Kolmogorov n-widths for linear dynamical systems

Kolmogorov n -widths and Hankel singular values are two commonly used concepts in model reduction. Here, we show that for the special case of linear time-invariant (LTI) dynamical systems, these two concepts are directly connected. More specifically, the greedy search applied to the Hankel operator...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 45; no. 5-6; pp. 2273 - 2286
Main Authors Unger, Benjamin, Gugercin, Serkan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Kolmogorov n -widths and Hankel singular values are two commonly used concepts in model reduction. Here, we show that for the special case of linear time-invariant (LTI) dynamical systems, these two concepts are directly connected. More specifically, the greedy search applied to the Hankel operator of an LTI system resembles the minimizing subspace for the Kolmogorov n -width and the Kolmogorov n -width of an LTI system equals its ( n + 1)st Hankel singular value once the subspaces are appropriately defined. We also establish a lower bound for the Kolmorogov n -width for parametric LTI systems and illustrate that the method of active subspaces can be viewed as the dual concept to the minimizing subspace for the Kolmogorov n -width.
AbstractList Kolmogorov n-widths and Hankel singular values are two commonly used concepts in model reduction. Here, we show that for the special case of linear time-invariant (LTI) dynamical systems, these two concepts are directly connected. More specifically, the greedy search applied to the Hankel operator of an LTI system resembles the minimizing subspace for the Kolmogorov n-width and the Kolmogorov n-width of an LTI system equals its (n + 1)st Hankel singular value once the subspaces are appropriately defined. We also establish a lower bound for the Kolmorogov n-width for parametric LTI systems and illustrate that the method of active subspaces can be viewed as the dual concept to the minimizing subspace for the Kolmogorov n-width.
Kolmogorov n -widths and Hankel singular values are two commonly used concepts in model reduction. Here, we show that for the special case of linear time-invariant (LTI) dynamical systems, these two concepts are directly connected. More specifically, the greedy search applied to the Hankel operator of an LTI system resembles the minimizing subspace for the Kolmogorov n -width and the Kolmogorov n -width of an LTI system equals its ( n + 1)st Hankel singular value once the subspaces are appropriately defined. We also establish a lower bound for the Kolmorogov n -width for parametric LTI systems and illustrate that the method of active subspaces can be viewed as the dual concept to the minimizing subspace for the Kolmogorov n -width.
Author Gugercin, Serkan
Unger, Benjamin
Author_xml – sequence: 1
  givenname: Benjamin
  orcidid: 0000-0003-4272-1079
  surname: Unger
  fullname: Unger, Benjamin
  email: unger@math.tu-berlin.de
  organization: Technische Universität Berlin
– sequence: 2
  givenname: Serkan
  surname: Gugercin
  fullname: Gugercin, Serkan
  organization: Department of Mathematics, Virginia Polytechnic Institute and State University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTpJtsjlL8woIXPYc0m60pu0lNtsr-e1NXEDwUBmZg5pl35p2hiQ_eInRJ4JoAiJtEYLFYYCASgxRAMJygKSkFxTI3Jrk-tATh1RmapbQFAMlFOUXwHNoubEIMn4XHX67u31PRhFi0zlsdi3rwunNGt0UaUm-7dI5OG90me_Gb5-jt_u51-YhXLw9Py9sVNozIHpNKU661KA3TllNbNbKsBKvKJpeUrKWQkhLDgRsrRWOgljmoqIVeE9ms2RxdjXt3MXzsberVNuyjz5KKMkYZz7t4nqLjlIkhpWgbtYuu03FQBNTBGTU6o_L76scZBRmq_kHG9bp3wfdRu_Y4ykY0ZR2_sfHvqiPUN_wgeR0
CitedBy_id crossref_primary_10_1063_5_0086926
crossref_primary_10_1007_s00419_023_02458_5
crossref_primary_10_1016_j_cam_2024_115767
crossref_primary_10_1137_23M1589980
crossref_primary_10_1016_j_automatica_2022_110368
crossref_primary_10_1137_22M1481002
crossref_primary_10_1002_pamm_202000321
crossref_primary_10_1137_20M1316998
crossref_primary_10_1016_j_physd_2024_134299
crossref_primary_10_1137_23M1616844
crossref_primary_10_3390_fluids6080280
crossref_primary_10_1051_m2an_2020046
crossref_primary_10_1063_5_0145071
crossref_primary_10_1109_LCSYS_2024_3418314
crossref_primary_10_1007_s00466_024_02553_6
crossref_primary_10_1007_s10915_023_02210_9
crossref_primary_10_1016_j_cma_2022_115810
crossref_primary_10_1137_22M1524928
crossref_primary_10_1007_s10444_025_10220_4
crossref_primary_10_1016_j_jcp_2022_111348
crossref_primary_10_1016_j_jcp_2021_110666
Cites_doi 10.1109/TAC.2016.2521361
10.1137/100795772
10.1137/130932715
10.1007/978-3-319-22470-1
10.1051/m2an:2005006
10.1016/S1631-073X(02)02466-4
10.2307/1968691
10.1051/m2an/2012045
10.1007/BFb0007371
10.1070/SM1971v015n01ABEH001531
10.1137/1.9781611974829
10.1186/2190-5983-1-3
10.1007/978-1-4612-4224-6
10.1023/A:1015145924517
10.1007/978-3-319-15431-2
10.1137/070695332
10.1137/070694855
10.1080/00207178408933239
10.1115/1.1448332
10.1051/m2an:2008001
10.1007/s11831-014-9111-2
10.1007/978-3-319-02090-7_9
10.1137/1.9780898718713
10.1007/978-3-319-78325-3
10.1109/ACC.2010.5530920
10.1109/CDC.2008.4739458
10.1137/1.9781611973860
10.1007/978-3-642-69894-1
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s10444-019-09701-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
EndPage 2286
ExternalDocumentID 10_1007_s10444_019_09701_0
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DE)
  grantid: CRC 910; Project A2
– fundername: Alexander von Humboldt-Stiftung
  funderid: https://doi.org/10.13039/100005156
– fundername: Division of Mathematical Sciences
  grantid: 1720257
  funderid: https://doi.org/10.13039/100000121
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-18a26aa75c3ae62e8f9587385fe8f21b979921c606ce97fc0d90d927d7ab19fb3
IEDL.DBID U2A
ISSN 1019-7168
IngestDate Fri Jul 25 11:04:19 EDT 2025
Tue Jul 01 02:55:34 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
Fri Feb 21 02:38:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords 37M99
65P99
34A45
35A35
93C05
47B35
Kolmogorov
width
Active subspaces
Model reduction
Hankel operator
Reduced basis method
Hankel singular values
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-18a26aa75c3ae62e8f9587385fe8f21b979921c606ce97fc0d90d927d7ab19fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4272-1079
PQID 2332363856
PQPubID 2043875
PageCount 14
ParticipantIDs proquest_journals_2332363856
crossref_primary_10_1007_s10444_019_09701_0
crossref_citationtrail_10_1007_s10444_019_09701_0
springer_journals_10_1007_s10444_019_09701_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Curtain, Zwart (CR11) 1995
Wittmuess, Tarin, Keck, Arnold, Sawodny (CR30) 2016; 61
Haasdonk (CR18) 2013; 47
Pinkus (CR25) 1985
Maday, Patera, Turinici (CR23) 2002; 335
Haasdonk, Ohlberger (CR19) 2008; 42
Fujimoto, Scherpen (CR15) 2010; 48
CR13
CR12
CR10
Quarteroni, Manzoni, Negri (CR27) 2016
Adamjan, Arov, Krein (CR1) 1971; 15
Glover (CR16) 1984; 39
Cagniart, Maday, Stamm (CR8) 2019
Hesthaven, Rozza, Stamm (CR20) 2016
Quarteroni, Rozza, Manzoni (CR28) 2011; 1
CR2
Francis (CR14) 1987
Kolmogorov (CR21) 1936; 37
Reed, Simon (CR29) 1978
Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk (CR6) 2011; 43
Grepl, Patera (CR17) 2005; 39
Bui-Thanh, Willcox, Ghattas (CR7) 2008; 30
CR9
Maday, Patera, Turinici (CR24) 2002; 17
CR22
Prud’homme, Rovas, Veroy, Maday, Patera, Turinici (CR26) 2002; 124
Benner, Gugercin, Willcox (CR5) 2015; 57
Baur, Benner, Feng (CR3) 2014; 21
Benner, Cohen, Ohlberger, Willcox (CR4) 2017
B Haasdonk (9701_CR19) 2008; 42
A Quarteroni (9701_CR28) 2011; 1
BA Francis (9701_CR14) 1987
U Baur (9701_CR3) 2014; 21
K Fujimoto (9701_CR15) 2010; 48
P Benner (9701_CR5) 2015; 57
9701_CR22
Y Maday (9701_CR24) 2002; 17
V Adamjan (9701_CR1) 1971; 15
A Pinkus (9701_CR25) 1985
C Prud’homme (9701_CR26) 2002; 124
K Glover (9701_CR16) 1984; 39
T Bui-Thanh (9701_CR7) 2008; 30
JS Hesthaven (9701_CR20) 2016
A Quarteroni (9701_CR27) 2016
P Wittmuess (9701_CR30) 2016; 61
B Haasdonk (9701_CR18) 2013; 47
M Grepl (9701_CR17) 2005; 39
P Benner (9701_CR4) 2017
9701_CR2
RF Curtain (9701_CR11) 1995
P Binev (9701_CR6) 2011; 43
N Cagniart (9701_CR8) 2019
9701_CR9
9701_CR10
9701_CR12
9701_CR13
A Kolmogorov (9701_CR21) 1936; 37
M Reed (9701_CR29) 1978
Y Maday (9701_CR23) 2002; 335
References_xml – ident: CR22
– volume: 61
  start-page: 3438
  issue: 11
  year: 2016
  end-page: 3451
  ident: CR30
  article-title: Parametric model order reduction via balanced truncation with taylor series representation
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/TAC.2016.2521361
– volume: 43
  start-page: 1457
  year: 2011
  end-page: 1472
  ident: CR6
  article-title: Convergence rates for greedy algorithms in the reduced basis method
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/100795772
– ident: CR2
– ident: CR12
– volume: 57
  start-page: 483
  issue: 4
  year: 2015
  end-page: 531
  ident: CR5
  article-title: A survey of projection-based model reduction methods for parametric dynamical systems
  publication-title: SIAM Review
  doi: 10.1137/130932715
– ident: CR10
– year: 2016
  ident: CR20
  publication-title: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics
  doi: 10.1007/978-3-319-22470-1
– volume: 39
  start-page: 157
  issue: 1
  year: 2005
  end-page: 181
  ident: CR17
  article-title: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations
  publication-title: ESAIM-Mathematical Modelling and Numerical Analysis (M2AN)
  doi: 10.1051/m2an:2005006
– volume: 335
  start-page: 289
  issue: 3
  year: 2002
  end-page: 294
  ident: CR23
  article-title: Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations
  publication-title: Comptes Rendus Mathematique
  doi: 10.1016/S1631-073X(02)02466-4
– volume: 37
  start-page: 107
  issue: 1
  year: 1936
  end-page: 110
  ident: CR21
  article-title: ÜBer die beste Annäherung von Funktionen einer gegebenen Funktionenklasse
  publication-title: Ann. Math.
  doi: 10.2307/1968691
– volume: 47
  start-page: 859
  issue: 3
  year: 2013
  end-page: 873
  ident: CR18
  article-title: Convergence rates of the POD–greedy method
  publication-title: ESAIM: Mathematical Modelling and Numerical Analysis
  doi: 10.1051/m2an/2012045
– year: 1987
  ident: CR14
  publication-title: A Course in H∞ Control Theory. Lecture Notes in Control and Information Sciences
  doi: 10.1007/BFb0007371
– year: 1978
  ident: CR29
  publication-title: Analysis of Operators. Methods of Modern Mathematical Physics
– volume: 15
  start-page: 31
  issue: 1
  year: 1971
  end-page: 73
  ident: CR1
  article-title: Analytic properties of Schmidt pairs for a Hankel operator and the generalized schur-Takagi problem
  publication-title: Math. USSR-Sbornik
  doi: 10.1070/SM1971v015n01ABEH001531
– year: 2017
  ident: CR4
  publication-title: Model Reduction and Approximation
  doi: 10.1137/1.9781611974829
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: CR28
  article-title: Certified reduced basis approximation for parametrized partial differential equations and applications
  publication-title: J. Math. Ind.
  doi: 10.1186/2190-5983-1-3
– year: 1995
  ident: CR11
  publication-title: An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics
  doi: 10.1007/978-1-4612-4224-6
– volume: 17
  start-page: 437
  issue: 1
  year: 2002
  end-page: 446
  ident: CR24
  article-title: A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations
  publication-title: J. Sci. Comput.
  doi: 10.1023/A:1015145924517
– year: 2016
  ident: CR27
  publication-title: Reduced Basis Methods for Partial Differential Equations: an Introduction. UNITEXT
  doi: 10.1007/978-3-319-15431-2
– volume: 48
  start-page: 4591
  issue: 7
  year: 2010
  end-page: 4623
  ident: CR15
  article-title: Balanced realization and model order reduction for nonlinear systems based on singular value analysis
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/070695332
– ident: CR13
– volume: 30
  start-page: 3270
  issue: 6
  year: 2008
  end-page: 3288
  ident: CR7
  article-title: Model reduction for large-scale systems with high-dimensional parametric input space
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/070694855
– ident: CR9
– year: 1985
  ident: CR25
  publication-title: N-Widths in Approximation Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete
– volume: 39
  start-page: 1115
  issue: 6
  year: 1984
  end-page: 1193
  ident: CR16
  article-title: All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds
  publication-title: Int. J. Control
  doi: 10.1080/00207178408933239
– volume: 124
  start-page: 70
  year: 2002
  end-page: 80
  ident: CR26
  article-title: Reliable real-time solution of parameterized partial differential equations: Reduced-basis output bound methods
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.1448332
– volume: 42
  start-page: 277
  issue: 2
  year: 2008
  end-page: 302
  ident: CR19
  article-title: Reduced basis method for finite volume approximations of parametrized linear evolution equations
  publication-title: ESAIM: Mathematical Modelling and Numerical Analysis
  doi: 10.1051/m2an:2008001
– start-page: 131
  year: 2019
  end-page: 150
  ident: CR8
  publication-title: Model Order Reduction for Problems with Large Convection Effects
– volume: 21
  start-page: 331
  issue: 4
  year: 2014
  end-page: 358
  ident: CR3
  article-title: Model order reduction for linear and nonlinear systems: a system-theoretic perspective
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-014-9111-2
– volume: 43
  start-page: 1457
  year: 2011
  ident: 9701_CR6
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/100795772
– volume: 17
  start-page: 437
  issue: 1
  year: 2002
  ident: 9701_CR24
  publication-title: J. Sci. Comput.
  doi: 10.1023/A:1015145924517
– volume: 335
  start-page: 289
  issue: 3
  year: 2002
  ident: 9701_CR23
  publication-title: Comptes Rendus Mathematique
  doi: 10.1016/S1631-073X(02)02466-4
– volume: 39
  start-page: 157
  issue: 1
  year: 2005
  ident: 9701_CR17
  publication-title: ESAIM-Mathematical Modelling and Numerical Analysis (M2AN)
  doi: 10.1051/m2an:2005006
– volume: 30
  start-page: 3270
  issue: 6
  year: 2008
  ident: 9701_CR7
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/070694855
– volume-title: Reduced Basis Methods for Partial Differential Equations: an Introduction. UNITEXT
  year: 2016
  ident: 9701_CR27
  doi: 10.1007/978-3-319-15431-2
– volume-title: Analysis of Operators. Methods of Modern Mathematical Physics
  year: 1978
  ident: 9701_CR29
– volume: 42
  start-page: 277
  issue: 2
  year: 2008
  ident: 9701_CR19
  publication-title: ESAIM: Mathematical Modelling and Numerical Analysis
  doi: 10.1051/m2an:2008001
– volume: 47
  start-page: 859
  issue: 3
  year: 2013
  ident: 9701_CR18
  publication-title: ESAIM: Mathematical Modelling and Numerical Analysis
  doi: 10.1051/m2an/2012045
– ident: 9701_CR22
  doi: 10.1007/978-3-319-02090-7_9
– volume-title: A Course in H∞ Control Theory. Lecture Notes in Control and Information Sciences
  year: 1987
  ident: 9701_CR14
  doi: 10.1007/BFb0007371
– ident: 9701_CR2
  doi: 10.1137/1.9780898718713
– start-page: 131
  volume-title: Model Order Reduction for Problems with Large Convection Effects
  year: 2019
  ident: 9701_CR8
  doi: 10.1007/978-3-319-78325-3
– ident: 9701_CR13
  doi: 10.1109/ACC.2010.5530920
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 9701_CR28
  publication-title: J. Math. Ind.
  doi: 10.1186/2190-5983-1-3
– volume: 15
  start-page: 31
  issue: 1
  year: 1971
  ident: 9701_CR1
  publication-title: Math. USSR-Sbornik
  doi: 10.1070/SM1971v015n01ABEH001531
– volume: 37
  start-page: 107
  issue: 1
  year: 1936
  ident: 9701_CR21
  publication-title: Ann. Math.
  doi: 10.2307/1968691
– ident: 9701_CR12
  doi: 10.1109/CDC.2008.4739458
– volume-title: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics
  year: 2016
  ident: 9701_CR20
  doi: 10.1007/978-3-319-22470-1
– volume: 61
  start-page: 3438
  issue: 11
  year: 2016
  ident: 9701_CR30
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/TAC.2016.2521361
– ident: 9701_CR10
  doi: 10.1137/1.9781611973860
– volume: 48
  start-page: 4591
  issue: 7
  year: 2010
  ident: 9701_CR15
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/070695332
– volume: 39
  start-page: 1115
  issue: 6
  year: 1984
  ident: 9701_CR16
  publication-title: Int. J. Control
  doi: 10.1080/00207178408933239
– ident: 9701_CR9
– volume-title: Model Reduction and Approximation
  year: 2017
  ident: 9701_CR4
  doi: 10.1137/1.9781611974829
– volume-title: N-Widths in Approximation Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete
  year: 1985
  ident: 9701_CR25
  doi: 10.1007/978-3-642-69894-1
– volume-title: An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics
  year: 1995
  ident: 9701_CR11
  doi: 10.1007/978-1-4612-4224-6
– volume: 124
  start-page: 70
  year: 2002
  ident: 9701_CR26
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.1448332
– volume: 57
  start-page: 483
  issue: 4
  year: 2015
  ident: 9701_CR5
  publication-title: SIAM Review
  doi: 10.1137/130932715
– volume: 21
  start-page: 331
  issue: 4
  year: 2014
  ident: 9701_CR3
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-014-9111-2
SSID ssj0009675
Score 2.4160776
Snippet Kolmogorov n -widths and Hankel singular values are two commonly used concepts in model reduction. Here, we show that for the special case of linear...
Kolmogorov n-widths and Hankel singular values are two commonly used concepts in model reduction. Here, we show that for the special case of linear...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2273
SubjectTerms Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Dynamical systems
Lower bounds
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Model reduction
Model reduction of parametrized Systems
Subspaces
Visualization
Title Kolmogorov n-widths for linear dynamical systems
URI https://link.springer.com/article/10.1007/s10444-019-09701-0
https://www.proquest.com/docview/2332363856
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT4MwEL7ofNEHf0yN07nw4JuSQEtbeNzM5uKyPblkPpG2gJpMMAP137eFMtSoiQkJJJR7uN6133F3XwEucCIjjweJHTGsf91gx-aICNshwhGcEkmI7h2ezuh47t0uyMI0heV1tXudkixX6k_Nbp6nKyZ0iQ_TQfAmbBEduysrnqN-Q7VLS3pdV49U0YBvWmV-lvF1O2ow5re0aLnbjPZh18BEq1_N6wFsxGkb9gxktIxD5m3Yma5pV_NDcCbZ8jl7yFbZm5Xa709R8ZhbCpVaGkvylRVVx88rwRWBc34E89Hw7npsmyMRbKl8pbBdnyPKOSMS85ii2E8C4mtCmkQ9IlfoJB1ypYpKZBywRDpRoC7EIsaFGyQCH0MrzdL4BCwXx05MPMwE4l4SKehFhYqNGFVSCKdBB9xaM6E0fOH62Ipl2DAda22GSpthqc3Q6cDl-puXii3jz9HdWuGh8Zw8RBgjrBYFQjtwVU9C8_p3aaf_G34G20jbQVmZ0oVWsXqNzxW-KEQPtvqjwWCm7zf3k2GvNK8PvYbGgA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRKJCBDSIldmwnY4WoCn1MrdTNsvMApJKgJsDfx06cBhAgIWWIlPMNZ5_9Xe7uM8AlTsLIE0FiRwzrXzfYsQUi0naIdKSgJCRE9w6PJ3Qw8-7nZG6awvK62r1OSZY79admN8_TFRO6xIfpIHgdNhQY8HUh1wz1GqpdWtLrulpSRQO-aZX5WcfX46jBmN_SouVp09-DHQMTrV41r_uwFqdt2DWQ0TIOmbdhe7yiXc0PwBlmi-fsIVtmb1Zqvz9FxWNuKVRqaSwpllZUXT-vFFcEzvkhzPq305uBba5EsEPlK4Xt-gJRIRgJsYgpiv0kIL4mpEnUK3KlTtIhN1RRSRgHLAmdKFAPYhET0g0SiY-glWZpfAyWi2MnJh5mEgkviRT0olLFRowqLUTQoANubRkeGr5wfW3FgjdMx9qaXFmTl9bkTgeuVmNeKraMP6W7tcG58ZycI4wRVpsCoR24rieh-fy7tpP_iV_A5mA6HvHR3WR4CltIr4mySqULrWL5Gp8prFHI83JpfQDMzcZj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90guiDH1NxOrUPvmlZkzRp-zjUMZ0bPjjYW0naVIXZjrXqv2_Sj3WKCkIfCr0e9HJJfte7-wXgnERBaHMvMkOH6F83xDI5psK0qLAEZzSgVPcOD0esP7bvJnSy1MWfV7tXKcmip0GzNMVZZxZGnaXGN9vW1RO63MfRAfEqrKnlGGm_HuNuTbvLcqpdpCVVZOCWbTM_6_i6NdV481uKNN95ejuwVUJGo1uM8S6syLgJ2yV8NMrJmTZhc7igYE33wBok09fkKZkn70ZsfryE2XNqKIRqaFzJ50ZYHEWvFBdkzuk-jHs3j1d9szwewQzUh2YmcjlmnDs0IFwyLN3Io64mp4nULUZCJ-wwClSEEkjPiQIr9NSFndDhAnmRIAfQiJNYHoKBiLQktYkjMLejUMEwJlSc5DClhXLmtQBVlvGDkjtcH2Ex9WvWY21NX1nTz63pWy24WLwzK5gz_pRuVwb3y1mU-pgQTNQCQVkLLqtBqB__ru3of-JnsP5w3fPvb0eDY9jA2iXygpU2NLL5mzxRsCMTp7lnfQK2ycqf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kolmogorov+n-widths+for+linear+dynamical+systems&rft.jtitle=Advances+in+computational+mathematics&rft.au=Unger%2C+Benjamin&rft.au=Gugercin%2C+Serkan&rft.date=2019-12-01&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=45&rft.issue=5-6&rft.spage=2273&rft.epage=2286&rft_id=info:doi/10.1007%2Fs10444-019-09701-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_019_09701_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon