Decoding Lung Cancer Radiogenomics: A Custom Clustering/Classification Methodology to Simultaneously Identify Important Imaging Features and Relevant Genes
Background: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by using machine learning to see whether a custom clustering/classification method could simultaneously identify features from imaging data that co...
Saved in:
Published in | Applied sciences Vol. 15; no. 7; p. 4053 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app15074053 |
Cover
Loading…
Abstract | Background: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by using machine learning to see whether a custom clustering/classification method could simultaneously identify features from imaging data that correspond to genetic markers. Methods: CT imaging data and genetic mutation data for 281 subjects with NSCLC were collected from the CPTAC-LUAD and TCGA-LUSC databases on TCIA. The algorithm was run as follows: (1) genetic clusters were initialized using random clusters, binary matrix factorization, or k-means; (2) image classification was run on CT data for these genetic clusters; (3) misclassified subjects were re-classified based on the image classification algorithm; and (4) the algorithm was run until an accuracy of 90% or no improvement after 10 runs. Input genetic mutations were evaluated for potential medical treatments and severity to provide clinical relevance. Results: The image classification algorithm was able to achieve a >90% accuracy after nine algorithm runs and grouped subjects from a starting five clusters to four final clusters, where final image classification accuracy was better than every initial clustered accuracy. These clusters were stable across all three test runs. A total of thirty-eight genes from the top hundred across each subject were identified with specific severity or treatment data; twelve of these genes are listed. Conclusion: This small pilot study presented a potential way to identify genetic patterns from image data and presented a methodology that could group images with no labels or only partial labels for future problems. |
---|---|
AbstractList | Featured ApplicationThis paper presents a custom combined clustering-image classification methodology to group genetic mutation patterns representative of lung cancer using CT data. This methodology could be applied to other radiogenomic or image classification problems with partial or completely unlabeled images to cluster final results.AbstractBackground: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by using machine learning to see whether a custom clustering/classification method could simultaneously identify features from imaging data that correspond to genetic markers. Methods: CT imaging data and genetic mutation data for 281 subjects with NSCLC were collected from the CPTAC-LUAD and TCGA-LUSC databases on TCIA. The algorithm was run as follows: (1) genetic clusters were initialized using random clusters, binary matrix factorization, or k-means; (2) image classification was run on CT data for these genetic clusters; (3) misclassified subjects were re-classified based on the image classification algorithm; and (4) the algorithm was run until an accuracy of 90% or no improvement after 10 runs. Input genetic mutations were evaluated for potential medical treatments and severity to provide clinical relevance. Results: The image classification algorithm was able to achieve a >90% accuracy after nine algorithm runs and grouped subjects from a starting five clusters to four final clusters, where final image classification accuracy was better than every initial clustered accuracy. These clusters were stable across all three test runs. A total of thirty-eight genes from the top hundred across each subject were identified with specific severity or treatment data; twelve of these genes are listed. Conclusion: This small pilot study presented a potential way to identify genetic patterns from image data and presented a methodology that could group images with no labels or only partial labels for future problems. This paper presents a custom combined clustering-image classification methodology to group genetic mutation patterns representative of lung cancer using CT data. This methodology could be applied to other radiogenomic or image classification problems with partial or completely unlabeled images to cluster final results. Background: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by using machine learning to see whether a custom clustering/classification method could simultaneously identify features from imaging data that correspond to genetic markers. Methods: CT imaging data and genetic mutation data for 281 subjects with NSCLC were collected from the CPTAC-LUAD and TCGA-LUSC databases on TCIA. The algorithm was run as follows: (1) genetic clusters were initialized using random clusters, binary matrix factorization, or k-means; (2) image classification was run on CT data for these genetic clusters; (3) misclassified subjects were re-classified based on the image classification algorithm; and (4) the algorithm was run until an accuracy of 90% or no improvement after 10 runs. Input genetic mutations were evaluated for potential medical treatments and severity to provide clinical relevance. Results: The image classification algorithm was able to achieve a >90% accuracy after nine algorithm runs and grouped subjects from a starting five clusters to four final clusters, where final image classification accuracy was better than every initial clustered accuracy. These clusters were stable across all three test runs. A total of thirty-eight genes from the top hundred across each subject were identified with specific severity or treatment data; twelve of these genes are listed. Conclusion: This small pilot study presented a potential way to identify genetic patterns from image data and presented a methodology that could group images with no labels or only partial labels for future problems. This paper presents a custom combined clustering-image classification methodology to group genetic mutation patterns representative of lung cancer using CT data. This methodology could be applied to other radiogenomic or image classification problems with partial or completely unlabeled images to cluster final results. Background: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by using machine learning to see whether a custom clustering/classification method could simultaneously identify features from imaging data that correspond to genetic markers. Methods: CT imaging data and genetic mutation data for 281 subjects with NSCLC were collected from the CPTAC-LUAD and TCGA-LUSC databases on TCIA. The algorithm was run as follows: (1) genetic clusters were initialized using random clusters, binary matrix factorization, or k-means; (2) image classification was run on CT data for these genetic clusters; (3) misclassified subjects were re-classified based on the image classification algorithm; and (4) the algorithm was run until an accuracy of 90% or no improvement after 10 runs. Input genetic mutations were evaluated for potential medical treatments and severity to provide clinical relevance. Results: The image classification algorithm was able to achieve a >90% accuracy after nine algorithm runs and grouped subjects from a starting five clusters to four final clusters, where final image classification accuracy was better than every initial clustered accuracy. These clusters were stable across all three test runs. A total of thirty-eight genes from the top hundred across each subject were identified with specific severity or treatment data; twelve of these genes are listed. Conclusion: This small pilot study presented a potential way to identify genetic patterns from image data and presented a methodology that could group images with no labels or only partial labels for future problems. |
Audience | Academic |
Author | Lichtenberger, John P. Rao, Yuan James Goyal, Sharad Provenzano, Destie |
Author_xml | – sequence: 1 givenname: Destie orcidid: 0000-0002-7470-4604 surname: Provenzano fullname: Provenzano, Destie – sequence: 2 givenname: John P. surname: Lichtenberger fullname: Lichtenberger, John P. – sequence: 3 givenname: Sharad surname: Goyal fullname: Goyal, Sharad – sequence: 4 givenname: Yuan James orcidid: 0000-0002-9938-2197 surname: Rao fullname: Rao, Yuan James |
BookMark | eNptUlGP1CAQbsyZeJ735B8g8dHsHZS2gG-b6p2brDE59ZlQGCqbFipQk_0t_llZ1-iZCAkzfPPNx5CZ59WFDx6q6iXBN5QKfKuWhbSYNbilT6rLGrNuQxvCLh75z6rrlA64LEEoJ_iy-vEWdDDOj2i_lqNXXkNED8q4MIIPs9PpDdqifk05zKifioVY6Lf9pFJy1mmVXfDoA-SvwYQpjEeUA_rk5nXKykNY03REOwM-O1uceQmx4Ll4ajw9ewcqrxESUt6gB5jg-yl6Dx7Si-qpVVOC69_2qvpy9-5z_36z_3i_67f7jaZE5A1h0PGGgxVNqxUTlNYwtIMlQ912GhsDvFxpPeimJkYPHRdWkIFhqAnVpqZX1e6sa4I6yCW6WcWjDMrJX0CIo1QxOz2BJKZVNehO2Q43rKMDF6KjGDMNwjYDLlqvzlpLDN9WSFkewhp9KV9SwjnjhJHmL2tURdR5G3JUenZJyy2nvMO4Iae6bv7DKttA6UtpvnUF_yfh9TlBx5BSBPvnMwTL04zIRzNCfwIvFbFG |
Cites_doi | 10.1038/s42003-021-02894-5 10.18632/oncotarget.24893 10.1513/pats.200807-076LC 10.1126/science.aay9040 10.1148/radiol.213015 10.1002/mp.12809 10.1016/j.ijrobp.2019.01.087 10.1158/0008-5472.CAN-21-0950 10.1038/s41598-022-06085-y 10.1002/cncr.35128 10.1056/NEJMoa2204619 10.1158/0008-5472.CAN-11-3943 10.1148/ryai.2019180050 10.1038/s41588-021-00920-0 10.1007/s00066-020-01625-9 10.1055/s-0042-1753476 10.3322/caac.21660 10.1038/s41698-018-0075-9 10.1038/s41416-023-02317-8 10.1016/j.cell.2022.01.003 10.1038/s41592-020-01008-z 10.1002/cnr2.1764 10.3399/bjgp10X483175 10.1148/radiol.2018172361 10.1038/35057062 10.1016/j.lungcan.2019.03.025 10.1007/s10278-013-9622-7 10.1016/j.clon.2021.10.006 10.3390/cancers15133474 10.1109/BIBM.2018.8621432 10.1007/s00330-019-06024-y 10.12688/f1000research.8923.1 10.3390/cancers15215236 10.1038/s43856-022-00199-0 10.1158/2159-8290.CD-12-0095 10.1016/j.ijrobp.2014.03.009 10.1016/j.ccell.2015.02.007 10.1158/1078-0432.CCR-18-2495 10.1016/j.engappai.2020.103571 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app15074053 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_1d5a2ec6af604763b89963007ce9f4b0 A838600412 10_3390_app15074053 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c319t-17e6848ef945ca79332eb5bf1b256c0dde8b5b32bc421dcb689f91b70e213cd23 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:41 EDT 2025 Sat Aug 23 14:14:28 EDT 2025 Thu May 08 04:18:09 EDT 2025 Tue Jun 10 20:53:27 EDT 2025 Tue Jul 01 05:11:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-17e6848ef945ca79332eb5bf1b256c0dde8b5b32bc421dcb689f91b70e213cd23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7470-4604 0000-0002-9938-2197 |
OpenAccessLink | https://doaj.org/article/1d5a2ec6af604763b89963007ce9f4b0 |
PQID | 3188781714 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d5a2ec6af604763b89963007ce9f4b0 proquest_journals_3188781714 gale_infotracmisc_A838600412 gale_infotracacademiconefile_A838600412 crossref_primary_10_3390_app15074053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 20250401 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Rosenstein (ref_18) 2014; 89 Sung (ref_2) 2021; 71 Hamilton (ref_5) 2010; 60 Xu (ref_21) 2019; 25 Buda (ref_39) 2020; 2 Archer (ref_7) 2022; 43 Fedorov (ref_35) 2021; 81 Riely (ref_43) 2022; 387 ref_32 ref_31 Kratzer (ref_1) 2024; 130 Lander (ref_10) 2001; 409 Zhang (ref_15) 2021; 53 Jansen (ref_17) 2018; 9 Liu (ref_20) 2023; 129 Berenguer (ref_27) 2018; 288 Nguyen (ref_29) 2022; 185 ref_16 ref_38 Borczuk (ref_14) 2009; 6 Caramella (ref_28) 2018; 45 Pulumati (ref_6) 2023; 6 Avanzo (ref_9) 2020; 196 Isensee (ref_36) 2021; 18 Umar (ref_4) 2019; 3 Nishino (ref_24) 2022; 303 Malhotra (ref_42) 2024; 22 Tu (ref_22) 2019; 132 Jia (ref_23) 2019; 29 Silva (ref_34) 2016; 5 Nie (ref_19) 2019; 104 ref_41 Tomczak (ref_33) 2015; 19 ref_40 Koh (ref_11) 2022; 2 Nair (ref_25) 2012; 72 Clark (ref_30) 2013; 26 Walls (ref_8) 2022; 34 ref_26 Zhao (ref_37) 2020; 91 Crosby (ref_3) 2022; 375 Cerami (ref_12) 2012; 2 Tamborero (ref_13) 2015; 27 |
References_xml | – ident: ref_40 doi: 10.1038/s42003-021-02894-5 – volume: 9 start-page: 20134 year: 2018 ident: ref_17 article-title: Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis publication-title: Oncotarget doi: 10.18632/oncotarget.24893 – ident: ref_32 – volume: 6 start-page: 152 year: 2009 ident: ref_14 article-title: Genomics of lung cancer publication-title: Proc. Am. Thorac. Soc. doi: 10.1513/pats.200807-076LC – volume: 375 start-page: eaay9040 year: 2022 ident: ref_3 article-title: Early detection of cancer publication-title: Science doi: 10.1126/science.aay9040 – volume: 303 start-page: 673 year: 2022 ident: ref_24 article-title: Radiomics-based Cluster Groups to Predict Clinical-Pathologic and Genomic Characteristics of Stage I Lung Adenocarcinoma publication-title: Radiology doi: 10.1148/radiol.213015 – volume: 45 start-page: 1529 year: 2018 ident: ref_28 article-title: Can we trust the calculation of texture indices of CT images? A phantom study publication-title: Med. Phys. doi: 10.1002/mp.12809 – volume: 104 start-page: 302 year: 2019 ident: ref_19 article-title: NCTN Assessment on Current Applications of Radiomics in Oncology publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2019.01.087 – volume: 81 start-page: 4188 year: 2021 ident: ref_35 article-title: NCI imaging data commons publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-21-0950 – ident: ref_41 doi: 10.1038/s41598-022-06085-y – volume: 130 start-page: 1330 year: 2024 ident: ref_1 article-title: Lung cancer statistics, 2023 publication-title: Cancer doi: 10.1002/cncr.35128 – volume: 387 start-page: 120 year: 2022 ident: ref_43 article-title: Adagrasib in Non-Small-Cell Lung Cancer Harboring a KRASG12C Mutation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2204619 – volume: 72 start-page: 3725 year: 2012 ident: ref_25 article-title: Prognostic PET 18F-FDG uptake imaging features are associated with major oncogenomic alterations in patients with resected non-small cell lung cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-3943 – volume: 2 start-page: e180050 year: 2020 ident: ref_39 article-title: Deep Radiogenomics of Lower-Grade Gliomas: Convolutional Neural Networks Predict Tumor Genomic Subtypes Using MR Images publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.2019180050 – volume: 53 start-page: 1348 year: 2021 ident: ref_15 article-title: Genomic and evolutionary classification of lung cancer in never smokers publication-title: Nat. Genet. doi: 10.1038/s41588-021-00920-0 – volume: 196 start-page: 879 year: 2020 ident: ref_9 article-title: Radiomics and deep learning in lung cancer publication-title: Strahlenther. Onkol. doi: 10.1007/s00066-020-01625-9 – volume: 22 start-page: 67 year: 2024 ident: ref_42 article-title: Management of KRAS-mutated non-small cell lung cancer publication-title: Clin. Adv. Hematol. Oncol. HO – volume: 43 start-page: 862 year: 2022 ident: ref_7 article-title: Imaging of Lung Cancer Staging publication-title: Semin. Respir. Crit. Care Med. doi: 10.1055/s-0042-1753476 – volume: 71 start-page: 209 year: 2021 ident: ref_2 article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 3 start-page: 3 year: 2019 ident: ref_4 article-title: Cancer prevention and screening: The next step in the era of precision medicine publication-title: NPJ Precis. Oncol. doi: 10.1038/s41698-018-0075-9 – volume: 129 start-page: 741 year: 2023 ident: ref_20 article-title: Radiogenomics: A key component of precision cancer medicine publication-title: Br. J. Cancer doi: 10.1038/s41416-023-02317-8 – volume: 185 start-page: 563 year: 2022 ident: ref_29 article-title: Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients publication-title: Cell doi: 10.1016/j.cell.2022.01.003 – volume: 18 start-page: 203 year: 2021 ident: ref_36 article-title: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – volume: 6 start-page: e1764 year: 2023 ident: ref_6 article-title: Technological advancements in cancer diagnostics: Improvements and limitations publication-title: Cancer Rep. doi: 10.1002/cnr2.1764 – ident: ref_31 – volume: 60 start-page: 121 year: 2010 ident: ref_5 article-title: Cancer diagnosis in primary care publication-title: Br. J. Gen. Pr. doi: 10.3399/bjgp10X483175 – volume: 288 start-page: 407 year: 2018 ident: ref_27 article-title: Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters publication-title: Radiology doi: 10.1148/radiol.2018172361 – volume: 409 start-page: 860 year: 2001 ident: ref_10 article-title: Initial sequencing and analysis of the human genome publication-title: Nature doi: 10.1038/35057062 – volume: 132 start-page: 28 year: 2019 ident: ref_22 article-title: Radiomics signature: A potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology publication-title: Lung Cancer doi: 10.1016/j.lungcan.2019.03.025 – volume: 26 start-page: 1045 year: 2013 ident: ref_30 article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository publication-title: J. Digit. Imaging doi: 10.1007/s10278-013-9622-7 – volume: 34 start-page: e107 year: 2022 ident: ref_8 article-title: Radiomics for Predicting Lung Cancer Outcomes Following Radiotherapy: A Systematic Review publication-title: Clin. Oncol. doi: 10.1016/j.clon.2021.10.006 – ident: ref_16 doi: 10.3390/cancers15133474 – ident: ref_38 doi: 10.1109/BIBM.2018.8621432 – volume: 29 start-page: 4742 year: 2019 ident: ref_23 article-title: Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06024-y – volume: 5 start-page: 1542 year: 2016 ident: ref_34 article-title: TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages publication-title: F1000Research doi: 10.12688/f1000research.8923.1 – ident: ref_26 doi: 10.3390/cancers15215236 – volume: 2 start-page: 133 year: 2022 ident: ref_11 article-title: Artificial intelligence and machine learning in cancer imaging publication-title: Commun. Med. doi: 10.1038/s43856-022-00199-0 – volume: 2 start-page: 401 year: 2012 ident: ref_12 article-title: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-12-0095 – volume: 89 start-page: 709 year: 2014 ident: ref_18 article-title: Radiogenomics: Radiobiology enters the era of big data and team science publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2014.03.009 – volume: 27 start-page: 382 year: 2015 ident: ref_13 article-title: In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.02.007 – volume: 19 start-page: A68 year: 2015 ident: ref_33 article-title: Review The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge publication-title: Contemp. Oncol. – volume: 25 start-page: 3266 year: 2019 ident: ref_21 article-title: Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-2495 – volume: 91 start-page: 103571 year: 2020 ident: ref_37 article-title: Joint DBN and Fuzzy C-Means unsupervised deep clustering for lung cancer patient stratification publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103571 |
SSID | ssj0000913810 |
Score | 2.3146055 |
Snippet | Background: This study evaluated a custom algorithm that sought to perform a radiogenomic analysis on lung cancer genetic and imaging data, specifically by... This paper presents a custom combined clustering-image classification methodology to group genetic mutation patterns representative of lung cancer using CT... Featured ApplicationThis paper presents a custom combined clustering-image classification methodology to group genetic mutation patterns representative of lung... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 4053 |
SubjectTerms | Algorithms Biomarkers Cancer Classification Clustering CT imaging Data collection deep clustering Deep learning Gene mutations Genes Genetic markers Genomes Lung cancer Machine learning Medical diagnosis Medical imaging Medical imaging equipment Medical prognosis Medical research Metastasis Methods Mutation Oncology, Experimental Patients Pilot projects radiogenomics Radiomics ResNet Tomography Tumors Variables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvcAB0QJioSAfKgGHqHHsOA4XtF1aVYhWaKFSb5a_Uq3UTcomOfBb-LPMeL2le4BbEjtSpDczfuN43hByiJSjgKUjk15UmaikzUzuQua4KJ0ywBhiFf_5hTy7FF-uyqu04danY5WbmBgDte8c7pEfge2pSmG77k-3PzPsGoV_V1MLjYdkF0KwguRr9_jk4tv8bpcFVS8Vy9eFeRzye_wvjBwIeArfWoqiYv-_4nJcbE6fkieJJdLpGtY98iC0--TxPe3AfbKXvLKn75N09Idn5PdnyCZxNaJfwYnpDCFd0bnxiw7FWJcL13-kUzobgfIt6exmRJkEmH4Ue2PiqaEIFD2PfaXjjjsdOvp9gecOTRu6sb_5RdfFvQ1cLCN7bwe4it2OKDLKETJ4alpP51i7jqP4gf1zcnl68mN2lqX2CwAUq4eMVUEqoUJTA2wG_JgXwZa2YRZoksshLiq45YV1omDeWanqpma2ykPBuPMFf0F22q4NLwk1JbwdvA1ceeFEaVGSh9s8KCaNaooJOdwgoW_XKhsashMETN8DbEKOEaW7KSiNHR90q2udPE0zX5oiOGkamYPtcQsZJeqKVS7UjbD5hLxDjDU68LAyzqQ6BPhSlMLSU8WVjDJkE3KwNRMcz20Pb6xEJ8fv9V8zffX_4dfkUYGthOMhoAOyM6zG8Ab4zWDfJiP-A0Lw_HE priority: 102 providerName: ProQuest |
Title | Decoding Lung Cancer Radiogenomics: A Custom Clustering/Classification Methodology to Simultaneously Identify Important Imaging Features and Relevant Genes |
URI | https://www.proquest.com/docview/3188781714 https://doaj.org/article/1d5a2ec6af604763b89963007ce9f4b0 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwEB1BucAB0QJioax8qAQcosax4zjctkuXCtEKLVTqzbIdR1qpm602yYFv4WeZcVK0e0BcuCUbZ2XlzXjeJJ43ACdEOTIMHYmqZJHIQrnEpj4kXsjca4uMIVbxX16pi2v55Sa_2Wn1RXvCBnng4cGd8iq3WfDK1irFvxIOEwSSiSp8KGvpYraOMW8nmYprcMlJumooyBOY19P3YOI-yE_EXgiKSv1_W49jkFk8g6cjO2SzYVaH8CA0R_BkRzPwCA5Hb2zZ-1Ey-sNz-PUJs0iKQuwrOi-bE5RbtrTVakMirOuVbz-yGZv3SPXWbH7bkzwCDj-NPTFpt1AEiF3GftLxTTvrNuz7ivYb2iZs-vb2JxuKems8WEfW3nR4FLscMWKSPWbuzDYVW1LNOl2lCbYv4Hpx_mN-kYxtFxAgXnYJL4LSUoe6RLgs-q_IgstdzR3SI5_ieqjxVGTOy4xX3ild1iV3RRoyLnyViZdw0Gya8AqYzfHuULkgdCW9zB1J8QiXBs2V1XU2gZN7JMzdoK5hMCshwMwOYBM4I5T-DCFJ7PgDGooZDcX8y1Am8I4wNuS43dZ6O9Yf4ExJAsvMtNAqyo9N4HhvJDqc3798byVmdPjW4NKoC03d5F__j8m-gccZNRqOW4SO4aDb9uEtsp_OTeGhXnyewqOz86tvy2k0-9-RYAXN |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiBYQCwV8KAIOURM7DwcJoWXLsqW7PZRW6s21HQet1E1KHkL9LfwHfiMzTlK6B7j1lsSOYmm-eTmebwjZxZCDgevw4ixMvDCJtad8Yz3Dw8gIBRGDq-JfHMWz0_DrWXS2QX4PtTB4rHKwic5QZ6XBPfI9wJ5IBLbr_nj5w8OuUfh3dWih0cHi0F79hJSt_nCwD_J9zdj088lk5vVdBeD7Qdp4QWJjEQqbp7AaBfDkzOpI54EG7298UHcBt5xpE7IgMzoWaZ4GOvEtC7jJkOgATP6dkPMUNUpMv1zv6SDHpgj8rgwQxn38C40RF0RFfM3xuf4A__ICzrVNH5IHfUxKxx2ItsiGLbbJ_RtMhdtkq7cBNX3bE1W_e0R-7UPuir6PzsFk0AkCqKLHKluWSP26Wpr6PR3TSQsB5opOLlokZYDpe64TJ55RcrCgC9fF2u3v06ak35Z4ylEVtmzriyvalRLncLFyuULRwJXrrUQxfm0rWJQqMnqMlfI4igusH5PTWxHLE7JZlIV9SqiK4G2bactFFpow0kgAxLVvRRArkbMR2R0kIS87Tg8JuRAKTN4Q2Ih8QildT0EibvegrL7LXq9lkEWKWROrPPYB6VxD_oosZomxaR5qf0TeoIwlmoumUkb1VQ-wUiTekmPBRexIz0ZkZ20mqLlZHx5QInszU8u_SvHs_8OvyN3ZyWIu5wdHh8_JPYZNjN3xox2y2VStfQGRVaNfOjhTcn7b-vMH4sg4hA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggGgBsbSAD0XAIdrEzsNBQmi721VL21W1UKm3YDsOWqmbtHkI9bfwT_h1zDhJ6R7g1lsSO9JI87ZnviFkD0MOBq7DCVM_cvwoVI50tXE09wMtJEQMtov_dB4envtfLoKLDfK774XBssreJlpDnRYaz8hHIHsiEjiue5R1ZRFn09nnq2sHJ0jhTWs_TqMVkWNz8xPSt-rT0RR4_Zax2cG3yaHTTRgAWry4drzIhMIXJouBMgmiyplRgco8BZGAdkH1BbxyprTPvFSrUMRZ7KnINczjOkXQAzD_mxFkRe6AbO4fzM8Wtyc8iLgpPLdtCuQ8dvFOGuMviJH4mhu00wL-5ROso5s9IY-7CJWOW5HaIhsm3yaP7uAWbpOtziJU9H0HW_3hKfk1hUwWPSE9AQNCJyhOJV3IdFkgEOxqqauPdEwnDYSbKzq5bBCiAbaP7FxOrFiyQkJP7Uxre9pP64J-XWLNo8xN0VSXN7RtLM7gYWUzh7yGJztpiWI025RAlMxTusC-eVxFAqtn5PxeGPOcDPIiNy8IlQH8bVJluEh97QcK4YC4co3wQikyNiR7PSeSqxbhI4HMCBmW3GHYkOwjl263ICy3_VCUP5JOyxMvDSQzOpRZ6ILccwXZLGKaRdrEma_cIXmHPE7QeNSl1LLrgQBKEYYrGQsuQguBNiS7aztB6fX6ci8lSWd0quSvirz8__Ib8gB0Jzk5mh_vkIcMJxrbWqRdMqjLxryCMKtWrzt5puT7favQH2SDPhY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Lung+Cancer+Radiogenomics%3A+A+Custom+Clustering%2FClassification+Methodology+to+Simultaneously+Identify+Important+Imaging+Features+and+Relevant+Genes&rft.jtitle=Applied+sciences&rft.au=Provenzano%2C+Destie&rft.au=Lichtenberger%2C+John+P.&rft.au=Goyal%2C+Sharad&rft.au=Rao%2C+Yuan+James&rft.date=2025-04-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=7&rft.spage=4053&rft_id=info:doi/10.3390%2Fapp15074053&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15074053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |