A multi-color and multistage collaborative network guided by refined transmission prior for underwater image enhancement

Due to the attenuation and scattering properties of light in underwater scenes, underwater images are generally subject to color deviations and low contrast, which is not conducive to the follow-up algorithms. To alleviate these two problems, we propose a multi-color and multistage collaborative net...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 40; no. 11; pp. 7905 - 7923
Main Authors Ouyang, Ting, Zhang, Yongjun, Zhao, Haoliang, Cui, Zhongwei, Yang, Yitong, Xu, Yujie
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the attenuation and scattering properties of light in underwater scenes, underwater images are generally subject to color deviations and low contrast, which is not conducive to the follow-up algorithms. To alleviate these two problems, we propose a multi-color and multistage collaborative network guided by refined transmission, called MMCGT, to accomplish the enhancement tasks. Specifically, we first design an accurate method of parameter estimation to derive transmission priors that are more suitable for underwater imaging, such as min–max conversion, low-pass filter-based estimation and saturation detection. Then, we propose a multistage and multi-color space collaborative network to decompose the underwater image enhancement task into more straightforward and controllable subtasks, including colorful feature extraction, color deviation detection, and image position information retention. Finally, we apply the derived transmission prior to the transmission-guided block of the network and effectively combine the well-designed physical-inconsistency loss with Charbonnier loss and VGG loss to guide the MMCGT to compensate for the quality-degraded regions better. Extensive experiments show that MMCGT achieves better evaluation results under the dual guidance of physics and deep learning than the competing methods in visual quality and quantitative metrics.
AbstractList Due to the attenuation and scattering properties of light in underwater scenes, underwater images are generally subject to color deviations and low contrast, which is not conducive to the follow-up algorithms. To alleviate these two problems, we propose a multi-color and multistage collaborative network guided by refined transmission, called MMCGT, to accomplish the enhancement tasks. Specifically, we first design an accurate method of parameter estimation to derive transmission priors that are more suitable for underwater imaging, such as min–max conversion, low-pass filter-based estimation and saturation detection. Then, we propose a multistage and multi-color space collaborative network to decompose the underwater image enhancement task into more straightforward and controllable subtasks, including colorful feature extraction, color deviation detection, and image position information retention. Finally, we apply the derived transmission prior to the transmission-guided block of the network and effectively combine the well-designed physical-inconsistency loss with Charbonnier loss and VGG loss to guide the MMCGT to compensate for the quality-degraded regions better. Extensive experiments show that MMCGT achieves better evaluation results under the dual guidance of physics and deep learning than the competing methods in visual quality and quantitative metrics.
Author Yang, Yitong
Xu, Yujie
Zhang, Yongjun
Cui, Zhongwei
Ouyang, Ting
Zhao, Haoliang
Author_xml – sequence: 1
  givenname: Ting
  surname: Ouyang
  fullname: Ouyang, Ting
  organization: State Key Laboratory of Public Big Data, Institute for Artificial Intelligence, College of Computer Science and Technology, Guizhou University
– sequence: 2
  givenname: Yongjun
  orcidid: 0000-0002-7534-1219
  surname: Zhang
  fullname: Zhang, Yongjun
  email: zyj6667@126.com
  organization: State Key Laboratory of Public Big Data, Institute for Artificial Intelligence, College of Computer Science and Technology, Guizhou University
– sequence: 3
  givenname: Haoliang
  surname: Zhao
  fullname: Zhao, Haoliang
  organization: State Key Laboratory of Public Big Data, Institute for Artificial Intelligence, College of Computer Science and Technology, Guizhou University
– sequence: 4
  givenname: Zhongwei
  surname: Cui
  fullname: Cui, Zhongwei
  organization: School of Mathematics and Big Datam, GuiZhou Education University
– sequence: 5
  givenname: Yitong
  surname: Yang
  fullname: Yang, Yitong
  organization: State Key Laboratory of Public Big Data, Institute for Artificial Intelligence, College of Computer Science and Technology, Guizhou University
– sequence: 6
  givenname: Yujie
  surname: Xu
  fullname: Xu, Yujie
  organization: State Key Laboratory of Public Big Data, Institute for Artificial Intelligence, College of Computer Science and Technology, Guizhou University
BookMark eNp9kMlOBCEQhonRxHF5AU8knlGWaaGPxrglJl70TGioHtFuUKBd5ulF28TEgwcKqlL_X9S3gzZDDIDQAaNHjFJ5nCkVkhHKBaGCs4asN9CCLQUnXLBmEy0ok4pwqdpttJPzI625XLYL9H6Kx2kontg4xIRNcHOei1kBrsXBdDGZ4l8BByhvMT3h1eQdONx94AS9D_VZkgl59Dn7GPBz8tWpr2cKDtKbKZCwH7_8IDyYYGGEUPbQVm-GDPs_9y66vzi_O7siN7eX12enN8QK1hbCrJWWWaUaS4VT0DcNAyVPOJeOW6scc1CjaV3PKe9AMmCmMZ0wLXedEGIXHc6-zym-TJCLfoxTCnWkFowv22WjFK1dfO6yKeZc19J1i9GkD82o_iKsZ8K6EtbfhPW6itQfkfWlooqh8vDD_1IxS3OdE1aQfn_1j-oTm4OWfQ
CitedBy_id crossref_primary_10_1007_s00371_024_03611_z
crossref_primary_10_3390_rs16163074
crossref_primary_10_1007_s00371_024_03377_4
crossref_primary_10_1007_s00371_025_03866_0
Cites_doi 10.1109/TPAMI.2012.213
10.1109/TMM.2020.2999182
10.1109/TIP.2003.819231
10.1007/s00371-020-01972-9
10.1109/TCSVT.2019.2963772
10.1109/LSP.2012.2227726
10.1109/JOE.2019.2911447
10.1016/j.image.2021.116250
10.1109/TIP.2019.2952032
10.1016/j.jvcir.2014.11.006
10.1109/TIP.2017.2651366
10.1109/LRA.2020.2974710
10.1016/j.patcog.2019.107038
10.1109/TSMC.2021.3069265
10.1016/j.knosys.2020.106235
10.1109/TIP.2017.2759252
10.1109/TIP.2018.2813092
10.1016/j.knosys.2021.106949
10.1109/TIP.2019.2955241
10.1109/TIP.2015.2491020
10.1007/s00371-020-01884-8
10.1109/TIP.2011.2179666
10.1109/JOE.2015.2469915
10.1109/MCG.2016.26
10.1016/j.sigpro.2020.107771
10.1109/TIP.2021.3076367
10.1109/LSP.2018.2792050
10.1007/978-3-031-19797-0_27
10.1109/ICSMC.2010.5642311
10.1007/s00371-022-02654-4
10.1007/s00371-022-02458-6
10.1609/aaai.v35i18.17923
10.1201/9781003143376-15
10.1109/CVPR.2017.742
10.1007/978-3-319-46475-6_43
10.1007/s00371-022-02580-5
10.1007/s00371-022-02665-1
10.1007/s00371-021-02305-0
10.1007/s00371-022-02510-5
10.1002/col.20070
10.1109/CVPR.2018.00745
10.1109/ICIP.1994.413553
10.1109/TIP.2023.3276332
10.1109/ICIP.2016.7532699
10.1109/CVPR46437.2021.01458
10.1145/3581783.3612378
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00371-023-03215-z
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 7923
ExternalDocumentID 10_1007_s00371_023_03215_z
GrantInformation_xml – fundername: Key Disciplines of Guizhou Province-Computer Science and Technology
  grantid: ZDXK [2018]007
– fundername: Natural science research project of Guizhou Provincial Department of Education
  grantid: QianJiaoJi[2022]029; QianJiaoHeKY[2021]022
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYOK
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c319t-1cc7c1c885c03d8ef551e876227d2cc8d1dec8da9df202be71e1a5ab3a92db333
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Sat Jul 26 00:22:14 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Tue Jul 01 01:05:54 EDT 2025
Mon Jul 21 06:08:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Physical-inconsistency loss
Underwater image enhancement
Transmission prior derivation
Multistage and multi-color space collaborative network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1cc7c1c885c03d8ef551e876227d2cc8d1dec8da9df202be71e1a5ab3a92db333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7534-1219
PQID 3124945880
PQPubID 2043737
PageCount 19
ParticipantIDs proquest_journals_3124945880
crossref_primary_10_1007_s00371_023_03215_z
crossref_citationtrail_10_1007_s00371_023_03215_z
springer_journals_10_1007_s00371_023_03215_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Guo, Li, Zhuang (CR11) 2019; 45
Ancuti, Ancuti, De Vleeschouwer, Bekaert (CR1) 2017; 27
Chiang, Chen (CR5) 2011; 21
Galdran, Pardo, Picón, Alvarez-Gila (CR9) 2015; 26
Mhala, Pais (CR30) 2021; 37
CR39
Naik, Murthy (CR34) 2003; 12
CR37
Jerlov (CR17) 1976
CR36
Peng, Cao, Cosman (CR38) 2018; 27
CR33
Li, Anwar, Porikli (CR21) 2020; 98
Drews, Nascimento, Botelho, Campos (CR7) 2016; 36
CR4
CR3
CR6
Liu, Fan, Zhu, Hou, Luo (CR28) 2020; 30
CR8
CR49
He, Sun, Tang (CR12) 2010; 33
Li, Anwar, Hou, Cong, Guo, Ren (CR20) 2021; 30
Berman, Levy, Avidan, Treibitz (CR2) 2020; 43
Li, Guo, Ren, Cong, Hou, Kwong, Tao (CR22) 2019; 29
Panetta, Gao, Agaian (CR35) 2015; 41
CR42
CR41
CR40
Tian, Xu, Zuo, Zhang, Fei, Lin (CR45) 2020; 23
Golts, Freedman, Elad (CR10) 2019; 29
Tian, Xu, Zuo, Lin, Zhang (CR44) 2021; 52
Yang, Sowmya (CR48) 2015; 24
Islam, Xia, Sattar (CR16) 2020; 5
CR19
CR18
Li, Guo, Guo (CR23) 2018; 25
CR15
CR14
Wang, Guo, Gao, Yue (CR47) 2021; 96
CR53
CR51
CR50
Liu, Yang, Wu, Zhang, Deng (CR27) 2015; 41
Li, Skinner, Eustice, Johnson-Roberson (CR24) 2017; 3
He, Sun, Tang (CR13) 2012; 35
CR29
Mittal, Soundararajan, Bovik (CR31) 2012; 20
CR26
Li, Wei, Wen, Zheng (CR25) 2017; 26
Monika, Samiappan, Kumar (CR32) 2021; 37
Tian, Xu, Zuo, Du, Lin, Zhang (CR43) 2021; 226
Tian, Zhuge, Wu, Xu, Zuo, Chen, Lin (CR46) 2020; 205
Zhang, Zhu, Li, Gao, Gao, Lu (CR52) 2021; 178
K Panetta (3215_CR35) 2015; 41
C Tian (3215_CR46) 2020; 205
C Li (3215_CR22) 2019; 29
C Tian (3215_CR44) 2021; 52
3215_CR29
C Tian (3215_CR45) 2020; 23
MJ Islam (3215_CR16) 2020; 5
M Yang (3215_CR48) 2015; 24
A Golts (3215_CR10) 2019; 29
3215_CR26
NC Mhala (3215_CR30) 2021; 37
K He (3215_CR13) 2012; 35
3215_CR3
C Li (3215_CR23) 2018; 25
3215_CR4
3215_CR6
3215_CR8
Y Guo (3215_CR11) 2019; 45
3215_CR19
3215_CR18
A Galdran (3215_CR9) 2015; 26
C Li (3215_CR20) 2021; 30
3215_CR53
3215_CR15
3215_CR14
PL Drews (3215_CR7) 2016; 36
R Monika (3215_CR32) 2021; 37
K Zhang (3215_CR52) 2021; 178
3215_CR51
3215_CR50
H Liu (3215_CR27) 2015; 41
A Mittal (3215_CR31) 2012; 20
J Li (3215_CR24) 2017; 3
K He (3215_CR12) 2010; 33
3215_CR49
YT Peng (3215_CR38) 2018; 27
JY Chiang (3215_CR5) 2011; 21
3215_CR42
3215_CR41
C Li (3215_CR21) 2020; 98
Y Wang (3215_CR47) 2021; 96
CO Ancuti (3215_CR1) 2017; 27
3215_CR40
C Tian (3215_CR43) 2021; 226
Z Li (3215_CR25) 2017; 26
R Liu (3215_CR28) 2020; 30
3215_CR39
NG Jerlov (3215_CR17) 1976
3215_CR33
3215_CR37
3215_CR36
D Berman (3215_CR2) 2020; 43
SK Naik (3215_CR34) 2003; 12
References_xml – volume: 35
  start-page: 1397
  year: 2012
  end-page: 1409
  ident: CR13
  article-title: Guided image filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.213
– volume: 23
  start-page: 1489
  year: 2020
  end-page: 1502
  ident: CR45
  article-title: Coarse-to-fine cnn for image super-resolution
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2999182
– volume: 12
  start-page: 1591
  year: 2003
  end-page: 1598
  ident: CR34
  article-title: Hue-preserving color image enhancement without gamut problem
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819231
– ident: CR49
– volume: 3
  start-page: 387
  year: 2017
  end-page: 394
  ident: CR24
  article-title: Watergan: unsupervised generative network to enable real-time color correction of monocular underwater images
  publication-title: IEEE Robot. Autom. Lett.
– ident: CR4
– ident: CR39
– ident: CR51
– ident: CR29
– ident: CR8
– volume: 37
  start-page: 2097
  year: 2021
  end-page: 2111
  ident: CR30
  article-title: A secure visual secret sharing (vss) scheme with cnn-based image enhancement for underwater images
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01972-9
– ident: CR42
– volume: 30
  start-page: 4861
  year: 2020
  end-page: 4875
  ident: CR28
  article-title: Real-world underwater enhancement: challenges, benchmarks, and solutions under natural light
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2963772
– volume: 20
  start-page: 209
  year: 2012
  end-page: 212
  ident: CR31
  article-title: Making a “completely blind” image quality analyzer
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2227726
– ident: CR19
– volume: 45
  start-page: 862
  year: 2019
  end-page: 870
  ident: CR11
  article-title: Underwater image enhancement using a multiscale dense generative adversarial network
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2019.2911447
– ident: CR15
– volume: 41
  start-page: 1264
  year: 2015
  end-page: 1273
  ident: CR27
  article-title: A fast single image dehazing method based on dark channel prior and retinex theory
  publication-title: Acta Automat. Sin.
– volume: 96
  start-page: 116250
  year: 2021
  ident: CR47
  article-title: Uiec 2-net: Cnn-based underwater image enhancement using two color space
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2021.116250
– ident: CR50
– volume: 29
  start-page: 2692
  year: 2019
  end-page: 2701
  ident: CR10
  article-title: Unsupervised single image dehazing using dark channel prior loss
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2952032
– volume: 26
  start-page: 132
  year: 2015
  end-page: 145
  ident: CR9
  article-title: Automatic red-channel underwater image restoration
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2014.11.006
– volume: 26
  start-page: 1243
  year: 2017
  end-page: 1252
  ident: CR25
  article-title: Detail-enhanced multi-scale exposure fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2651366
– volume: 5
  start-page: 3227
  year: 2020
  end-page: 3234
  ident: CR16
  article-title: Fast underwater image enhancement for improved visual perception
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2974710
– volume: 98
  start-page: 107038
  year: 2020
  ident: CR21
  article-title: Underwater scene prior inspired deep underwater image and video enhancement
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2019.107038
– ident: CR36
– volume: 52
  start-page: 3718
  year: 2021
  end-page: 3730
  ident: CR44
  article-title: Asymmetric cnn for image superresolution
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2021.3069265
– volume: 205
  start-page: 106235
  year: 2020
  ident: CR46
  article-title: Lightweight image super-resolution with enhanced cnn
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106235
– volume: 27
  start-page: 379
  year: 2017
  end-page: 393
  ident: CR1
  article-title: Color balance and fusion for underwater image enhancement
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2759252
– ident: CR26
– volume: 27
  start-page: 2856
  year: 2018
  end-page: 2868
  ident: CR38
  article-title: Generalization of the dark channel prior for single image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2813092
– ident: CR18
– volume: 226
  start-page: 106949
  year: 2021
  ident: CR43
  article-title: Designing and training of a dual cnn for image denoising
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106949
– volume: 29
  start-page: 4376
  year: 2019
  end-page: 4389
  ident: CR22
  article-title: An underwater image enhancement benchmark dataset and beyond
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2955241
– ident: CR14
– ident: CR37
– volume: 24
  start-page: 6062
  year: 2015
  end-page: 6071
  ident: CR48
  article-title: An underwater color image quality evaluation metric
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2491020
– ident: CR53
– volume: 33
  start-page: 2341
  year: 2010
  end-page: 2353
  ident: CR12
  article-title: Single image haze removal using dark channel prior
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 1499
  year: 2021
  end-page: 1515
  ident: CR32
  article-title: Underwater image compression using energy based adaptive block compressive sensing for iout applications
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01884-8
– ident: CR33
– volume: 21
  start-page: 1756
  year: 2011
  end-page: 1769
  ident: CR5
  article-title: Underwater image enhancement by wavelength compensation and dehazing
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2179666
– ident: CR6
– ident: CR40
– volume: 43
  start-page: 2822
  year: 2020
  end-page: 2837
  ident: CR2
  article-title: Underwater single image color restoration using haze-lines and a new quantitative dataset
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 1976
  ident: CR17
  publication-title: Marine Optics
– volume: 41
  start-page: 541
  year: 2015
  end-page: 551
  ident: CR35
  article-title: Human-visual-system-inspired underwater image quality measures
  publication-title: IEEE J. Oceanic Eng.
  doi: 10.1109/JOE.2015.2469915
– ident: CR3
– volume: 36
  start-page: 24
  year: 2016
  end-page: 35
  ident: CR7
  article-title: Underwater depth estimation and image restoration based on single images
  publication-title: IEEE Comput. Graphics Appl.
  doi: 10.1109/MCG.2016.26
– volume: 178
  start-page: 107771
  year: 2021
  ident: CR52
  article-title: Learning stacking regression for no-reference super-resolution image quality assessment
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107771
– volume: 30
  start-page: 4985
  year: 2021
  end-page: 5000
  ident: CR20
  article-title: Underwater image enhancement via medium transmission-guided multi-color space embedding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3076367
– ident: CR41
– volume: 25
  start-page: 323
  year: 2018
  end-page: 327
  ident: CR23
  article-title: Emerging from water: underwater image color correction based on weakly supervised color transfer
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2792050
– volume: 26
  start-page: 132
  year: 2015
  ident: 3215_CR9
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2014.11.006
– volume: 98
  start-page: 107038
  year: 2020
  ident: 3215_CR21
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2019.107038
– ident: 3215_CR8
  doi: 10.1007/978-3-031-19797-0_27
– volume: 37
  start-page: 2097
  year: 2021
  ident: 3215_CR30
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01972-9
– volume: 33
  start-page: 2341
  year: 2010
  ident: 3215_CR12
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 41
  start-page: 541
  year: 2015
  ident: 3215_CR35
  publication-title: IEEE J. Oceanic Eng.
  doi: 10.1109/JOE.2015.2469915
– volume: 29
  start-page: 4376
  year: 2019
  ident: 3215_CR22
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2955241
– ident: 3215_CR15
  doi: 10.1109/ICSMC.2010.5642311
– ident: 3215_CR49
  doi: 10.1007/s00371-022-02654-4
– ident: 3215_CR36
  doi: 10.1007/s00371-022-02458-6
– volume: 52
  start-page: 3718
  year: 2021
  ident: 3215_CR44
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2021.3069265
– volume-title: Marine Optics
  year: 1976
  ident: 3215_CR17
– volume: 27
  start-page: 2856
  year: 2018
  ident: 3215_CR38
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2813092
– ident: 3215_CR33
  doi: 10.1609/aaai.v35i18.17923
– ident: 3215_CR6
  doi: 10.1201/9781003143376-15
– ident: 3215_CR51
  doi: 10.1109/CVPR.2017.742
– ident: 3215_CR18
  doi: 10.1007/978-3-319-46475-6_43
– ident: 3215_CR19
  doi: 10.1007/s00371-022-02580-5
– volume: 30
  start-page: 4861
  year: 2020
  ident: 3215_CR28
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2963772
– ident: 3215_CR29
– volume: 5
  start-page: 3227
  year: 2020
  ident: 3215_CR16
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2974710
– ident: 3215_CR53
  doi: 10.1007/s00371-022-02665-1
– volume: 35
  start-page: 1397
  year: 2012
  ident: 3215_CR13
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.213
– ident: 3215_CR26
  doi: 10.1007/s00371-021-02305-0
– ident: 3215_CR40
  doi: 10.1007/s00371-022-02510-5
– volume: 3
  start-page: 387
  year: 2017
  ident: 3215_CR24
  publication-title: IEEE Robot. Autom. Lett.
– ident: 3215_CR41
  doi: 10.1002/col.20070
– volume: 36
  start-page: 24
  year: 2016
  ident: 3215_CR7
  publication-title: IEEE Comput. Graphics Appl.
  doi: 10.1109/MCG.2016.26
– volume: 37
  start-page: 1499
  year: 2021
  ident: 3215_CR32
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01884-8
– volume: 30
  start-page: 4985
  year: 2021
  ident: 3215_CR20
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3076367
– volume: 43
  start-page: 2822
  year: 2020
  ident: 3215_CR2
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 3215_CR14
  doi: 10.1109/CVPR.2018.00745
– ident: 3215_CR4
  doi: 10.1109/ICIP.1994.413553
– volume: 25
  start-page: 323
  year: 2018
  ident: 3215_CR23
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2792050
– ident: 3215_CR3
– volume: 205
  start-page: 106235
  year: 2020
  ident: 3215_CR46
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106235
– ident: 3215_CR37
  doi: 10.1109/TIP.2023.3276332
– ident: 3215_CR39
  doi: 10.1109/ICIP.2016.7532699
– volume: 178
  start-page: 107771
  year: 2021
  ident: 3215_CR52
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107771
– volume: 26
  start-page: 1243
  year: 2017
  ident: 3215_CR25
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2651366
– ident: 3215_CR50
  doi: 10.1109/CVPR46437.2021.01458
– volume: 23
  start-page: 1489
  year: 2020
  ident: 3215_CR45
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2999182
– volume: 45
  start-page: 862
  year: 2019
  ident: 3215_CR11
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2019.2911447
– volume: 41
  start-page: 1264
  year: 2015
  ident: 3215_CR27
  publication-title: Acta Automat. Sin.
– volume: 27
  start-page: 379
  year: 2017
  ident: 3215_CR1
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2759252
– volume: 21
  start-page: 1756
  year: 2011
  ident: 3215_CR5
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2179666
– volume: 96
  start-page: 116250
  year: 2021
  ident: 3215_CR47
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2021.116250
– volume: 29
  start-page: 2692
  year: 2019
  ident: 3215_CR10
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2952032
– volume: 226
  start-page: 106949
  year: 2021
  ident: 3215_CR43
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106949
– volume: 24
  start-page: 6062
  year: 2015
  ident: 3215_CR48
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2491020
– volume: 20
  start-page: 209
  year: 2012
  ident: 3215_CR31
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2227726
– ident: 3215_CR42
  doi: 10.1145/3581783.3612378
– volume: 12
  start-page: 1591
  year: 2003
  ident: 3215_CR34
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819231
SSID ssj0017749
Score 2.4025733
Snippet Due to the attenuation and scattering properties of light in underwater scenes, underwater images are generally subject to color deviations and low contrast,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7905
SubjectTerms Algorithms
Artificial Intelligence
Collaboration
Color
Computer Graphics
Computer Science
Controllability
Deep learning
Deviation
Image contrast
Image enhancement
Image Processing and Computer Vision
Image quality
Image transmission
Low pass filters
Machine learning
Original Article
Parameter estimation
Saturation (color)
Underwater
Title A multi-color and multistage collaborative network guided by refined transmission prior for underwater image enhancement
URI https://link.springer.com/article/10.1007/s00371-023-03215-z
https://www.proquest.com/docview/3124945880
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xXODAjiiUygduYClO4sY5FkSpQPREpXKK4iWABAGVsvXrmclSFgESl0RRkonlZ2eelzcDsJd5qVFZW3MVex4PM6d5rCRdCtc2zrMiI3Hyeb_dG4SnQzmsRGGP9W73ekmy-FNPxW5FdDmOPoZ7AToqPpmFeUljd2zFA78zXTtAQlOQXoHjI9J5VlKZn218dUcfHPPbsmjhbborsFTRRNYpcV2FGZevwXKdgoFVPXINFj_FE1yH1w4rNghyCkU9Ymluy2tkgFeOfYL82bG83P_Nrp5urLNMvzEsHJqybEzuC-GneTSG5UNLyGwZqc1GLyl9_uaO7Ln8mpoMTS9uwKB7fHHU41VqBW6wz425MCYywigljRdY5TIkTo5-jH5kfWOUFdbhMY1thjWsXSScSGWqgzT2rQ6CYBPm8vvcbQHzKaeC35Y2U34oIx1LaXWqIxzJKSND0wBR13BiqrjjlP7iNplGTC5QSRCVpEAlmTRgf_rOQxl148-nmzVwSdUDH5OAsmqTDNdrwEEN5sft361t_-_xHVjAGgpLeWIT5sajJ7eLPGWsWzDf6R4e9ul8cnl23Cqa6TtBduUk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO6KsPnADS7ETN86xQqCynqjELYqXABIE1Jb165nJUhYBEpdIVpyJ5bE9z_a8GYCdPMisztuG6yQIeJR7wxOtqCh82_rAiZzIyWfn7W4vOr5UlzUpbNB4uzdXkuVKPSK7ldHlONoYHoRoqPjbOEwiGNDkyNWTndHdAQKaEvQK3B8Rz7Omyvws46s5-sCY365FS2tzOA-zNUxknUqvCzDmi0WYa1IwsHpGLsLMp3iCS_DSYaWDIKdQ1H2WFa4qIwK88uyTyp88Kyr_b3b1eOO8Y-aVYeNQlGNDMl-ofjpHY9g-lITIlhHbrP-c0e9v7kieL65pyNDx4jL0Dg8u9ru8Tq3ALc65IRfWxlZYrZUNQqd9jsDJ08IoYyet1U44j88scbkMpPGx8CJTmQmzRDoThuEKTBT3hV8FJimngmwrl2sZqdgkSjmTmRh3ctqqyLZAND2c2jruOKW_uE1HEZNLraSolbTUSvrWgt3RNw9V1I0_a280ikvrGThIQ8qqTTTcoAV7jTI_Xv8ube1_1bdhqntxdpqeHp2frMM09lZUURU3YGLYf_SbiFmGZqscou_Y4uUH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkFA5UAqtupSHD70Va2MnTpzjqu2KAkU9dKW9WfEjFKlN0RJa4Nd3Jo9lQW0lLpGsOBPLM_Z8fnwzAG_LqHC6TC3XeRTxpAyW51pRUYTUhciLksjJn8_So0lyPFXTBRZ_c9u9P5JsOQ0Upamqh5e-HM6Jb02kOY7-hkcxOi1-twyrOB0LsuuJHM3PERDcNABY4FqJOJ8dbebvMh66pnu8-eiItPE8403Y6CAjG7U6fgFLodqC5306BtaNzi1YX4gtuA03I9ZcFuQUlnrGisq3ZUSD54EtqP9XYFV7F5ydX1_44Jm9Zdg4FOVZTa4MTYH21Bi2DyUhymXEPJv9Luj3Fz9IXqi-kfnQVuNLmIw_fn1_xLs0C9xhh9VcOJc54bRWLoq9DiWCqECTpMy8dE574QM-i9yXMpI2ZCKIQhU2LnLpbRzHr2Cl-lmF18Ak5VeQqfKllonKbK6Ut4XNcFWnnUrcAETfw8Z1McgpFcZ3M4-e3GjFoFZMoxVzN4B3828u2wgc_6292yvOdKPxysSUYZsoudEADntl3r_-t7Sdp1U_gLUvH8bm9NPZyRt4hp2VtKzFXVipZ9dhD-FLbfcbC_0D9KTpQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-color+and+multistage+collaborative+network+guided+by+refined+transmission+prior+for+underwater+image+enhancement&rft.jtitle=The+Visual+computer&rft.au=Ouyang%2C+Ting&rft.au=Zhang%2C+Yongjun&rft.au=Zhao%2C+Haoliang&rft.au=Cui%2C+Zhongwei&rft.date=2024-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=11&rft.spage=7905&rft.epage=7923&rft_id=info:doi/10.1007%2Fs00371-023-03215-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon