Decoding Lung Cancer Radiogenomics: A Custom Clustering/Classification Methodology to Simultaneously Identify Important Imaging Features and Relevant Genes

Background: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by using machine learning to see whether a custom clustering/classification method could simultaneously identify features from imaging data that co...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 7; p. 4053
Main Authors Provenzano, Destie, Lichtenberger, John P., Goyal, Sharad, Rao, Yuan James
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2025
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app15074053

Cover

Loading…
Abstract Background: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by using machine learning to see whether a custom clustering/classification method could simultaneously identify features from imaging data that correspond to genetic markers. Methods: CT imaging data and genetic mutation data for 281 subjects with NSCLC were collected from the CPTAC-LUAD and TCGA-LUSC databases on TCIA. The algorithm was run as follows: (1) genetic clusters were initialized using random clusters, binary matrix factorization, or k-means; (2) image classification was run on CT data for these genetic clusters; (3) misclassified subjects were re-classified based on the image classification algorithm; and (4) the algorithm was run until an accuracy of 90% or no improvement after 10 runs. Input genetic mutations were evaluated for potential medical treatments and severity to provide clinical relevance. Results: The image classification algorithm was able to achieve a >90% accuracy after nine algorithm runs and grouped subjects from a starting five clusters to four final clusters, where final image classification accuracy was better than every initial clustered accuracy. These clusters were stable across all three test runs. A total of thirty-eight genes from the top hundred across each subject were identified with specific severity or treatment data; twelve of these genes are listed. Conclusion: This small pilot study presented a potential way to identify genetic patterns from image data and presented a methodology that could group images with no labels or only partial labels for future problems.
AbstractList Featured ApplicationThis paper presents a custom combined clustering-image classification methodology to group genetic mutation patterns representative of lung cancer using CT data. This methodology could be applied to other radiogenomic or image classification problems with partial or completely unlabeled images to cluster final results.AbstractBackground: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by using machine learning to see whether a custom clustering/classification method could simultaneously identify features from imaging data that correspond to genetic markers. Methods: CT imaging data and genetic mutation data for 281 subjects with NSCLC were collected from the CPTAC-LUAD and TCGA-LUSC databases on TCIA. The algorithm was run as follows: (1) genetic clusters were initialized using random clusters, binary matrix factorization, or k-means; (2) image classification was run on CT data for these genetic clusters; (3) misclassified subjects were re-classified based on the image classification algorithm; and (4) the algorithm was run until an accuracy of 90% or no improvement after 10 runs. Input genetic mutations were evaluated for potential medical treatments and severity to provide clinical relevance. Results: The image classification algorithm was able to achieve a >90% accuracy after nine algorithm runs and grouped subjects from a starting five clusters to four final clusters, where final image classification accuracy was better than every initial clustered accuracy. These clusters were stable across all three test runs. A total of thirty-eight genes from the top hundred across each subject were identified with specific severity or treatment data; twelve of these genes are listed. Conclusion: This small pilot study presented a potential way to identify genetic patterns from image data and presented a methodology that could group images with no labels or only partial labels for future problems.
This paper presents a custom combined clustering-image classification methodology to group genetic mutation patterns representative of lung cancer using CT data. This methodology could be applied to other radiogenomic or image classification problems with partial or completely unlabeled images to cluster final results.
Background: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by using machine learning to see whether a custom clustering/classification method could simultaneously identify features from imaging data that correspond to genetic markers. Methods: CT imaging data and genetic mutation data for 281 subjects with NSCLC were collected from the CPTAC-LUAD and TCGA-LUSC databases on TCIA. The algorithm was run as follows: (1) genetic clusters were initialized using random clusters, binary matrix factorization, or k-means; (2) image classification was run on CT data for these genetic clusters; (3) misclassified subjects were re-classified based on the image classification algorithm; and (4) the algorithm was run until an accuracy of 90% or no improvement after 10 runs. Input genetic mutations were evaluated for potential medical treatments and severity to provide clinical relevance. Results: The image classification algorithm was able to achieve a >90% accuracy after nine algorithm runs and grouped subjects from a starting five clusters to four final clusters, where final image classification accuracy was better than every initial clustered accuracy. These clusters were stable across all three test runs. A total of thirty-eight genes from the top hundred across each subject were identified with specific severity or treatment data; twelve of these genes are listed. Conclusion: This small pilot study presented a potential way to identify genetic patterns from image data and presented a methodology that could group images with no labels or only partial labels for future problems.
This paper presents a custom combined clustering-image classification methodology to group genetic mutation patterns representative of lung cancer using CT data. This methodology could be applied to other radiogenomic or image classification problems with partial or completely unlabeled images to cluster final results. Background: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by using machine learning to see whether a custom clustering/classification method could simultaneously identify features from imaging data that correspond to genetic markers. Methods: CT imaging data and genetic mutation data for 281 subjects with NSCLC were collected from the CPTAC-LUAD and TCGA-LUSC databases on TCIA. The algorithm was run as follows: (1) genetic clusters were initialized using random clusters, binary matrix factorization, or k-means; (2) image classification was run on CT data for these genetic clusters; (3) misclassified subjects were re-classified based on the image classification algorithm; and (4) the algorithm was run until an accuracy of 90% or no improvement after 10 runs. Input genetic mutations were evaluated for potential medical treatments and severity to provide clinical relevance. Results: The image classification algorithm was able to achieve a >90% accuracy after nine algorithm runs and grouped subjects from a starting five clusters to four final clusters, where final image classification accuracy was better than every initial clustered accuracy. These clusters were stable across all three test runs. A total of thirty-eight genes from the top hundred across each subject were identified with specific severity or treatment data; twelve of these genes are listed. Conclusion: This small pilot study presented a potential way to identify genetic patterns from image data and presented a methodology that could group images with no labels or only partial labels for future problems.
Audience Academic
Author Lichtenberger, John P.
Rao, Yuan James
Goyal, Sharad
Provenzano, Destie
Author_xml – sequence: 1
  givenname: Destie
  orcidid: 0000-0002-7470-4604
  surname: Provenzano
  fullname: Provenzano, Destie
– sequence: 2
  givenname: John P.
  surname: Lichtenberger
  fullname: Lichtenberger, John P.
– sequence: 3
  givenname: Sharad
  surname: Goyal
  fullname: Goyal, Sharad
– sequence: 4
  givenname: Yuan James
  orcidid: 0000-0002-9938-2197
  surname: Rao
  fullname: Rao, Yuan James
BookMark eNptUlGP1CAQbsyZeJ735B8g8dHsHZS2gG-b6p2brDE59ZlQGCqbFipQk_0t_llZ1-iZCAkzfPPNx5CZ59WFDx6q6iXBN5QKfKuWhbSYNbilT6rLGrNuQxvCLh75z6rrlA64LEEoJ_iy-vEWdDDOj2i_lqNXXkNED8q4MIIPs9PpDdqifk05zKifioVY6Lf9pFJy1mmVXfDoA-SvwYQpjEeUA_rk5nXKykNY03REOwM-O1uceQmx4Ll4ajw9ewcqrxESUt6gB5jg-yl6Dx7Si-qpVVOC69_2qvpy9-5z_36z_3i_67f7jaZE5A1h0PGGgxVNqxUTlNYwtIMlQ912GhsDvFxpPeimJkYPHRdWkIFhqAnVpqZX1e6sa4I6yCW6WcWjDMrJX0CIo1QxOz2BJKZVNehO2Q43rKMDF6KjGDMNwjYDLlqvzlpLDN9WSFkewhp9KV9SwjnjhJHmL2tURdR5G3JUenZJyy2nvMO4Iae6bv7DKttA6UtpvnUF_yfh9TlBx5BSBPvnMwTL04zIRzNCfwIvFbFG
Cites_doi 10.1038/s42003-021-02894-5
10.18632/oncotarget.24893
10.1513/pats.200807-076LC
10.1126/science.aay9040
10.1148/radiol.213015
10.1002/mp.12809
10.1016/j.ijrobp.2019.01.087
10.1158/0008-5472.CAN-21-0950
