A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength
Despite the extensive use of mortars materials in constructions over the last decades, there is not yet a reliable and robust method, available in the literature, which can estimate its strength based on its mix parameters. This limitation is due to the highly nonlinear relation between the mortar’s...
Saved in:
Published in | Neural computing & applications Vol. 33; no. 9; pp. 4501 - 4532 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the extensive use of mortars materials in constructions over the last decades, there is not yet a reliable and robust method, available in the literature, which can estimate its strength based on its mix parameters. This limitation is due to the highly nonlinear relation between the mortar’s compressive strength and the mixed components. In this paper, the application of artificial intelligence techniques toward the prediction of the compressive strength of cement-based mortar materials with or without metakaolin has been investigated. Specifically, surrogate models (such as artificial neural network, ANN and adaptive neuro-fuzzy inference system, ANFIS models) have been developed to the prediction of the compressive strength of mortars trained using experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of both ANN and ANFIS models to approximate the compressive strength of mortars in a reliable and robust manner. Although ANFIS was able to obtain higher performance prediction to estimate the compressive strength of mortars compared to ANN model, it was found through the verification process of some other additional data, the ANFIS model has overfitted the data. Therefore, the developed ANN model has been introduced as the best predictive technique for solving problem of the compressive strength of mortars. Furthermore, using the optimum developed model an ambitious attempt to reveal the nature of mortar materials has been made. |
---|---|
AbstractList | Despite the extensive use of mortars materials in constructions over the last decades, there is not yet a reliable and robust method, available in the literature, which can estimate its strength based on its mix parameters. This limitation is due to the highly nonlinear relation between the mortar’s compressive strength and the mixed components. In this paper, the application of artificial intelligence techniques toward the prediction of the compressive strength of cement-based mortar materials with or without metakaolin has been investigated. Specifically, surrogate models (such as artificial neural network, ANN and adaptive neuro-fuzzy inference system, ANFIS models) have been developed to the prediction of the compressive strength of mortars trained using experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of both ANN and ANFIS models to approximate the compressive strength of mortars in a reliable and robust manner. Although ANFIS was able to obtain higher performance prediction to estimate the compressive strength of mortars compared to ANN model, it was found through the verification process of some other additional data, the ANFIS model has overfitted the data. Therefore, the developed ANN model has been introduced as the best predictive technique for solving problem of the compressive strength of mortars. Furthermore, using the optimum developed model an ambitious attempt to reveal the nature of mortar materials has been made. |
Author | Asteris, Panagiotis G. Armaghani, Danial Jahed |
Author_xml | – sequence: 1 givenname: Danial Jahed surname: Armaghani fullname: Armaghani, Danial Jahed organization: Institute of Research and Development, Duy Tan University – sequence: 2 givenname: Panagiotis G. orcidid: 0000-0002-7142-4981 surname: Asteris fullname: Asteris, Panagiotis G. email: asteris@aspete.gr, panagiotisasteris@gmail.com organization: Computational Mechanics Laboratory, School of Pedagogical and Technological Education |
BookMark | eNp9kE9LAzEQxYMo2KpfwFPA8-rkT7PpsRSrQqkH9Ryy2Vnd0t3UJBX67U1dQfDQ0wzM-72ZeWNy2vseCblmcMsAyrsIMOGsAA5FbqQs5AkZMSlEIWCiT8kIpjKPlRTnZBzjGgCk0pMRSTPqfLe1wab2C2lMu3pPfUNnqxW1fZ3r4umFdr7GTaSNDzR9IN0GrFuXWt8fpA477FNR2Yh1VoZkA-1swtDazBzcA8Y4uAfs39PHJTlr8gyvfusFeVvcv84fi-Xzw9N8tiycYNNUsLrUjpdcocIGZcURXKMVt7oUFYga8j8KWMVloythZVlNmXLMAuesFFqJC3Iz-G6D_9xhTGbtd6HPKw2fMKWg1KXOKj2oXPAxBmyMa5M9fJeCbTeGgTlkbIaMTc7Y_GRsZEb5P3Qb2s6G_XFIDFDM4v4dw99VR6hv52aQSA |
CitedBy_id | crossref_primary_10_1007_s41062_024_01365_0 crossref_primary_10_1016_j_cscm_2023_e02096 crossref_primary_10_1016_j_conbuildmat_2023_131827 crossref_primary_10_3390_app11030908 crossref_primary_10_1007_s11356_022_20518_1 crossref_primary_10_3390_app11041922 crossref_primary_10_1016_j_autcon_2022_104579 crossref_primary_10_3390_polym15132813 crossref_primary_10_1016_j_resourpol_2021_102195 crossref_primary_10_1016_j_asoc_2024_112334 crossref_primary_10_1007_s00521_021_06834_6 crossref_primary_10_1016_j_engstruct_2023_115753 crossref_primary_10_3390_pr10071387 crossref_primary_10_53608_estudambilisim_1561094 crossref_primary_10_1007_s40996_022_00972_0 crossref_primary_10_1007_s11831_022_09748_1 crossref_primary_10_1007_s41939_023_00187_4 crossref_primary_10_1007_s40996_022_00912_y crossref_primary_10_1016_j_istruc_2022_11_114 crossref_primary_10_3390_ma15165605 crossref_primary_10_3390_geotechnics2040049 crossref_primary_10_3390_buildings12060772 crossref_primary_10_1016_j_conbuildmat_2022_126500 crossref_primary_10_1002_suco_202200769 crossref_primary_10_1016_j_engappai_2024_108932 crossref_primary_10_1007_s00521_022_07013_x crossref_primary_10_1016_j_conbuildmat_2022_128360 crossref_primary_10_1016_j_compgeo_2024_106294 crossref_primary_10_1016_j_mtcomm_2025_112181 crossref_primary_10_1007_s00366_021_01461_0 crossref_primary_10_1007_s12665_021_10049_2 crossref_primary_10_1007_s13198_023_02165_y crossref_primary_10_1016_j_heliyon_2023_e22036 crossref_primary_10_1007_s00603_022_02992_8 crossref_primary_10_1016_j_istruc_2024_107159 crossref_primary_10_3390_buildings14041173 crossref_primary_10_3390_buildings14020396 crossref_primary_10_1016_j_compstruc_2024_107388 crossref_primary_10_1016_j_cscm_2024_e02901 crossref_primary_10_1590_1517_7076_rmat_2024_0722 crossref_primary_10_3390_su14105938 crossref_primary_10_1016_j_hazadv_2024_100576 crossref_primary_10_1007_s00500_021_05626_3 crossref_primary_10_1016_j_cscm_2025_e04387 crossref_primary_10_1016_j_trgeo_2021_100579 crossref_primary_10_1007_s00521_022_07014_w crossref_primary_10_1016_j_heliyon_2023_e12804 crossref_primary_10_1007_s41062_024_01808_8 crossref_primary_10_1088_1757_899X_1273_1_012018 crossref_primary_10_3390_ma15217713 crossref_primary_10_1007_s11356_022_22048_2 crossref_primary_10_1021_acsomega_4c06212 crossref_primary_10_3390_polym14173500 crossref_primary_10_1016_j_asej_2024_102975 crossref_primary_10_3390_ma14216516 crossref_primary_10_3390_su141811769 crossref_primary_10_1007_s11069_021_04885_5 crossref_primary_10_1016_j_mtcomm_2023_106282 crossref_primary_10_1016_j_cscm_2024_e04112 crossref_primary_10_1016_j_cscm_2023_e02172 crossref_primary_10_1007_s00521_024_09919_0 crossref_primary_10_1007_s41062_024_01593_4 crossref_primary_10_1007_s42107_023_00573_w crossref_primary_10_1088_1402_4896_ad6514 crossref_primary_10_3390_pr13030745 crossref_primary_10_1007_s41939_023_00203_7 crossref_primary_10_1016_j_jobe_2024_110615 crossref_primary_10_1016_j_conbuildmat_2022_127082 crossref_primary_10_1016_j_fuel_2022_124037 crossref_primary_10_1016_j_ijsolstr_2024_113125 crossref_primary_10_1007_s10706_023_02643_x crossref_primary_10_1007_s40840_023_01539_6 crossref_primary_10_1007_s00366_021_01459_8 crossref_primary_10_1016_j_rcradv_2022_200090 crossref_primary_10_3390_drones9010056 crossref_primary_10_1016_j_clet_2023_100661 crossref_primary_10_1061__ASCE_GM_1943_5622_0002234 crossref_primary_10_1016_j_cscm_2022_e01238 crossref_primary_10_1007_s00366_020_01225_2 crossref_primary_10_1007_s42107_023_00790_3 crossref_primary_10_3390_ma15196959 crossref_primary_10_1007_s10462_024_11099_1 crossref_primary_10_1016_j_mtcomm_2025_112135 crossref_primary_10_3390_su15054230 crossref_primary_10_1080_17499518_2024_2395560 crossref_primary_10_1016_j_clay_2023_107239 crossref_primary_10_3390_ma15093309 crossref_primary_10_1371_journal_pone_0265747 crossref_primary_10_1155_2022_5586737 crossref_primary_10_1007_s11440_021_01358_8 crossref_primary_10_1016_j_eswa_2022_117754 crossref_primary_10_53608_estudambilisim_1227733 crossref_primary_10_1016_j_advengsoft_2024_103708 crossref_primary_10_1016_j_conbuildmat_2023_132266 crossref_primary_10_1080_10298436_2024_2337916 crossref_primary_10_1080_23311916_2022_2153419 crossref_primary_10_1515_rams_2024_0008 crossref_primary_10_2113_2021_2467126 crossref_primary_10_3233_JIFS_220741 crossref_primary_10_1007_s40996_021_00655_2 crossref_primary_10_1038_s41598_022_19301_6 crossref_primary_10_1016_j_seppur_2023_123807 crossref_primary_10_32604_cmes_2024_048071 crossref_primary_10_1016_j_engstruct_2024_118576 crossref_primary_10_1680_jwarm_23_00039 crossref_primary_10_3390_buildings12020132 crossref_primary_10_1002_eng2_12676 crossref_primary_10_2516_stet_2024014 crossref_primary_10_53608_estudambilisim_1460831 crossref_primary_10_1515_jogs_2022_0172 crossref_primary_10_1007_s41062_022_00761_8 crossref_primary_10_1016_j_trgeo_2023_100978 crossref_primary_10_1016_j_measen_2024_101274 crossref_primary_10_3390_app13106006 crossref_primary_10_3390_w15010103 crossref_primary_10_3390_buildings13081934 crossref_primary_10_1007_s00603_024_04189_7 crossref_primary_10_1016_j_jssas_2023_06_001 crossref_primary_10_1016_j_conbuildmat_2023_132134 crossref_primary_10_2174_2352096516666221103102058 crossref_primary_10_1007_s12145_024_01688_7 crossref_primary_10_1016_j_enggeo_2024_107672 crossref_primary_10_1007_s43452_023_00679_7 crossref_primary_10_3390_ma16145010 crossref_primary_10_1177_14727978251321954 crossref_primary_10_1007_s11356_021_17210_1 crossref_primary_10_1007_s00521_021_06600_8 crossref_primary_10_3390_ma15207045 crossref_primary_10_1016_j_trgeo_2024_101421 crossref_primary_10_1007_s43452_022_00418_4 crossref_primary_10_1016_j_csite_2021_101561 crossref_primary_10_32604_cmes_2022_018699 crossref_primary_10_1007_s00170_024_13681_x crossref_primary_10_1007_s10921_020_00725_x crossref_primary_10_17491_jgsi_2024_174002 crossref_primary_10_1515_rams_2023_0179 crossref_primary_10_1016_j_jappgeo_2024_105557 crossref_primary_10_1590_s1678_86212025000100800 crossref_primary_10_53608_estudambilisim_1051136 crossref_primary_10_1016_j_jrmge_2021_05_010 crossref_primary_10_1007_s13369_023_08260_3 crossref_primary_10_1177_09544089241311377 crossref_primary_10_1007_s00521_023_08278_6 crossref_primary_10_1007_s13369_021_06433_6 crossref_primary_10_4018_IJGEE_298988 crossref_primary_10_1007_s42417_024_01749_7 crossref_primary_10_1016_j_engstruct_2023_116556 crossref_primary_10_1007_s00521_022_07909_8 crossref_primary_10_1007_s12145_022_00823_6 crossref_primary_10_1016_j_conbuildmat_2025_140248 crossref_primary_10_1016_j_cscm_2023_e01845 crossref_primary_10_1016_j_tws_2023_110670 crossref_primary_10_35234_fumbd_1133877 crossref_primary_10_1016_j_conbuildmat_2022_126694 crossref_primary_10_1002_suco_202300401 crossref_primary_10_1016_j_advengsoft_2024_103861 crossref_primary_10_1016_j_conbuildmat_2022_127668 crossref_primary_10_1038_s41598_024_77144_9 crossref_primary_10_3390_buildings14030591 crossref_primary_10_1007_s41939_023_00276_4 crossref_primary_10_1007_s12665_022_10436_3 crossref_primary_10_29130_dubited_1106267 crossref_primary_10_1016_j_engstruct_2021_113276 crossref_primary_10_1016_j_tws_2024_112669 crossref_primary_10_3390_en15155472 crossref_primary_10_1007_s12046_024_02547_3 crossref_primary_10_1080_17480930_2021_1878087 crossref_primary_10_1007_s12205_024_0854_5 crossref_primary_10_21923_jesd_1013463 crossref_primary_10_3390_math10081286 crossref_primary_10_3390_su151511554 crossref_primary_10_1016_j_engstruct_2022_114083 crossref_primary_10_1007_s00521_023_09384_1 crossref_primary_10_1080_15376494_2024_2361859 crossref_primary_10_1007_s11600_024_01362_y crossref_primary_10_1007_s40808_024_02063_7 crossref_primary_10_1007_s42417_022_00670_1 crossref_primary_10_3390_app112210704 crossref_primary_10_3390_su141912950 crossref_primary_10_1007_s40815_022_01402_z crossref_primary_10_1038_s41598_024_58534_5 crossref_primary_10_3390_gels10020148 crossref_primary_10_1007_s41062_025_01935_w crossref_primary_10_1007_s00521_024_10875_y crossref_primary_10_3390_buildings14123998 crossref_primary_10_1016_j_engstruct_2022_114768 crossref_primary_10_1016_j_energy_2024_132602 crossref_primary_10_1007_s41024_023_00345_8 crossref_primary_10_1080_10589759_2024_2304257 crossref_primary_10_1016_j_conbuildmat_2023_131516 crossref_primary_10_1038_s41598_024_65905_5 crossref_primary_10_1007_s41939_024_00455_x crossref_primary_10_1002_suco_202200023 crossref_primary_10_3390_ma15103500 crossref_primary_10_1007_s11831_022_09734_7 crossref_primary_10_1080_10589759_2024_2349243 crossref_primary_10_1016_j_istruc_2023_105062 crossref_primary_10_1016_j_conbuildmat_2022_128737 crossref_primary_10_1080_17486025_2024_2347283 crossref_primary_10_1007_s00603_024_04012_3 crossref_primary_10_3390_buildings13051155 crossref_primary_10_1016_j_istruc_2023_05_052 crossref_primary_10_1007_s41939_024_00561_w crossref_primary_10_1016_j_jrmge_2024_02_016 crossref_primary_10_1007_s12040_023_02156_4 crossref_primary_10_1002_suco_202100732 crossref_primary_10_3390_infrastructures6060080 crossref_primary_10_1016_j_conbuildmat_2024_137606 crossref_primary_10_1007_s41939_025_00737_y crossref_primary_10_1021_acsomega_4c07175 crossref_primary_10_1016_j_asoc_2023_110997 crossref_primary_10_3390_s24020689 crossref_primary_10_1016_j_conbuildmat_2022_126828 crossref_primary_10_1016_j_envres_2023_115696 crossref_primary_10_1016_j_cscm_2023_e02464 crossref_primary_10_1002_suco_202300298 crossref_primary_10_1080_23311916_2023_2297501 crossref_primary_10_1515_htmp_2021_0020 crossref_primary_10_1007_s13762_020_03002_6 crossref_primary_10_1007_s42452_023_05447_z crossref_primary_10_1007_s42729_023_01598_5 crossref_primary_10_3390_ma15103722 crossref_primary_10_3390_math10193563 crossref_primary_10_1007_s44242_024_00041_x crossref_primary_10_3390_jcs7030093 crossref_primary_10_1016_j_engappai_2022_105216 crossref_primary_10_3390_ma13173902 crossref_primary_10_1177_09544100231201215 crossref_primary_10_1016_j_jmsy_2024_04_025 crossref_primary_10_1016_j_istruc_2022_12_021 crossref_primary_10_18245_ijaet_879754 crossref_primary_10_1080_23248378_2024_2345679 crossref_primary_10_1016_j_cscm_2024_e03083 crossref_primary_10_1109_ACCESS_2021_3089205 crossref_primary_10_1007_s12040_024_02341_z crossref_primary_10_1016_j_apor_2025_104525 crossref_primary_10_3934_mbe_2024061 crossref_primary_10_1021_acsomega_3c03294 crossref_primary_10_1016_j_conbuildmat_2024_139459 crossref_primary_10_1016_j_energy_2022_126449 crossref_primary_10_1016_j_clema_2025_100299 crossref_primary_10_3390_polym16172423 crossref_primary_10_1007_s11069_024_06934_1 crossref_primary_10_3390_buildings14113505 crossref_primary_10_1016_j_compgeo_2024_106086 crossref_primary_10_1016_j_fuel_2024_131545 crossref_primary_10_1016_j_matchemphys_2025_130386 crossref_primary_10_1007_s00366_020_01173_x crossref_primary_10_1371_journal_pone_0310422 crossref_primary_10_1016_j_cscm_2025_e04207 crossref_primary_10_1007_s42835_024_01862_3 crossref_primary_10_1080_15623599_2024_2345008 crossref_primary_10_1007_s43452_022_00519_0 crossref_primary_10_3390_ma17184533 crossref_primary_10_1016_j_jocs_2023_102097 crossref_primary_10_3389_fbuil_2024_1446597 crossref_primary_10_1016_j_autcon_2025_106125 crossref_primary_10_3390_app11083705 crossref_primary_10_1007_s40515_024_00433_3 crossref_primary_10_1007_s42107_023_00746_7 crossref_primary_10_1007_s00366_021_01374_y crossref_primary_10_1016_j_istruc_2023_04_050 crossref_primary_10_1007_s43503_024_00024_8 crossref_primary_10_1007_s10706_023_02487_5 crossref_primary_10_1016_j_mtla_2024_102162 |
Cites_doi | 10.3151/jact.15.94 10.1080/19648189.2016.1246693 10.1016/j.conbuildmat.2007.04.004 10.1016/j.conbuildmat.2017.01.132 10.1109/21.256541 10.1016/S0958-9465(00)00091-3 10.1016/j.compositesb.2014.11.023 10.1007/978-3-030-12960-6_14 10.1016/j.cemconcomp.2004.02.041 10.1016/j.engstruct.2018.05.084 10.3390/app9245372 10.1007/s12517-015-1984-3 10.12989/cac.2019.24.5.469 10.1007/s10661-017-6374-8 10.1016/j.prostr.2019.08.123 10.1007/s12665-016-5524-6 10.3390/ma9050396 10.1016/j.engfracmech.2003.12.004 10.1016/S0950-0618(01)00006-X 10.1016/j.conbuildmat.2005.01.047 10.1016/j.conbuildmat.2015.08.096 10.1016/j.conbuildmat.2016.05.034 10.31181/oresta19012010140s 10.1016/j.neunet.2017.04.013 10.1007/s00521-018-03965-1 10.1007/s00521-016-2728-3 10.1109/TII.2019.2951089 10.1007/s00521-020-05214-w 10.1016/j.ssci.2019.05.046 10.3390/app10061904 10.3390/app9040809 10.1007/s40747-019-00118-2 10.1142/S0129065713500299 10.1016/j.advengsoft.2008.12.008 10.1007/s00521-019-04663-2 10.1007/s11709-017-0445-3 10.1007/s10064-014-0638-0 10.1007/s00366-017-0542-x 10.1007/s00366-020-01003-0 10.1016/j.cemconres.2004.01.020 10.1002/fam.2374 10.3390/s17061344 10.3390/app9183715 10.1111/0885-9507.00219 10.1016/j.cemconres.2020.106167 10.1016/j.clay.2011.06.008 10.1016/j.conbuildmat.2006.10.003 10.1007/s11709-016-0363-9 10.1007/s00521-015-2072-z 10.15446/esrj.v19n1.38712 10.1016/j.commatsci.2007.07.011 10.3221/IGF-ESIS.50.18 10.12989/scs.2016.21.3.679 10.1007/s13369-014-1549-x 10.1016/j.commatsci.2007.03.010 10.1201/9781439828229.ch110 10.1007/s11053-020-09676-6 10.1016/j.eswa.2010.03.057 10.1016/S0141-0296(03)00004-X 10.1016/j.jobe.2018.05.012 10.1016/j.commatsci.2007.04.009 10.1016/j.autcon.2005.07.003 10.1007/s00521-016-2368-7 10.1080/14680629.2015.1108218 10.1007/s11069-015-1842-3 10.3390/su12062229 10.1007/s00521-015-2159-6 10.1016/j.conbuildmat.2018.08.079 10.2174/1874836801307010033 10.1016/j.compgeo.2011.09.008 10.1080/15376494.2018.1430874 10.1016/j.asoc.2008.09.006 10.1007/s00779-019-01292-3 10.1016/S0045-7949(01)00083-9 10.1007/s10661-018-6966-y 10.1007/s00366-019-00849-3 10.1016/j.conbuildmat.2005.08.009 10.1016/j.ultras.2008.05.001 10.1109/5.364486 10.1016/j.cemconres.2004.03.028 10.1016/j.conbuildmat.2014.07.089 10.3390/app9020243 10.1016/S0008-8846(03)00090-5 10.1061/(ASCE)0899-1561(2006)18:4(619) 10.1016/j.advengsoft.2009.01.005 10.1007/s00366-019-00752-x 10.1007/s00366-013-0334-x |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-020-05244-4 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 4532 |
ExternalDocumentID | 10_1007_s00521_020_05244_4 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-1d78c2726e6efe4b2e0cf862a873b03d0064601b24f8b3a47b916c1a022173863 |
IEDL.DBID | U2A |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 02:42:06 EDT 2025 Tue Jul 01 01:46:56 EDT 2025 Thu Apr 24 23:11:46 EDT 2025 Fri Feb 21 02:49:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Metakaolin Mortar Artificial neural networks Cement Artificial intelligence techniques Compressive strength Adaptive neuro-fuzzy inference system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-1d78c2726e6efe4b2e0cf862a873b03d0064601b24f8b3a47b916c1a022173863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7142-4981 |
PQID | 2516607878 |
PQPubID | 2043988 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2516607878 crossref_citationtrail_10_1007_s00521_020_05244_4 crossref_primary_10_1007_s00521_020_05244_4 springer_journals_10_1007_s00521_020_05244_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210500 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210500 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | ChenWSarirPBuiXNNguyenHTahirMMArmaghaniDJNeuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pileEng Comput201910.1007/s00366-019-00752-x SPSS Inc (2007) SPSS for windows (version 16.0). SPSS Inc., Chicago DemirFPrediction of elastic modulus of normal and high strength concrete by artificial neural networksConstr Build Mater200822714281435 KebriaDYGhavamiMJavadiSGoharimaneshMCombining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil—a case study in north of IranEnviron Monit Assess201819026 LeeSCPrediction of concrete strength using artificial neural networksEng Struct200325849857 TrtnikGKavčičFTurkGPrediction of concrete strength using ultrasonic pulse velocity and artificial neural networksUltrasonics2009495360 MomeniEArmaghaniDJFatemiSANazirRPrediction of bearing capacity of thin-walled foundation: a simulation approachEng Comput201834319327 Cizer O, Van Balen K, Van Gemert D, Elsen J (2008) Blended lime-cement mortars for conservation purposes: microstructure and strength development. In: Structural analysis of historic construction: preserving safety and significance—proceedings of the 6th international conference on structural analysis of historic construction, SAHC08, 2, pp 965–972 YangHKoopialipoorMArmaghaniDJGordanBKhoramiMTahirMMIntelligent design of retaining wall structures under dynamic conditionsSteel Compos Struct2019316629640 SafiuddinMRamanSNSalamMAJumaatMZModeling of compressive strength for self-consolidating high-strength concrete incorporating palm oil fuel ashMaterials20169396 PalaMÖzbayEÖztaşAYuceMIAppraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networksConstr Build Mater2007212384394 ÖzcanFAtişCDKarahanOUncuoğluETanyildiziHComparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concreteAdv Eng Softw2009408568631421.74114 ArmaghaniDJAsterisPGFatemiSAHasanipanahMTarinejadRRashidASAHuynhVVOn the use of neuro-swarm system to forecast the pile settlementAppl Sci20201061904 WoźniakMPołapDSoft trees with neural components as image-processing technique for archeological excavationsPers Ubiquit Comput202010.1007/s00779-019-01292-3 TopçuIBSaridemirMPrediction of properties of waste AAC aggregate concrete using artificial neural networkComput Mater Sci2007411117125 ZuradaJMIntroduction to artificial neural systems1992PaulWest St AsterisPGMokosVGConcrete compressive strength using artificial neural networksNeural Comput Appl20203218071182610.1007/s00521-019-04663-2 Eskandari-NaddafHKazemiRANN prediction of cement mortar compressive strength, influence of cement strength classConstr Build Mater2017138111 SoltaniFKerachianRShirangiEDeveloping operating rules for reservoirs considering the water quality issues: application of ANFIS-based surrogate modelsExp Syst Appl20103766396645 AsterisPGApostolopoulouMSkentouADAntonia MoropoulouAApplication of artificial neural networks for the prediction of the compressive strength of cement-based mortarsComput Concr2019244329345 KewalramaniMAGuptaRConcrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networksAutom Constr2006153374379 NaderpourHMirrashidMAn innovative approach for compressive strength estimation of mortars having calcium inosilicate mineralsJ Build Eng201819205215 JangJ-SSunC-TNeuro-fuzzy modeling and controlProc IEEE199583378406 ApostolopoulouMArmaghaniDJBakolasADouvikaMGMoropoulouAAsterisPGCompressive strength of natural hydraulic lime mortars using soft computing techniquesProc Struct Integr201917914923 CourardLDarimontASchouterdenMFeraucheFWillemXDegeimbreRDurability of mortars modified with metakaolinCem Concr Res200333914731479 ParandeAKRamesh BabuBAswinKarthikMDeepak KumaarKKPalaniswamyNStudy on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortarConstr Build Mater2008223127134 ZiariHSobhaniJAyoubinejadJHartmannTAnalysing the accuracy of pavement performance models in the short and long terms: GMDH and ANFIS methodsRoad Mater Pave Des201617619637 AsterisPGMoropoulouASkentouADApostolopoulouMMohebkhahACavaleriLRodriguesHVarumHStochastic vulnerability assessment of masonry structures: concepts, modeling and restoration aspectsAppl Sci201992243 JangJ-SANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323665685 Mardani-AghabaglouASezerGİRamyarKComparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view pointConstr Build Mater2014701725 SafaMShariatiMIbrahimZPotential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strengthSteel Compos Struct201621679688 AltunFKişiOAydinKPredicting the compressive strength of steel fiber added lightweight concrete using neural networkComput Mater Sci2008422259265 Al-ChaarGKAlkadiMAsterisPGNatural pozzolan as a partial substitute for cement in concreteOpen Constr Build Technol J201373342 Jahed ArmaghaniDAsterisPGAskarianBHasanipanahMTarinejadRHuynhVVExamining hybrid and single SVM models with different kernels to predict rock brittlenessSustainability20201262229 MohamadETJahed ArmaghaniDMomeniEAbadSVANKPrediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approachBull Eng Geol Environ201410.1007/s10064-014-0638-0 VuDDStroevenPBuiVBStrength and durability aspects of calcined kaolin-blended Portland cement mortar and concreteCem Concr Compos2001236471478 HarandizadehHArmaghaniDJKhariMA new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasetsEng Comput201910.1007/s00366-019-00849-3 ArmaghaniDJHatzigeorgiouGDKaramaniChSkentouAZoumpoulakiIAsterisPGSoft computing based techniques for concrete beams shear strengthProc Struct Integr20191792493310.1016/j.prostr.2019.08.123 Tutmez B, Dag A, Tercan AE, Kaymak U (2007) Lignite thickness estimation via adaptive fuzzy-neural network. In: Proceedings of the 20th international mining congress and exhibition of Turkey (IMCET 2007), pp 151–157 XuHZhouJAsterisGPJahed ArmaghaniDTahirMMSupervised machine learning techniques to the prediction of tunnel boring machine penetration rateAppl Sci20199183715 MansouriIKisiOPrediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approachesCompos Part B Eng201570247255 AdhikaryBBMutsuyoshiHPrediction of shear strength of steel fiber RC beams using neural networksConstr Build Mater2006209801811 Zounemat-KermaniMBeheshtiA-AAtaie-AshtianiBSabbagh-YazdiS-REstimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference systemAppl Soft Comput20099746755 ApostolopoulouMAsterisPGArmaghaniDJDouvikaMGLourençoPBCavaleriLBakolasAMoropoulouAMapping and holistic design of natural hydraulic lime mortarsCem Concr Res202013610616710.1016/j.cemconres.2020.106167 DarainKMShamshirbandSJumaatMZObaydullahMAdaptive neuro fuzzy prediction of deflection and cracking behavior of NSM strengthened RC beamsConstr Build Mater201598276285 JafariFBadarlooBFinite Element Analysis and ANFIS investigation of seismic behavior of sandwich panels with different concrete material in two story steel buildingFrat ed Integrità Strutt201913209230 YadollahiMMBenliADemirbogaRApplication of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer compositesNeural Comput Appl20172814531461 MomeniENazirRArmaghaniDJMaizirHApplication of artificial neural network for predicting shaft and tip resistances of concrete pilesEarth Sci Res J20151918593 OnyariEKIkotunBDPrediction of compressive and flexural strengths of a modified zeolite additive mortar using artificial neural networkConstr Build Mater201818712321241 WoźniakMPołapDIntelligent home systems for ubiquitous user support by using neural networks and rule based approachIEEE Trans Indus Inform201910.1109/TII.2019.2951089 Potgieter-VermaakSSPotgieterJHMetakaolin as an extender in South African cementJ Mater Civ Eng2006184619623 KhademiFAkbariMJamalSMNikooMMultiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concreteFront Struct Civ Eng2017119099 ArmaghaniDJHajihassaniMSohaeiHMohamadETMartoAMotaghediHMoghaddamMRNeuro-fuzzy technique to predict air-overpressure induced by blastingArab J Geosci20158121093710950 Apostolopoulou M, Douvika MG, Kanellopoulos IN, Moropoulou A, Asteris PG (2018) Prediction of compressive strength of mortars using artificial neural networks. In: 1st international conference TMM_CH, transdisciplinary multispectral modeling and cooperation for the preservation of cultural heritage, Athens, Greece KadriEHKenaiSEzzianeKSiddiqueRDe SchutterGInfluence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortarAppl Clay Sci2011534704708 AlexandridisAEvolving RBF neural networks for adaptive soft-sensor designInt J Neural Syst2013231350029 ZhouJLiXMitriHSComparative performance of six supervised learning methods for the development of models of hard rock pillar stability predictionNat Hazards2015791291316 BaykasoǧluADereliTUTanişSPrediction of cement strength using soft computing techniquesCem Concr Res20043420832090 AsterisPGNozhatiSNikooMCavaleriLNikooMKrill herd algorithm-based neural network in structural seismic reliability evaluationMech Adv Mater Struct2019261311461153 AbunamaTOthmanFYounesMKPredicting sanitary landfill leachate generation in humid regions using ANFIS modelingEnviron Monit Assess2018190597 WaliaNSinghHSharmaAANFIS: adaptive neuro-fuzzy inference system-a surveyInt J Comput Appl201512313 ZhouJLiEYangSWangMShiXYaoSMitriHSSlope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database o J Zhou (5244_CR6) 2015; 79 M Woźniak (5244_CR4) 2017; 93 H Mashhadban (5244_CR18) 2016; 119 A Alexandridis (5244_CR11) 2013; 23 M Pala (5244_CR55) 2007; 21 C Sumasree (5244_CR77) 2016; 4 PG Asteris (5244_CR31) 2019; 31 PG Asteris (5244_CR20) 2016; 20 MA Kewalramani (5244_CR54) 2006; 15 H Naderpour (5244_CR51) 2019 DJ Armaghani (5244_CR87) 2015; 8 J-S Jang (5244_CR69) 1995; 83 5244_CR1 M Saridemir (5244_CR24) 2009; 40 PG Asteris (5244_CR96) 2019; 9 XX Ma (5244_CR40) 2007; 23 SS Potgieter-Vermaak (5244_CR81) 2006; 18 T-K Oh (5244_CR26) 2017; 15 F Demir (5244_CR57) 2008; 22 G Batis (5244_CR78) 2005; 27 PG Asteris (5244_CR101) 2017; 17 M Woźniak (5244_CR2) 2020 A Mardani-Aghabaglou (5244_CR80) 2014; 70 J Duan (5244_CR10) 2020 Z Waszczyszyn (5244_CR16) 2001; 79 DJ Armaghani (5244_CR72) 2015; 8 M Aghaabbasi (5244_CR7) 2020; 136 PG Asteris (5244_CR104) 2020; 32 BB Adhikary (5244_CR53) 2006; 20 5244_CR106 C Özel (5244_CR43) 2015; 22 R Ince (5244_CR52) 2004; 71 DY Kebria (5244_CR46) 2018; 190 M Safiuddin (5244_CR32) 2016; 9 H Naderpour (5244_CR61) 2018; 19 E Momeni (5244_CR86) 2015; 19 IB Topçu (5244_CR56) 2007; 41 IB Topçu (5244_CR14) 2008; 41 PG Asteris (5244_CR99) 2019; 24 H Adeli (5244_CR30) 2001; 16 PG Asteris (5244_CR100) 2019; 26 H Eskandari-Naddaf (5244_CR25) 2017; 138 H Ziari (5244_CR41) 2016; 17 M Stojčić (5244_CR42) 2018; 1 F Jafari (5244_CR48) 2019; 13 DJ Armaghani (5244_CR63) 2017; 28 I Mansouri (5244_CR33) 2015; 70 O Belalia Douma (5244_CR17) 2016 F Özcan (5244_CR23) 2009; 40 J Zhou (5244_CR5) 2019; 118 EH Kadri (5244_CR79) 2011; 53 BR Murlidhar (5244_CR92) 2020 F Khademi (5244_CR27) 2017; 11 DJ Armaghani (5244_CR93) 2019; 17 WPS Dias (5244_CR12) 2001; 15 S Akkurt (5244_CR22) 2004; 34 TCS Reddy (5244_CR34) 2017 J-S Jang (5244_CR68) 1993; 23 OAM Ali (5244_CR70) 2015; 76 U Gazder (5244_CR59) 2017; 20 GK Al-Chaar (5244_CR83) 2013; 7 PG Asteris (5244_CR94) 2019; 24 ET Mohamad (5244_CR38) 2014 H Harandizadeh (5244_CR89) 2019 F Altun (5244_CR58) 2008; 42 M Apostolopoulou (5244_CR102) 2020; 136 L Huang (5244_CR97) 2019; 9 M Açikgenç (5244_CR19) 2015; 40 H Xu (5244_CR91) 2019; 9 MM Yadollahi (5244_CR44) 2017; 28 M Khandelwal (5244_CR85) 2016; 75 AK Parande (5244_CR76) 2008; 22 PG Asteris (5244_CR105) 2019; 24 M Zounemat-Kermani (5244_CR36) 2009; 9 E Momeni (5244_CR73) 2018; 34 DD Vu (5244_CR74) 2001; 23 M Safa (5244_CR47) 2016; 21 SC Lee (5244_CR13) 2003; 25 D Jahed Armaghani (5244_CR9) 2020; 12 EK Onyari (5244_CR60) 2018; 187 KM Darain (5244_CR50) 2015; 98 T Abunama (5244_CR45) 2018; 190 H Yang (5244_CR88) 2019; 31 M Woźniak (5244_CR3) 2019 ET Mohamad (5244_CR64) 2018; 30 İ Türkmen (5244_CR28) 2017; 41 JM Zurada (5244_CR62) 1992 H Salehi (5244_CR35) 2018; 171 L Courard (5244_CR75) 2003; 33 MA Mashrei (5244_CR49) 2019; 9 5244_CR82 5244_CR84 AF Cabalar (5244_CR37) 2012; 40 M Apostolopoulou (5244_CR95) 2019; 17 N Walia (5244_CR71) 2015; 123 F Soltani (5244_CR39) 2010; 37 S Haykin (5244_CR66) 1999 A Baykasoǧlu (5244_CR21) 2004; 34 G Trtnik (5244_CR15) 2009; 49 M Nikoo (5244_CR29) 2015; 31 5244_CR98 ET Mohamad (5244_CR65) 2012; 5 DJ Armaghani (5244_CR8) 2020; 10 H Ly (5244_CR103) 2020 G Dreyfus (5244_CR67) 2005 W Chen (5244_CR90) 2019 |
References_xml | – reference: MohamadETJahed ArmaghaniDMomeniEAbadSVANKPrediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approachBull Eng Geol Environ201410.1007/s10064-014-0638-0 – reference: KebriaDYGhavamiMJavadiSGoharimaneshMCombining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil—a case study in north of IranEnviron Monit Assess201819026 – reference: MohamadETArmaghaniDJMomeniEYazdavarAHEbrahimiMRock strength estimation: a PSO-based BP approachNeural Comput Appl201830516351646 – reference: WaliaNSinghHSharmaAANFIS: adaptive neuro-fuzzy inference system-a surveyInt J Comput Appl201512313 – reference: HarandizadehHArmaghaniDJKhariMA new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasetsEng Comput201910.1007/s00366-019-00849-3 – reference: BaykasoǧluADereliTUTanişSPrediction of cement strength using soft computing techniquesCem Concr Res20043420832090 – reference: AsterisPGAshrafianARezaie-BalfMPrediction of the compressive strength of self-compacting concrete using surrogate modelsComput Concr2019242137150 – reference: AsterisPGArmaghaniDJHatzigeorgiouGDKarayannisCGPilakoutasKPredicting the shear strength of reinforced concrete beams using Artificial Neural NetworksComput Concr201924546948810.12989/cac.2019.24.5.469 – reference: PalaMÖzbayEÖztaşAYuceMIAppraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networksConstr Build Mater2007212384394 – reference: LeeSCPrediction of concrete strength using artificial neural networksEng Struct200325849857 – reference: SaridemirMPredicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logicAdv Eng Softw20094099209271421.74008 – reference: CourardLDarimontASchouterdenMFeraucheFWillemXDegeimbreRDurability of mortars modified with metakaolinCem Concr Res200333914731479 – reference: NaderpourHMirrashidMAn innovative approach for compressive strength estimation of mortars having calcium inosilicate mineralsJ Build Eng201819205215 – reference: YangHKoopialipoorMArmaghaniDJGordanBKhoramiMTahirMMIntelligent design of retaining wall structures under dynamic conditionsSteel Compos Struct2019316629640 – reference: JafariFBadarlooBFinite Element Analysis and ANFIS investigation of seismic behavior of sandwich panels with different concrete material in two story steel buildingFrat ed Integrità Strutt201913209230 – reference: ParandeAKRamesh BabuBAswinKarthikMDeepak KumaarKKPalaniswamyNStudy on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortarConstr Build Mater2008223127134 – reference: AliOAMAliAYSumaitBSComparison between the effects of different types of membership functions on fuzzy logic controller performanceInt J2015767683 – reference: DemirFPrediction of elastic modulus of normal and high strength concrete by artificial neural networksConstr Build Mater200822714281435 – reference: LyHPhamBTLeLMEstimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate modelsNeural Comput Appl202010.1007/s00521-020-05214-w – reference: SalehiHBurgueñoREmerging artificial intelligence methods in structural engineeringEng Struct2018171170189 – reference: ArmaghaniDJHatzigeorgiouGDKaramaniChSkentouAZoumpoulakiIAsterisPGSoft computing based techniques for concrete beams shear strengthProc Struct Integr20191792493310.1016/j.prostr.2019.08.123 – reference: CabalarAFCevikAGokceogluCSome applications of adaptive neuro-fuzzy inference system (ANFIS) in geotechnical engineeringComput Geotech2012401433 – reference: ApostolopoulouMArmaghaniDJBakolasADouvikaMGMoropoulouAAsterisPGCompressive strength of natural hydraulic lime mortars using soft computing techniquesProc Struct Integr201917914923 – reference: YadollahiMMBenliADemirbogaRApplication of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer compositesNeural Comput Appl20172814531461 – reference: Mardani-AghabaglouASezerGİRamyarKComparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view pointConstr Build Mater2014701725 – reference: ÖzelCTopsakalAComparison of ANFIS and ANN for estimation of thermal conductivity coefficients of construction materialsSci Iran20152220012011 – reference: SoltaniFKerachianRShirangiEDeveloping operating rules for reservoirs considering the water quality issues: application of ANFIS-based surrogate modelsExp Syst Appl20103766396645 – reference: Al-ChaarGKAlkadiMAsterisPGNatural pozzolan as a partial substitute for cement in concreteOpen Constr Build Technol J201373342 – reference: DiasWPSPooliyaddaSPNeural networks for predicting properties of concretes with admixturesConstr Build Mater200115371379 – reference: Belalia DoumaOBoukhatemBGhriciMTagnit-HamouAPrediction of properties of self-compacting concrete containing fly ash using artificial neural networkNeural Comput Appl201610.1007/s00521-016-2368-7 – reference: Tutmez B, Dag A, Tercan AE, Kaymak U (2007) Lignite thickness estimation via adaptive fuzzy-neural network. In: Proceedings of the 20th international mining congress and exhibition of Turkey (IMCET 2007), pp 151–157 – reference: TrtnikGKavčičFTurkGPrediction of concrete strength using ultrasonic pulse velocity and artificial neural networksUltrasonics2009495360 – reference: MohamadETHajihassaniMArmaghaniDJMartoASimulation of blasting-induced air overpressure by means of artificial neural networksInt Rev Modell Simul2012525012506 – reference: KhademiFAkbariMJamalSMNikooMMultiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concreteFront Struct Civ Eng2017119099 – reference: Eskandari-NaddafHKazemiRANN prediction of cement mortar compressive strength, influence of cement strength classConstr Build Mater2017138111 – reference: SafaMShariatiMIbrahimZPotential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strengthSteel Compos Struct201621679688 – reference: JangJ-SSunC-TNeuro-fuzzy modeling and controlProc IEEE199583378406 – reference: WaszczyszynZZiemiańskiLNeural networks in mechanics of structures and materials—new results and prospects of applicationsComput Struct20017922612276 – reference: StojčićMApplication of ANFIS model in road traffic and transportation: A literature review from 1993 to 2018Oper Res Eng Sci Theory Appl201814061 – reference: AsterisPGKolovosKGDouvikaMGRoinosKPrediction of self-compacting concrete strength using artificial neural networksEur J Environ Civ Eng201620102122 – reference: AghaabbasiMShekariZAShahMZOlakunleOArmaghaniDJMoeinaddiniMPredicting the use frequency of ride-sourcing by off-campus university students through random forest and Bayesian network techniquesTransport Res A-Pol2020136262281 – reference: NikooMZarfamPSayahpourHDetermination of compressive strength of concrete using Self Organization Feature Map (SOFM)Eng Comput201531113121 – reference: TürkmenİBingölAFTortumADemirboğaRGülRProperties of pumice aggregate concretes at elevated temperatures and comparison with ANN modelsFire Mater201741142153 – reference: VuDDStroevenPBuiVBStrength and durability aspects of calcined kaolin-blended Portland cement mortar and concreteCem Concr Compos2001236471478 – reference: JangJ-SANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323665685 – reference: ZhouJLiEYangSWangMShiXYaoSMitriHSSlope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case historiesSaf Sci2019118505518 – reference: ChenWSarirPBuiXNNguyenHTahirMMArmaghaniDJNeuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pileEng Comput201910.1007/s00366-019-00752-x – reference: AltunFKişiOAydinKPredicting the compressive strength of steel fiber added lightweight concrete using neural networkComput Mater Sci2008422259265 – reference: MashhadbanHKutanaeiSSSayarinejadMAPrediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural networkConstr Build Mater2016119277287 – reference: ArmaghaniDJAsterisPGFatemiSAHasanipanahMTarinejadRRashidASAHuynhVVOn the use of neuro-swarm system to forecast the pile settlementAppl Sci20201061904 – reference: MurlidharBRKumarDJahed ArmaghaniDMohamadETRoyBPhamBTA novel intelligent ELM-BBO technique for predicting distance of mine blasting-induced flyrockNat Resour Res202010.1007/s11053-020-09676-6 – reference: ReddyTCSPredicting the strength properties of slurry infiltrated fibrous concrete using artificial neural networkFront Struct Civ Eng201710.1007/s11709-017-0445-3 – reference: TopçuIBSaridemirMPrediction of properties of waste AAC aggregate concrete using artificial neural networkComput Mater Sci2007411117125 – reference: Zounemat-KermaniMBeheshtiA-AAtaie-AshtianiBSabbagh-YazdiS-REstimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference systemAppl Soft Comput20099746755 – reference: KewalramaniMAGuptaRConcrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networksAutom Constr2006153374379 – reference: AkkurtSTayfurGCanSFuzzy logic model for the prediction of cement compressive strengthCem Concr Res20043414291433 – reference: ArmaghaniDJHajihassaniMSohaeiHNeuro-fuzzy technique to predict air-overpressure induced by blastingArab J Geosci20158109371095010.1007/s12517-015-1984-3 – reference: DarainKMShamshirbandSJumaatMZObaydullahMAdaptive neuro fuzzy prediction of deflection and cracking behavior of NSM strengthened RC beamsConstr Build Mater201598276285 – reference: Potgieter-VermaakSSPotgieterJHMetakaolin as an extender in South African cementJ Mater Civ Eng2006184619623 – reference: AsterisPGRoussisPCDouvikaMGFeed-forward neural network prediction of the mechanical properties of sandcrete materialsSensors20171761344 – reference: ApostolopoulouMAsterisPGArmaghaniDJDouvikaMGLourençoPBCavaleriLBakolasAMoropoulouAMapping and holistic design of natural hydraulic lime mortarsCem Concr Res202013610616710.1016/j.cemconres.2020.106167 – reference: SPSS Inc (2007) SPSS for windows (version 16.0). SPSS Inc., Chicago – reference: AsterisPGApostolopoulouMSkentouADAntonia MoropoulouAApplication of artificial neural networks for the prediction of the compressive strength of cement-based mortarsComput Concr2019244329345 – reference: MaXXGuoHFChenXWater quality evaluation model based on ANFIS and its applicationWater Resour Prot2007231214 – reference: XuHZhouJAsterisGPJahed ArmaghaniDTahirMMSupervised machine learning techniques to the prediction of tunnel boring machine penetration rateAppl Sci20199183715 – reference: ZuradaJMIntroduction to artificial neural systems1992PaulWest St – reference: AçikgençMUlaşMAlyamaçKEUsing an artificial neural network to predict mix compositions of steel fiber-reinforced concreteArab J Sci Eng201540407419 – reference: DreyfusGNeural networks: methodology and application2005BerlinSpringer1119.92003 – reference: TopçuIBSaridemirMPrediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logicComput Mater Sci200841305311 – reference: HaykinSNeural networks: a comprehensive foundation1999Upper Saddle River, New JerseyPrentice Hall0934.68076 – reference: SumasreeCSajjaSEffect of Metakaolin and Cerafibermix on mechanical and durability properties of mortarsInt J Sci Eng Technol201643501506 – reference: AsterisPGNozhatiSNikooMCavaleriLNikooMKrill herd algorithm-based neural network in structural seismic reliability evaluationMech Adv Mater Struct2019261311461153 – reference: DuanJAsterisPGNguyenHBuiXNMoayediHA novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost modelEng Comput202010.1007/s00366-020-01003-0 – reference: AdhikaryBBMutsuyoshiHPrediction of shear strength of steel fiber RC beams using neural networksConstr Build Mater2006209801811 – reference: WoźniakMPołapDHybrid neuro-heuristic methodology for simulation and control of dynamic systems over time intervalNeural Net2017934556 – reference: ArmaghaniDJRajaRSNSBFaiziKRashidASADeveloping a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed pilesNeural Comput Appl2017282391405 – reference: MashreiMAMahdiAMAn adaptive neuro-fuzzy inference model to predict punching shear strength of flat concrete slabsAppl Sci20199809 – reference: AdeliHNeural networks in civil engineering: 1989–2000Comput-Aid Civ Infrastruct Eng200116126142 – reference: OhT-KKimJLeeCParkSNondestructive concrete strength estimation based on electro-mechanical impedance with artificial neural networkJ Adv Concr Technol20171594102 – reference: ZhouJLiXMitriHSComparative performance of six supervised learning methods for the development of models of hard rock pillar stability predictionNat Hazards2015791291316 – reference: NaderpourHMirrashidMMoment capacity estimation of spirally reinforced concrete columns using ANFISCompl Intell Syst201910.1007/s40747-019-00118-2 – reference: OnyariEKIkotunBDPrediction of compressive and flexural strengths of a modified zeolite additive mortar using artificial neural networkConstr Build Mater201818712321241 – reference: Apostolopoulou M, Douvika MG, Kanellopoulos IN, Moropoulou A, Asteris PG (2018) Prediction of compressive strength of mortars using artificial neural networks. In: 1st international conference TMM_CH, transdisciplinary multispectral modeling and cooperation for the preservation of cultural heritage, Athens, Greece – reference: ZiariHSobhaniJAyoubinejadJHartmannTAnalysing the accuracy of pavement performance models in the short and long terms: GMDH and ANFIS methodsRoad Mater Pave Des201617619637 – reference: AbunamaTOthmanFYounesMKPredicting sanitary landfill leachate generation in humid regions using ANFIS modelingEnviron Monit Assess2018190597 – reference: ÖzcanFAtişCDKarahanOUncuoğluETanyildiziHComparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concreteAdv Eng Softw2009408568631421.74114 – reference: KadriEHKenaiSEzzianeKSiddiqueRDe SchutterGInfluence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortarAppl Clay Sci2011534704708 – reference: ArmaghaniDJHajihassaniMSohaeiHMohamadETMartoAMotaghediHMoghaddamMRNeuro-fuzzy technique to predict air-overpressure induced by blastingArab J Geosci20158121093710950 – reference: AsterisPGMoropoulouASkentouADApostolopoulouMMohebkhahACavaleriLRodriguesHVarumHStochastic vulnerability assessment of masonry structures: concepts, modeling and restoration aspectsAppl Sci201992243 – reference: InceRPrediction of fracture parameters of concrete by Artificial Neural NetworksEng Fract Mech2004711521432159 – reference: Asteris PG, Argyropoulos I, Cavaleri L, Rodrigues H, Varum H, Thomas J, Lourenço PB (2018) Masonry compressive strength prediction using artificial neural networks. In International conference on transdisciplinary multispectral modeling and cooperation for the preservation of cultural heritage, Springer, Cham, Switzerland, pp 200–224 – reference: AsterisPGNikooMArtificial Bee colony-based neural network for the prediction of the fundamental period of infilled frame structuresNeural Comput Appl201931948374847 – reference: GazderUAl-AmoudiOSBSaad KhanSMMaslehuddinMPredicting compressive strength of blended cement concrete with ANNsComput Concr2017206627634 – reference: BatisGPantazopoulouPTsivilisSBadogiannisEThe effect of metakaolin on the corrosion behavior of cement mortarsCem Concr Compos2005271125130 – reference: HuangLAsterisPGKoopialipoorMArmaghaniDJTahirMMInvasive weed optimization technique-based ANN to the prediction of rock tensile strengthAppl Sci201995372 – reference: MomeniENazirRArmaghaniDJMaizirHApplication of artificial neural network for predicting shaft and tip resistances of concrete pilesEarth Sci Res J20151918593 – reference: KhandelwalMArmaghaniDJFaradonbehRSRanjithPGGhorabaSA new model based on gene expression programming to estimate air flow in a single rock jointEnviron Earth Sci2016759739 – reference: WoźniakMPołapDIntelligent home systems for ubiquitous user support by using neural networks and rule based approachIEEE Trans Indus Inform201910.1109/TII.2019.2951089 – reference: SafiuddinMRamanSNSalamMAJumaatMZModeling of compressive strength for self-consolidating high-strength concrete incorporating palm oil fuel ashMaterials20169396 – reference: AsterisPGMokosVGConcrete compressive strength using artificial neural networksNeural Comput Appl20203218071182610.1007/s00521-019-04663-2 – reference: Cizer O, Van Balen K, Van Gemert D, Elsen J (2008) Blended lime-cement mortars for conservation purposes: microstructure and strength development. In: Structural analysis of historic construction: preserving safety and significance—proceedings of the 6th international conference on structural analysis of historic construction, SAHC08, 2, pp 965–972 – reference: MomeniEArmaghaniDJFatemiSANazirRPrediction of bearing capacity of thin-walled foundation: a simulation approachEng Comput201834319327 – reference: WoźniakMPołapDSoft trees with neural components as image-processing technique for archeological excavationsPers Ubiquit Comput202010.1007/s00779-019-01292-3 – reference: Jahed ArmaghaniDAsterisPGAskarianBHasanipanahMTarinejadRHuynhVVExamining hybrid and single SVM models with different kernels to predict rock brittlenessSustainability20201262229 – reference: AlexandridisAEvolving RBF neural networks for adaptive soft-sensor designInt J Neural Syst2013231350029 – reference: MansouriIKisiOPrediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approachesCompos Part B Eng201570247255 – volume: 5 start-page: 2501 year: 2012 ident: 5244_CR65 publication-title: Int Rev Modell Simul – volume: 15 start-page: 94 year: 2017 ident: 5244_CR26 publication-title: J Adv Concr Technol doi: 10.3151/jact.15.94 – volume: 20 start-page: 102 year: 2016 ident: 5244_CR20 publication-title: Eur J Environ Civ Eng doi: 10.1080/19648189.2016.1246693 – volume: 22 start-page: 1428 issue: 7 year: 2008 ident: 5244_CR57 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2007.04.004 – volume: 138 start-page: 1 year: 2017 ident: 5244_CR25 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.01.132 – volume: 23 start-page: 665 year: 1993 ident: 5244_CR68 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.256541 – volume: 23 start-page: 471 issue: 6 year: 2001 ident: 5244_CR74 publication-title: Cem Concr Compos doi: 10.1016/S0958-9465(00)00091-3 – volume: 22 start-page: 2001 year: 2015 ident: 5244_CR43 publication-title: Sci Iran – volume: 70 start-page: 247 year: 2015 ident: 5244_CR33 publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2014.11.023 – ident: 5244_CR98 doi: 10.1007/978-3-030-12960-6_14 – volume: 24 start-page: 137 issue: 2 year: 2019 ident: 5244_CR99 publication-title: Comput Concr – volume: 27 start-page: 125 issue: 1 year: 2005 ident: 5244_CR78 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2004.02.041 – volume: 171 start-page: 170 year: 2018 ident: 5244_CR35 publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.05.084 – volume: 9 start-page: 5372 year: 2019 ident: 5244_CR97 publication-title: Appl Sci doi: 10.3390/app9245372 – volume: 8 start-page: 10937 issue: 12 year: 2015 ident: 5244_CR87 publication-title: Arab J Geosci doi: 10.1007/s12517-015-1984-3 – volume: 24 start-page: 469 issue: 5 year: 2019 ident: 5244_CR94 publication-title: Comput Concr doi: 10.12989/cac.2019.24.5.469 – volume: 190 start-page: 26 year: 2018 ident: 5244_CR46 publication-title: Environ Monit Assess doi: 10.1007/s10661-017-6374-8 – volume: 17 start-page: 924 year: 2019 ident: 5244_CR93 publication-title: Proc Struct Integr doi: 10.1016/j.prostr.2019.08.123 – volume: 75 start-page: 739 issue: 9 year: 2016 ident: 5244_CR85 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5524-6 – volume: 9 start-page: 396 year: 2016 ident: 5244_CR32 publication-title: Materials doi: 10.3390/ma9050396 – volume: 71 start-page: 2143 issue: 15 year: 2004 ident: 5244_CR52 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2003.12.004 – volume-title: Introduction to artificial neural systems year: 1992 ident: 5244_CR62 – volume: 15 start-page: 371 year: 2001 ident: 5244_CR12 publication-title: Constr Build Mater doi: 10.1016/S0950-0618(01)00006-X – ident: 5244_CR84 – volume: 20 start-page: 801 issue: 9 year: 2006 ident: 5244_CR53 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2005.01.047 – volume: 98 start-page: 276 year: 2015 ident: 5244_CR50 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.08.096 – volume: 119 start-page: 277 year: 2016 ident: 5244_CR18 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.05.034 – volume: 136 start-page: 262 year: 2020 ident: 5244_CR7 publication-title: Transport Res A-Pol – volume: 8 start-page: 10937 year: 2015 ident: 5244_CR72 publication-title: Arab J Geosci doi: 10.1007/s12517-015-1984-3 – volume: 1 start-page: 40 year: 2018 ident: 5244_CR42 publication-title: Oper Res Eng Sci Theory Appl doi: 10.31181/oresta19012010140s – volume: 93 start-page: 45 year: 2017 ident: 5244_CR4 publication-title: Neural Net doi: 10.1016/j.neunet.2017.04.013 – volume: 31 start-page: 4837 issue: 9 year: 2019 ident: 5244_CR31 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-03965-1 – volume: 30 start-page: 1635 issue: 5 year: 2018 ident: 5244_CR64 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2728-3 – year: 2019 ident: 5244_CR3 publication-title: IEEE Trans Indus Inform doi: 10.1109/TII.2019.2951089 – year: 2020 ident: 5244_CR103 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05214-w – volume: 118 start-page: 505 year: 2019 ident: 5244_CR5 publication-title: Saf Sci doi: 10.1016/j.ssci.2019.05.046 – volume: 10 start-page: 1904 issue: 6 year: 2020 ident: 5244_CR8 publication-title: Appl Sci doi: 10.3390/app10061904 – volume: 9 start-page: 809 year: 2019 ident: 5244_CR49 publication-title: Appl Sci doi: 10.3390/app9040809 – year: 2019 ident: 5244_CR51 publication-title: Compl Intell Syst doi: 10.1007/s40747-019-00118-2 – volume: 23 start-page: 1350029 year: 2013 ident: 5244_CR11 publication-title: Int J Neural Syst doi: 10.1142/S0129065713500299 – volume: 20 start-page: 627 issue: 6 year: 2017 ident: 5244_CR59 publication-title: Comput Concr – volume: 40 start-page: 920 issue: 9 year: 2009 ident: 5244_CR24 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2008.12.008 – volume: 32 start-page: 1807 year: 2020 ident: 5244_CR104 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04663-2 – year: 2017 ident: 5244_CR34 publication-title: Front Struct Civ Eng doi: 10.1007/s11709-017-0445-3 – year: 2014 ident: 5244_CR38 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-014-0638-0 – volume: 34 start-page: 319 year: 2018 ident: 5244_CR73 publication-title: Eng Comput doi: 10.1007/s00366-017-0542-x – year: 2020 ident: 5244_CR10 publication-title: Eng Comput doi: 10.1007/s00366-020-01003-0 – volume: 34 start-page: 1429 year: 2004 ident: 5244_CR22 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2004.01.020 – volume: 41 start-page: 142 year: 2017 ident: 5244_CR28 publication-title: Fire Mater doi: 10.1002/fam.2374 – volume: 17 start-page: 1344 issue: 6 year: 2017 ident: 5244_CR101 publication-title: Sensors doi: 10.3390/s17061344 – volume: 9 start-page: 3715 issue: 18 year: 2019 ident: 5244_CR91 publication-title: Appl Sci doi: 10.3390/app9183715 – volume: 16 start-page: 126 year: 2001 ident: 5244_CR30 publication-title: Comput-Aid Civ Infrastruct Eng doi: 10.1111/0885-9507.00219 – volume: 136 start-page: 106167 year: 2020 ident: 5244_CR102 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2020.106167 – volume: 53 start-page: 704 issue: 4 year: 2011 ident: 5244_CR79 publication-title: Appl Clay Sci doi: 10.1016/j.clay.2011.06.008 – volume: 22 start-page: 127 issue: 3 year: 2008 ident: 5244_CR76 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2006.10.003 – volume: 24 start-page: 329 issue: 4 year: 2019 ident: 5244_CR105 publication-title: Comput Concr – volume: 11 start-page: 90 year: 2017 ident: 5244_CR27 publication-title: Front Struct Civ Eng doi: 10.1007/s11709-016-0363-9 – volume: 28 start-page: 391 issue: 2 year: 2017 ident: 5244_CR63 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2072-z – volume: 19 start-page: 85 issue: 1 year: 2015 ident: 5244_CR86 publication-title: Earth Sci Res J doi: 10.15446/esrj.v19n1.38712 – ident: 5244_CR1 – volume: 42 start-page: 259 issue: 2 year: 2008 ident: 5244_CR58 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2007.07.011 – volume: 13 start-page: 209 year: 2019 ident: 5244_CR48 publication-title: Frat ed Integrità Strutt doi: 10.3221/IGF-ESIS.50.18 – ident: 5244_CR106 – volume: 21 start-page: 679 year: 2016 ident: 5244_CR47 publication-title: Steel Compos Struct doi: 10.12989/scs.2016.21.3.679 – volume: 40 start-page: 407 year: 2015 ident: 5244_CR19 publication-title: Arab J Sci Eng doi: 10.1007/s13369-014-1549-x – volume: 41 start-page: 117 issue: 1 year: 2007 ident: 5244_CR56 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2007.03.010 – ident: 5244_CR82 doi: 10.1201/9781439828229.ch110 – year: 2020 ident: 5244_CR92 publication-title: Nat Resour Res doi: 10.1007/s11053-020-09676-6 – volume: 37 start-page: 6639 year: 2010 ident: 5244_CR39 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2010.03.057 – volume: 31 start-page: 629 issue: 6 year: 2019 ident: 5244_CR88 publication-title: Steel Compos Struct – volume: 25 start-page: 849 year: 2003 ident: 5244_CR13 publication-title: Eng Struct doi: 10.1016/S0141-0296(03)00004-X – volume: 19 start-page: 205 year: 2018 ident: 5244_CR61 publication-title: J Build Eng doi: 10.1016/j.jobe.2018.05.012 – volume: 41 start-page: 305 year: 2008 ident: 5244_CR14 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2007.04.009 – volume: 15 start-page: 374 issue: 3 year: 2006 ident: 5244_CR54 publication-title: Autom Constr doi: 10.1016/j.autcon.2005.07.003 – year: 2016 ident: 5244_CR17 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2368-7 – volume: 17 start-page: 619 year: 2016 ident: 5244_CR41 publication-title: Road Mater Pave Des doi: 10.1080/14680629.2015.1108218 – volume: 79 start-page: 291 issue: 1 year: 2015 ident: 5244_CR6 publication-title: Nat Hazards doi: 10.1007/s11069-015-1842-3 – volume: 12 start-page: 2229 issue: 6 year: 2020 ident: 5244_CR9 publication-title: Sustainability doi: 10.3390/su12062229 – volume: 123 start-page: 13 year: 2015 ident: 5244_CR71 publication-title: Int J Comput Appl – volume: 28 start-page: 1453 year: 2017 ident: 5244_CR44 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2159-6 – volume: 187 start-page: 1232 year: 2018 ident: 5244_CR60 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.08.079 – volume: 7 start-page: 33 year: 2013 ident: 5244_CR83 publication-title: Open Constr Build Technol J doi: 10.2174/1874836801307010033 – volume: 40 start-page: 14 year: 2012 ident: 5244_CR37 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2011.09.008 – volume: 4 start-page: 501 issue: 3 year: 2016 ident: 5244_CR77 publication-title: Int J Sci Eng Technol – volume: 26 start-page: 1146 issue: 13 year: 2019 ident: 5244_CR100 publication-title: Mech Adv Mater Struct doi: 10.1080/15376494.2018.1430874 – volume: 9 start-page: 746 year: 2009 ident: 5244_CR36 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2008.09.006 – year: 2020 ident: 5244_CR2 publication-title: Pers Ubiquit Comput doi: 10.1007/s00779-019-01292-3 – volume: 79 start-page: 2261 year: 2001 ident: 5244_CR16 publication-title: Comput Struct doi: 10.1016/S0045-7949(01)00083-9 – volume: 190 start-page: 597 year: 2018 ident: 5244_CR45 publication-title: Environ Monit Assess doi: 10.1007/s10661-018-6966-y – volume: 76 start-page: 76 year: 2015 ident: 5244_CR70 publication-title: Int J – year: 2019 ident: 5244_CR89 publication-title: Eng Comput doi: 10.1007/s00366-019-00849-3 – volume: 17 start-page: 914 year: 2019 ident: 5244_CR95 publication-title: Proc Struct Integr – volume: 21 start-page: 384 issue: 2 year: 2007 ident: 5244_CR55 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2005.08.009 – volume-title: Neural networks: a comprehensive foundation year: 1999 ident: 5244_CR66 – volume: 49 start-page: 53 year: 2009 ident: 5244_CR15 publication-title: Ultrasonics doi: 10.1016/j.ultras.2008.05.001 – volume-title: Neural networks: methodology and application year: 2005 ident: 5244_CR67 – volume: 83 start-page: 378 year: 1995 ident: 5244_CR69 publication-title: Proc IEEE doi: 10.1109/5.364486 – volume: 34 start-page: 2083 year: 2004 ident: 5244_CR21 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2004.03.028 – volume: 70 start-page: 17 year: 2014 ident: 5244_CR80 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2014.07.089 – volume: 23 start-page: 12 year: 2007 ident: 5244_CR40 publication-title: Water Resour Prot – volume: 9 start-page: 243 issue: 2 year: 2019 ident: 5244_CR96 publication-title: Appl Sci doi: 10.3390/app9020243 – volume: 33 start-page: 1473 issue: 9 year: 2003 ident: 5244_CR75 publication-title: Cem Concr Res doi: 10.1016/S0008-8846(03)00090-5 – volume: 18 start-page: 619 issue: 4 year: 2006 ident: 5244_CR81 publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)0899-1561(2006)18:4(619) – volume: 40 start-page: 856 year: 2009 ident: 5244_CR23 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2009.01.005 – year: 2019 ident: 5244_CR90 publication-title: Eng Comput doi: 10.1007/s00366-019-00752-x – volume: 31 start-page: 113 year: 2015 ident: 5244_CR29 publication-title: Eng Comput doi: 10.1007/s00366-013-0334-x |
SSID | ssj0004685 |
Score | 2.6495137 |
Snippet | Despite the extensive use of mortars materials in constructions over the last decades, there is not yet a reliable and robust method, available in the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4501 |
SubjectTerms | Adaptive systems Artificial Intelligence Artificial neural networks Comparative studies Compressive strength Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Fuzzy logic Image Processing and Computer Vision Metakaolin Mortars (material) Original Article Performance prediction Probability and Statistics in Computer Science Robustness |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFLagLCzciHLJAxtYNI5rmwkVRAVIVIhDYot8BQaUljb8f95zHQpIdKqUOm_IZ_t97ybkKJfeSCMcs8IrJs5czjQPHgBReSkU9rjCeue7gbx-Frcv3ZfkcJuktMrmTowXtR869JGfgh6WEvSZ0uejD4ZTozC6mkZoLJIluII1GF9LF1eD-4cflZFxKCfYMJjfI_JUNhOL59AjCk85BoNByTHxWzXN-OafEGnUPP01spIoI-1NMV4nC6HaIKvNOAaaTucmqXvUzXp509g4lg5L2hsMqKk8_PZvHmkcfTOhwFUpcD86GmOkBtHBpS46CxmqNg8rgZmPKVDa6S6N0mPabJQ-DtVr_bZFnvtXT5fXLA1VYA5OW80yr7TjissgQxmE5aHjSjBrjFa57eQeOQoYaZaLUtvcCGWBQLrMgK7PcEBovk1a1bAKO4SeaY7t5ZzPnBem07XaGqWMckE7Gbhsk6z5noVLHcdx8MV78d0rOWJQAAZFxKAQbXL8_c5o2m9j7ur9BqYinb1JMdspbXLSQDf7-39pu_Ol7ZFljgktMdtxn7Tq8Wc4AEZS28O07b4AjEjbQg priority: 102 providerName: ProQuest |
Title | A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength |
URI | https://link.springer.com/article/10.1007/s00521-020-05244-4 https://www.proquest.com/docview/2516607878 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWFh4I8qj8sAGkRrHtc2YQsNLVAioBFPkV2BAAbXh_3N2kxYQIDF5yOWGfHbuO98L4CDhVnHFTKSZFRE7NkkkqbMIiEgKJnyPK1_vfD3g50N2-dB9qIvCxk22exOSDH_qabGbv8FE15f64C0apYjNw2LX--64i4c0_VQNGQZxot_ic3pYUpfK_KzjqzmaccxvYdFgbbJVWK5pIkknuK7BnCvXYaUZwUDqE7kBVUrMrH83Cc1iyWtB0sGAqNLiml3ckTDuZkyQnxLke-Rt5KMzHhEvasIFYeTNmUVJZOMjgjR2sjOD9pAqG7SPXPlUPW_CMOvfn5xH9SCFyOAJq6LYCmmooNxxVzimqeuYAl0ZJUWiO4n1vAQdM01ZIXWimNBIGk2s0L7HfihosgUL5WvptoEcS-pbyhkbG8tUp6ulVkIoYZw03FHegrj5nrmpu4z7YRcv-bQ_csAgRwzygEHOWnA4fedt0mPjT-m9Bqa8Pm_jHFka58h2hGzBUQPd7PHv2nb-J74LS9QntYSMxz1YqEbvbh9ZSaXbMC-zszYspr3TXubXs8erPq69_uDmth226Ae54twd |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoBLW15qaAEf4AQWWdu1nQNCUSEktM2FVupt8WvhUG1Csgj1T_U3MuPsNoBEbz2ttOudg2fsb-x5fAAvpY5OOxW4V9FwNQiSW5EiKsTIShnqcUX1zidTPT5Tn88PzjfgqquFobTKbk_MG3WcBbojf4s4rDXimbHv5z84sUZRdLWj0FiZxVG6_IVHtuW7yQfU7yshRh9PD8e8ZRXgAc2t4UU0NggjdNKpSsqL1A8V-vXOGun7MhJI4ynFC1VZL50yHj2oUDgEu4IYMiXKvQN3lZQDWlF29OmPOsxMAYonJsomUrIt0smlenT_im8FhZ4RUrn6GwjX3u0_AdmMc6Md2GodVDZcWdQD2Ej1Q9juyB9Yuxc8gmbIwrpzOMttatmsYsPplLk64nM0-cIy0c6SoWfM0NNk8wXFhcgWaGjIV5OcgDTiSDwHLBg60Ks1kaXnJN0sfZHqb833x3B2K5P9BDbrWZ12gQ2soGZ2IRYhKtc_8NY7Y5wJyQadhO5B0c1nGdr-5kSzcVFed2bOOihRB2XWQal68Pr6n_mqu8eNo_c7NZXtSl-Wa7vswZtOdevP_5f29GZpL-De-PTkuDyeTI_24L6gVJqcZ7kPm83iZ3qGvlDjn2cDZPD1ti3-N_pqFPE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbRDSOa6djBEQtjwgJKnWL_AoMKK3S8P85O0lbECAxZcjlBn927jvfC6HzgGnBBFWepJp7tK8CLyRGAyA8yCi3Pa5svfNjwgYjejfujZeq-F22exOSrGoabJemvLya6uxqXvhmbzPBDSY2kAsGyqOraA1-x77d1yMSLVVGuqGc4MPY_B4a1GUzP-v4apoWfPNbiNRZnngbbdaUEUcVxjtoxeS7aKsZx4Dr07mHygirRS9v7BrH4kmGoyTBItfwjIfP2I2-mWHgqhi4H54WNlJj0bGiyl0Weta0aZAEZl5goLTVLnXaXdqs016Y_LV820ej-PbleuDVQxU8BctTer7moSKcMMNMZqgkpqsycGtEyAPZDbTlKOCkSUKzUAaCcgkEUvkCbL1vB4QGB6iVT3JziHA_JLa9nNK-0lR0ezKUgnPBlQkVM4S1kd-sZ6rqjuN28MV7Ou-V7DBIAYPUYZDSNrqYfzOt-m38Kd1pYErrszdLgbExBsyHh2102UC3eP27tqP_iZ-h9aebOH0YJvfHaIPYXBeXCNlBrbL4MCdAVkp56vbjJ1aF3cY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+ANN+and+ANFIS+models+for+the+prediction+of+cement-based+mortar+materials+compressive+strength&rft.jtitle=Neural+computing+%26+applications&rft.au=Armaghani%2C+Danial+Jahed&rft.au=Asteris%2C+Panagiotis+G.&rft.date=2021-05-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=9&rft.spage=4501&rft.epage=4532&rft_id=info:doi/10.1007%2Fs00521-020-05244-4&rft.externalDocID=10_1007_s00521_020_05244_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |