Analysis of waste discharge concentration in radiative hybrid nanofluid flow over a stretching/shrinking sheet with chemical reaction
This study examines the hydrothermal characteristics of hybrid nanofluid flow over a sheet in the presence of thermal radiation, chemical reaction, and waste discharge concentration to develop effective waste treatment and pollution control methods. The partial differential equations (PDEs) governin...
Saved in:
Published in | Mechanics of time-dependent materials Vol. 29; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study examines the hydrothermal characteristics of hybrid nanofluid flow over a sheet in the presence of thermal radiation, chemical reaction, and waste discharge concentration to develop effective waste treatment and pollution control methods. The partial differential equations (PDEs) governing the conservation of mass, momentum, energy, and concentration, which are nonlinear, are transformed into ordinary differential equations (ODEs) using similarity transformations. The next stage in the process is to solve these differential equations using the bvp4c technique available in MATLAB. The study thoroughly explores several nondimensional parameters, including suction/blowing, Darcy number, stretching/shrinking parameter, local pollutant external source parameter, and chemical reaction parameter, visually illustrating their impacts on flow patterns, thermal distribution, and concentration profiles. The scrutiny focuses on key engineering parameters such as skin friction coefficient, heat transfer rate, and mass transfer rate, supported by tabular data that enhances the quantitative evaluation of these parameters. It is found that the velocity of hybrid nanofluid upsurges with the increment in the stretching/shrinking parameter and Darcy number. Also, results obtained reveal that the concentration profiles experience an upward shift with an increase in unsteadiness parameter and local pollutant external source parameter. Moreover, the Sherwood number decreases by 10.65% as the local pollutant external source parameter, ranging from 0.03 to 0.09, is increased. |
---|---|
AbstractList | This study examines the hydrothermal characteristics of hybrid nanofluid flow over a sheet in the presence of thermal radiation, chemical reaction, and waste discharge concentration to develop effective waste treatment and pollution control methods. The partial differential equations (PDEs) governing the conservation of mass, momentum, energy, and concentration, which are nonlinear, are transformed into ordinary differential equations (ODEs) using similarity transformations. The next stage in the process is to solve these differential equations using the bvp4c technique available in MATLAB. The study thoroughly explores several nondimensional parameters, including suction/blowing, Darcy number, stretching/shrinking parameter, local pollutant external source parameter, and chemical reaction parameter, visually illustrating their impacts on flow patterns, thermal distribution, and concentration profiles. The scrutiny focuses on key engineering parameters such as skin friction coefficient, heat transfer rate, and mass transfer rate, supported by tabular data that enhances the quantitative evaluation of these parameters. It is found that the velocity of hybrid nanofluid upsurges with the increment in the stretching/shrinking parameter and Darcy number. Also, results obtained reveal that the concentration profiles experience an upward shift with an increase in unsteadiness parameter and local pollutant external source parameter. Moreover, the Sherwood number decreases by 10.65% as the local pollutant external source parameter, ranging from 0.03 to 0.09, is increased. |
ArticleNumber | 7 |
Author | Mishra, Ashish |
Author_xml | – sequence: 1 givenname: Ashish orcidid: 0000-0002-8327-1847 surname: Mishra fullname: Mishra, Ashish email: ashushmishra@gmail.com organization: Department of Applied Sciences and Engineering, Tula’s Institute |
BookMark | eNp9kMtKAzEUhoMo2FZfwFXA9dhcZpp0KcUbFNzoOsTMmU7qNNEkbe0D-N6mHUFw0Wzyh_zf4fAN0anzDhC6ouSGEiLGkVJS8oKwsiBTUbHi6wQNaCV4wQSXpzlzWRWMEHKOhjEucxBTIgfo-9bpbhdtxL7BWx0T4NpG0-qwAGy8M-BS0Ml6h63DQdc2PzaA291bsDV22vmmW-fUdH6L_QYC1jimAMm01i3GsQ3WveeEYwuQ8NamFpsWVtboDgfQZj_7Ap01uotw-XuP0Ov93cvssZg_PzzNbueF4XSaCmqaiazy3gQmZTWphSk101AazrWmjEoJkgvBmqmgJH9ykKSm1aTMUD6Uj9B1P_cj-M81xKSWfh2ygag4LTmTgrN9S_YtE3yMARplbDo4yCpspyhRe-mql66ydHWQrr4yyv6hH8GudNgdh3gPxVx2Cwh_Wx2hfgCfepkA |
CitedBy_id | crossref_primary_10_1016_j_hybadv_2025_100427 crossref_primary_10_1016_j_ijft_2025_101083 crossref_primary_10_1016_j_jrras_2025_101408 crossref_primary_10_1016_j_nanoso_2025_101463 |
Cites_doi | 10.1139/cjp-2019-0380 10.1007/s10973-023-12699-9 10.1016/j.aej.2023.08.028 10.3390/math9080878 10.1016/j.csite.2023.102737 10.1142/S0217979224500462 10.1007/s13369-022-07210-9 10.1115/1.4024592 10.1016/j.rineng.2023.101005 10.1016/j.padiff.2022.100322 10.1007/s13399-022-03060-5 10.1016/j.triboint.2023.108859 10.1016/j.cjph.2021.04.004 10.1016/j.molliq.2024.124244 10.1016/j.tsep.2023.102248 10.1016/j.csite.2023.103892 10.1088/1402-4896/abcb2a 10.3390/w15162879 10.1016/j.tca.2007.06.009 10.1016/j.ijnonlinmec.2007.12.021 10.1016/j.triboint.2024.110182 10.1016/j.nonrwa.2008.09.026 10.1108/HFF-07-2020-0423 10.1088/1402-4896/acf1da 10.3390/e23070813 10.1080/10407790.2023.2211228 10.1016/j.aej.2020.10.020 10.1016/j.triboint.2023.108943 10.1080/10407782.2023.2251082 10.1016/j.ijheatmasstransfer.2005.01.029 10.1016/j.jmmm.2023.171434 10.1016/j.cjph.2020.12.002 10.1016/j.csite.2024.104374 10.1002/zamm.202300164 10.1016/j.camwa.2010.05.012 10.1016/j.ijthermalsci.2010.01.026 10.3390/w15193419 10.1038/s41598-023-36631-1 10.1016/S0142-727X(99)00067-3 10.1177/0958305X231196298 10.1016/j.csite.2023.103334 10.1038/s41598-022-05393-7 10.1016/j.triboint.2023.109038 10.1016/j.csite.2023.103062 10.1016/j.aej.2023.05.089 10.1080/10407782.2024.2314221 10.1016/j.hybadv.2024.100212 10.1016/j.ijheatmasstransfer.2010.01.032 10.1016/j.ijheatmasstransfer.2019.02.101 10.1016/j.csite.2022.102583 10.1016/j.physleta.2010.08.032 10.1016/j.molliq.2023.123412 10.1016/j.cplett.2023.140799 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11043-024-09752-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-2738 |
ExternalDocumentID | 10_1007_s11043_024_09752_x |
GroupedDBID | -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9N PF0 PT4 PT5 QOS R89 R9I RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABBRH ABRTQ AFDZB AFOHR AGQPQ AHPBZ ATHPR CITATION |
ID | FETCH-LOGICAL-c319t-1cf6859080e6456d7c4a2ae4c33aa12188e83772f97107c43e80d156485999913 |
IEDL.DBID | U2A |
ISSN | 1385-2000 |
IngestDate | Fri Jul 25 11:06:16 EDT 2025 Wed Aug 20 07:41:46 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Thu Mar 27 04:14:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Waste discharge concentration Suction/injection Permeable surface Thermal radiation Chemical reaction Hybrid nanofluid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-1cf6859080e6456d7c4a2ae4c33aa12188e83772f97107c43e80d156485999913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8327-1847 |
PQID | 3143287321 |
PQPubID | 2043841 |
ParticipantIDs | proquest_journals_3143287321 crossref_citationtrail_10_1007_s11043_024_09752_x crossref_primary_10_1007_s11043_024_09752_x springer_journals_10_1007_s11043_024_09752_x |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to the Time-Dependent Behaviour of Materials and Structures |
PublicationTitle | Mechanics of time-dependent materials |
PublicationTitleAbbrev | Mech Time-Depend Mater |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | U.S. Mahabaleshwar (9752_CR23) 2024; 398 M.I. Ur Rehman (9752_CR48) 2023; 84 A. Asghar (9752_CR4) 2023; 75 M. Yaseen (9752_CR53) 2023; 588 I. Waini (9752_CR50) 2019; 136 U. Yashkun (9752_CR54) 2021; 31 S.U. Choi (9752_CR8) 1995 M.I. Ur Rehman (9752_CR47) 2023; 148 B.M. Shettar (9752_CR45) 2024; 6 N.C. Roşca (9752_CR44) 2021; 23 N.A. Zainal (9752_CR55) 2021; 69 N. Bachok (9752_CR5) 2010; 49 M.I.U. Rehman (9752_CR41) 2024; 104 M. Naveed Khan (9752_CR30) 2023; 13 M.N. Khan (9752_CR15) 2023; 391 S. Ahmad (9752_CR2) 2020; 96 O.D. Makinde (9752_CR25) 2007; 188 9752_CR10 M.I.U. Rehman (9752_CR42) 2024; 38 M.I.U. Rehman (9752_CR39) 2023; 42 S. Li (9752_CR21) 2024; 53 A. Jamaludin (9752_CR11) 2023; 17 M. Nadeem (9752_CR29) 2022; 12 M.N. Khan (9752_CR16) 2023; 188 I. Pop (9752_CR33) 2023; 46 M.I.U. Rehman (9752_CR37) 2022; 40 M.N. Khan (9752_CR13) 2020; 98 T. Ray Mahapatra (9752_CR35) 2014; 136 M. Sunitha (9752_CR46) 2023; 15 S. Abu Bakar (9752_CR1) 2021; 9 S.M. Mousavi (9752_CR28) 2021; 71 J. Koo (9752_CR20) 2005; 48 9752_CR43 R.J. Moitsheki (9752_CR27) 2009; 10 Y. Ouyang (9752_CR32) 2024; 58 9752_CR49 A.M. Rashad (9752_CR34) 2023; 48 M.N. Khan (9752_CR17) 2023; 49 9752_CR3 M.N. Khan (9752_CR19) 2023; 189 O.D. Makinde (9752_CR24) 2010; 60 S. Jana (9752_CR12) 2007; 462 A. Mishra (9752_CR26) 2022; 5 9752_CR36 J.K. Madhukesh (9752_CR22) 2023; 15 M.N. Khan (9752_CR18) 2023; 79 K. Zhang (9752_CR57) 2023; 47 M.I.U. Rehman (9752_CR40) 2023; 830 H. Chen (9752_CR7) 2023; 98 D.A. Nield (9752_CR31) 2006 W.A. Khan (9752_CR14) 2010; 53 C.Y. Wang (9752_CR51) 2008; 43 N. Bachok (9752_CR6) 2010; 374 S. Elattar (9752_CR9) 2023; 15 M.I.U. Rehman (9752_CR38) 2023; 190 N.A. Zainal (9752_CR56) 2021; 60 Y. Xuan (9752_CR52) 2000; 21 |
References_xml | – volume: 98 start-page: 732 issue: 8 year: 2020 ident: 9752_CR13 publication-title: Can. J. Phys. doi: 10.1139/cjp-2019-0380 – volume: 148 start-page: 13883 issue: 24 year: 2023 ident: 9752_CR47 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-023-12699-9 – volume: 79 start-page: 366 year: 2023 ident: 9752_CR18 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.08.028 – volume: 9 issue: 8 year: 2021 ident: 9752_CR1 publication-title: Mathematics doi: 10.3390/math9080878 – volume: 42 year: 2023 ident: 9752_CR39 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.102737 – volume: 38 issue: 03 year: 2024 ident: 9752_CR42 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979224500462 – volume: 48 start-page: 939 issue: 1 year: 2023 ident: 9752_CR34 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-07210-9 – volume: 136 issue: 10 year: 2014 ident: 9752_CR35 publication-title: J. Heat Transf. doi: 10.1115/1.4024592 – volume: 17 year: 2023 ident: 9752_CR11 publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101005 – volume: 5 year: 2022 ident: 9752_CR26 publication-title: Partial Differ. Equ. Appl. Math. doi: 10.1016/j.padiff.2022.100322 – ident: 9752_CR36 doi: 10.1007/s13399-022-03060-5 – volume: 188 year: 2023 ident: 9752_CR16 publication-title: Tribol. Int. doi: 10.1016/j.triboint.2023.108859 – volume: 71 start-page: 574 year: 2021 ident: 9752_CR28 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.04.004 – volume: 398 year: 2024 ident: 9752_CR23 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2024.124244 – volume: 46 year: 2023 ident: 9752_CR33 publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2023.102248 – volume: 53 year: 2024 ident: 9752_CR21 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.103892 – volume: 96 issue: 2 year: 2020 ident: 9752_CR2 publication-title: Phys. Scr. doi: 10.1088/1402-4896/abcb2a – volume: 15 issue: 17 year: 2023 ident: 9752_CR22 publication-title: Water doi: 10.3390/w15162879 – volume: 462 start-page: 45 issue: 1–2 year: 2007 ident: 9752_CR12 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2007.06.009 – volume: 43 start-page: 377 issue: 5 year: 2008 ident: 9752_CR51 publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2007.12.021 – ident: 9752_CR43 doi: 10.1016/j.triboint.2024.110182 – volume: 10 start-page: 3420 issue: 6 year: 2009 ident: 9752_CR27 publication-title: Nonlinear Anal., Real World Appl. doi: 10.1016/j.nonrwa.2008.09.026 – volume: 31 start-page: 1930 issue: 6 year: 2021 ident: 9752_CR54 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-07-2020-0423 – volume: 98 issue: 9 year: 2023 ident: 9752_CR7 publication-title: Phys. Scr. doi: 10.1088/1402-4896/acf1da – volume: 23 issue: 7 year: 2021 ident: 9752_CR44 publication-title: Entropy doi: 10.3390/e23070813 – volume: 84 start-page: 432 issue: 4 year: 2023 ident: 9752_CR48 publication-title: Numer. Heat Transf., Part B, Fundam. doi: 10.1080/10407790.2023.2211228 – volume: 60 start-page: 915 issue: 1 year: 2021 ident: 9752_CR56 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.10.020 – volume: 189 year: 2023 ident: 9752_CR19 publication-title: Tribol. Int. doi: 10.1016/j.triboint.2023.108943 – ident: 9752_CR3 doi: 10.1080/10407782.2023.2251082 – volume: 48 start-page: 2652 issue: 14 year: 2005 ident: 9752_CR20 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2005.01.029 – volume: 588 year: 2023 ident: 9752_CR53 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2023.171434 – volume: 69 start-page: 118 year: 2021 ident: 9752_CR55 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.12.002 – volume: 58 year: 2024 ident: 9752_CR32 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2024.104374 – volume: 104 issue: 1 year: 2024 ident: 9752_CR41 publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.202300164 – volume: 60 start-page: 642 issue: 3 year: 2010 ident: 9752_CR24 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.05.012 – volume: 49 start-page: 1663 issue: 9 year: 2010 ident: 9752_CR5 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.01.026 – volume: 15 issue: 19 year: 2023 ident: 9752_CR9 publication-title: Water doi: 10.3390/w15193419 – volume: 13 issue: 1 year: 2023 ident: 9752_CR30 publication-title: Sci. Rep. doi: 10.1038/s41598-023-36631-1 – volume: 21 start-page: 58 issue: 1 year: 2000 ident: 9752_CR52 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/S0142-727X(99)00067-3 – volume-title: Enhancing Thermal Conductivity of Fluids with Nanoparticles year: 1995 ident: 9752_CR8 – ident: 9752_CR10 doi: 10.1177/0958305X231196298 – volume: 49 year: 2023 ident: 9752_CR17 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.103334 – volume: 12 issue: 1 year: 2022 ident: 9752_CR29 publication-title: Sci. Rep. doi: 10.1038/s41598-022-05393-7 – volume: 188 start-page: 1267 issue: 2 year: 2007 ident: 9752_CR25 publication-title: Appl. Math. Comput. – volume: 190 year: 2023 ident: 9752_CR38 publication-title: Tribol. Int. doi: 10.1016/j.triboint.2023.109038 – volume: 47 year: 2023 ident: 9752_CR57 publication-title: Case Study Therm. Eng. doi: 10.1016/j.csite.2023.103062 – volume: 75 start-page: 297 year: 2023 ident: 9752_CR4 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.05.089 – volume: 15 issue: 17 year: 2023 ident: 9752_CR46 publication-title: Water – ident: 9752_CR49 doi: 10.1080/10407782.2024.2314221 – volume: 6 year: 2024 ident: 9752_CR45 publication-title: Hyb. Adv. doi: 10.1016/j.hybadv.2024.100212 – volume: 53 start-page: 2477 issue: 11–12 year: 2010 ident: 9752_CR14 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.01.032 – volume: 136 start-page: 288 year: 2019 ident: 9752_CR50 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.02.101 – volume: 40 year: 2022 ident: 9752_CR37 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102583 – volume: 374 start-page: 4075 issue: 40 year: 2010 ident: 9752_CR6 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.08.032 – volume: 391 year: 2023 ident: 9752_CR15 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2023.123412 – volume: 830 year: 2023 ident: 9752_CR40 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2023.140799 – volume-title: Convection in Porous Media year: 2006 ident: 9752_CR31 |
SSID | ssj0007908 |
Score | 2.486614 |
Snippet | This study examines the hydrothermal characteristics of hybrid nanofluid flow over a sheet in the presence of thermal radiation, chemical reaction, and waste... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Blowing rate Characterization and Evaluation of Materials Chemical reactions Classical Mechanics Coefficient of friction Control methods Darcy number Discharge Engineering Flow distribution Fluid flow Mass transfer Nanofluids Ordinary differential equations Parameters Partial differential equations Pollutants Pollution control Polymer Sciences Skin friction Solid Mechanics Stretching Suction Thermal radiation Waste treatment |
Title | Analysis of waste discharge concentration in radiative hybrid nanofluid flow over a stretching/shrinking sheet with chemical reaction |
URI | https://link.springer.com/article/10.1007/s11043-024-09752-x https://www.proquest.com/docview/3143287321 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7iLnoQf-J0jnfwpsU2Wdv0OGRzKHpyME8lTVMmjFbWjukf4P_te127qqjgrZAmh35J3pfmfd9j7DziwmhXxVYcCTLV9hMrkiayZBxxpPsYQTkJnO8fvNG4dztxJ5UoLK-z3esryXKnbsRuDt0UY0yx7MB3uYXMseXi2Z0Suca8v95__aCsQ-cI6dIcsCupzM9jfA1HDcf8di1aRpvhLtupaCL0V7jusQ2T7rPtT-aBB-y99hOBLIGlQrSAJLbkfGRAkxoxrSxx4TmFOXkQ0NYG0zcSaUGq0iyZLfApmWVLoExOUEDSkaJMr7zKp_NVXQXIp8YUQH9sQVf-AoBcs1REHLLxcPB4PbKqogqWxtVWWI5OPEmFzm3jIXmKfd1TXJmeFkIpBwO-NHhm9XkSIPfARmGkHZOjDHYiMimO2GaapeaYQezFnicdJaTn99zEVUIb1yg_DoyUIpJt5tTfNtSV4zgVvpiFjVcy4REiHmGJR_jaZhfrPi8rv40_3-7UkIXV2stDgRQQz4GCO212WcPYNP8-2sn_Xj9lW5yKAZcJaR22WcwX5gwZShF1Wat_83Q36JYT8wNmVOAf |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOCwcEI9FFLowBzixEY3dJO6BQ7WAyvNEJW5Zx3FUpCpFbVDhB_BP-KHMuAkFxK7EgVskx1bkGXs-x_N9A7CbCGlNoFMvTSSLakeZlyibeCpNBMF9iqCCCc6XV2Gn2zy7CW5m4Lniwrhs9-pK0u3UU7KbzzfFFFO8RisKhPdQplKe28cxHdRGh6dHZNU9IU6Or_90vLKWgGfIyQrPN1mouL53w4aEGdLINLXQtmmk1NqnOKcsHdUikbUo5FKjtKqRspAKdWIMJWncWZgn8KF47XRF-3W_j1qu7p0vVcA-1yipOZ9_8_vwN8W0H65hXXQ7WYalEpZie-JHKzBj81VYfCNWuAZPlX4JDjIca_IOZEovKy1ZNMx-zEsJXrzNcciaB7yVYu-RSWGY63yQ9e_pKesPxsiZo6iRqSqFS-c8GPWGkzoOOOpZWyD_IUZT6hkgYVvHwPgJ3W-Z-HWYywe53QBMwzQMla-lCqNmkAVaGhtYHaUtq5RMVA38am5jUyqcc6GNfjzVZmZ7xGSP2NkjfqjB_mufu4m-x3_frlcmi8u1PoolQU46d0rh1-B3ZcZp879H2_za6zvwo3N9eRFfnF6db8GC4ELELhmuDnPF8N7-InRUJNvOORH-fvdqeAGdrRif |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1BkCp6QNCCSEnLHMqptRLv-mNz6AEVIr7FoZG4uevdtYIUOSgxCvwA_g8_sTOOTQAVJA7cLK13Ze3M7rz1znsD8D0V0plQW8-mkkW148xLlUs9ZVNBcJ8iqGCC8-lZdNAPji7CiwW4r7kwZbZ7fSU54zSwSlNetK9s1p4T33y-Nab44nW6cSi8myqt8tjdTunQNvl1uEcW3hGit__n94FX1RXwDDlc4fkmixTX-u64iPCDjU2ghXaBkVJrn2KecnRsi0XWpfBLjdKpjmVRFerEeErSuIuwFDD7mFZQX-w-7P1xt6yB50sVsv91KprO_7_5aSic49tnV7JlpOutwkoFUXF35lNrsODyT_DxkXDhZ7irtUxwlOFUk6cg03tZdcmhYSZkXsnx4mWOY9Y_4G0VB7dMEMNc56NseE1P2XA0Rc4iRY1MWynK1M72ZDCe1XTAycC5AvlvMZpK2wAJ55ZsjHXov8vEb0AjH-VuE9BGNoqUr6WK4iDMQi2NC52ObdcpJVPVBL-e28RUaudcdGOYzHWa2R4J2SMp7ZHcNOHHQ5-rmdbHq2-3apMl1bqfJJLgJ51BpfCb8LM247z55dG-vO31bfhwvtdLTg7PjrdgWXBN4jIvrgWNYnztvhJQKtJvpW8i_H3vxfAPEwsc0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+waste+discharge+concentration+in+radiative+hybrid+nanofluid+flow+over+a+stretching%2Fshrinking+sheet+with+chemical+reaction&rft.jtitle=Mechanics+of+time-dependent+materials&rft.au=Mishra%2C+Ashish&rft.date=2025-03-01&rft.issn=1385-2000&rft.eissn=1573-2738&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1007%2Fs11043-024-09752-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11043_024_09752_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2000&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2000&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2000&client=summon |