10.1038/s41598-022-06085-y
10.1002/cncr.35128
10.1056/NEJMoa2204619
10.1158/0008-5472.CAN-11-3943
10.1148/ryai.2019180050
10.1038/s41588-021-00920-0
10.1007/s00066-020-01625-9
10.1055/s-0042-1753476
10.3322/caac.21660
10.1038/s41698-018-0075-9
10.1038/s41416-023-02317-8
10.1016/j.cell.2022.01.003
10.1038/s41592-020-01008-z
10.1002/cnr2.1764
10.3399/bjgp10X483175
10.1148/radiol.2018172361
10.1038/35057062
10.1016/j.lungcan.2019.03.025
10.1007/s10278-013-9622-7
10.1016/j.clon.2021.10.006
10.3390/cancers15133474
10.1109/BIBM.2018.8621432
10.1007/s00330-019-06024-y
10.12688/f1000research.8923.1
10.3390/cancers15215236
10.1038/s43856-022-00199-0
10.1158/2159-8290.CD-12-0095
10.1016/j.ijrobp.2014.03.009
10.1016/j.ccell.2015.02.007
10.1158/1078-0432.CCR-18-2495
10.1016/j.engappai.2020.103571
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app15074053
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_1d5a2ec6af604763b89963007ce9f4b0
A838600412
10_3390_app15074053
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c319t-17e6848ef945ca79332eb5bf1b256c0dde8b5b32bc421dcb689f91b70e213cd23
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:30:41 EDT 2025
Sat Aug 23 14:14:28 EDT 2025
Thu May 08 04:18:09 EDT 2025
Tue Jun 10 20:53:27 EDT 2025
Tue Jul 01 05:11:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-17e6848ef945ca79332eb5bf1b256c0dde8b5b32bc421dcb689f91b70e213cd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7470-4604
0000-0002-9938-2197
OpenAccessLink https://doaj.org/article/1d5a2ec6af604763b89963007ce9f4b0
PQID 3188781714
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_1d5a2ec6af604763b89963007ce9f4b0
proquest_journals_3188781714
gale_infotracmisc_A838600412
gale_infotracacademiconefile_A838600412
crossref_primary_10_3390_app15074053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 20250401
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rosenstein (ref_18) 2014; 89
Sung (ref_2) 2021; 71
Hamilton (ref_5) 2010; 60
Xu (ref_21) 2019; 25
Buda (ref_39) 2020; 2
Archer (ref_7) 2022; 43
Fedorov (ref_35) 2021; 81
Riely (ref_43) 2022; 387
ref_32
ref_31
Kratzer (ref_1) 2024; 130
Lander (ref_10) 2001; 409
Zhang (ref_15) 2021; 53
Jansen (ref_17) 2018; 9
Liu (ref_20) 2023; 129
Berenguer (ref_27) 2018; 288
Nguyen (ref_29) 2022; 185
ref_16
ref_38
Borczuk (ref_14) 2009; 6
Caramella (ref_28) 2018; 45
Pulumati (ref_6) 2023; 6
Avanzo (ref_9) 2020; 196
Isensee (ref_36) 2021; 18
Umar (ref_4) 2019; 3
Nishino (ref_24) 2022; 303
Malhotra (ref_42) 2024; 22
Tu (ref_22) 2019; 132
Jia (ref_23) 2019; 29
Silva (ref_34) 2016; 5
Nie (ref_19) 2019; 104
ref_41
Tomczak (ref_33) 2015; 19
ref_40
Koh (ref_11) 2022; 2
Nair (ref_25) 2012; 72
Clark (ref_30) 2013; 26
Walls (ref_8) 2022; 34
ref_26
Zhao (ref_37) 2020; 91
Crosby (ref_3) 2022; 375
Cerami (ref_12) 2012; 2
Tamborero (ref_13) 2015; 27
References_xml – ident: ref_40
  doi: 10.1038/s42003-021-02894-5
– volume: 9
  start-page: 20134
  year: 2018
  ident: ref_17
  article-title: Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.24893
– ident: ref_32
– volume: 6
  start-page: 152
  year: 2009
  ident: ref_14
  article-title: Genomics of lung cancer
  publication-title: Proc. Am. Thorac. Soc.
  doi: 10.1513/pats.200807-076LC
– volume: 375
  start-page: eaay9040
  year: 2022
  ident: ref_3
  article-title: Early detection of cancer
  publication-title: Science
  doi: 10.1126/science.aay9040
– volume: 303
  start-page: 673
  year: 2022
  ident: ref_24
  article-title: Radiomics-based Cluster Groups to Predict Clinical-Pathologic and Genomic Characteristics of Stage I Lung Adenocarcinoma
  publication-title: Radiology
  doi: 10.1148/radiol.213015
– volume: 45
  start-page: 1529
  year: 2018
  ident: ref_28
  article-title: Can we trust the calculation of texture indices of CT images? A phantom study
  publication-title: Med. Phys.
  doi: 10.1002/mp.12809
– volume: 104
  start-page: 302
  year: 2019
  ident: ref_19
  article-title: NCTN Assessment on Current Applications of Radiomics in Oncology
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2019.01.087
– volume: 81
  start-page: 4188
  year: 2021
  ident: ref_35
  article-title: NCI imaging data commons
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-21-0950
– ident: ref_41
  doi: 10.1038/s41598-022-06085-y
– volume: 130
  start-page: 1330
  year: 2024
  ident: ref_1
  article-title: Lung cancer statistics, 2023
  publication-title: Cancer
  doi: 10.1002/cncr.35128
– volume: 387
  start-page: 120
  year: 2022
  ident: ref_43
  article-title: Adagrasib in Non-Small-Cell Lung Cancer Harboring a KRASG12C Mutation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2204619
– volume: 72
  start-page: 3725
  year: 2012
  ident: ref_25
  article-title: Prognostic PET 18F-FDG uptake imaging features are associated with major oncogenomic alterations in patients with resected non-small cell lung cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-3943
– volume: 2
  start-page: e180050
  year: 2020
  ident: ref_39
  article-title: Deep Radiogenomics of Lower-Grade Gliomas: Convolutional Neural Networks Predict Tumor Genomic Subtypes Using MR Images
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2019180050
– volume: 53
  start-page: 1348
  year: 2021
  ident: ref_15
  article-title: Genomic and evolutionary classification of lung cancer in never smokers
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00920-0
– volume: 196
  start-page: 879
  year: 2020
  ident: ref_9
  article-title: Radiomics and deep learning in lung cancer
  publication-title: Strahlenther. Onkol.
  doi: 10.1007/s00066-020-01625-9
– volume: 22
  start-page: 67
  year: 2024
  ident: ref_42
  article-title: Management of KRAS-mutated non-small cell lung cancer
  publication-title: Clin. Adv. Hematol. Oncol. HO
– volume: 43
  start-page: 862
  year: 2022
  ident: ref_7
  article-title: Imaging of Lung Cancer Staging
  publication-title: Semin. Respir. Crit. Care Med.
  doi: 10.1055/s-0042-1753476
– volume: 71
  start-page: 209
  year: 2021
  ident: ref_2
  article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
– volume: 3
  start-page: 3
  year: 2019
  ident: ref_4
  article-title: Cancer prevention and screening: The next step in the era of precision medicine
  publication-title: NPJ Precis. Oncol.
  doi: 10.1038/s41698-018-0075-9
– volume: 129
  start-page: 741
  year: 2023
  ident: ref_20
  article-title: Radiogenomics: A key component of precision cancer medicine
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-023-02317-8
– volume: 185
  start-page: 563
  year: 2022
  ident: ref_29
  article-title: Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients
  publication-title: Cell
  doi: 10.1016/j.cell.2022.01.003
– volume: 18
  start-page: 203
  year: 2021
  ident: ref_36
  article-title: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 6
  start-page: e1764
  year: 2023
  ident: ref_6
  article-title: Technological advancements in cancer diagnostics: Improvements and limitations
  publication-title: Cancer Rep.
  doi: 10.1002/cnr2.1764
– ident: ref_31
– volume: 60
  start-page: 121
  year: 2010
  ident: ref_5
  article-title: Cancer diagnosis in primary care
  publication-title: Br. J. Gen. Pr.
  doi: 10.3399/bjgp10X483175
– volume: 288
  start-page: 407
  year: 2018
  ident: ref_27
  article-title: Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters
  publication-title: Radiology
  doi: 10.1148/radiol.2018172361
– volume: 409
  start-page: 860
  year: 2001
  ident: ref_10
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 132
  start-page: 28
  year: 2019
  ident: ref_22
  article-title: Radiomics signature: A potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2019.03.025
– volume: 26
  start-page: 1045
  year: 2013
  ident: ref_30
  article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 34
  start-page: e107
  year: 2022
  ident: ref_8
  article-title: Radiomics for Predicting Lung Cancer Outcomes Following Radiotherapy: A Systematic Review
  publication-title: Clin. Oncol.
  doi: 10.1016/j.clon.2021.10.006
– ident: ref_16
  doi: 10.3390/cancers15133474
– ident: ref_38
  doi: 10.1109/BIBM.2018.8621432
– volume: 29
  start-page: 4742
  year: 2019
  ident: ref_23
  article-title: Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06024-y
– volume: 5
  start-page: 1542
  year: 2016
  ident: ref_34
  article-title: TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages
  publication-title: F1000Research
  doi: 10.12688/f1000research.8923.1
– ident: ref_26
  doi: 10.3390/cancers15215236
– volume: 2
  start-page: 133
  year: 2022
  ident: ref_11
  article-title: Artificial intelligence and machine learning in cancer imaging
  publication-title: Commun. Med.
  doi: 10.1038/s43856-022-00199-0
– volume: 2
  start-page: 401
  year: 2012
  ident: ref_12
  article-title: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-12-0095
– volume: 89
  start-page: 709
  year: 2014
  ident: ref_18
  article-title: Radiogenomics: Radiobiology enters the era of big data and team science
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2014.03.009
– volume: 27
  start-page: 382
  year: 2015
  ident: ref_13
  article-title: In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.02.007
– volume: 19
  start-page: A68
  year: 2015
  ident: ref_33
  article-title: Review The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge
  publication-title: Contemp. Oncol.
– volume: 25
  start-page: 3266
  year: 2019
  ident: ref_21
  article-title: Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-2495
– volume: 91
  start-page: 103571
  year: 2020
  ident: ref_37
  article-title: Joint DBN and Fuzzy C-Means unsupervised deep clustering for lung cancer patient stratification
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103571
SSID ssj0000913810
Score 2.3146055
Snippet Background: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by...
This paper presents a custom combined clustering-image classification methodology to group genetic mutation patterns representative of lung cancer using CT...
Featured ApplicationThis paper presents a custom combined clustering-image classification methodology to group genetic mutation patterns representative of lung...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 4053
SubjectTerms Algorithms
Biomarkers
Cancer
Classification
Clustering
CT imaging
Data collection
deep clustering
Deep learning
Gene mutations
Genes
Genetic markers
Genomes
Lung cancer
Machine learning
Medical diagnosis
Medical imaging
Medical imaging equipment
Medical prognosis
Medical research
Metastasis
Methods
Mutation
Oncology, Experimental
Patients
Pilot projects
radiogenomics
Radiomics
ResNet
Tomography
Tumors
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvcAB0QJioSAfKgGHqHHsOA4XtF1aVYhWaKFSb5a_Uq3UTcomOfBb-LPMeL2le4BbEjtSpDczfuN43hByiJSjgKUjk15UmaikzUzuQua4KJ0ywBhiFf_5hTy7FF-uyqu04danY5WbmBgDte8c7pEfge2pSmG77k-3PzPsGoV_V1MLjYdkF0KwguRr9_jk4tv8bpcFVS8Vy9eFeRzye_wvjBwIeArfWoqiYv-_4nJcbE6fkieJJdLpGtY98iC0--TxPe3AfbKXvLKn75N09Idn5PdnyCZxNaJfwYnpDCFd0bnxiw7FWJcL13-kUzobgfIt6exmRJkEmH4Ue2PiqaEIFD2PfaXjjjsdOvp9gecOTRu6sb_5RdfFvQ1cLCN7bwe4it2OKDLKETJ4alpP51i7jqP4gf1zcnl68mN2lqX2CwAUq4eMVUEqoUJTA2wG_JgXwZa2YRZoksshLiq45YV1omDeWanqpma2ykPBuPMFf0F22q4NLwk1JbwdvA1ceeFEaVGSh9s8KCaNaooJOdwgoW_XKhsashMETN8DbEKOEaW7KSiNHR90q2udPE0zX5oiOGkamYPtcQsZJeqKVS7UjbD5hLxDjDU68LAyzqQ6BPhSlMLSU8WVjDJkE3KwNRMcz20Pb6xEJ8fv9V8zffX_4dfkUYGthOMhoAOyM6zG8Ab4zWDfJiP-A0Lw_HE
  priority: 102
  providerName: ProQuest
Title Decoding Lung Cancer Radiogenomics: A Custom Clustering/Classification Methodology to Simultaneously Identify Important Imaging Features and Relevant Genes
URI https://www.proquest.com/docview/3188781714
https://doaj.org/article/1d5a2ec6af604763b89963007ce9f4b0
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwEB1BucAB0QJioax8qAQcosax4zjctkuXCtEKLVTqzbIdR1qpm602yYFv4WeZcVK0e0BcuCUbZ2XlzXjeJJ43ACdEOTIMHYmqZJHIQrnEpj4kXsjca4uMIVbxX16pi2v55Sa_2Wn1RXvCBnng4cGd8iq3WfDK1irFvxIOEwSSiSp8KGvpYraOMW8nmYprcMlJumooyBOY19P3YOI-yE_EXgiKSv1_W49jkFk8g6cjO2SzYVaH8CA0R_BkRzPwCA5Hb2zZ-1Ey-sNz-PUJs0iKQuwrOi-bE5RbtrTVakMirOuVbz-yGZv3SPXWbH7bkzwCDj-NPTFpt1AEiF3GftLxTTvrNuz7ivYb2iZs-vb2JxuKems8WEfW3nR4FLscMWKSPWbuzDYVW1LNOl2lCbYv4Hpx_mN-kYxtFxAgXnYJL4LSUoe6RLgs-q_IgstdzR3SI5_ieqjxVGTOy4xX3ild1iV3RRoyLnyViZdw0Gya8AqYzfHuULkgdCW9zB1J8QiXBs2V1XU2gZN7JMzdoK5hMCshwMwOYBM4I5T-DCFJ7PgDGooZDcX8y1Am8I4wNuS43dZ6O9Yf4ExJAsvMtNAqyo9N4HhvJDqc3798byVmdPjW4NKoC03d5F__j8m-gccZNRqOW4SO4aDb9uEtsp_OTeGhXnyewqOz86tvy2k0-9-RYAXN
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiBYQCwV8KAIOURM7DwcJoWXLsqW7PZRW6s21HQet1E1KHkL9LfwHfiMzTlK6B7j1lsSOYmm-eTmebwjZxZCDgevw4ixMvDCJtad8Yz3Dw8gIBRGDq-JfHMWz0_DrWXS2QX4PtTB4rHKwic5QZ6XBPfI9wJ5IBLbr_nj5w8OuUfh3dWih0cHi0F79hJSt_nCwD_J9zdj088lk5vVdBeD7Qdp4QWJjEQqbp7AaBfDkzOpI54EG7298UHcBt5xpE7IgMzoWaZ4GOvEtC7jJkOgATP6dkPMUNUpMv1zv6SDHpgj8rgwQxn38C40RF0RFfM3xuf4A__ICzrVNH5IHfUxKxx2ItsiGLbbJ_RtMhdtkq7cBNX3bE1W_e0R-7UPuir6PzsFk0AkCqKLHKluWSP26Wpr6PR3TSQsB5opOLlokZYDpe64TJ55RcrCgC9fF2u3v06ak35Z4ylEVtmzriyvalRLncLFyuULRwJXrrUQxfm0rWJQqMnqMlfI4igusH5PTWxHLE7JZlIV9SqiK4G2bactFFpow0kgAxLVvRRArkbMR2R0kIS87Tg8JuRAKTN4Q2Ih8QildT0EibvegrL7LXq9lkEWKWROrPPYB6VxD_oosZomxaR5qf0TeoIwlmoumUkb1VQ-wUiTekmPBRexIz0ZkZ20mqLlZHx5QInszU8u_SvHs_8OvyN3ZyWIu5wdHh8_JPYZNjN3xox2y2VStfQGRVaNfOjhTcn7b-vMH4sg4hA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggGgBsbSAD0XAIdrEzsNBQmi721VL21W1UKm3YDsOWqmbtHkI9bfwT_h1zDhJ6R7g1lsSO9JI87ZnviFkD0MOBq7DCVM_cvwoVI50tXE09wMtJEQMtov_dB4envtfLoKLDfK774XBssreJlpDnRYaz8hHIHsiEjiue5R1ZRFn09nnq2sHJ0jhTWs_TqMVkWNz8xPSt-rT0RR4_Zax2cG3yaHTTRgAWry4drzIhMIXJouBMgmiyplRgco8BZGAdkH1BbxyprTPvFSrUMRZ7KnINczjOkXQAzD_mxFkRe6AbO4fzM8Wtyc8iLgpPLdtCuQ8dvFOGuMviJH4mhu00wL-5ROso5s9IY-7CJWOW5HaIhsm3yaP7uAWbpOtziJU9H0HW_3hKfk1hUwWPSE9AQNCJyhOJV3IdFkgEOxqqauPdEwnDYSbKzq5bBCiAbaP7FxOrFiyQkJP7Uxre9pP64J-XWLNo8xN0VSXN7RtLM7gYWUzh7yGJztpiWI025RAlMxTusC-eVxFAqtn5PxeGPOcDPIiNy8IlQH8bVJluEh97QcK4YC4co3wQikyNiR7PSeSqxbhI4HMCBmW3GHYkOwjl263ICy3_VCUP5JOyxMvDSQzOpRZ6ILccwXZLGKaRdrEma_cIXmHPE7QeNSl1LLrgQBKEYYrGQsuQguBNiS7aztB6fX6ci8lSWd0quSvirz8__Ib8gB0Jzk5mh_vkIcMJxrbWqRdMqjLxryCMKtWrzt5puT7favQH2SDPhY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Lung+Cancer+Radiogenomics%3A+A+Custom+Clustering%2FClassification+Methodology+to+Simultaneously+Identify+Important+Imaging+Features+and+Relevant+Genes&rft.jtitle=Applied+sciences&rft.au=Provenzano%2C+Destie&rft.au=Lichtenberger%2C+John+P.&rft.au=Goyal%2C+Sharad&rft.au=Rao%2C+Yuan+James&rft.date=2025-04-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=7&rft.spage=4053&rft_id=info:doi/10.3390%2Fapp15074053&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15074053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon