252
T Achterberg (1424_CR34) 2009; 1
DD Wolf (1424_CR3) 1996; 44
DD Wolf (1424_CR4) 2000; 46
C Borraz-Sanchez (1424_CR18) 2016; 28
A Khajavirad (1424_CR33) 2018; 10
R Burlacu (1424_CR13) 2020; 35
O Günlük (1424_CR25) 2010; 124
AU Raghunathan (1424_CR31) 2013; 23
1424_CR27
C Bragalli (1424_CR28) 2012; 13
C Bragalli (1424_CR29) 2006
C Cherry (1424_CR22) 1951; 42
1424_CR23
1424_CR1
1424_CR2
RZ Rio-Mercado (1424_CR6) 2015; 147
B Geibler (1424_CR11) 2015; 82
1424_CR8
M Robinius (1424_CR21) 2019; 73
C D’Ambrosio (1424_CR26) 2015; 243
M Schmidt (1424_CR5) 2015; 2
D Rose (1424_CR15) 2016; 83
References_xml – reference: Borraz-SanchezCBentRBackhausSHijaziHHentenryckPVConvex relaxations for gas expansion planningINFORMS J. Comput.201628645656355002710.1287/ijoc.2016.0697
– reference: ZhengQPRebennackSIliadisNAPardalosPPardalosPMRebennackSPereiraMVFIliadisNAOptimization Models in the Natural Gas IndustryHandbook of Power Systems I2010HeidebergySpringer
– reference: GeiblerBMorsiAScheweLSchmidtMSolving highly detailed gas transport minlps: block separability and penalty alternating direction methodsINFORMS J. Comput.2018302309323381332010.1287/ijoc.2017.0780
– reference: CherryCSome general theorems for non-linear systems possessing reactancePhilos. Mag.1951427116111774436510.1080/14786445108561362
– reference: BragalliCD’AmbrosioCLeeJLodiATothPAzarYErlebachTAn minlp solution method for a water network problemAlgorithms - ESA 20062006Berlin, HeidelbergSpringer69670710.1007/11841036_62
– reference: Collins, M., Cooper, L., Helgason, R., Kennington, J., LeBlanc, L.: Solving the pipe network analysis problem using optimization techniques. Manag. Sci. 24(7), 747–760 (1977/78)
– reference: LiersFMartinAMerkertMMertensNMichaelsDSolving mixed-integer nonlinear optimization problems using simultaneous convexification-a case study for gas networksJ. Glob. Optim.202180307340427019110.1007/s10898-020-00974-0
– reference: WolfDDSmeersYThe gas transmission problem solved by an extension of the simplex algorithmManag. Sci.200046111454146510.1287/mnsc.46.11.1454.12087
– reference: ShionoNSuzukiHOptimal pipe-sizing problem of tree-shaped gas distribution networksEur. J. Oper. Res.20162522550560346672010.1016/j.ejor.2016.01.008
– reference: EIA, U.S.: Natural Gas Explained. https://www.eia.gov/energyexplained/natural-gas/natural-gas-pipelines.php. Accessed 21 Apr 2022 (2021)
– reference: KochTHillerBPfetschMEScheweLEvaluating Gas Network Capacities2015Philadelphia, PASociety for Industrial and Applied Mathematics10.1137/1.9781611973693
– reference: KhajaviradASahinidisNVA hybrid LP/NLP paradigm for global optimization relaxationsMath. Program. Comput.201810383421383497110.1007/s12532-018-0138-5
– reference: SchmidtMAssmannDBurlacuRHumpolaJJoormannIKanelakisNKochTOucherifDPfetschMEScheweLSchewarzRSirventMGaslib - a library of gas network instancesData2015244010.3390/data2040040
– reference: ApS, M.: The MOSEK Optimization Toolbox for Python Manual. Version 9.3.10. (2022)
– reference: WolfDDSmeersYOptimal dimensioning of pipe networks with application to gas transmission networksOper. Res.199644459660810.1287/opre.44.4.596
– reference: Gurobi Optimization, L.: Gurobi Optimizer Reference Manual (2022)
– reference: Humpola, J.: Gas Network Optimization by minlp. PhD Dissertation (2014)
– reference: Sahinidis, N.V.: BARON 22.9.1: Global Optimization of Mixed-Integer Nonlinear Programs. User’s Manual (2022)
– reference: FrangioniAGentileCPerspective cuts for a class of convex 0–1 mixed integer programsMath. Program.2006106225236220808210.1007/s10107-005-0594-3
– reference: Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: Water network design by minlp. IBM Res. Rep. RC24495 (W0802-056) (2008)
– reference: BabonneauFNesterovYVialJ-PDesign and operations of gas transmission networksOper. Res.20126013447291165510.1287/opre.1110.1001
– reference: RoseDSchmidtMSteinbachMCWillertBMComputational optimization of gas compressor stations: Minlp models versus continuous reformulationsMath. Meth. Oper. Res.201683409444351319810.1007/s00186-016-0533-5
– reference: Sullivan, S., Dlin, S.: Year in Pipelines: Growth in US Natural Gas Pipeline Assets Slowed Again in 2020. https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/year-in-pipelines-growth-in-us-natural-gas-pipeline-assetsslowed-again-in-2020-66386728. Accessed 21 Apr 2022 (2021)
– reference: BragalliCD’AmbrosioCLeeJLodiATothPOn the optimal design of water distribution networks:a practical minlp approachOptim. Eng.201213219246292504010.1007/s11081-011-9141-7
– reference: D’AmbrosioCLodiAWieseSBragalliCMathematical programming techniques in water network optimizationEur. J. Oper. Res.2015243774788331614310.1016/j.ejor.2014.12.039
– reference: Pfetsch, M.E., Fugenschuh, A., Geibler, B., Geibler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rovekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert, B.M.: Validation of nominations in gas network optimization: models, methods, and solutions. Optim. Methods Softw. 30(1), 15–53 (2015)
– reference: GeiblerBMorsiAScheweLSchmidtMSolving power-constrained gas transportation problems using an mip-based alternating direction methodComput. Chem. Eng.20158230331710.1016/j.compchemeng.2015.07.005
– reference: BurlacuRGeisslerBScheweLSolving mixed-integer nonlinear programs using adaptively refined mixed-integer linear programmesOptim. Methods Soft.2020351376410.1080/10556788.2018.1556661
– reference: AchterbergTScip: solving constraint integer programsMath. Program. Comput.200911141252044210.1007/s12532-008-0001-1
– reference: Rio-MercadoRZBorraz-SanchezCOptimization problems in natural gas transportation systems: a state-of-the-art reviewAppl. Energy201514753655510.1016/j.apenergy.2015.03.017
– reference: GünlükOLinderothJPerspective reformulation of mixed integer nonlinear programs with indicator variablesMath. Program.2010124183205267998810.1007/s10107-010-0360-z
– reference: Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Le Bodic, P., Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The Scip Optimization Suite 7.0. Technical Report, Optimization Online (March 2020). http://www.optimization-online.org/DB_HTML/2020/03/7705.html
– reference: SchmidtMSteinbachMCWillertBMHigh detail stationary optimization models for gas networks: validation and resultsOptim. Eng.201617437472351145110.1007/s11081-015-9300-3
– reference: RobiniusMScheweLSchmidtMStoltenDThüraufJWelderLRobust optimal discrete arc sizing for tree-shaped potential networksComput. Optim. Appl.201973791819395353510.1007/s10589-019-00085-x
– reference: ZhangJZhuDA bilevel programming method for pipe network optimizationSIAM J. Optim.199663838857140220810.1137/S1052623493260696
– reference: Hante, F.M., Schmidt, M.: Gas transport network optimization: mixed-integer nonlinear models. Optimization-online (2023)
– reference: RaghunathanAUGlobal optimization of nonlinear network designSIAM J. Optim.2013231268295303310810.1137/110827387
– reference: TawarmalaniMSahinidisNVA polyhedral branch-and-cut approach to global optimizationMath. Program.2005103225249214637910.1007/s10107-005-0581-8
– volume: 35
  start-page: 37
  issue: 1
  year: 2020
  ident: 1424_CR13
  publication-title: Optim. Methods Soft.
  doi: 10.1080/10556788.2018.1556661
– volume: 73
  start-page: 791
  year: 2019
  ident: 1424_CR21
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00085-x
– volume: 252
  start-page: 550
  issue: 2
  year: 2016
  ident: 1424_CR20
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.01.008
– volume: 103
  start-page: 225
  year: 2005
  ident: 1424_CR32
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0581-8
– ident: 1424_CR23
  doi: 10.1287/mnsc.24.7.747
– volume: 17
  start-page: 437
  year: 2016
  ident: 1424_CR16
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-015-9300-3
– volume-title: Handbook of Power Systems I
  year: 2010
  ident: 1424_CR7
– volume: 23
  start-page: 268
  issue: 1
  year: 2013
  ident: 1424_CR31
  publication-title: SIAM J. Optim.
  doi: 10.1137/110827387
– ident: 1424_CR1
– volume: 46
  start-page: 1454
  issue: 11
  year: 2000
  ident: 1424_CR4
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.46.11.1454.12087
– volume: 6
  start-page: 838
  issue: 3
  year: 1996
  ident: 1424_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623493260696
– start-page: 696
  volume-title: Algorithms - ESA 2006
  year: 2006
  ident: 1424_CR29
  doi: 10.1007/11841036_62
– volume: 147
  start-page: 536
  year: 2015
  ident: 1424_CR6
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.03.017
– ident: 1424_CR30
– volume: 83
  start-page: 409
  year: 2016
  ident: 1424_CR15
  publication-title: Math. Meth. Oper. Res.
  doi: 10.1007/s00186-016-0533-5
– volume: 124
  start-page: 183
  year: 2010
  ident: 1424_CR25
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0360-z
– volume: 42
  start-page: 1161
  issue: 7
  year: 1951
  ident: 1424_CR22
  publication-title: Philos. Mag.
  doi: 10.1080/14786445108561362
– ident: 1424_CR36
– ident: 1424_CR38
– volume: 13
  start-page: 219
  year: 2012
  ident: 1424_CR28
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-011-9141-7
– volume: 80
  start-page: 307
  year: 2021
  ident: 1424_CR9
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-020-00974-0
– ident: 1424_CR8
  doi: 10.1007/978-3-030-54621-2_873-1
– volume: 10
  start-page: 383
  year: 2018
  ident: 1424_CR33
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-018-0138-5
– volume: 2
  start-page: 40
  issue: 4
  year: 2015
  ident: 1424_CR5
  publication-title: Data
  doi: 10.3390/data2040040
– volume: 30
  start-page: 309
  issue: 2
  year: 2018
  ident: 1424_CR12
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2017.0780
– ident: 1424_CR10
  doi: 10.1080/10556788.2014.888426
– ident: 1424_CR2
– volume: 60
  start-page: 34
  issue: 1
  year: 2012
  ident: 1424_CR17
  publication-title: Oper. Res.
  doi: 10.1287/opre.1110.1001
– ident: 1424_CR35
– volume: 44
  start-page: 596
  issue: 4
  year: 1996
  ident: 1424_CR3
  publication-title: Oper. Res.
  doi: 10.1287/opre.44.4.596
– ident: 1424_CR27
– volume-title: Evaluating Gas Network Capacities
  year: 2015
  ident: 1424_CR14
  doi: 10.1137/1.9781611973693
– ident: 1424_CR37
– volume: 28
  start-page: 645
  year: 2016
  ident: 1424_CR18
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2016.0697
– volume: 106
  start-page: 225
  year: 2006
  ident: 1424_CR24
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0594-3
– volume: 82
  start-page: 303
  year: 2015
  ident: 1424_CR11
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.07.005
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  ident: 1424_CR34
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-008-0001-1
– volume: 243
  start-page: 774
  year: 2015
  ident: 1424_CR26
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.12.039
SSID ssj0009852
Score 2.4124324
Snippet Gas networks are used to transport natural gas, which is an important resource for both residential and industrial customers throughout the world. The gas...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 931
SubjectTerms Algorithms
Approximation
Computer Science
Construction costs
Decomposition
Enumeration
Experiments
Integer programming
Mathematics
Mathematics and Statistics
Mixed integer
Natural gas
Nested loops
Network design
Network management systems
Nominations
Nonlinearity
Operations Research/Decision Theory
Optimization
Real Functions
Title A reformulation-enumeration MINLP algorithm for gas network design
URI https://link.springer.com/article/10.1007/s10898-024-01424-x
https://www.proquest.com/docview/3121815595
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0YuOhBBTWiSPbgQaNNyrZb6BEMiB8QD5LgqdnddtEEi6E18ec7224BjZp4adN02jSd3Z032TdvAE6FYL4WzLGkFwrLVXoddHnL4r4jVMtjijNd7zwceYOxezthE1MUlhRs92JLMlup14rd2rocjGrWhItHRI5lhrm7JnKNaWcltdvO-uzYPmUWw1XYlMr8_I6v4WiFMb9ti2bRpr8L2wYmkk7u1wpsRHEVdooWDMTMyCpsrekJ4tVwKcKaVKFirBJyZsSlz_eg2yH4EQhUTdsuS1Pho3wYkOHN6P6B8Nl0vnhJn18J2pEpT0icc8VJmNE99mHc7z1eDSzTR8GSOMFSqxly22FKUB-zI-VFESZNwgsdIR3Xlm3qci4x7LfCtqfDucNsriS1BXVDW3pcOgdQiudxdAgkUhJTqtBWgnuuxHDvIGISvlShVjJq0ho0i98ZSCMyrntdzIKVPLJ2QYAuCDIXBB81uFg-85ZLbPxpXS-8FJjplgROUyMVTI5YDS4Lz61u__62o_-ZH8Mm1YMno7PUoZQu3qMTBCWpaEC50-92R_p8_XTXa2Rj8hM2m9oT
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RS8MwED5kPqgP6qbidGoefFC00KZN1z5OUTZdhw8b7K0kaTOFuck6wZ_vpU23KSr4Uii9hJK75L4jd98BnAvBQk2YY0k_EZan9Dno8abFQ1eops8UZ7reOer57YH3MGRDUxSWldnu5ZVkflKvFLsFuhyM6qwJD5-IHNcRDATalge0taTaDfI-O3ZImcXwFDalMj_P8dUdLTHmt2vR3Nvc78K2gYmkVei1CmvppAY7ZQsGYnZkDbZW-ATxLVqQsGY1qBqpjFwYcunLPbhpEfwJBKqmbZelU-HTwgxI1Ol1nwgfj6azl_nzK0E5MuIZmRS54iTJ0z32YXB_179tW6aPgiVxg80tJ-G2y5SgIUZHyk9TDJqEn7hCup4tA-pxLtHtN5PA1-7cZTZXktqCeoktfS7dA6hMppP0EEiqJIZUia0E9z2Ji-8iYhKhVIlmMnJoHZxyOWNpSMZ1r4txvKRH1iqIUQVxroL4ow5XizFvBcXGn9KNUkux2W5Z7DoaqWBwxOpwXWpu-fn32Y7-J34GG-1-1I27nd7jMWxSbUh5aksDKvPZe3qCAGUuTnN7_AT5lNn2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kguhBbVWszz14UDQ03eymzbE-Sn209GCht7CPrAoaxUbw5zubbGwVFbwEQiZLyMzsfMPOfANwICWPLGGOp0ItPWbsPshEyxNRIE0r5EZw2-_cH4S9Ebsa8_FMF39e7V4eSRY9DZalKc0aL9o0Zhrf2rY1jNoKCoZXRJHzzHYDo0WPaGdKu9vOZ-74EeUexx3Ztc38vMbX0DTFm9-OSPPI012FZQcZSafQcRXmkrQGK-U4BuK8swZLM9yCeNf_JGSd1KDqpCbk0BFNH63BaYfgRyBodSO8PFsWnxQmQfqXg5shEY93z68P2f0TQTlyJyYkLerGic5LP9Zh1L24Pet5bqaCp9DZMq-phR9wI2mEmZIJkwQTKBnqQKqA-apNmRAKIUBLt0Mb2gPuC6OoLynTvgqFCjagkj6nySaQxChMr7RvpAiZwtAfIHqSkTLasho1aR2a5e-MlSMct3MvHuMpVbJVQYwqiHMVxO91OP5856Wg2_hTeqfUUuxcbxIHTYtaMFHidTgpNTd9_PtqW_8T34eF4Xk3vrkcXG_DIrV2lFe57EAle31LdhGrZHIvN8cPraPeKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reformulation-enumeration+MINLP+algorithm+for+gas+network+design&rft.jtitle=Journal+of+global+optimization&rft.au=Li%2C+Yijiang&rft.au=Dey%2C+Santanu+S.&rft.au=Sahinidis%2C+Nikolaos+V.&rft.date=2024-12-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=90&rft.issue=4&rft.spage=931&rft.epage=963&rft_id=info:doi/10.1007%2Fs10898-024-01424-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_024_01424_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon