A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength

Despite the extensive use of mortars materials in constructions over the last decades, there is not yet a reliable and robust method, available in the literature, which can estimate its strength based on its mix parameters. This limitation is due to the highly nonlinear relation between the mortar’s...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 33; no. 9; pp. 4501 - 4532
Main Authors Armaghani, Danial Jahed, Asteris, Panagiotis G.
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the extensive use of mortars materials in constructions over the last decades, there is not yet a reliable and robust method, available in the literature, which can estimate its strength based on its mix parameters. This limitation is due to the highly nonlinear relation between the mortar’s compressive strength and the mixed components. In this paper, the application of artificial intelligence techniques toward the prediction of the compressive strength of cement-based mortar materials with or without metakaolin has been investigated. Specifically, surrogate models (such as artificial neural network, ANN and adaptive neuro-fuzzy inference system, ANFIS models) have been developed to the prediction of the compressive strength of mortars trained using experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of both ANN and ANFIS models to approximate the compressive strength of mortars in a reliable and robust manner. Although ANFIS was able to obtain higher performance prediction to estimate the compressive strength of mortars compared to ANN model, it was found through the verification process of some other additional data, the ANFIS model has overfitted the data. Therefore, the developed ANN model has been introduced as the best predictive technique for solving problem of the compressive strength of mortars. Furthermore, using the optimum developed model an ambitious attempt to reveal the nature of mortar materials has been made.
AbstractList Despite the extensive use of mortars materials in constructions over the last decades, there is not yet a reliable and robust method, available in the literature, which can estimate its strength based on its mix parameters. This limitation is due to the highly nonlinear relation between the mortar’s compressive strength and the mixed components. In this paper, the application of artificial intelligence techniques toward the prediction of the compressive strength of cement-based mortar materials with or without metakaolin has been investigated. Specifically, surrogate models (such as artificial neural network, ANN and adaptive neuro-fuzzy inference system, ANFIS models) have been developed to the prediction of the compressive strength of mortars trained using experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of both ANN and ANFIS models to approximate the compressive strength of mortars in a reliable and robust manner. Although ANFIS was able to obtain higher performance prediction to estimate the compressive strength of mortars compared to ANN model, it was found through the verification process of some other additional data, the ANFIS model has overfitted the data. Therefore, the developed ANN model has been introduced as the best predictive technique for solving problem of the compressive strength of mortars. Furthermore, using the optimum developed model an ambitious attempt to reveal the nature of mortar materials has been made.
Author Asteris, Panagiotis G.
Armaghani, Danial Jahed
Author_xml – sequence: 1
  givenname: Danial Jahed
  surname: Armaghani
  fullname: Armaghani, Danial Jahed
  organization: Institute of Research and Development, Duy Tan University
– sequence: 2
  givenname: Panagiotis G.
  orcidid: 0000-0002-7142-4981
  surname: Asteris
  fullname: Asteris, Panagiotis G.
  email: asteris@aspete.gr, panagiotisasteris@gmail.com
  organization: Computational Mechanics Laboratory, School of Pedagogical and Technological Education
BookMark eNp9kE9LAzEQxYMo2KpfwFPA8-rkT7PpsRSrQqkH9Ryy2Vnd0t3UJBX67U1dQfDQ0wzM-72ZeWNy2vseCblmcMsAyrsIMOGsAA5FbqQs5AkZMSlEIWCiT8kIpjKPlRTnZBzjGgCk0pMRSTPqfLe1wab2C2lMu3pPfUNnqxW1fZ3r4umFdr7GTaSNDzR9IN0GrFuXWt8fpA477FNR2Yh1VoZkA-1swtDazBzcA8Y4uAfs39PHJTlr8gyvfusFeVvcv84fi-Xzw9N8tiycYNNUsLrUjpdcocIGZcURXKMVt7oUFYga8j8KWMVloythZVlNmXLMAuesFFqJC3Iz-G6D_9xhTGbtd6HPKw2fMKWg1KXOKj2oXPAxBmyMa5M9fJeCbTeGgTlkbIaMTc7Y_GRsZEb5P3Qb2s6G_XFIDFDM4v4dw99VR6hv52aQSA
CitedBy_id crossref_primary_10_1007_s41062_024_01365_0
crossref_primary_10_1016_j_cscm_2023_e02096
crossref_primary_10_1016_j_conbuildmat_2023_131827
crossref_primary_10_3390_app11030908
crossref_primary_10_1007_s11356_022_20518_1
crossref_primary_10_3390_app11041922
crossref_primary_10_1016_j_autcon_2022_104579
crossref_primary_10_3390_polym15132813
crossref_primary_10_1016_j_resourpol_2021_102195
crossref_primary_10_1016_j_asoc_2024_112334
crossref_primary_10_1007_s00521_021_06834_6
crossref_primary_10_1016_j_engstruct_2023_115753
crossref_primary_10_3390_pr10071387
crossref_primary_10_53608_estudambilisim_1561094
crossref_primary_10_1007_s40996_022_00972_0
crossref_primary_10_1007_s11831_022_09748_1
crossref_primary_10_1007_s41939_023_00187_4
crossref_primary_10_1007_s40996_022_00912_y
crossref_primary_10_1016_j_istruc_2022_11_114
crossref_primary_10_3390_ma15165605
crossref_primary_10_3390_geotechnics2040049
crossref_primary_10_3390_buildings12060772
crossref_primary_10_1016_j_conbuildmat_2022_126500
crossref_primary_10_1002_suco_202200769
crossref_primary_10_1016_j_engappai_2024_108932
crossref_primary_10_1007_s00521_022_07013_x
crossref_primary_10_1016_j_conbuildmat_2022_128360
crossref_primary_10_1016_j_compgeo_2024_106294
crossref_primary_10_1016_j_mtcomm_2025_112181
crossref_primary_10_1007_s00366_021_01461_0
crossref_primary_10_1007_s12665_021_10049_2
crossref_primary_10_1007_s13198_023_02165_y
crossref_primary_10_1016_j_heliyon_2023_e22036
crossref_primary_10_1007_s00603_022_02992_8
crossref_primary_10_1016_j_istruc_2024_107159
crossref_primary_10_3390_buildings14041173
crossref_primary_10_3390_buildings14020396
crossref_primary_10_1016_j_compstruc_2024_107388
crossref_primary_10_1016_j_cscm_2024_e02901
crossref_primary_10_1590_1517_7076_rmat_2024_0722
crossref_primary_10_3390_su14105938
crossref_primary_10_1016_j_hazadv_2024_100576
crossref_primary_10_1007_s00500_021_05626_3
crossref_primary_10_1016_j_cscm_2025_e04387
crossref_primary_10_1016_j_trgeo_2021_100579
crossref_primary_10_1007_s00521_022_07014_w
crossref_primary_10_1016_j_heliyon_2023_e12804
crossref_primary_10_1007_s41062_024_01808_8
crossref_primary_10_1088_1757_899X_1273_1_012018
crossref_primary_10_3390_ma15217713
crossref_primary_10_1007_s11356_022_22048_2
crossref_primary_10_1021_acsomega_4c06212
crossref_primary_10_3390_polym14173500
crossref_primary_10_1016_j_asej_2024_102975
crossref_primary_10_3390_ma14216516
crossref_primary_10_3390_su141811769
crossref_primary_10_1007_s11069_021_04885_5
crossref_primary_10_1016_j_mtcomm_2023_106282
crossref_primary_10_1016_j_cscm_2024_e04112
crossref_primary_10_1016_j_cscm_2023_e02172
crossref_primary_10_1007_s00521_024_09919_0
crossref_primary_10_1007_s41062_024_01593_4
crossref_primary_10_1007_s42107_023_00573_w
crossref_primary_10_1088_1402_4896_ad6514
crossref_primary_10_3390_pr13030745
crossref_primary_10_1007_s41939_023_00203_7
crossref_primary_10_1016_j_jobe_2024_110615
crossref_primary_10_1016_j_conbuildmat_2022_127082
crossref_primary_10_1016_j_fuel_2022_124037
crossref_primary_10_1016_j_ijsolstr_2024_113125
crossref_primary_10_1007_s10706_023_02643_x
crossref_primary_10_1007_s40840_023_01539_6
crossref_primary_10_1007_s00366_021_01459_8
crossref_primary_10_1016_j_rcradv_2022_200090
crossref_primary_10_3390_drones9010056
crossref_primary_10_1016_j_clet_2023_100661
crossref_primary_10_1061__ASCE_GM_1943_5622_0002234
crossref_primary_10_1016_j_cscm_2022_e01238
crossref_primary_10_1007_s00366_020_01225_2
crossref_primary_10_1007_s42107_023_00790_3
crossref_primary_10_3390_ma15196959
crossref_primary_10_1007_s10462_024_11099_1
crossref_primary_10_1016_j_mtcomm_2025_112135
crossref_primary_10_3390_su15054230
crossref_primary_10_1080_17499518_2024_2395560
crossref_primary_10_1016_j_clay_2023_107239
crossref_primary_10_3390_ma15093309
crossref_primary_10_1371_journal_pone_0265747
crossref_primary_10_1155_2022_5586737
crossref_primary_10_1007_s11440_021_01358_8
crossref_primary_10_1016_j_eswa_2022_117754
crossref_primary_10_53608_estudambilisim_1227733
crossref_primary_10_1016_j_advengsoft_2024_103708
crossref_primary_10_1016_j_conbuildmat_2023_132266
crossref_primary_10_1080_10298436_2024_2337916
crossref_primary_10_1080_23311916_2022_2153419
crossref_primary_10_1515_rams_2024_0008
crossref_primary_10_2113_2021_2467126
crossref_primary_10_3233_JIFS_220741
crossref_primary_10_1007_s40996_021_00655_2
crossref_primary_10_1038_s41598_022_19301_6
crossref_primary_10_1016_j_seppur_2023_123807
crossref_primary_10_32604_cmes_2024_048071
crossref_primary_10_1016_j_engstruct_2024_118576
crossref_primary_10_1680_jwarm_23_00039
crossref_primary_10_3390_buildings12020132
crossref_primary_10_1002_eng2_12676
crossref_primary_10_2516_stet_2024014
crossref_primary_10_53608_estudambilisim_1460831
crossref_primary_10_1515_jogs_2022_0172
crossref_primary_10_1007_s41062_022_00761_8
crossref_primary_10_1016_j_trgeo_2023_100978
crossref_primary_10_1016_j_measen_2024_101274
crossref_primary_10_3390_app13106006
crossref_primary_10_3390_w15010103
crossref_primary_10_3390_buildings13081934
crossref_primary_10_1007_s00603_024_04189_7
crossref_primary_10_1016_j_jssas_2023_06_001
crossref_primary_10_1016_j_conbuildmat_2023_132134
crossref_primary_10_2174_2352096516666221103102058
crossref_primary_10_1007_s12145_024_01688_7
crossref_primary_10_1016_j_enggeo_2024_107672
crossref_primary_10_1007_s43452_023_00679_7
crossref_primary_10_3390_ma16145010
crossref_primary_10_1177_14727978251321954
crossref_primary_10_1007_s11356_021_17210_1
crossref_primary_10_1007_s00521_021_06600_8
crossref_primary_10_3390_ma15207045
crossref_primary_10_1016_j_trgeo_2024_101421
crossref_primary_10_1007_s43452_022_00418_4
crossref_primary_10_1016_j_csite_2021_101561
crossref_primary_10_32604_cmes_2022_018699
crossref_primary_10_1007_s00170_024_13681_x
crossref_primary_10_1007_s10921_020_00725_x
crossref_primary_10_17491_jgsi_2024_174002
crossref_primary_10_1515_rams_2023_0179
crossref_primary_10_1016_j_jappgeo_2024_105557
crossref_primary_10_1590_s1678_86212025000100800
crossref_primary_10_53608_estudambilisim_1051136
crossref_primary_10_1016_j_jrmge_2021_05_010
crossref_primary_10_1007_s13369_023_08260_3
crossref_primary_10_1177_09544089241311377
crossref_primary_10_1007_s00521_023_08278_6
crossref_primary_10_1007_s13369_021_06433_6
crossref_primary_10_4018_IJGEE_298988
crossref_primary_10_1007_s42417_024_01749_7
crossref_primary_10_1016_j_engstruct_2023_116556
crossref_primary_10_1007_s00521_022_07909_8
crossref_primary_10_1007_s12145_022_00823_6
crossref_primary_10_1016_j_conbuildmat_2025_140248
crossref_primary_10_1016_j_cscm_2023_e01845
crossref_primary_10_1016_j_tws_2023_110670
crossref_primary_10_35234_fumbd_1133877
crossref_primary_10_1016_j_conbuildmat_2022_126694
crossref_primary_10_1002_suco_202300401
crossref_primary_10_1016_j_advengsoft_2024_103861
crossref_primary_10_1016_j_conbuildmat_2022_127668
crossref_primary_10_1038_s41598_024_77144_9
crossref_primary_10_3390_buildings14030591
crossref_primary_10_1007_s41939_023_00276_4
crossref_primary_10_1007_s12665_022_10436_3
crossref_primary_10_29130_dubited_1106267
crossref_primary_10_1016_j_engstruct_2021_113276
crossref_primary_10_1016_j_tws_2024_112669
crossref_primary_10_3390_en15155472
crossref_primary_10_1007_s12046_024_02547_3
crossref_primary_10_1080_17480930_2021_1878087
crossref_primary_10_1007_s12205_024_0854_5
crossref_primary_10_21923_jesd_1013463
crossref_primary_10_3390_math10081286
crossref_primary_10_3390_su151511554
crossref_primary_10_1016_j_engstruct_2022_114083
crossref_primary_10_1007_s00521_023_09384_1
crossref_primary_10_1080_15376494_2024_2361859
crossref_primary_10_1007_s11600_024_01362_y
crossref_primary_10_1007_s40808_024_02063_7
crossref_primary_10_1007_s42417_022_00670_1
crossref_primary_10_3390_app112210704
crossref_primary_10_3390_su141912950
crossref_primary_10_1007_s40815_022_01402_z
crossref_primary_10_1038_s41598_024_58534_5
crossref_primary_10_3390_gels10020148
crossref_primary_10_1007_s41062_025_01935_w
crossref_primary_10_1007_s00521_024_10875_y
crossref_primary_10_3390_buildings14123998
crossref_primary_10_1016_j_engstruct_2022_114768
crossref_primary_10_1016_j_energy_2024_132602
crossref_primary_10_1007_s41024_023_00345_8
crossref_primary_10_1080_10589759_2024_2304257
crossref_primary_10_1016_j_conbuildmat_2023_131516
crossref_primary_10_1038_s41598_024_65905_5
crossref_primary_10_1007_s41939_024_00455_x
crossref_primary_10_1002_suco_202200023
crossref_primary_10_3390_ma15103500
crossref_primary_10_1007_s11831_022_09734_7
crossref_primary_10_1080_10589759_2024_2349243
crossref_primary_10_1016_j_istruc_2023_105062
crossref_primary_10_1016_j_conbuildmat_2022_128737
crossref_primary_10_1080_17486025_2024_2347283
crossref_primary_10_1007_s00603_024_04012_3
crossref_primary_10_3390_buildings13051155
crossref_primary_10_1016_j_istruc_2023_05_052
crossref_primary_10_1007_s41939_024_00561_w
crossref_primary_10_1016_j_jrmge_2024_02_016
crossref_primary_10_1007_s12040_023_02156_4
crossref_primary_10_1002_suco_202100732
crossref_primary_10_3390_infrastructures6060080
crossref_primary_10_1016_j_conbuildmat_2024_137606
crossref_primary_10_1007_s41939_025_00737_y
crossref_primary_10_1021_acsomega_4c07175
crossref_primary_10_1016_j_asoc_2023_110997
crossref_primary_10_3390_s24020689
crossref_primary_10_1016_j_conbuildmat_2022_126828
crossref_primary_10_1016_j_envres_2023_115696
crossref_primary_10_1016_j_cscm_2023_e02464
crossref_primary_10_1002_suco_202300298
crossref_primary_10_1080_23311916_2023_2297501
crossref_primary_10_1515_htmp_2021_0020
crossref_primary_10_1007_s13762_020_03002_6
crossref_primary_10_1007_s42452_023_05447_z
crossref_primary_10_1007_s42729_023_01598_5
crossref_primary_10_3390_ma15103722
crossref_primary_10_3390_math10193563
crossref_primary_10_1007_s44242_024_00041_x
crossref_primary_10_3390_jcs7030093
crossref_primary_10_1016_j_engappai_2022_105216
crossref_primary_10_3390_ma13173902
crossref_primary_10_1177_09544100231201215
crossref_primary_10_1016_j_jmsy_2024_04_025
crossref_primary_10_1016_j_istruc_2022_12_021
crossref_primary_10_18245_ijaet_879754
crossref_primary_10_1080_23248378_2024_2345679
crossref_primary_10_1016_j_cscm_2024_e03083
crossref_primary_10_1109_ACCESS_2021_3089205
crossref_primary_10_1007_s12040_024_02341_z
crossref_primary_10_1016_j_apor_2025_104525
crossref_primary_10_3934_mbe_2024061
crossref_primary_10_1021_acsomega_3c03294
crossref_primary_10_1016_j_conbuildmat_2024_139459
crossref_primary_10_1016_j_energy_2022_126449
crossref_primary_10_1016_j_clema_2025_100299
crossref_primary_10_3390_polym16172423
crossref_primary_10_1007_s11069_024_06934_1
crossref_primary_10_3390_buildings14113505
crossref_primary_10_1016_j_compgeo_2024_106086
crossref_primary_10_1016_j_fuel_2024_131545
crossref_primary_10_1016_j_matchemphys_2025_130386
crossref_primary_10_1007_s00366_020_01173_x
crossref_primary_10_1371_journal_pone_0310422
crossref_primary_10_1016_j_cscm_2025_e04207
crossref_primary_10_1007_s42835_024_01862_3
crossref_primary_10_1080_15623599_2024_2345008
crossref_primary_10_1007_s43452_022_00519_0
crossref_primary_10_3390_ma17184533
crossref_primary_10_1016_j_jocs_2023_102097
crossref_primary_10_3389_fbuil_2024_1446597
crossref_primary_10_1016_j_autcon_2025_106125
crossref_primary_10_3390_app11083705
crossref_primary_10_1007_s40515_024_00433_3
crossref_primary_10_1007_s42107_023_00746_7
crossref_primary_10_1007_s00366_021_01374_y
crossref_primary_10_1016_j_istruc_2023_04_050
crossref_primary_10_1007_s43503_024_00024_8
crossref_primary_10_1007_s10706_023_02487_5
crossref_primary_10_1016_j_mtla_2024_102162
Cites_doi 10.3151/jact.15.94
10.1080/19648189.2016.1246693
10.1016/j.conbuildmat.2007.04.004
10.1016/j.conbuildmat.2017.01.132
10.1109/21.256541
10.1016/S0958-9465(00)00091-3
10.1016/j.compositesb.2014.11.023
10.1007/978-3-030-12960-6_14
10.1016/j.cemconcomp.2004.02.041
10.1016/j.engstruct.2018.05.084
10.3390/app9245372
10.1007/s12517-015-1984-3
10.12989/cac.2019.24.5.469
10.1007/s10661-017-6374-8
10.1016/j.prostr.2019.08.123
10.1007/s12665-016-5524-6
10.3390/ma9050396
10.1016/j.engfracmech.2003.12.004
10.1016/S0950-0618(01)00006-X
10.1016/j.conbuildmat.2005.01.047
10.1016/j.conbuildmat.2015.08.096
10.1016/j.conbuildmat.2016.05.034
10.31181/oresta19012010140s
10.1016/j.neunet.2017.04.013
10.1007/s00521-018-03965-1
10.1007/s00521-016-2728-3
10.1109/TII.2019.2951089
10.1007/s00521-020-05214-w
10.1016/j.ssci.2019.05.046
10.3390/app10061904
10.3390/app9040809
10.1007/s40747-019-00118-2
10.1142/S0129065713500299
10.1016/j.advengsoft.2008.12.008
10.1007/s00521-019-04663-2
10.1007/s11709-017-0445-3
10.1007/s10064-014-0638-0
10.1007/s00366-017-0542-x
10.1007/s00366-020-01003-0
10.1016/j.cemconres.2004.01.020
10.1002/fam.2374
10.3390/s17061344
10.3390/app9183715
10.1111/0885-9507.00219
10.1016/j.cemconres.2020.106167
10.1016/j.clay.2011.06.008
10.1016/j.conbuildmat.2006.10.003
10.1007/s11709-016-0363-9
10.1007/s00521-015-2072-z
10.15446/esrj.v19n1.38712
10.1016/j.commatsci.2007.07.011
10.3221/IGF-ESIS.50.18
10.12989/scs.2016.21.3.679
10.1007/s13369-014-1549-x
10.1016/j.commatsci.2007.03.010
10.1201/9781439828229.ch110
10.1007/s11053-020-09676-6
10.1016/j.eswa.2010.03.057
10.1016/S0141-0296(03)00004-X
10.1016/j.jobe.2018.05.012
10.1016/j.commatsci.2007.04.009
10.1016/j.autcon.2005.07.003
10.1007/s00521-016-2368-7
10.1080/14680629.2015.1108218
10.1007/s11069-015-1842-3
10.3390/su12062229
10.1007/s00521-015-2159-6
10.1016/j.conbuildmat.2018.08.079
10.2174/1874836801307010033
10.1016/j.compgeo.2011.09.008
10.1080/15376494.2018.1430874
10.1016/j.asoc.2008.09.006
10.1007/s00779-019-01292-3
10.1016/S0045-7949(01)00083-9
10.1007/s10661-018-6966-y
10.1007/s00366-019-00849-3
10.1016/j.conbuildmat.2005.08.009
10.1016/j.ultras.2008.05.001
10.1109/5.364486
10.1016/j.cemconres.2004.03.028
10.1016/j.conbuildmat.2014.07.089
10.3390/app9020243
10.1016/S0008-8846(03)00090-5
10.1061/(ASCE)0899-1561(2006)18:4(619)
10.1016/j.advengsoft.2009.01.005
10.1007/s00366-019-00752-x
10.1007/s00366-013-0334-x
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-05244-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 4532
ExternalDocumentID 10_1007_s00521_020_05244_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-1d78c2726e6efe4b2e0cf862a873b03d0064601b24f8b3a47b916c1a022173863
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Fri Jul 25 02:42:06 EDT 2025
Tue Jul 01 01:46:56 EDT 2025
Thu Apr 24 23:11:46 EDT 2025
Fri Feb 21 02:49:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Metakaolin
Mortar
Artificial neural networks
Cement
Artificial intelligence techniques
Compressive strength
Adaptive neuro-fuzzy inference system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1d78c2726e6efe4b2e0cf862a873b03d0064601b24f8b3a47b916c1a022173863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7142-4981
PQID 2516607878
PQPubID 2043988
PageCount 32
ParticipantIDs proquest_journals_2516607878
crossref_citationtrail_10_1007_s00521_020_05244_4
crossref_primary_10_1007_s00521_020_05244_4
springer_journals_10_1007_s00521_020_05244_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210500
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References ChenWSarirPBuiXNNguyenHTahirMMArmaghaniDJNeuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pileEng Comput201910.1007/s00366-019-00752-x
SPSS Inc (2007) SPSS for windows (version 16.0). SPSS Inc., Chicago
DemirFPrediction of elastic modulus of normal and high strength concrete by artificial neural networksConstr Build Mater200822714281435
KebriaDYGhavamiMJavadiSGoharimaneshMCombining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil—a case study in north of IranEnviron Monit Assess201819026
LeeSCPrediction of concrete strength using artificial neural networksEng Struct200325849857
TrtnikGKavčičFTurkGPrediction of concrete strength using ultrasonic pulse velocity and artificial neural networksUltrasonics2009495360
MomeniEArmaghaniDJFatemiSANazirRPrediction of bearing capacity of thin-walled foundation: a simulation approachEng Comput201834319327
Cizer O, Van Balen K, Van Gemert D, Elsen J (2008) Blended lime-cement mortars for conservation purposes: microstructure and strength development. In: Structural analysis of historic construction: preserving safety and significance—proceedings of the 6th international conference on structural analysis of historic construction, SAHC08, 2, pp 965–972
YangHKoopialipoorMArmaghaniDJGordanBKhoramiMTahirMMIntelligent design of retaining wall structures under dynamic conditionsSteel Compos Struct2019316629640
SafiuddinMRamanSNSalamMAJumaatMZModeling of compressive strength for self-consolidating high-strength concrete incorporating palm oil fuel ashMaterials20169396
PalaMÖzbayEÖztaşAYuceMIAppraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networksConstr Build Mater2007212384394
ÖzcanFAtişCDKarahanOUncuoğluETanyildiziHComparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concreteAdv Eng Softw2009408568631421.74114
ArmaghaniDJAsterisPGFatemiSAHasanipanahMTarinejadRRashidASAHuynhVVOn the use of neuro-swarm system to forecast the pile settlementAppl Sci20201061904
WoźniakMPołapDSoft trees with neural components as image-processing technique for archeological excavationsPers Ubiquit Comput202010.1007/s00779-019-01292-3
TopçuIBSaridemirMPrediction of properties of waste AAC aggregate concrete using artificial neural networkComput Mater Sci2007411117125
ZuradaJMIntroduction to artificial neural systems1992PaulWest St
AsterisPGMokosVGConcrete compressive strength using artificial neural networksNeural Comput Appl20203218071182610.1007/s00521-019-04663-2
Eskandari-NaddafHKazemiRANN prediction of cement mortar compressive strength, influence of cement strength classConstr Build Mater2017138111
SoltaniFKerachianRShirangiEDeveloping operating rules for reservoirs considering the water quality issues: application of ANFIS-based surrogate modelsExp Syst Appl20103766396645
AsterisPGApostolopoulouMSkentouADAntonia MoropoulouAApplication of artificial neural networks for the prediction of the compressive strength of cement-based mortarsComput Concr2019244329345
KewalramaniMAGuptaRConcrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networksAutom Constr2006153374379
NaderpourHMirrashidMAn innovative approach for compressive strength estimation of mortars having calcium inosilicate mineralsJ Build Eng201819205215
JangJ-SSunC-TNeuro-fuzzy modeling and controlProc IEEE199583378406
ApostolopoulouMArmaghaniDJBakolasADouvikaMGMoropoulouAAsterisPGCompressive strength of natural hydraulic lime mortars using soft computing techniquesProc Struct Integr201917914923
CourardLDarimontASchouterdenMFeraucheFWillemXDegeimbreRDurability of mortars modified with metakaolinCem Concr Res200333914731479
ParandeAKRamesh BabuBAswinKarthikMDeepak KumaarKKPalaniswamyNStudy on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortarConstr Build Mater2008223127134
ZiariHSobhaniJAyoubinejadJHartmannTAnalysing the accuracy of pavement performance models in the short and long terms: GMDH and ANFIS methodsRoad Mater Pave Des201617619637
AsterisPGMoropoulouASkentouADApostolopoulouMMohebkhahACavaleriLRodriguesHVarumHStochastic vulnerability assessment of masonry structures: concepts, modeling and restoration aspectsAppl Sci201992243
JangJ-SANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323665685
Mardani-AghabaglouASezerGİRamyarKComparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view pointConstr Build Mater2014701725
SafaMShariatiMIbrahimZPotential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strengthSteel Compos Struct201621679688
AltunFKişiOAydinKPredicting the compressive strength of steel fiber added lightweight concrete using neural networkComput Mater Sci2008422259265
Al-ChaarGKAlkadiMAsterisPGNatural pozzolan as a partial substitute for cement in concreteOpen Constr Build Technol J201373342
Jahed ArmaghaniDAsterisPGAskarianBHasanipanahMTarinejadRHuynhVVExamining hybrid and single SVM models with different kernels to predict rock brittlenessSustainability20201262229
MohamadETJahed ArmaghaniDMomeniEAbadSVANKPrediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approachBull Eng Geol Environ201410.1007/s10064-014-0638-0
VuDDStroevenPBuiVBStrength and durability aspects of calcined kaolin-blended Portland cement mortar and concreteCem Concr Compos2001236471478
HarandizadehHArmaghaniDJKhariMA new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasetsEng Comput201910.1007/s00366-019-00849-3
ArmaghaniDJHatzigeorgiouGDKaramaniChSkentouAZoumpoulakiIAsterisPGSoft computing based techniques for concrete beams shear strengthProc Struct Integr20191792493310.1016/j.prostr.2019.08.123
Tutmez B, Dag A, Tercan AE, Kaymak U (2007) Lignite thickness estimation via adaptive fuzzy-neural network. In: Proceedings of the 20th international mining congress and exhibition of Turkey (IMCET 2007), pp 151–157
XuHZhouJAsterisGPJahed ArmaghaniDTahirMMSupervised machine learning techniques to the prediction of tunnel boring machine penetration rateAppl Sci20199183715
MansouriIKisiOPrediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approachesCompos Part B Eng201570247255
AdhikaryBBMutsuyoshiHPrediction of shear strength of steel fiber RC beams using neural networksConstr Build Mater2006209801811
Zounemat-KermaniMBeheshtiA-AAtaie-AshtianiBSabbagh-YazdiS-REstimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference systemAppl Soft Comput20099746755
ApostolopoulouMAsterisPGArmaghaniDJDouvikaMGLourençoPBCavaleriLBakolasAMoropoulouAMapping and holistic design of natural hydraulic lime mortarsCem Concr Res202013610616710.1016/j.cemconres.2020.106167
DarainKMShamshirbandSJumaatMZObaydullahMAdaptive neuro fuzzy prediction of deflection and cracking behavior of NSM strengthened RC beamsConstr Build Mater201598276285
JafariFBadarlooBFinite Element Analysis and ANFIS investigation of seismic behavior of sandwich panels with different concrete material in two story steel buildingFrat ed Integrità Strutt201913209230
YadollahiMMBenliADemirbogaRApplication of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer compositesNeural Comput Appl20172814531461
MomeniENazirRArmaghaniDJMaizirHApplication of artificial neural network for predicting shaft and tip resistances of concrete pilesEarth Sci Res J20151918593
OnyariEKIkotunBDPrediction of compressive and flexural strengths of a modified zeolite additive mortar using artificial neural networkConstr Build Mater201818712321241
WoźniakMPołapDIntelligent home systems for ubiquitous user support by using neural networks and rule based approachIEEE Trans Indus Inform201910.1109/TII.2019.2951089
Potgieter-VermaakSSPotgieterJHMetakaolin as an extender in South African cementJ Mater Civ Eng2006184619623
KhademiFAkbariMJamalSMNikooMMultiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concreteFront Struct Civ Eng2017119099
ArmaghaniDJHajihassaniMSohaeiHMohamadETMartoAMotaghediHMoghaddamMRNeuro-fuzzy technique to predict air-overpressure induced by blastingArab J Geosci20158121093710950
Apostolopoulou M, Douvika MG, Kanellopoulos IN, Moropoulou A, Asteris PG (2018) Prediction of compressive strength of mortars using artificial neural networks. In: 1st international conference TMM_CH, transdisciplinary multispectral modeling and cooperation for the preservation of cultural heritage, Athens, Greece
KadriEHKenaiSEzzianeKSiddiqueRDe SchutterGInfluence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortarAppl Clay Sci2011534704708
AlexandridisAEvolving RBF neural networks for adaptive soft-sensor designInt J Neural Syst2013231350029
ZhouJLiXMitriHSComparative performance of six supervised learning methods for the development of models of hard rock pillar stability predictionNat Hazards2015791291316
BaykasoǧluADereliTUTanişSPrediction of cement strength using soft computing techniquesCem Concr Res20043420832090
AsterisPGNozhatiSNikooMCavaleriLNikooMKrill herd algorithm-based neural network in structural seismic reliability evaluationMech Adv Mater Struct2019261311461153
AbunamaTOthmanFYounesMKPredicting sanitary landfill leachate generation in humid regions using ANFIS modelingEnviron Monit Assess2018190597
WaliaNSinghHSharmaAANFIS: adaptive neuro-fuzzy inference system-a surveyInt J Comput Appl201512313
ZhouJLiEYangSWangMShiXYaoSMitriHSSlope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database o
J Zhou (5244_CR6) 2015; 79
M Woźniak (5244_CR4) 2017; 93
H Mashhadban (5244_CR18) 2016; 119
A Alexandridis (5244_CR11) 2013; 23
M Pala (5244_CR55) 2007; 21
C Sumasree (5244_CR77) 2016; 4
PG Asteris (5244_CR31) 2019; 31
PG Asteris (5244_CR20) 2016; 20
MA Kewalramani (5244_CR54) 2006; 15
H Naderpour (5244_CR51) 2019
DJ Armaghani (5244_CR87) 2015; 8
J-S Jang (5244_CR69) 1995; 83
5244_CR1
M Saridemir (5244_CR24) 2009; 40
PG Asteris (5244_CR96) 2019; 9
XX Ma (5244_CR40) 2007; 23
SS Potgieter-Vermaak (5244_CR81) 2006; 18
T-K Oh (5244_CR26) 2017; 15
F Demir (5244_CR57) 2008; 22
G Batis (5244_CR78) 2005; 27
PG Asteris (5244_CR101) 2017; 17
M Woźniak (5244_CR2) 2020
A Mardani-Aghabaglou (5244_CR80) 2014; 70
J Duan (5244_CR10) 2020
Z Waszczyszyn (5244_CR16) 2001; 79
DJ Armaghani (5244_CR72) 2015; 8
M Aghaabbasi (5244_CR7) 2020; 136
PG Asteris (5244_CR104) 2020; 32
BB Adhikary (5244_CR53) 2006; 20
5244_CR106
C Özel (5244_CR43) 2015; 22
R Ince (5244_CR52) 2004; 71
DY Kebria (5244_CR46) 2018; 190
M Safiuddin (5244_CR32) 2016; 9
H Naderpour (5244_CR61) 2018; 19
E Momeni (5244_CR86) 2015; 19
IB Topçu (5244_CR56) 2007; 41
IB Topçu (5244_CR14) 2008; 41
PG Asteris (5244_CR99) 2019; 24
H Adeli (5244_CR30) 2001; 16
PG Asteris (5244_CR100) 2019; 26
H Eskandari-Naddaf (5244_CR25) 2017; 138
H Ziari (5244_CR41) 2016; 17
M Stojčić (5244_CR42) 2018; 1
F Jafari (5244_CR48) 2019; 13
DJ Armaghani (5244_CR63) 2017; 28
I Mansouri (5244_CR33) 2015; 70
O Belalia Douma (5244_CR17) 2016
F Özcan (5244_CR23) 2009; 40
J Zhou (5244_CR5) 2019; 118
EH Kadri (5244_CR79) 2011; 53
BR Murlidhar (5244_CR92) 2020
F Khademi (5244_CR27) 2017; 11
DJ Armaghani (5244_CR93) 2019; 17
WPS Dias (5244_CR12) 2001; 15
S Akkurt (5244_CR22) 2004; 34
TCS Reddy (5244_CR34) 2017
J-S Jang (5244_CR68) 1993; 23
OAM Ali (5244_CR70) 2015; 76
U Gazder (5244_CR59) 2017; 20
GK Al-Chaar (5244_CR83) 2013; 7
PG Asteris (5244_CR94) 2019; 24
ET Mohamad (5244_CR38) 2014
H Harandizadeh (5244_CR89) 2019
F Altun (5244_CR58) 2008; 42
M Apostolopoulou (5244_CR102) 2020; 136
L Huang (5244_CR97) 2019; 9
M Açikgenç (5244_CR19) 2015; 40
H Xu (5244_CR91) 2019; 9
MM Yadollahi (5244_CR44) 2017; 28
M Khandelwal (5244_CR85) 2016; 75
AK Parande (5244_CR76) 2008; 22
PG Asteris (5244_CR105) 2019; 24
M Zounemat-Kermani (5244_CR36) 2009; 9
E Momeni (5244_CR73) 2018; 34
DD Vu (5244_CR74) 2001; 23
M Safa (5244_CR47) 2016; 21
SC Lee (5244_CR13) 2003; 25
D Jahed Armaghani (5244_CR9) 2020; 12
EK Onyari (5244_CR60) 2018; 187
KM Darain (5244_CR50) 2015; 98
T Abunama (5244_CR45) 2018; 190
H Yang (5244_CR88) 2019; 31
M Woźniak (5244_CR3) 2019
ET Mohamad (5244_CR64) 2018; 30
İ Türkmen (5244_CR28) 2017; 41
JM Zurada (5244_CR62) 1992
H Salehi (5244_CR35) 2018; 171
L Courard (5244_CR75) 2003; 33
MA Mashrei (5244_CR49) 2019; 9
5244_CR82
5244_CR84
AF Cabalar (5244_CR37) 2012; 40
M Apostolopoulou (5244_CR95) 2019; 17
N Walia (5244_CR71) 2015; 123
F Soltani (5244_CR39) 2010; 37
S Haykin (5244_CR66) 1999
A Baykasoǧlu (5244_CR21) 2004; 34
G Trtnik (5244_CR15) 2009; 49
M Nikoo (5244_CR29) 2015; 31
5244_CR98
ET Mohamad (5244_CR65) 2012; 5
DJ Armaghani (5244_CR8) 2020; 10
H Ly (5244_CR103) 2020
G Dreyfus (5244_CR67) 2005
W Chen (5244_CR90) 2019
References_xml – reference: MohamadETJahed ArmaghaniDMomeniEAbadSVANKPrediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approachBull Eng Geol Environ201410.1007/s10064-014-0638-0
– reference: KebriaDYGhavamiMJavadiSGoharimaneshMCombining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil—a case study in north of IranEnviron Monit Assess201819026
– reference: MohamadETArmaghaniDJMomeniEYazdavarAHEbrahimiMRock strength estimation: a PSO-based BP approachNeural Comput Appl201830516351646
– reference: WaliaNSinghHSharmaAANFIS: adaptive neuro-fuzzy inference system-a surveyInt J Comput Appl201512313
– reference: HarandizadehHArmaghaniDJKhariMA new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasetsEng Comput201910.1007/s00366-019-00849-3
– reference: BaykasoǧluADereliTUTanişSPrediction of cement strength using soft computing techniquesCem Concr Res20043420832090
– reference: AsterisPGAshrafianARezaie-BalfMPrediction of the compressive strength of self-compacting concrete using surrogate modelsComput Concr2019242137150
– reference: AsterisPGArmaghaniDJHatzigeorgiouGDKarayannisCGPilakoutasKPredicting the shear strength of reinforced concrete beams using Artificial Neural NetworksComput Concr201924546948810.12989/cac.2019.24.5.469
– reference: PalaMÖzbayEÖztaşAYuceMIAppraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networksConstr Build Mater2007212384394
– reference: LeeSCPrediction of concrete strength using artificial neural networksEng Struct200325849857
– reference: SaridemirMPredicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logicAdv Eng Softw20094099209271421.74008
– reference: CourardLDarimontASchouterdenMFeraucheFWillemXDegeimbreRDurability of mortars modified with metakaolinCem Concr Res200333914731479
– reference: NaderpourHMirrashidMAn innovative approach for compressive strength estimation of mortars having calcium inosilicate mineralsJ Build Eng201819205215
– reference: YangHKoopialipoorMArmaghaniDJGordanBKhoramiMTahirMMIntelligent design of retaining wall structures under dynamic conditionsSteel Compos Struct2019316629640
– reference: JafariFBadarlooBFinite Element Analysis and ANFIS investigation of seismic behavior of sandwich panels with different concrete material in two story steel buildingFrat ed Integrità Strutt201913209230
– reference: ParandeAKRamesh BabuBAswinKarthikMDeepak KumaarKKPalaniswamyNStudy on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortarConstr Build Mater2008223127134
– reference: AliOAMAliAYSumaitBSComparison between the effects of different types of membership functions on fuzzy logic controller performanceInt J2015767683
– reference: DemirFPrediction of elastic modulus of normal and high strength concrete by artificial neural networksConstr Build Mater200822714281435
– reference: LyHPhamBTLeLMEstimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate modelsNeural Comput Appl202010.1007/s00521-020-05214-w
– reference: SalehiHBurgueñoREmerging artificial intelligence methods in structural engineeringEng Struct2018171170189
– reference: ArmaghaniDJHatzigeorgiouGDKaramaniChSkentouAZoumpoulakiIAsterisPGSoft computing based techniques for concrete beams shear strengthProc Struct Integr20191792493310.1016/j.prostr.2019.08.123
– reference: CabalarAFCevikAGokceogluCSome applications of adaptive neuro-fuzzy inference system (ANFIS) in geotechnical engineeringComput Geotech2012401433
– reference: ApostolopoulouMArmaghaniDJBakolasADouvikaMGMoropoulouAAsterisPGCompressive strength of natural hydraulic lime mortars using soft computing techniquesProc Struct Integr201917914923
– reference: YadollahiMMBenliADemirbogaRApplication of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer compositesNeural Comput Appl20172814531461
– reference: Mardani-AghabaglouASezerGİRamyarKComparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view pointConstr Build Mater2014701725
– reference: ÖzelCTopsakalAComparison of ANFIS and ANN for estimation of thermal conductivity coefficients of construction materialsSci Iran20152220012011
– reference: SoltaniFKerachianRShirangiEDeveloping operating rules for reservoirs considering the water quality issues: application of ANFIS-based surrogate modelsExp Syst Appl20103766396645
– reference: Al-ChaarGKAlkadiMAsterisPGNatural pozzolan as a partial substitute for cement in concreteOpen Constr Build Technol J201373342
– reference: DiasWPSPooliyaddaSPNeural networks for predicting properties of concretes with admixturesConstr Build Mater200115371379
– reference: Belalia DoumaOBoukhatemBGhriciMTagnit-HamouAPrediction of properties of self-compacting concrete containing fly ash using artificial neural networkNeural Comput Appl201610.1007/s00521-016-2368-7
– reference: Tutmez B, Dag A, Tercan AE, Kaymak U (2007) Lignite thickness estimation via adaptive fuzzy-neural network. In: Proceedings of the 20th international mining congress and exhibition of Turkey (IMCET 2007), pp 151–157
– reference: TrtnikGKavčičFTurkGPrediction of concrete strength using ultrasonic pulse velocity and artificial neural networksUltrasonics2009495360
– reference: MohamadETHajihassaniMArmaghaniDJMartoASimulation of blasting-induced air overpressure by means of artificial neural networksInt Rev Modell Simul2012525012506
– reference: KhademiFAkbariMJamalSMNikooMMultiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concreteFront Struct Civ Eng2017119099
– reference: Eskandari-NaddafHKazemiRANN prediction of cement mortar compressive strength, influence of cement strength classConstr Build Mater2017138111
– reference: SafaMShariatiMIbrahimZPotential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strengthSteel Compos Struct201621679688
– reference: JangJ-SSunC-TNeuro-fuzzy modeling and controlProc IEEE199583378406
– reference: WaszczyszynZZiemiańskiLNeural networks in mechanics of structures and materials—new results and prospects of applicationsComput Struct20017922612276
– reference: StojčićMApplication of ANFIS model in road traffic and transportation: A literature review from 1993 to 2018Oper Res Eng Sci Theory Appl201814061
– reference: AsterisPGKolovosKGDouvikaMGRoinosKPrediction of self-compacting concrete strength using artificial neural networksEur J Environ Civ Eng201620102122
– reference: AghaabbasiMShekariZAShahMZOlakunleOArmaghaniDJMoeinaddiniMPredicting the use frequency of ride-sourcing by off-campus university students through random forest and Bayesian network techniquesTransport Res A-Pol2020136262281
– reference: NikooMZarfamPSayahpourHDetermination of compressive strength of concrete using Self Organization Feature Map (SOFM)Eng Comput201531113121
– reference: TürkmenİBingölAFTortumADemirboğaRGülRProperties of pumice aggregate concretes at elevated temperatures and comparison with ANN modelsFire Mater201741142153
– reference: VuDDStroevenPBuiVBStrength and durability aspects of calcined kaolin-blended Portland cement mortar and concreteCem Concr Compos2001236471478
– reference: JangJ-SANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323665685
– reference: ZhouJLiEYangSWangMShiXYaoSMitriHSSlope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case historiesSaf Sci2019118505518
– reference: ChenWSarirPBuiXNNguyenHTahirMMArmaghaniDJNeuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pileEng Comput201910.1007/s00366-019-00752-x
– reference: AltunFKişiOAydinKPredicting the compressive strength of steel fiber added lightweight concrete using neural networkComput Mater Sci2008422259265
– reference: MashhadbanHKutanaeiSSSayarinejadMAPrediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural networkConstr Build Mater2016119277287
– reference: ArmaghaniDJAsterisPGFatemiSAHasanipanahMTarinejadRRashidASAHuynhVVOn the use of neuro-swarm system to forecast the pile settlementAppl Sci20201061904
– reference: MurlidharBRKumarDJahed ArmaghaniDMohamadETRoyBPhamBTA novel intelligent ELM-BBO technique for predicting distance of mine blasting-induced flyrockNat Resour Res202010.1007/s11053-020-09676-6
– reference: ReddyTCSPredicting the strength properties of slurry infiltrated fibrous concrete using artificial neural networkFront Struct Civ Eng201710.1007/s11709-017-0445-3
– reference: TopçuIBSaridemirMPrediction of properties of waste AAC aggregate concrete using artificial neural networkComput Mater Sci2007411117125
– reference: Zounemat-KermaniMBeheshtiA-AAtaie-AshtianiBSabbagh-YazdiS-REstimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference systemAppl Soft Comput20099746755
– reference: KewalramaniMAGuptaRConcrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networksAutom Constr2006153374379
– reference: AkkurtSTayfurGCanSFuzzy logic model for the prediction of cement compressive strengthCem Concr Res20043414291433
– reference: ArmaghaniDJHajihassaniMSohaeiHNeuro-fuzzy technique to predict air-overpressure induced by blastingArab J Geosci20158109371095010.1007/s12517-015-1984-3
– reference: DarainKMShamshirbandSJumaatMZObaydullahMAdaptive neuro fuzzy prediction of deflection and cracking behavior of NSM strengthened RC beamsConstr Build Mater201598276285
– reference: Potgieter-VermaakSSPotgieterJHMetakaolin as an extender in South African cementJ Mater Civ Eng2006184619623
– reference: AsterisPGRoussisPCDouvikaMGFeed-forward neural network prediction of the mechanical properties of sandcrete materialsSensors20171761344
– reference: ApostolopoulouMAsterisPGArmaghaniDJDouvikaMGLourençoPBCavaleriLBakolasAMoropoulouAMapping and holistic design of natural hydraulic lime mortarsCem Concr Res202013610616710.1016/j.cemconres.2020.106167
– reference: SPSS Inc (2007) SPSS for windows (version 16.0). SPSS Inc., Chicago
– reference: AsterisPGApostolopoulouMSkentouADAntonia MoropoulouAApplication of artificial neural networks for the prediction of the compressive strength of cement-based mortarsComput Concr2019244329345
– reference: MaXXGuoHFChenXWater quality evaluation model based on ANFIS and its applicationWater Resour Prot2007231214
– reference: XuHZhouJAsterisGPJahed ArmaghaniDTahirMMSupervised machine learning techniques to the prediction of tunnel boring machine penetration rateAppl Sci20199183715
– reference: ZuradaJMIntroduction to artificial neural systems1992PaulWest St
– reference: AçikgençMUlaşMAlyamaçKEUsing an artificial neural network to predict mix compositions of steel fiber-reinforced concreteArab J Sci Eng201540407419
– reference: DreyfusGNeural networks: methodology and application2005BerlinSpringer1119.92003
– reference: TopçuIBSaridemirMPrediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logicComput Mater Sci200841305311
– reference: HaykinSNeural networks: a comprehensive foundation1999Upper Saddle River, New JerseyPrentice Hall0934.68076
– reference: SumasreeCSajjaSEffect of Metakaolin and Cerafibermix on mechanical and durability properties of mortarsInt J Sci Eng Technol201643501506
– reference: AsterisPGNozhatiSNikooMCavaleriLNikooMKrill herd algorithm-based neural network in structural seismic reliability evaluationMech Adv Mater Struct2019261311461153
– reference: DuanJAsterisPGNguyenHBuiXNMoayediHA novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost modelEng Comput202010.1007/s00366-020-01003-0
– reference: AdhikaryBBMutsuyoshiHPrediction of shear strength of steel fiber RC beams using neural networksConstr Build Mater2006209801811
– reference: WoźniakMPołapDHybrid neuro-heuristic methodology for simulation and control of dynamic systems over time intervalNeural Net2017934556
– reference: ArmaghaniDJRajaRSNSBFaiziKRashidASADeveloping a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed pilesNeural Comput Appl2017282391405
– reference: MashreiMAMahdiAMAn adaptive neuro-fuzzy inference model to predict punching shear strength of flat concrete slabsAppl Sci20199809
– reference: AdeliHNeural networks in civil engineering: 1989–2000Comput-Aid Civ Infrastruct Eng200116126142
– reference: OhT-KKimJLeeCParkSNondestructive concrete strength estimation based on electro-mechanical impedance with artificial neural networkJ Adv Concr Technol20171594102
– reference: ZhouJLiXMitriHSComparative performance of six supervised learning methods for the development of models of hard rock pillar stability predictionNat Hazards2015791291316
– reference: NaderpourHMirrashidMMoment capacity estimation of spirally reinforced concrete columns using ANFISCompl Intell Syst201910.1007/s40747-019-00118-2
– reference: OnyariEKIkotunBDPrediction of compressive and flexural strengths of a modified zeolite additive mortar using artificial neural networkConstr Build Mater201818712321241
– reference: Apostolopoulou M, Douvika MG, Kanellopoulos IN, Moropoulou A, Asteris PG (2018) Prediction of compressive strength of mortars using artificial neural networks. In: 1st international conference TMM_CH, transdisciplinary multispectral modeling and cooperation for the preservation of cultural heritage, Athens, Greece
– reference: ZiariHSobhaniJAyoubinejadJHartmannTAnalysing the accuracy of pavement performance models in the short and long terms: GMDH and ANFIS methodsRoad Mater Pave Des201617619637
– reference: AbunamaTOthmanFYounesMKPredicting sanitary landfill leachate generation in humid regions using ANFIS modelingEnviron Monit Assess2018190597
– reference: ÖzcanFAtişCDKarahanOUncuoğluETanyildiziHComparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concreteAdv Eng Softw2009408568631421.74114
– reference: KadriEHKenaiSEzzianeKSiddiqueRDe SchutterGInfluence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortarAppl Clay Sci2011534704708
– reference: ArmaghaniDJHajihassaniMSohaeiHMohamadETMartoAMotaghediHMoghaddamMRNeuro-fuzzy technique to predict air-overpressure induced by blastingArab J Geosci20158121093710950
– reference: AsterisPGMoropoulouASkentouADApostolopoulouMMohebkhahACavaleriLRodriguesHVarumHStochastic vulnerability assessment of masonry structures: concepts, modeling and restoration aspectsAppl Sci201992243
– reference: InceRPrediction of fracture parameters of concrete by Artificial Neural NetworksEng Fract Mech2004711521432159
– reference: Asteris PG, Argyropoulos I, Cavaleri L, Rodrigues H, Varum H, Thomas J, Lourenço PB (2018) Masonry compressive strength prediction using artificial neural networks. In International conference on transdisciplinary multispectral modeling and cooperation for the preservation of cultural heritage, Springer, Cham, Switzerland, pp 200–224
– reference: AsterisPGNikooMArtificial Bee colony-based neural network for the prediction of the fundamental period of infilled frame structuresNeural Comput Appl201931948374847
– reference: GazderUAl-AmoudiOSBSaad KhanSMMaslehuddinMPredicting compressive strength of blended cement concrete with ANNsComput Concr2017206627634
– reference: BatisGPantazopoulouPTsivilisSBadogiannisEThe effect of metakaolin on the corrosion behavior of cement mortarsCem Concr Compos2005271125130
– reference: HuangLAsterisPGKoopialipoorMArmaghaniDJTahirMMInvasive weed optimization technique-based ANN to the prediction of rock tensile strengthAppl Sci201995372
– reference: MomeniENazirRArmaghaniDJMaizirHApplication of artificial neural network for predicting shaft and tip resistances of concrete pilesEarth Sci Res J20151918593
– reference: KhandelwalMArmaghaniDJFaradonbehRSRanjithPGGhorabaSA new model based on gene expression programming to estimate air flow in a single rock jointEnviron Earth Sci2016759739
– reference: WoźniakMPołapDIntelligent home systems for ubiquitous user support by using neural networks and rule based approachIEEE Trans Indus Inform201910.1109/TII.2019.2951089
– reference: SafiuddinMRamanSNSalamMAJumaatMZModeling of compressive strength for self-consolidating high-strength concrete incorporating palm oil fuel ashMaterials20169396
– reference: AsterisPGMokosVGConcrete compressive strength using artificial neural networksNeural Comput Appl20203218071182610.1007/s00521-019-04663-2
– reference: Cizer O, Van Balen K, Van Gemert D, Elsen J (2008) Blended lime-cement mortars for conservation purposes: microstructure and strength development. In: Structural analysis of historic construction: preserving safety and significance—proceedings of the 6th international conference on structural analysis of historic construction, SAHC08, 2, pp 965–972
– reference: MomeniEArmaghaniDJFatemiSANazirRPrediction of bearing capacity of thin-walled foundation: a simulation approachEng Comput201834319327
– reference: WoźniakMPołapDSoft trees with neural components as image-processing technique for archeological excavationsPers Ubiquit Comput202010.1007/s00779-019-01292-3
– reference: Jahed ArmaghaniDAsterisPGAskarianBHasanipanahMTarinejadRHuynhVVExamining hybrid and single SVM models with different kernels to predict rock brittlenessSustainability20201262229
– reference: AlexandridisAEvolving RBF neural networks for adaptive soft-sensor designInt J Neural Syst2013231350029
– reference: MansouriIKisiOPrediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approachesCompos Part B Eng201570247255
– volume: 5
  start-page: 2501
  year: 2012
  ident: 5244_CR65
  publication-title: Int Rev Modell Simul
– volume: 15
  start-page: 94
  year: 2017
  ident: 5244_CR26
  publication-title: J Adv Concr Technol
  doi: 10.3151/jact.15.94
– volume: 20
  start-page: 102
  year: 2016
  ident: 5244_CR20
  publication-title: Eur J Environ Civ Eng
  doi: 10.1080/19648189.2016.1246693
– volume: 22
  start-page: 1428
  issue: 7
  year: 2008
  ident: 5244_CR57
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2007.04.004
– volume: 138
  start-page: 1
  year: 2017
  ident: 5244_CR25
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.01.132
– volume: 23
  start-page: 665
  year: 1993
  ident: 5244_CR68
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– volume: 23
  start-page: 471
  issue: 6
  year: 2001
  ident: 5244_CR74
  publication-title: Cem Concr Compos
  doi: 10.1016/S0958-9465(00)00091-3
– volume: 22
  start-page: 2001
  year: 2015
  ident: 5244_CR43
  publication-title: Sci Iran
– volume: 70
  start-page: 247
  year: 2015
  ident: 5244_CR33
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2014.11.023
– ident: 5244_CR98
  doi: 10.1007/978-3-030-12960-6_14
– volume: 24
  start-page: 137
  issue: 2
  year: 2019
  ident: 5244_CR99
  publication-title: Comput Concr
– volume: 27
  start-page: 125
  issue: 1
  year: 2005
  ident: 5244_CR78
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2004.02.041
– volume: 171
  start-page: 170
  year: 2018
  ident: 5244_CR35
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.05.084
– volume: 9
  start-page: 5372
  year: 2019
  ident: 5244_CR97
  publication-title: Appl Sci
  doi: 10.3390/app9245372
– volume: 8
  start-page: 10937
  issue: 12
  year: 2015
  ident: 5244_CR87
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-1984-3
– volume: 24
  start-page: 469
  issue: 5
  year: 2019
  ident: 5244_CR94
  publication-title: Comput Concr
  doi: 10.12989/cac.2019.24.5.469
– volume: 190
  start-page: 26
  year: 2018
  ident: 5244_CR46
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-017-6374-8
– volume: 17
  start-page: 924
  year: 2019
  ident: 5244_CR93
  publication-title: Proc Struct Integr
  doi: 10.1016/j.prostr.2019.08.123
– volume: 75
  start-page: 739
  issue: 9
  year: 2016
  ident: 5244_CR85
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5524-6
– volume: 9
  start-page: 396
  year: 2016
  ident: 5244_CR32
  publication-title: Materials
  doi: 10.3390/ma9050396
– volume: 71
  start-page: 2143
  issue: 15
  year: 2004
  ident: 5244_CR52
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2003.12.004
– volume-title: Introduction to artificial neural systems
  year: 1992
  ident: 5244_CR62
– volume: 15
  start-page: 371
  year: 2001
  ident: 5244_CR12
  publication-title: Constr Build Mater
  doi: 10.1016/S0950-0618(01)00006-X
– ident: 5244_CR84
– volume: 20
  start-page: 801
  issue: 9
  year: 2006
  ident: 5244_CR53
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2005.01.047
– volume: 98
  start-page: 276
  year: 2015
  ident: 5244_CR50
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.08.096
– volume: 119
  start-page: 277
  year: 2016
  ident: 5244_CR18
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.05.034
– volume: 136
  start-page: 262
  year: 2020
  ident: 5244_CR7
  publication-title: Transport Res A-Pol
– volume: 8
  start-page: 10937
  year: 2015
  ident: 5244_CR72
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-1984-3
– volume: 1
  start-page: 40
  year: 2018
  ident: 5244_CR42
  publication-title: Oper Res Eng Sci Theory Appl
  doi: 10.31181/oresta19012010140s
– volume: 93
  start-page: 45
  year: 2017
  ident: 5244_CR4
  publication-title: Neural Net
  doi: 10.1016/j.neunet.2017.04.013
– volume: 31
  start-page: 4837
  issue: 9
  year: 2019
  ident: 5244_CR31
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-03965-1
– volume: 30
  start-page: 1635
  issue: 5
  year: 2018
  ident: 5244_CR64
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2728-3
– year: 2019
  ident: 5244_CR3
  publication-title: IEEE Trans Indus Inform
  doi: 10.1109/TII.2019.2951089
– year: 2020
  ident: 5244_CR103
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05214-w
– volume: 118
  start-page: 505
  year: 2019
  ident: 5244_CR5
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2019.05.046
– volume: 10
  start-page: 1904
  issue: 6
  year: 2020
  ident: 5244_CR8
  publication-title: Appl Sci
  doi: 10.3390/app10061904
– volume: 9
  start-page: 809
  year: 2019
  ident: 5244_CR49
  publication-title: Appl Sci
  doi: 10.3390/app9040809
– year: 2019
  ident: 5244_CR51
  publication-title: Compl Intell Syst
  doi: 10.1007/s40747-019-00118-2
– volume: 23
  start-page: 1350029
  year: 2013
  ident: 5244_CR11
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065713500299
– volume: 20
  start-page: 627
  issue: 6
  year: 2017
  ident: 5244_CR59
  publication-title: Comput Concr
– volume: 40
  start-page: 920
  issue: 9
  year: 2009
  ident: 5244_CR24
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2008.12.008
– volume: 32
  start-page: 1807
  year: 2020
  ident: 5244_CR104
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04663-2
– year: 2017
  ident: 5244_CR34
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-017-0445-3
– year: 2014
  ident: 5244_CR38
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-014-0638-0
– volume: 34
  start-page: 319
  year: 2018
  ident: 5244_CR73
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0542-x
– year: 2020
  ident: 5244_CR10
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01003-0
– volume: 34
  start-page: 1429
  year: 2004
  ident: 5244_CR22
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2004.01.020
– volume: 41
  start-page: 142
  year: 2017
  ident: 5244_CR28
  publication-title: Fire Mater
  doi: 10.1002/fam.2374
– volume: 17
  start-page: 1344
  issue: 6
  year: 2017
  ident: 5244_CR101
  publication-title: Sensors
  doi: 10.3390/s17061344
– volume: 9
  start-page: 3715
  issue: 18
  year: 2019
  ident: 5244_CR91
  publication-title: Appl Sci
  doi: 10.3390/app9183715
– volume: 16
  start-page: 126
  year: 2001
  ident: 5244_CR30
  publication-title: Comput-Aid Civ Infrastruct Eng
  doi: 10.1111/0885-9507.00219
– volume: 136
  start-page: 106167
  year: 2020
  ident: 5244_CR102
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2020.106167
– volume: 53
  start-page: 704
  issue: 4
  year: 2011
  ident: 5244_CR79
  publication-title: Appl Clay Sci
  doi: 10.1016/j.clay.2011.06.008
– volume: 22
  start-page: 127
  issue: 3
  year: 2008
  ident: 5244_CR76
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2006.10.003
– volume: 24
  start-page: 329
  issue: 4
  year: 2019
  ident: 5244_CR105
  publication-title: Comput Concr
– volume: 11
  start-page: 90
  year: 2017
  ident: 5244_CR27
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-016-0363-9
– volume: 28
  start-page: 391
  issue: 2
  year: 2017
  ident: 5244_CR63
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2072-z
– volume: 19
  start-page: 85
  issue: 1
  year: 2015
  ident: 5244_CR86
  publication-title: Earth Sci Res J
  doi: 10.15446/esrj.v19n1.38712
– ident: 5244_CR1
– volume: 42
  start-page: 259
  issue: 2
  year: 2008
  ident: 5244_CR58
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2007.07.011
– volume: 13
  start-page: 209
  year: 2019
  ident: 5244_CR48
  publication-title: Frat ed Integrità Strutt
  doi: 10.3221/IGF-ESIS.50.18
– ident: 5244_CR106
– volume: 21
  start-page: 679
  year: 2016
  ident: 5244_CR47
  publication-title: Steel Compos Struct
  doi: 10.12989/scs.2016.21.3.679
– volume: 40
  start-page: 407
  year: 2015
  ident: 5244_CR19
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-014-1549-x
– volume: 41
  start-page: 117
  issue: 1
  year: 2007
  ident: 5244_CR56
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2007.03.010
– ident: 5244_CR82
  doi: 10.1201/9781439828229.ch110
– year: 2020
  ident: 5244_CR92
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-020-09676-6
– volume: 37
  start-page: 6639
  year: 2010
  ident: 5244_CR39
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2010.03.057
– volume: 31
  start-page: 629
  issue: 6
  year: 2019
  ident: 5244_CR88
  publication-title: Steel Compos Struct
– volume: 25
  start-page: 849
  year: 2003
  ident: 5244_CR13
  publication-title: Eng Struct
  doi: 10.1016/S0141-0296(03)00004-X
– volume: 19
  start-page: 205
  year: 2018
  ident: 5244_CR61
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2018.05.012
– volume: 41
  start-page: 305
  year: 2008
  ident: 5244_CR14
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2007.04.009
– volume: 15
  start-page: 374
  issue: 3
  year: 2006
  ident: 5244_CR54
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2005.07.003
– year: 2016
  ident: 5244_CR17
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2368-7
– volume: 17
  start-page: 619
  year: 2016
  ident: 5244_CR41
  publication-title: Road Mater Pave Des
  doi: 10.1080/14680629.2015.1108218
– volume: 79
  start-page: 291
  issue: 1
  year: 2015
  ident: 5244_CR6
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-1842-3
– volume: 12
  start-page: 2229
  issue: 6
  year: 2020
  ident: 5244_CR9
  publication-title: Sustainability
  doi: 10.3390/su12062229
– volume: 123
  start-page: 13
  year: 2015
  ident: 5244_CR71
  publication-title: Int J Comput Appl
– volume: 28
  start-page: 1453
  year: 2017
  ident: 5244_CR44
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2159-6
– volume: 187
  start-page: 1232
  year: 2018
  ident: 5244_CR60
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.08.079
– volume: 7
  start-page: 33
  year: 2013
  ident: 5244_CR83
  publication-title: Open Constr Build Technol J
  doi: 10.2174/1874836801307010033
– volume: 40
  start-page: 14
  year: 2012
  ident: 5244_CR37
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2011.09.008
– volume: 4
  start-page: 501
  issue: 3
  year: 2016
  ident: 5244_CR77
  publication-title: Int J Sci Eng Technol
– volume: 26
  start-page: 1146
  issue: 13
  year: 2019
  ident: 5244_CR100
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376494.2018.1430874
– volume: 9
  start-page: 746
  year: 2009
  ident: 5244_CR36
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2008.09.006
– year: 2020
  ident: 5244_CR2
  publication-title: Pers Ubiquit Comput
  doi: 10.1007/s00779-019-01292-3
– volume: 79
  start-page: 2261
  year: 2001
  ident: 5244_CR16
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(01)00083-9
– volume: 190
  start-page: 597
  year: 2018
  ident: 5244_CR45
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-018-6966-y
– volume: 76
  start-page: 76
  year: 2015
  ident: 5244_CR70
  publication-title: Int J
– year: 2019
  ident: 5244_CR89
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00849-3
– volume: 17
  start-page: 914
  year: 2019
  ident: 5244_CR95
  publication-title: Proc Struct Integr
– volume: 21
  start-page: 384
  issue: 2
  year: 2007
  ident: 5244_CR55
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2005.08.009
– volume-title: Neural networks: a comprehensive foundation
  year: 1999
  ident: 5244_CR66
– volume: 49
  start-page: 53
  year: 2009
  ident: 5244_CR15
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2008.05.001
– volume-title: Neural networks: methodology and application
  year: 2005
  ident: 5244_CR67
– volume: 83
  start-page: 378
  year: 1995
  ident: 5244_CR69
  publication-title: Proc IEEE
  doi: 10.1109/5.364486
– volume: 34
  start-page: 2083
  year: 2004
  ident: 5244_CR21
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2004.03.028
– volume: 70
  start-page: 17
  year: 2014
  ident: 5244_CR80
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2014.07.089
– volume: 23
  start-page: 12
  year: 2007
  ident: 5244_CR40
  publication-title: Water Resour Prot
– volume: 9
  start-page: 243
  issue: 2
  year: 2019
  ident: 5244_CR96
  publication-title: Appl Sci
  doi: 10.3390/app9020243
– volume: 33
  start-page: 1473
  issue: 9
  year: 2003
  ident: 5244_CR75
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(03)00090-5
– volume: 18
  start-page: 619
  issue: 4
  year: 2006
  ident: 5244_CR81
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)0899-1561(2006)18:4(619)
– volume: 40
  start-page: 856
  year: 2009
  ident: 5244_CR23
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2009.01.005
– year: 2019
  ident: 5244_CR90
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00752-x
– volume: 31
  start-page: 113
  year: 2015
  ident: 5244_CR29
  publication-title: Eng Comput
  doi: 10.1007/s00366-013-0334-x
SSID ssj0004685
Score 2.6495137
Snippet Despite the extensive use of mortars materials in constructions over the last decades, there is not yet a reliable and robust method, available in the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4501
SubjectTerms Adaptive systems
Artificial Intelligence
Artificial neural networks
Comparative studies
Compressive strength
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Fuzzy logic
Image Processing and Computer Vision
Metakaolin
Mortars (material)
Original Article
Performance prediction
Probability and Statistics in Computer Science
Robustness
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFLagLCzciHLJAxtYNI5rmwkVRAVIVIhDYot8BQaUljb8f95zHQpIdKqUOm_IZ_t97ybkKJfeSCMcs8IrJs5czjQPHgBReSkU9rjCeue7gbx-Frcv3ZfkcJuktMrmTowXtR869JGfgh6WEvSZ0uejD4ZTozC6mkZoLJIluII1GF9LF1eD-4cflZFxKCfYMJjfI_JUNhOL59AjCk85BoNByTHxWzXN-OafEGnUPP01spIoI-1NMV4nC6HaIKvNOAaaTucmqXvUzXp509g4lg5L2hsMqKk8_PZvHmkcfTOhwFUpcD86GmOkBtHBpS46CxmqNg8rgZmPKVDa6S6N0mPabJQ-DtVr_bZFnvtXT5fXLA1VYA5OW80yr7TjissgQxmE5aHjSjBrjFa57eQeOQoYaZaLUtvcCGWBQLrMgK7PcEBovk1a1bAKO4SeaY7t5ZzPnBem07XaGqWMckE7Gbhsk6z5noVLHcdx8MV78d0rOWJQAAZFxKAQbXL8_c5o2m9j7ur9BqYinb1JMdspbXLSQDf7-39pu_Ol7ZFljgktMdtxn7Tq8Wc4AEZS28O07b4AjEjbQg
  priority: 102
  providerName: ProQuest
Title A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength
URI https://link.springer.com/article/10.1007/s00521-020-05244-4
https://www.proquest.com/docview/2516607878
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWFh4I8qj8sAGkRrHtc2YQsNLVAioBFPkV2BAAbXh_3N2kxYQIDF5yOWGfHbuO98L4CDhVnHFTKSZFRE7NkkkqbMIiEgKJnyPK1_vfD3g50N2-dB9qIvCxk22exOSDH_qabGbv8FE15f64C0apYjNw2LX--64i4c0_VQNGQZxot_ic3pYUpfK_KzjqzmaccxvYdFgbbJVWK5pIkknuK7BnCvXYaUZwUDqE7kBVUrMrH83Cc1iyWtB0sGAqNLiml3ckTDuZkyQnxLke-Rt5KMzHhEvasIFYeTNmUVJZOMjgjR2sjOD9pAqG7SPXPlUPW_CMOvfn5xH9SCFyOAJq6LYCmmooNxxVzimqeuYAl0ZJUWiO4n1vAQdM01ZIXWimNBIGk2s0L7HfihosgUL5WvptoEcS-pbyhkbG8tUp6ulVkIoYZw03FHegrj5nrmpu4z7YRcv-bQ_csAgRwzygEHOWnA4fedt0mPjT-m9Bqa8Pm_jHFka58h2hGzBUQPd7PHv2nb-J74LS9QntYSMxz1YqEbvbh9ZSaXbMC-zszYspr3TXubXs8erPq69_uDmth226Ae54twd
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoBLW15qaAEf4AQWWdu1nQNCUSEktM2FVupt8WvhUG1Csgj1T_U3MuPsNoBEbz2ttOudg2fsb-x5fAAvpY5OOxW4V9FwNQiSW5EiKsTIShnqcUX1zidTPT5Tn88PzjfgqquFobTKbk_MG3WcBbojf4s4rDXimbHv5z84sUZRdLWj0FiZxVG6_IVHtuW7yQfU7yshRh9PD8e8ZRXgAc2t4UU0NggjdNKpSsqL1A8V-vXOGun7MhJI4ynFC1VZL50yHj2oUDgEu4IYMiXKvQN3lZQDWlF29OmPOsxMAYonJsomUrIt0smlenT_im8FhZ4RUrn6GwjX3u0_AdmMc6Md2GodVDZcWdQD2Ej1Q9juyB9Yuxc8gmbIwrpzOMttatmsYsPplLk64nM0-cIy0c6SoWfM0NNk8wXFhcgWaGjIV5OcgDTiSDwHLBg60Ks1kaXnJN0sfZHqb833x3B2K5P9BDbrWZ12gQ2soGZ2IRYhKtc_8NY7Y5wJyQadhO5B0c1nGdr-5kSzcVFed2bOOihRB2XWQal68Pr6n_mqu8eNo_c7NZXtSl-Wa7vswZtOdevP_5f29GZpL-De-PTkuDyeTI_24L6gVJqcZ7kPm83iZ3qGvlDjn2cDZPD1ti3-N_pqFPE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbRDSOa6djBEQtjwgJKnWL_AoMKK3S8P85O0lbECAxZcjlBn927jvfC6HzgGnBBFWepJp7tK8CLyRGAyA8yCi3Pa5svfNjwgYjejfujZeq-F22exOSrGoabJemvLya6uxqXvhmbzPBDSY2kAsGyqOraA1-x77d1yMSLVVGuqGc4MPY_B4a1GUzP-v4apoWfPNbiNRZnngbbdaUEUcVxjtoxeS7aKsZx4Dr07mHygirRS9v7BrH4kmGoyTBItfwjIfP2I2-mWHgqhi4H54WNlJj0bGiyl0Weta0aZAEZl5goLTVLnXaXdqs016Y_LV820ej-PbleuDVQxU8BctTer7moSKcMMNMZqgkpqsycGtEyAPZDbTlKOCkSUKzUAaCcgkEUvkCbL1vB4QGB6iVT3JziHA_JLa9nNK-0lR0ezKUgnPBlQkVM4S1kd-sZ6rqjuN28MV7Ou-V7DBIAYPUYZDSNrqYfzOt-m38Kd1pYErrszdLgbExBsyHh2102UC3eP27tqP_iZ-h9aebOH0YJvfHaIPYXBeXCNlBrbL4MCdAVkp56vbjJ1aF3cY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+ANN+and+ANFIS+models+for+the+prediction+of+cement-based+mortar+materials+compressive+strength&rft.jtitle=Neural+computing+%26+applications&rft.au=Armaghani%2C+Danial+Jahed&rft.au=Asteris%2C+Panagiotis+G.&rft.date=2021-05-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=9&rft.spage=4501&rft.epage=4532&rft_id=info:doi/10.1007%2Fs00521-020-05244-4&rft.externalDocID=10_1007_s00521_020_05244_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon