A multi-color and multistage collaborative network guided by refined transmission prior for underwater image enhancement
Due to the attenuation and scattering properties of light in underwater scenes, underwater images are generally subject to color deviations and low contrast, which is not conducive to the follow-up algorithms. To alleviate these two problems, we propose a multi-color and multistage collaborative net...
Saved in:
Published in | The Visual computer Vol. 40; no. 11; pp. 7905 - 7923 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the attenuation and scattering properties of light in underwater scenes, underwater images are generally subject to color deviations and low contrast, which is not conducive to the follow-up algorithms. To alleviate these two problems, we propose a multi-color and multistage collaborative network guided by refined transmission, called MMCGT, to accomplish the enhancement tasks. Specifically, we first design an accurate method of parameter estimation to derive transmission priors that are more suitable for underwater imaging, such as min–max conversion, low-pass filter-based estimation and saturation detection. Then, we propose a multistage and multi-color space collaborative network to decompose the underwater image enhancement task into more straightforward and controllable subtasks, including colorful feature extraction, color deviation detection, and image position information retention. Finally, we apply the derived transmission prior to the transmission-guided block of the network and effectively combine the well-designed physical-inconsistency loss with Charbonnier loss and VGG loss to guide the MMCGT to compensate for the quality-degraded regions better. Extensive experiments show that MMCGT achieves better evaluation results under the dual guidance of physics and deep learning than the competing methods in visual quality and quantitative metrics. |
---|---|
AbstractList | Due to the attenuation and scattering properties of light in underwater scenes, underwater images are generally subject to color deviations and low contrast, which is not conducive to the follow-up algorithms. To alleviate these two problems, we propose a multi-color and multistage collaborative network guided by refined transmission, called MMCGT, to accomplish the enhancement tasks. Specifically, we first design an accurate method of parameter estimation to derive transmission priors that are more suitable for underwater imaging, such as min–max conversion, low-pass filter-based estimation and saturation detection. Then, we propose a multistage and multi-color space collaborative network to decompose the underwater image enhancement task into more straightforward and controllable subtasks, including colorful feature extraction, color deviation detection, and image position information retention. Finally, we apply the derived transmission prior to the transmission-guided block of the network and effectively combine the well-designed physical-inconsistency loss with Charbonnier loss and VGG loss to guide the MMCGT to compensate for the quality-degraded regions better. Extensive experiments show that MMCGT achieves better evaluation results under the dual guidance of physics and deep learning than the competing methods in visual quality and quantitative metrics. |
Author | Yang, Yitong Xu, Yujie Zhang, Yongjun Cui, Zhongwei Ouyang, Ting Zhao, Haoliang |
Author_xml | – sequence: 1 givenname: Ting surname: Ouyang fullname: Ouyang, Ting organization: State Key Laboratory of Public Big Data, Institute for Artificial Intelligence, College of Computer Science and Technology, Guizhou University – sequence: 2 givenname: Yongjun orcidid: 0000-0002-7534-1219 surname: Zhang fullname: Zhang, Yongjun email: zyj6667@126.com organization: State Key Laboratory of Public Big Data, Institute for Artificial Intelligence, College of Computer Science and Technology, Guizhou University – sequence: 3 givenname: Haoliang surname: Zhao fullname: Zhao, Haoliang organization: State Key Laboratory of Public Big Data, Institute for Artificial Intelligence, College of Computer Science and Technology, Guizhou University – sequence: 4 givenname: Zhongwei surname: Cui fullname: Cui, Zhongwei organization: School of Mathematics and Big Datam, GuiZhou Education University – sequence: 5 givenname: Yitong surname: Yang fullname: Yang, Yitong organization: State Key Laboratory of Public Big Data, Institute for Artificial Intelligence, College of Computer Science and Technology, Guizhou University – sequence: 6 givenname: Yujie surname: Xu fullname: Xu, Yujie organization: State Key Laboratory of Public Big Data, Institute for Artificial Intelligence, College of Computer Science and Technology, Guizhou University |
BookMark | eNp9kMlOBCEQhonRxHF5AU8knlGWaaGPxrglJl70TGioHtFuUKBd5ulF28TEgwcKqlL_X9S3gzZDDIDQAaNHjFJ5nCkVkhHKBaGCs4asN9CCLQUnXLBmEy0ok4pwqdpttJPzI625XLYL9H6Kx2kontg4xIRNcHOei1kBrsXBdDGZ4l8BByhvMT3h1eQdONx94AS9D_VZkgl59Dn7GPBz8tWpr2cKDtKbKZCwH7_8IDyYYGGEUPbQVm-GDPs_9y66vzi_O7siN7eX12enN8QK1hbCrJWWWaUaS4VT0DcNAyVPOJeOW6scc1CjaV3PKe9AMmCmMZ0wLXedEGIXHc6-zym-TJCLfoxTCnWkFowv22WjFK1dfO6yKeZc19J1i9GkD82o_iKsZ8K6EtbfhPW6itQfkfWlooqh8vDD_1IxS3OdE1aQfn_1j-oTm4OWfQ |
CitedBy_id | crossref_primary_10_1007_s00371_024_03611_z crossref_primary_10_3390_rs16163074 crossref_primary_10_1007_s00371_024_03377_4 crossref_primary_10_1007_s00371_025_03866_0 |
Cites_doi | 10.1109/TPAMI.2012.213 10.1109/TMM.2020.2999182 10.1109/TIP.2003.819231 10.1007/s00371-020-01972-9 10.1109/TCSVT.2019.2963772 10.1109/LSP.2012.2227726 10.1109/JOE.2019.2911447 10.1016/j.image.2021.116250 10.1109/TIP.2019.2952032 10.1016/j.jvcir.2014.11.006 10.1109/TIP.2017.2651366 10.1109/LRA.2020.2974710 10.1016/j.patcog.2019.107038 10.1109/TSMC.2021.3069265 10.1016/j.knosys.2020.106235 10.1109/TIP.2017.2759252 10.1109/TIP.2018.2813092 10.1016/j.knosys.2021.106949 10.1109/TIP.2019.2955241 10.1109/TIP.2015.2491020 10.1007/s00371-020-01884-8 10.1109/TIP.2011.2179666 10.1109/JOE.2015.2469915 10.1109/MCG.2016.26 10.1016/j.sigpro.2020.107771 10.1109/TIP.2021.3076367 10.1109/LSP.2018.2792050 10.1007/978-3-031-19797-0_27 10.1109/ICSMC.2010.5642311 10.1007/s00371-022-02654-4 10.1007/s00371-022-02458-6 10.1609/aaai.v35i18.17923 10.1201/9781003143376-15 10.1109/CVPR.2017.742 10.1007/978-3-319-46475-6_43 10.1007/s00371-022-02580-5 10.1007/s00371-022-02665-1 10.1007/s00371-021-02305-0 10.1007/s00371-022-02510-5 10.1002/col.20070 10.1109/CVPR.2018.00745 10.1109/ICIP.1994.413553 10.1109/TIP.2023.3276332 10.1109/ICIP.2016.7532699 10.1109/CVPR46437.2021.01458 10.1145/3581783.3612378 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s00371-023-03215-z |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 7923 |
ExternalDocumentID | 10_1007_s00371_023_03215_z |
GrantInformation_xml | – fundername: Key Disciplines of Guizhou Province-Computer Science and Technology grantid: ZDXK [2018]007 – fundername: Natural science research project of Guizhou Provincial Department of Education grantid: QianJiaoJi[2022]029; QianJiaoHeKY[2021]022 |
GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDPE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PHGZM PHGZT PQGLB PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYOK AAYXX CITATION JQ2 |
ID | FETCH-LOGICAL-c319t-1cc7c1c885c03d8ef551e876227d2cc8d1dec8da9df202be71e1a5ab3a92db333 |
IEDL.DBID | U2A |
ISSN | 0178-2789 |
IngestDate | Sat Jul 26 00:22:14 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Tue Jul 01 01:05:54 EDT 2025 Mon Jul 21 06:08:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Physical-inconsistency loss Underwater image enhancement Transmission prior derivation Multistage and multi-color space collaborative network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-1cc7c1c885c03d8ef551e876227d2cc8d1dec8da9df202be71e1a5ab3a92db333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7534-1219 |
PQID | 3124945880 |
PQPubID | 2043737 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3124945880 crossref_primary_10_1007_s00371_023_03215_z crossref_citationtrail_10_1007_s00371_023_03215_z springer_journals_10_1007_s00371_023_03215_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241100 2024-11-00 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Guo, Li, Zhuang (CR11) 2019; 45 Ancuti, Ancuti, De Vleeschouwer, Bekaert (CR1) 2017; 27 Chiang, Chen (CR5) 2011; 21 Galdran, Pardo, Picón, Alvarez-Gila (CR9) 2015; 26 Mhala, Pais (CR30) 2021; 37 CR39 Naik, Murthy (CR34) 2003; 12 CR37 Jerlov (CR17) 1976 CR36 Peng, Cao, Cosman (CR38) 2018; 27 CR33 Li, Anwar, Porikli (CR21) 2020; 98 Drews, Nascimento, Botelho, Campos (CR7) 2016; 36 CR4 CR3 CR6 Liu, Fan, Zhu, Hou, Luo (CR28) 2020; 30 CR8 CR49 He, Sun, Tang (CR12) 2010; 33 Li, Anwar, Hou, Cong, Guo, Ren (CR20) 2021; 30 Berman, Levy, Avidan, Treibitz (CR2) 2020; 43 Li, Guo, Ren, Cong, Hou, Kwong, Tao (CR22) 2019; 29 Panetta, Gao, Agaian (CR35) 2015; 41 CR42 CR41 CR40 Tian, Xu, Zuo, Zhang, Fei, Lin (CR45) 2020; 23 Golts, Freedman, Elad (CR10) 2019; 29 Tian, Xu, Zuo, Lin, Zhang (CR44) 2021; 52 Yang, Sowmya (CR48) 2015; 24 Islam, Xia, Sattar (CR16) 2020; 5 CR19 CR18 Li, Guo, Guo (CR23) 2018; 25 CR15 CR14 Wang, Guo, Gao, Yue (CR47) 2021; 96 CR53 CR51 CR50 Liu, Yang, Wu, Zhang, Deng (CR27) 2015; 41 Li, Skinner, Eustice, Johnson-Roberson (CR24) 2017; 3 He, Sun, Tang (CR13) 2012; 35 CR29 Mittal, Soundararajan, Bovik (CR31) 2012; 20 CR26 Li, Wei, Wen, Zheng (CR25) 2017; 26 Monika, Samiappan, Kumar (CR32) 2021; 37 Tian, Xu, Zuo, Du, Lin, Zhang (CR43) 2021; 226 Tian, Zhuge, Wu, Xu, Zuo, Chen, Lin (CR46) 2020; 205 Zhang, Zhu, Li, Gao, Gao, Lu (CR52) 2021; 178 K Panetta (3215_CR35) 2015; 41 C Tian (3215_CR46) 2020; 205 C Li (3215_CR22) 2019; 29 C Tian (3215_CR44) 2021; 52 3215_CR29 C Tian (3215_CR45) 2020; 23 MJ Islam (3215_CR16) 2020; 5 M Yang (3215_CR48) 2015; 24 A Golts (3215_CR10) 2019; 29 3215_CR26 NC Mhala (3215_CR30) 2021; 37 K He (3215_CR13) 2012; 35 3215_CR3 C Li (3215_CR23) 2018; 25 3215_CR4 3215_CR6 3215_CR8 Y Guo (3215_CR11) 2019; 45 3215_CR19 3215_CR18 A Galdran (3215_CR9) 2015; 26 C Li (3215_CR20) 2021; 30 3215_CR53 3215_CR15 3215_CR14 PL Drews (3215_CR7) 2016; 36 R Monika (3215_CR32) 2021; 37 K Zhang (3215_CR52) 2021; 178 3215_CR51 3215_CR50 H Liu (3215_CR27) 2015; 41 A Mittal (3215_CR31) 2012; 20 J Li (3215_CR24) 2017; 3 K He (3215_CR12) 2010; 33 3215_CR49 YT Peng (3215_CR38) 2018; 27 JY Chiang (3215_CR5) 2011; 21 3215_CR42 3215_CR41 C Li (3215_CR21) 2020; 98 Y Wang (3215_CR47) 2021; 96 CO Ancuti (3215_CR1) 2017; 27 3215_CR40 C Tian (3215_CR43) 2021; 226 Z Li (3215_CR25) 2017; 26 R Liu (3215_CR28) 2020; 30 3215_CR39 NG Jerlov (3215_CR17) 1976 3215_CR33 3215_CR37 3215_CR36 D Berman (3215_CR2) 2020; 43 SK Naik (3215_CR34) 2003; 12 |
References_xml | – volume: 35 start-page: 1397 year: 2012 end-page: 1409 ident: CR13 article-title: Guided image filtering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.213 – volume: 23 start-page: 1489 year: 2020 end-page: 1502 ident: CR45 article-title: Coarse-to-fine cnn for image super-resolution publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2999182 – volume: 12 start-page: 1591 year: 2003 end-page: 1598 ident: CR34 article-title: Hue-preserving color image enhancement without gamut problem publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819231 – ident: CR49 – volume: 3 start-page: 387 year: 2017 end-page: 394 ident: CR24 article-title: Watergan: unsupervised generative network to enable real-time color correction of monocular underwater images publication-title: IEEE Robot. Autom. Lett. – ident: CR4 – ident: CR39 – ident: CR51 – ident: CR29 – ident: CR8 – volume: 37 start-page: 2097 year: 2021 end-page: 2111 ident: CR30 article-title: A secure visual secret sharing (vss) scheme with cnn-based image enhancement for underwater images publication-title: Vis. Comput. doi: 10.1007/s00371-020-01972-9 – ident: CR42 – volume: 30 start-page: 4861 year: 2020 end-page: 4875 ident: CR28 article-title: Real-world underwater enhancement: challenges, benchmarks, and solutions under natural light publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2963772 – volume: 20 start-page: 209 year: 2012 end-page: 212 ident: CR31 article-title: Making a “completely blind” image quality analyzer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2227726 – ident: CR19 – volume: 45 start-page: 862 year: 2019 end-page: 870 ident: CR11 article-title: Underwater image enhancement using a multiscale dense generative adversarial network publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2019.2911447 – ident: CR15 – volume: 41 start-page: 1264 year: 2015 end-page: 1273 ident: CR27 article-title: A fast single image dehazing method based on dark channel prior and retinex theory publication-title: Acta Automat. Sin. – volume: 96 start-page: 116250 year: 2021 ident: CR47 article-title: Uiec 2-net: Cnn-based underwater image enhancement using two color space publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2021.116250 – ident: CR50 – volume: 29 start-page: 2692 year: 2019 end-page: 2701 ident: CR10 article-title: Unsupervised single image dehazing using dark channel prior loss publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2952032 – volume: 26 start-page: 132 year: 2015 end-page: 145 ident: CR9 article-title: Automatic red-channel underwater image restoration publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2014.11.006 – volume: 26 start-page: 1243 year: 2017 end-page: 1252 ident: CR25 article-title: Detail-enhanced multi-scale exposure fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2651366 – volume: 5 start-page: 3227 year: 2020 end-page: 3234 ident: CR16 article-title: Fast underwater image enhancement for improved visual perception publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2974710 – volume: 98 start-page: 107038 year: 2020 ident: CR21 article-title: Underwater scene prior inspired deep underwater image and video enhancement publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2019.107038 – ident: CR36 – volume: 52 start-page: 3718 year: 2021 end-page: 3730 ident: CR44 article-title: Asymmetric cnn for image superresolution publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2021.3069265 – volume: 205 start-page: 106235 year: 2020 ident: CR46 article-title: Lightweight image super-resolution with enhanced cnn publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106235 – volume: 27 start-page: 379 year: 2017 end-page: 393 ident: CR1 article-title: Color balance and fusion for underwater image enhancement publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2759252 – ident: CR26 – volume: 27 start-page: 2856 year: 2018 end-page: 2868 ident: CR38 article-title: Generalization of the dark channel prior for single image restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2813092 – ident: CR18 – volume: 226 start-page: 106949 year: 2021 ident: CR43 article-title: Designing and training of a dual cnn for image denoising publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106949 – volume: 29 start-page: 4376 year: 2019 end-page: 4389 ident: CR22 article-title: An underwater image enhancement benchmark dataset and beyond publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2955241 – ident: CR14 – ident: CR37 – volume: 24 start-page: 6062 year: 2015 end-page: 6071 ident: CR48 article-title: An underwater color image quality evaluation metric publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2491020 – ident: CR53 – volume: 33 start-page: 2341 year: 2010 end-page: 2353 ident: CR12 article-title: Single image haze removal using dark channel prior publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 37 start-page: 1499 year: 2021 end-page: 1515 ident: CR32 article-title: Underwater image compression using energy based adaptive block compressive sensing for iout applications publication-title: Vis. Comput. doi: 10.1007/s00371-020-01884-8 – ident: CR33 – volume: 21 start-page: 1756 year: 2011 end-page: 1769 ident: CR5 article-title: Underwater image enhancement by wavelength compensation and dehazing publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2179666 – ident: CR6 – ident: CR40 – volume: 43 start-page: 2822 year: 2020 end-page: 2837 ident: CR2 article-title: Underwater single image color restoration using haze-lines and a new quantitative dataset publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 1976 ident: CR17 publication-title: Marine Optics – volume: 41 start-page: 541 year: 2015 end-page: 551 ident: CR35 article-title: Human-visual-system-inspired underwater image quality measures publication-title: IEEE J. Oceanic Eng. doi: 10.1109/JOE.2015.2469915 – ident: CR3 – volume: 36 start-page: 24 year: 2016 end-page: 35 ident: CR7 article-title: Underwater depth estimation and image restoration based on single images publication-title: IEEE Comput. Graphics Appl. doi: 10.1109/MCG.2016.26 – volume: 178 start-page: 107771 year: 2021 ident: CR52 article-title: Learning stacking regression for no-reference super-resolution image quality assessment publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107771 – volume: 30 start-page: 4985 year: 2021 end-page: 5000 ident: CR20 article-title: Underwater image enhancement via medium transmission-guided multi-color space embedding publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3076367 – ident: CR41 – volume: 25 start-page: 323 year: 2018 end-page: 327 ident: CR23 article-title: Emerging from water: underwater image color correction based on weakly supervised color transfer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2792050 – volume: 26 start-page: 132 year: 2015 ident: 3215_CR9 publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2014.11.006 – volume: 98 start-page: 107038 year: 2020 ident: 3215_CR21 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2019.107038 – ident: 3215_CR8 doi: 10.1007/978-3-031-19797-0_27 – volume: 37 start-page: 2097 year: 2021 ident: 3215_CR30 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01972-9 – volume: 33 start-page: 2341 year: 2010 ident: 3215_CR12 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 41 start-page: 541 year: 2015 ident: 3215_CR35 publication-title: IEEE J. Oceanic Eng. doi: 10.1109/JOE.2015.2469915 – volume: 29 start-page: 4376 year: 2019 ident: 3215_CR22 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2955241 – ident: 3215_CR15 doi: 10.1109/ICSMC.2010.5642311 – ident: 3215_CR49 doi: 10.1007/s00371-022-02654-4 – ident: 3215_CR36 doi: 10.1007/s00371-022-02458-6 – volume: 52 start-page: 3718 year: 2021 ident: 3215_CR44 publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2021.3069265 – volume-title: Marine Optics year: 1976 ident: 3215_CR17 – volume: 27 start-page: 2856 year: 2018 ident: 3215_CR38 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2813092 – ident: 3215_CR33 doi: 10.1609/aaai.v35i18.17923 – ident: 3215_CR6 doi: 10.1201/9781003143376-15 – ident: 3215_CR51 doi: 10.1109/CVPR.2017.742 – ident: 3215_CR18 doi: 10.1007/978-3-319-46475-6_43 – ident: 3215_CR19 doi: 10.1007/s00371-022-02580-5 – volume: 30 start-page: 4861 year: 2020 ident: 3215_CR28 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2963772 – ident: 3215_CR29 – volume: 5 start-page: 3227 year: 2020 ident: 3215_CR16 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2974710 – ident: 3215_CR53 doi: 10.1007/s00371-022-02665-1 – volume: 35 start-page: 1397 year: 2012 ident: 3215_CR13 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.213 – ident: 3215_CR26 doi: 10.1007/s00371-021-02305-0 – ident: 3215_CR40 doi: 10.1007/s00371-022-02510-5 – volume: 3 start-page: 387 year: 2017 ident: 3215_CR24 publication-title: IEEE Robot. Autom. Lett. – ident: 3215_CR41 doi: 10.1002/col.20070 – volume: 36 start-page: 24 year: 2016 ident: 3215_CR7 publication-title: IEEE Comput. Graphics Appl. doi: 10.1109/MCG.2016.26 – volume: 37 start-page: 1499 year: 2021 ident: 3215_CR32 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01884-8 – volume: 30 start-page: 4985 year: 2021 ident: 3215_CR20 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3076367 – volume: 43 start-page: 2822 year: 2020 ident: 3215_CR2 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: 3215_CR14 doi: 10.1109/CVPR.2018.00745 – ident: 3215_CR4 doi: 10.1109/ICIP.1994.413553 – volume: 25 start-page: 323 year: 2018 ident: 3215_CR23 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2792050 – ident: 3215_CR3 – volume: 205 start-page: 106235 year: 2020 ident: 3215_CR46 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106235 – ident: 3215_CR37 doi: 10.1109/TIP.2023.3276332 – ident: 3215_CR39 doi: 10.1109/ICIP.2016.7532699 – volume: 178 start-page: 107771 year: 2021 ident: 3215_CR52 publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107771 – volume: 26 start-page: 1243 year: 2017 ident: 3215_CR25 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2651366 – ident: 3215_CR50 doi: 10.1109/CVPR46437.2021.01458 – volume: 23 start-page: 1489 year: 2020 ident: 3215_CR45 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2999182 – volume: 45 start-page: 862 year: 2019 ident: 3215_CR11 publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2019.2911447 – volume: 41 start-page: 1264 year: 2015 ident: 3215_CR27 publication-title: Acta Automat. Sin. – volume: 27 start-page: 379 year: 2017 ident: 3215_CR1 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2759252 – volume: 21 start-page: 1756 year: 2011 ident: 3215_CR5 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2179666 – volume: 96 start-page: 116250 year: 2021 ident: 3215_CR47 publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2021.116250 – volume: 29 start-page: 2692 year: 2019 ident: 3215_CR10 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2952032 – volume: 226 start-page: 106949 year: 2021 ident: 3215_CR43 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106949 – volume: 24 start-page: 6062 year: 2015 ident: 3215_CR48 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2491020 – volume: 20 start-page: 209 year: 2012 ident: 3215_CR31 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2227726 – ident: 3215_CR42 doi: 10.1145/3581783.3612378 – volume: 12 start-page: 1591 year: 2003 ident: 3215_CR34 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819231 |
SSID | ssj0017749 |
Score | 2.4025733 |
Snippet | Due to the attenuation and scattering properties of light in underwater scenes, underwater images are generally subject to color deviations and low contrast,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7905 |
SubjectTerms | Algorithms Artificial Intelligence Collaboration Color Computer Graphics Computer Science Controllability Deep learning Deviation Image contrast Image enhancement Image Processing and Computer Vision Image quality Image transmission Low pass filters Machine learning Original Article Parameter estimation Saturation (color) Underwater |
Title | A multi-color and multistage collaborative network guided by refined transmission prior for underwater image enhancement |
URI | https://link.springer.com/article/10.1007/s00371-023-03215-z https://www.proquest.com/docview/3124945880 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xXODAjiiUygduYClO4sY5FkSpQPREpXKK4iWABAGVsvXrmclSFgESl0RRkonlZ2eelzcDsJd5qVFZW3MVex4PM6d5rCRdCtc2zrMiI3Hyeb_dG4SnQzmsRGGP9W73ekmy-FNPxW5FdDmOPoZ7AToqPpmFeUljd2zFA78zXTtAQlOQXoHjI9J5VlKZn218dUcfHPPbsmjhbborsFTRRNYpcV2FGZevwXKdgoFVPXINFj_FE1yH1w4rNghyCkU9Ymluy2tkgFeOfYL82bG83P_Nrp5urLNMvzEsHJqybEzuC-GneTSG5UNLyGwZqc1GLyl9_uaO7Ln8mpoMTS9uwKB7fHHU41VqBW6wz425MCYywigljRdY5TIkTo5-jH5kfWOUFdbhMY1thjWsXSScSGWqgzT2rQ6CYBPm8vvcbQHzKaeC35Y2U34oIx1LaXWqIxzJKSND0wBR13BiqrjjlP7iNplGTC5QSRCVpEAlmTRgf_rOQxl148-nmzVwSdUDH5OAsmqTDNdrwEEN5sft361t_-_xHVjAGgpLeWIT5sajJ7eLPGWsWzDf6R4e9ul8cnl23Cqa6TtBduUk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO6KsPnADS7ETN86xQqCynqjELYqXABIE1Jb165nJUhYBEpdIVpyJ5bE9z_a8GYCdPMisztuG6yQIeJR7wxOtqCh82_rAiZzIyWfn7W4vOr5UlzUpbNB4uzdXkuVKPSK7ldHlONoYHoRoqPjbOEwiGNDkyNWTndHdAQKaEvQK3B8Rz7Omyvws46s5-sCY365FS2tzOA-zNUxknUqvCzDmi0WYa1IwsHpGLsLMp3iCS_DSYaWDIKdQ1H2WFa4qIwK88uyTyp88Kyr_b3b1eOO8Y-aVYeNQlGNDMl-ofjpHY9g-lITIlhHbrP-c0e9v7kieL65pyNDx4jL0Dg8u9ru8Tq3ALc65IRfWxlZYrZUNQqd9jsDJ08IoYyet1U44j88scbkMpPGx8CJTmQmzRDoThuEKTBT3hV8FJimngmwrl2sZqdgkSjmTmRh3ctqqyLZAND2c2jruOKW_uE1HEZNLraSolbTUSvrWgt3RNw9V1I0_a280ikvrGThIQ8qqTTTcoAV7jTI_Xv8ube1_1bdhqntxdpqeHp2frMM09lZUURU3YGLYf_SbiFmGZqscou_Y4uUH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkFA5UAqtupSHD70Va2MnTpzjqu2KAkU9dKW9WfEjFKlN0RJa4Nd3Jo9lQW0lLpGsOBPLM_Z8fnwzAG_LqHC6TC3XeRTxpAyW51pRUYTUhciLksjJn8_So0lyPFXTBRZ_c9u9P5JsOQ0Upamqh5e-HM6Jb02kOY7-hkcxOi1-twyrOB0LsuuJHM3PERDcNABY4FqJOJ8dbebvMh66pnu8-eiItPE8403Y6CAjG7U6fgFLodqC5306BtaNzi1YX4gtuA03I9ZcFuQUlnrGisq3ZUSD54EtqP9XYFV7F5ydX1_44Jm9Zdg4FOVZTa4MTYH21Bi2DyUhymXEPJv9Luj3Fz9IXqi-kfnQVuNLmIw_fn1_xLs0C9xhh9VcOJc54bRWLoq9DiWCqECTpMy8dE574QM-i9yXMpI2ZCKIQhU2LnLpbRzHr2Cl-lmF18Ak5VeQqfKllonKbK6Ut4XNcFWnnUrcAETfw8Z1McgpFcZ3M4-e3GjFoFZMoxVzN4B3828u2wgc_6292yvOdKPxysSUYZsoudEADntl3r_-t7Sdp1U_gLUvH8bm9NPZyRt4hp2VtKzFXVipZ9dhD-FLbfcbC_0D9KTpQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-color+and+multistage+collaborative+network+guided+by+refined+transmission+prior+for+underwater+image+enhancement&rft.jtitle=The+Visual+computer&rft.au=Ouyang%2C+Ting&rft.au=Zhang%2C+Yongjun&rft.au=Zhao%2C+Haoliang&rft.au=Cui%2C+Zhongwei&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=11&rft.spage=7905&rft.epage=7923&rft_id=info:doi/10.1007%2Fs00371-023-03215-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |