Stacked autoencoder with novel integrated activation functions for the diagnosis of autism spectrum disorder

Autism screening is crucial for the early diagnosis of developmental disorder. The combination of machine learning (ML) and deep learning (DL) approaches are applied to produce memory efficient and less complex deep learning models for the computer aided diagnosis (CAD) of autism screening. In the p...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 23; pp. 17043 - 17075
Main Authors M, Kaviya Elakkiya, Dejey
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-023-08565-2

Cover

Loading…
Abstract Autism screening is crucial for the early diagnosis of developmental disorder. The combination of machine learning (ML) and deep learning (DL) approaches are applied to produce memory efficient and less complex deep learning models for the computer aided diagnosis (CAD) of autism screening. In the proposed work, two novel integrated activation functions such as Li-ReLU and S-RReLU are developed to aid in the classification of autistic subjects and typical controls (TC) with maximum accuracy. As functional magnetic resonance imaging (fMRI) data is noisy, it undergoes temporal and spatial pre-processing. The artifact free high dimensional fMRI data is exercised for the process of feature extraction and dimensionality reduction employing group principal component analysis (Group PCA) and group independent component analysis (Group ICA). The selected features are normalized using 0–1 normalization and converted to tensors. Stacked autoencoder (SAE) utilizes the fMRI tensor data for the classification of autism spectrum disorder (ASD) subjects and typical controls. The proposed work is implemented and tested on all datasets of ABIDE I database. The validation accuracy of CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets are obtained as 100, 80, 71.43, 100, 85.71 and 93.33% using novel Li-ReLU activation function in the proposed system. With the help of new activation function called S-RReLU, the proposed system achieves validation accuracy of about 10, 100, 57.14, 100, 78.57 and 93.33% for CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets. Thus, the proposed method outperforms all other existing state-of-the-art works in terms of accuracy.
AbstractList Autism screening is crucial for the early diagnosis of developmental disorder. The combination of machine learning (ML) and deep learning (DL) approaches are applied to produce memory efficient and less complex deep learning models for the computer aided diagnosis (CAD) of autism screening. In the proposed work, two novel integrated activation functions such as Li-ReLU and S-RReLU are developed to aid in the classification of autistic subjects and typical controls (TC) with maximum accuracy. As functional magnetic resonance imaging (fMRI) data is noisy, it undergoes temporal and spatial pre-processing. The artifact free high dimensional fMRI data is exercised for the process of feature extraction and dimensionality reduction employing group principal component analysis (Group PCA) and group independent component analysis (Group ICA). The selected features are normalized using 0–1 normalization and converted to tensors. Stacked autoencoder (SAE) utilizes the fMRI tensor data for the classification of autism spectrum disorder (ASD) subjects and typical controls. The proposed work is implemented and tested on all datasets of ABIDE I database. The validation accuracy of CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets are obtained as 100, 80, 71.43, 100, 85.71 and 93.33% using novel Li-ReLU activation function in the proposed system. With the help of new activation function called S-RReLU, the proposed system achieves validation accuracy of about 10, 100, 57.14, 100, 78.57 and 93.33% for CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets. Thus, the proposed method outperforms all other existing state-of-the-art works in terms of accuracy.
Autism screening is crucial for the early diagnosis of developmental disorder. The combination of machine learning (ML) and deep learning (DL) approaches are applied to produce memory efficient and less complex deep learning models for the computer aided diagnosis (CAD) of autism screening. In the proposed work, two novel integrated activation functions such as Li-ReLU and S-RReLU are developed to aid in the classification of autistic subjects and typical controls (TC) with maximum accuracy. As functional magnetic resonance imaging (fMRI) data is noisy, it undergoes temporal and spatial pre-processing. The artifact free high dimensional fMRI data is exercised for the process of feature extraction and dimensionality reduction employing group principal component analysis (Group PCA) and group independent component analysis (Group ICA). The selected features are normalized using 0–1 normalization and converted to tensors. Stacked autoencoder (SAE) utilizes the fMRI tensor data for the classification of autism spectrum disorder (ASD) subjects and typical controls. The proposed work is implemented and tested on all datasets of ABIDE I database. The validation accuracy of CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets are obtained as 100, 80, 71.43, 100, 85.71 and 93.33% using novel Li-ReLU activation function in the proposed system. With the help of new activation function called S-RReLU, the proposed system achieves validation accuracy of about 10, 100, 57.14, 100, 78.57 and 93.33% for CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets. Thus, the proposed method outperforms all other existing state-of-the-art works in terms of accuracy.
Author Dejey
M, Kaviya Elakkiya
Author_xml – sequence: 1
  givenname: Kaviya Elakkiya
  orcidid: 0000-0003-0607-3422
  surname: M
  fullname: M, Kaviya Elakkiya
  email: kaviya.m@auttvl.ac.in
  organization: Department of Computer Science and Engineering, Anna University Regional Campus – Tirunelveli
– sequence: 2
  orcidid: 0000-0002-5173-4878
  surname: Dejey
  fullname: Dejey
  organization: Department of Computer Science and Engineering, Anna University Regional Campus – Tirunelveli
BookMark eNp9kM1KAzEURoNUsFVfwFXA9ejNZJKZWUrxDwou1HVIJ0mb2iY1yVR8e9OOILjoKoH7ne9ezgSNnHcaoSsCNwSgvo0ArCQFlLSAhnFWlCdoTCpKCwqsGaExtFUe84qeoUmMKwCoeMPGaP2aZPehFZZ98tp1XumAv2xaYud3eo2tS3oRZNonumR3MlnvsOldt_9EbHzAaamxsnLhfLQRe7PvsnGD41Z3KfSbPIw-5OILdGrkOurL3_ccvT_cv02fitnL4_P0blZ0lLSpILwG1tYtJ8a0lDVUzduKGlbzuZJEKwVGcQ5c16XRXErCKgm8rbID2qhK0XN0PfRug__sdUxi5fvg8kpRNpQTQltocqocUl3wMQZtxDbYjQzfgoDYWxWDVZGtioNVUWao-Qd1Nh2kpCDt-jhKBzTmPW6hw99VR6gfpoePog
CitedBy_id crossref_primary_10_1007_s00521_024_10770_6
crossref_primary_10_1016_j_eswa_2023_122102
Cites_doi 10.4236/ajcm.2014.42006
10.1007/978-1-4419-8065-6
10.1109/ACCESS.2019.2940198
10.1016/j.neuroimage.2014.07.051
10.1016/j.nicl.2017.08.017
10.1007/978-3-319-71210-9
10.1155/2018/5105709
10.1007/s11042-018-5625-1
10.1155/2012/961257
10.1016/j.nicl.2020.102181
10.1155/2021/1051172
10.33564/ijeast.2020.v04i12.054
10.1007/978-3-030-31756-0
10.13005/bpj/1748
10.3389/fnhum.2019.00164
10.1038/mp.2013.78
10.1109/ACCESS.2019.2936639
10.1007/s11831-019-09344-w
10.1007/s10462-020-09825-6
10.1007/s13312-010-0077-3
10.1007/s00702-014-1237-8
10.1007/s00521-019-04160-6
10.1002/ima.20166
10.3390/children7100182
10.1016/j.eswa.2020.114048
10.1016/j.engappai.2022.105034
10.20944/preprints202106.0252.v1
10.1109/IJCNN.2017.7965949
10.1109/ICACI.2018.8377471
10.1007/978-1-4939-5611-1
10.1109/ICCIC.2017.8524276
10.1109/SECON.2018.8479125
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-023-08565-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 17075
ExternalDocumentID 10_1007_s00521_023_08565_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-1670597961ff93583db943f576bda1edd0fd6606e72fe6aa154a069400538d4d3
IEDL.DBID 8FG
ISSN 0941-0643
IngestDate Sat Jul 26 02:20:09 EDT 2025
Tue Jul 01 03:04:43 EDT 2025
Thu Apr 24 23:04:19 EDT 2025
Fri Feb 21 02:42:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Group PCA
Stacked autoencoder
Functional MRI
Group ICA
Activation function
Autism spectrum disorder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1670597961ff93583db943f576bda1edd0fd6606e72fe6aa154a069400538d4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0607-3422
0000-0002-5173-4878
PQID 2836113908
PQPubID 2043988
PageCount 33
ParticipantIDs proquest_journals_2836113908
crossref_primary_10_1007_s00521_023_08565_2
crossref_citationtrail_10_1007_s00521_023_08565_2
springer_journals_10_1007_s00521_023_08565_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Daimiwal, Shriram (CR48) 2019; 12
Mahmoudi, Takerkart, Regragui (CR15) 2012; 2012
CR38
CR37
CR35
CR79
CR78
CR33
CR77
CR32
CR76
Rakic, Cabezas, Kushibar (CR10) 2020; 25
Al-Zubaidi, Mertins, Heldmann (CR14) 2019; 13
CR31
CR75
CR74
CR73
CR72
CR71
Mostafa, Yin, Wu, Murali, Narasimhan, Rajasekaran, Skums, Zelikovsky (CR22) 2020
Soniya Paul, Singh (CR19) 2015
Ambrosino, Bos, Van Raalten (CR52) 2014; 121
Heinsfeld, Franco, Craddock (CR25) 2018; 17
CR4
CR6
Pedrycz, Chen (CR17) 2020
CR5
CR8
CR7
CR9
CR47
Fan, Wang, Jiang (CR20) 2021; 2021
Maguolo, Nanni, Ghidoni (CR58) 2021; 166
CR45
CR89
CR44
CR88
CR43
CR87
CR42
CR86
Sarveniazi (CR36) 2014; 4
CR41
CR85
CR40
CR84
CR83
CR82
CR81
Sharma, Sharma, Athaiya (CR70) 2020; 4
CR80
Dargan, Kumar, Ayyagari, Kumar (CR18) 2020; 27
Lazar (CR34) 2008
Behroozi, Daliri, Boyaci (CR39) 2011; 2
Wang, Xiao, Wang, Wu (CR28) 2019; 7
Gao, Zhu, Zhu, Huang, Han, Gromiha (CR61) 2014
Do, Yang, Yen, Park (CR56) 2014
CR16
CR59
CR13
CR57
CR12
Sewani, Kashef (CR26) 2020; 7
CR55
CR54
Matson (CR3) 2017
CR53
Xiao, Wang, Jia (CR11) 2018; 77
CR51
CR50
Kaviya Elakkiya, Dejey (CR95) 2022; 114
CR93
CR92
CR91
Khan, Sohail, Zahoora (CR64) 2020; 53
CR90
Mostafa, Tang, Wu (CR30) 2017; 7
Poon, Larosa, Shashidhar Pai (CR1) 2010; 47
Smith, Hyvärinen, Varoquaux (CR49) 2014; 101
Matson, Sturney (CR2) 2011
Kriegeskorte, Bodurka, Bandettini (CR46) 2008; 18
CR27
Goodfellow, Bengio, Courville (CR60) 2016
CR69
CR24
CR68
CR23
CR67
CR66
CR65
CR63
CR62
Di Martino, Yan, Li (CR29) 2014; 19
Baldominos, Saez, Isasi (CR94) 2020; 32
Liu, Bao, Han (CR21) 2018; 2018
8565_CR33
8565_CR77
8565_CR78
8565_CR31
8565_CR75
A Baldominos (8565_CR94) 2020; 32
A Mahmoudi (8565_CR15) 2012; 2012
G Liu (8565_CR21) 2018; 2018
8565_CR32
8565_CR76
8565_CR37
8565_CR38
8565_CR35
8565_CR79
LN Do (8565_CR56) 2014
S Dargan (8565_CR18) 2020; 27
A Di Martino (8565_CR29) 2014; 19
SM Smith (8565_CR49) 2014; 101
8565_CR73
8565_CR74
8565_CR71
8565_CR72
8565_CR66
8565_CR23
8565_CR67
H Sewani (8565_CR26) 2020; 7
8565_CR65
8565_CR27
S Mostafa (8565_CR22) 2020
8565_CR24
8565_CR68
G Maguolo (8565_CR58) 2021; 166
8565_CR69
I Goodfellow (8565_CR60) 2016
A Khan (8565_CR64) 2020; 53
N Lazar (8565_CR34) 2008
Z Xiao (8565_CR11) 2018; 77
A Al-Zubaidi (8565_CR14) 2019; 13
JL Matson (8565_CR2) 2011
M Behroozi (8565_CR39) 2011; 2
8565_CR62
8565_CR63
AS Heinsfeld (8565_CR25) 2018; 17
8565_CR55
8565_CR12
Y Gao (8565_CR61) 2014
8565_CR53
8565_CR54
M Rakic (8565_CR10) 2020; 25
8565_CR59
8565_CR16
8565_CR13
S Ambrosino (8565_CR52) 2014; 121
8565_CR57
8565_CR4
JL Matson (8565_CR3) 2017
8565_CR5
8565_CR6
8565_CR7
A Sarveniazi (8565_CR36) 2014; 4
8565_CR8
8565_CR9
X Fan (8565_CR20) 2021; 2021
8565_CR91
8565_CR92
8565_CR90
8565_CR51
8565_CR93
8565_CR50
8565_CR44
8565_CR88
8565_CR45
8565_CR89
8565_CR42
8565_CR86
8565_CR43
8565_CR87
S Soniya Paul (8565_CR19) 2015
C Wang (8565_CR28) 2019; 7
8565_CR47
S Sharma (8565_CR70) 2020; 4
W Pedrycz (8565_CR17) 2020
M Kaviya Elakkiya (8565_CR95) 2022; 114
S Mostafa (8565_CR30) 2017; 7
N Kriegeskorte (8565_CR46) 2008; 18
JK Poon (8565_CR1) 2010; 47
8565_CR80
8565_CR81
N Daimiwal (8565_CR48) 2019; 12
8565_CR40
8565_CR84
8565_CR41
8565_CR85
8565_CR82
8565_CR83
References_xml – ident: CR45
– start-page: 71
  year: 2014
  end-page: 76
  ident: CR56
  article-title: A robust feature selection method for classification of cognitive states with fMRI data
  publication-title: Advanced in computer science and its applications lecture notes in electrical engineering
– volume: 4
  start-page: 55
  year: 2014
  end-page: 72
  ident: CR36
  article-title: An actual survey of dimensionality reduction
  publication-title: Am J Comput Math
  doi: 10.4236/ajcm.2014.42006
– year: 2016
  ident: CR60
  publication-title: Deep Learning
– start-page: 1
  year: 2015
  end-page: 6
  ident: CR19
  publication-title: A review on advances in deep learning. 2015 IEEE workshop on computational intelligence: theories, applications and future directions (WCI)
– ident: CR68
– ident: CR74
– ident: CR93
– ident: CR4
– ident: CR87
– ident: CR16
– ident: CR51
– year: 2011
  ident: CR2
  publication-title: International handbook of autism and pervasive developmental disorders
  doi: 10.1007/978-1-4419-8065-6
– ident: CR12
– volume: 7
  start-page: 128474
  year: 2017
  end-page: 128486
  ident: CR30
  article-title: Diagnosis of autism spectrum disorder based on eigenvalues of brain networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940198
– volume: 101
  start-page: 738
  year: 2014
  end-page: 749
  ident: CR49
  article-title: Group-PCA for very large fMRI Datasets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.051
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: CR25
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2017.08.017
– ident: CR35
– ident: CR54
– ident: CR80
– ident: CR77
– ident: CR8
– start-page: 10
  year: 2014
  end-page: 14
  ident: CR61
  article-title: Extract features using stacked denoised autoencoder
  publication-title: Intelligent computing in bioinformatics lecture notes in computer sciences
– ident: CR84
– ident: CR42
– year: 2017
  ident: CR3
  publication-title: Handbook of childhood psychopathology and developmental disabilities treatment
  doi: 10.1007/978-3-319-71210-9
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR21
  article-title: A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis
  publication-title: Math Probl Eng
  doi: 10.1155/2018/5105709
– ident: CR71
– year: 2008
  ident: CR34
  publication-title: The statistical analysis of functional MRI data
– volume: 77
  start-page: 22809
  year: 2018
  end-page: 22820
  ident: CR11
  article-title: SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5625-1
– ident: CR67
– ident: CR75
– ident: CR92
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 15
  ident: CR15
  article-title: Multivoxel pattern analysis for fMRI data: a review, computational and mathematical methods in medicine
  publication-title: Comput Math Methods Med
  doi: 10.1155/2012/961257
– ident: CR88
– ident: CR50
– ident: CR9
– ident: CR57
– ident: CR32
– ident: CR78
– ident: CR85
– ident: CR5
– volume: 25
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR10
  article-title: Improving the detection of autism spectrum disorder by combining structural and functional MRI information
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2020.102181
– year: 2020
  ident: CR22
  article-title: Autoencoder based methods for diagnosis of autism spectrum disorder
  publication-title: Măndoiu I computational advances in bio and medical sciences
– ident: CR81
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR20
  article-title: An improved stacked autoencoder for metabolomic data classification
  publication-title: Intell Neuroscience
  doi: 10.1155/2021/1051172
– volume: 4
  start-page: 310
  year: 2020
  end-page: 316
  ident: CR70
  article-title: Activation functions in neural networks
  publication-title: Int J Eng Appl Sci Technol
  doi: 10.33564/ijeast.2020.v04i12.054
– year: 2020
  ident: CR17
  publication-title: Deep learning: concepts and architectures
  doi: 10.1007/978-3-030-31756-0
– volume: 2
  start-page: 67
  year: 2011
  end-page: 74
  ident: CR39
  article-title: Statistical analysis method for the fMRI data
  publication-title: Basic Clin Neurosci
– ident: CR43
– volume: 12
  start-page: 1193
  year: 2019
  end-page: 1200
  ident: CR48
  article-title: Power spectral density analysis of time series of pixel of functional magnetic resonance image for different motor activity
  publication-title: Biomed Pharmacol J
  doi: 10.13005/bpj/1748
– ident: CR66
– ident: CR91
– volume: 13
  start-page: 1
  year: 2019
  end-page: 14
  ident: CR14
  article-title: Machine learning based classification of resting-state fMRI features exemplified by metabolic state (Hunger/Satiety)
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2019.00164
– ident: CR47
– ident: CR72
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: CR29
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2013.78
– ident: CR37
– ident: CR53
– ident: CR89
– volume: 7
  start-page: 118030
  year: 2019
  end-page: 118036
  ident: CR28
  article-title: Identification of autism based on SVM-RFE and stacked sparse auto-encoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936639
– ident: CR33
– ident: CR82
– volume: 27
  start-page: 1071
  year: 2020
  end-page: 1092
  ident: CR18
  article-title: A survey of deep learning and its applications: a new paradigm to machine learning
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-019-09344-w
– ident: CR6
– ident: CR79
– ident: CR86
– volume: 53
  start-page: 5455
  year: 2020
  end-page: 5516
  ident: CR64
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09825-6
– ident: CR40
– ident: CR63
– volume: 47
  start-page: 415
  year: 2010
  end-page: 422
  ident: CR1
  article-title: Developmental delay: timely identification and assessment
  publication-title: Indian Pediatr
  doi: 10.1007/s13312-010-0077-3
– ident: CR27
– ident: CR23
– ident: CR69
– ident: CR44
– ident: CR73
– ident: CR65
– ident: CR90
– volume: 121
  start-page: 1145
  year: 2014
  end-page: 1155
  ident: CR52
  article-title: Functional connectivity during cognitive control in children with autism spectrum disorder: an independent component analysis
  publication-title: J Neural Transm
  doi: 10.1007/s00702-014-1237-8
– ident: CR38
– volume: 32
  start-page: 519
  year: 2020
  end-page: 545
  ident: CR94
  article-title: On the automated, evolutionary design of neural networks: past, present, and future
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-019-04160-6
– ident: CR31
– ident: CR13
– volume: 18
  start-page: 345
  year: 2008
  end-page: 349
  ident: CR46
  article-title: Artifactual time-course correlations in echo-planar fMRI with implications for studies of brain function
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20166
– volume: 7
  start-page: 1
  year: 2020
  end-page: 18
  ident: CR26
  article-title: An autoencoder-based deep learning classifier for efficient diagnosis of autism
  publication-title: Children
  doi: 10.3390/children7100182
– ident: CR55
– ident: CR7
– volume: 166
  start-page: 1
  year: 2021
  end-page: 8
  ident: CR58
  article-title: Ensemble of convolutional neural networks trained with different activation functions
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114048
– ident: CR59
– ident: CR76
– ident: CR83
– volume: 114
  start-page: 1
  year: 2022
  end-page: 28
  ident: CR95
  article-title: RGM-GP with novel kernels coupled deep learning model for autism screening
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105034
– ident: CR41
– ident: CR62
– ident: CR24
– ident: 8565_CR54
– start-page: 1
  volume-title: A review on advances in deep learning. 2015 IEEE workshop on computational intelligence: theories, applications and future directions (WCI)
  year: 2015
  ident: 8565_CR19
– volume: 4
  start-page: 310
  year: 2020
  ident: 8565_CR70
  publication-title: Int J Eng Appl Sci Technol
  doi: 10.33564/ijeast.2020.v04i12.054
– volume: 2021
  start-page: 1
  year: 2021
  ident: 8565_CR20
  publication-title: Intell Neuroscience
  doi: 10.1155/2021/1051172
– ident: 8565_CR83
– volume: 2018
  start-page: 1
  year: 2018
  ident: 8565_CR21
  publication-title: Math Probl Eng
  doi: 10.1155/2018/5105709
– ident: 8565_CR73
– volume: 32
  start-page: 519
  year: 2020
  ident: 8565_CR94
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-019-04160-6
– ident: 8565_CR12
– volume: 7
  start-page: 128474
  year: 2017
  ident: 8565_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940198
– ident: 8565_CR35
– volume: 101
  start-page: 738
  year: 2014
  ident: 8565_CR49
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.051
– ident: 8565_CR9
– volume: 25
  start-page: 1
  year: 2020
  ident: 8565_CR10
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2020.102181
– ident: 8565_CR41
– ident: 8565_CR38
– ident: 8565_CR87
– volume: 114
  start-page: 1
  year: 2022
  ident: 8565_CR95
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105034
– ident: 8565_CR45
– ident: 8565_CR68
– ident: 8565_CR93
– volume: 47
  start-page: 415
  year: 2010
  ident: 8565_CR1
  publication-title: Indian Pediatr
  doi: 10.1007/s13312-010-0077-3
– ident: 8565_CR5
– ident: 8565_CR77
  doi: 10.20944/preprints202106.0252.v1
– volume: 19
  start-page: 659
  year: 2014
  ident: 8565_CR29
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2013.78
– ident: 8565_CR51
– ident: 8565_CR76
– ident: 8565_CR55
– volume: 18
  start-page: 345
  year: 2008
  ident: 8565_CR46
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20166
– ident: 8565_CR82
– volume: 7
  start-page: 118030
  year: 2019
  ident: 8565_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936639
– ident: 8565_CR13
– volume: 2012
  start-page: 1
  year: 2012
  ident: 8565_CR15
  publication-title: Comput Math Methods Med
  doi: 10.1155/2012/961257
– ident: 8565_CR86
– volume: 121
  start-page: 1145
  year: 2014
  ident: 8565_CR52
  publication-title: J Neural Transm
  doi: 10.1007/s00702-014-1237-8
– ident: 8565_CR16
– ident: 8565_CR40
– ident: 8565_CR44
– ident: 8565_CR69
– ident: 8565_CR37
– ident: 8565_CR71
– ident: 8565_CR92
– ident: 8565_CR65
– ident: 8565_CR50
  doi: 10.1109/IJCNN.2017.7965949
– ident: 8565_CR24
  doi: 10.1109/ICACI.2018.8377471
– ident: 8565_CR6
– start-page: 10
  volume-title: Intelligent computing in bioinformatics lecture notes in computer sciences
  year: 2014
  ident: 8565_CR61
– ident: 8565_CR79
– ident: 8565_CR75
– ident: 8565_CR27
– ident: 8565_CR81
– start-page: 71
  volume-title: Advanced in computer science and its applications lecture notes in electrical engineering
  year: 2014
  ident: 8565_CR56
– ident: 8565_CR85
– volume-title: Măndoiu I computational advances in bio and medical sciences
  year: 2020
  ident: 8565_CR22
– ident: 8565_CR33
– ident: 8565_CR66
– ident: 8565_CR91
– ident: 8565_CR43
– ident: 8565_CR59
  doi: 10.1007/978-1-4939-5611-1
– ident: 8565_CR89
– ident: 8565_CR62
– ident: 8565_CR47
– ident: 8565_CR72
– volume: 4
  start-page: 55
  year: 2014
  ident: 8565_CR36
  publication-title: Am J Comput Math
  doi: 10.4236/ajcm.2014.42006
– volume: 166
  start-page: 1
  year: 2021
  ident: 8565_CR58
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114048
– volume: 2
  start-page: 67
  year: 2011
  ident: 8565_CR39
  publication-title: Basic Clin Neurosci
– ident: 8565_CR7
– ident: 8565_CR78
– ident: 8565_CR53
– ident: 8565_CR32
– volume-title: The statistical analysis of functional MRI data
  year: 2008
  ident: 8565_CR34
– ident: 8565_CR23
  doi: 10.1109/ICCIC.2017.8524276
– ident: 8565_CR74
– ident: 8565_CR80
– ident: 8565_CR57
– ident: 8565_CR84
– volume: 27
  start-page: 1071
  year: 2020
  ident: 8565_CR18
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-019-09344-w
– volume-title: Deep Learning
  year: 2016
  ident: 8565_CR60
– volume: 12
  start-page: 1193
  year: 2019
  ident: 8565_CR48
  publication-title: Biomed Pharmacol J
  doi: 10.13005/bpj/1748
– ident: 8565_CR31
  doi: 10.1109/SECON.2018.8479125
– ident: 8565_CR42
– volume-title: Deep learning: concepts and architectures
  year: 2020
  ident: 8565_CR17
  doi: 10.1007/978-3-030-31756-0
– volume: 17
  start-page: 16
  year: 2018
  ident: 8565_CR25
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2017.08.017
– ident: 8565_CR8
– ident: 8565_CR88
– ident: 8565_CR63
– volume: 13
  start-page: 1
  year: 2019
  ident: 8565_CR14
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2019.00164
– volume: 77
  start-page: 22809
  year: 2018
  ident: 8565_CR11
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5625-1
– ident: 8565_CR67
– volume-title: International handbook of autism and pervasive developmental disorders
  year: 2011
  ident: 8565_CR2
  doi: 10.1007/978-1-4419-8065-6
– ident: 8565_CR90
– volume-title: Handbook of childhood psychopathology and developmental disabilities treatment
  year: 2017
  ident: 8565_CR3
  doi: 10.1007/978-3-319-71210-9
– volume: 7
  start-page: 1
  year: 2020
  ident: 8565_CR26
  publication-title: Children
  doi: 10.3390/children7100182
– volume: 53
  start-page: 5455
  year: 2020
  ident: 8565_CR64
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09825-6
– ident: 8565_CR4
SSID ssj0004685
Score 2.3339999
Snippet Autism screening is crucial for the early diagnosis of developmental disorder. The combination of machine learning (ML) and deep learning (DL) approaches are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17043
SubjectTerms Accuracy
Artificial Intelligence
Autism
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Deep learning
Diagnosis
Feature extraction
Image Processing and Computer Vision
Independent component analysis
Machine learning
Magnetic resonance imaging
Mathematical analysis
Original Article
Principal components analysis
Probability and Statistics in Computer Science
Screening
Tensors
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCy8EYWCPLCBpTgvJyNCVBUSTFTqFtk5W6rUJoi0_H7OjpMCAiRmOx7ukfvOvu-OkGsltQhVohgAOnmcR4rlEQeWJSYUIhFaOob303M6mcaPs2TmSWFNV-3ePUm6P3VPdrM3mJj6hhFDmGBrs7bJToK5u7XraXj3iQ3pBnFi3mJreuLIU2V-PuNrONpgzG_Poi7ajA_InoeJ9K7V6yHZ0tUR2e9GMFDvkcdkgWAR_RCoXK9q25MScNXerdKqftcL2neDwB1lN8mM2mDm7I0iZKUIASm0FXfzhtbGnjVvltSRMN_WSwq-Q-cJmY4fXu4nzA9QYCV61orxVCB6EnnKjbHvnRGoPI4MphgKJNcAgYEUMxhUl9GplAinpCXCWs_MIIbolAyqutJnhCY5poKgpIgRf0iuMsDQFphSilyJWIsh4Z0ci9J3F7dDLhZF3xfZyb5A2RdO9kU4JDf9N69tb40_d4869RTez5oCwVHKEcQG2ZDcdirbLP9-2vn_tl-Q3bC1GhbwERmg9PUlopGVunLG9wGM1tXJ
  priority: 102
  providerName: Springer Nature
Title Stacked autoencoder with novel integrated activation functions for the diagnosis of autism spectrum disorder
URI https://link.springer.com/article/10.1007/s00521-023-08565-2
https://www.proquest.com/docview/2836113908
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULl58G1EkPXjTRrqv7p4MGh7RSIyRBE-bdqebmACLAv5-p6ULaiKnTdpuD_PofNPOg5BLJbXwVKgYACp5kPiKJT4HFoe5J0QotLQZ3k_9qDcIHobh0F24zVxYZXkm2oMaiszckd-gGYw4wpVmfDv9YKZrlHlddS00tkmVo6UxEh53uj_yIm1LTvRgTHRP4LukGZs6Z-5DcdTzGYIOE-n12zCt0eafB1Jrdzr7ZNcBRtpacviAbOnJIdkrmzFQp5tHZISwETUSqFzMC1OdEnDW3LLSSfGlR3RVFwJXZGVPM2rMmpU8iuCVIhiksIy9e5_RIjd7vc_G1KZjfi7GFFytzmMy6LRf73vMtVJgGerYnPFIII4SScTz3Lx8-qCSwM_R2VAguQZo5hChL4OMy3UkJQIraVJijY7GEIB_QiqTYqJPCQ0TdApBSREgEpFcxYBGrplnUiRKBFrUCC_pmGauzrhpdzFKVxWSLe1TpH1qaZ96NXK1-me6rLKxcXW9ZE_qNG6WruWjRq5Llq2n_9_tbPNu52THW0oJa_I6qSC19QXikLlqWGFrkGqr-_bYxu9du__8gqMDr_UNlBHc_w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHODCjiirD3ACiyZO4uSAEAJKWU8gcQt2xpGQSgO0gPgpvpGxk7SABDeucTJSxs8zz_YsAJtaGenrUHNEWuRBIjRPhIc8DnNfylAa5TK8L6-i9k1wdhvejsBHnQtjwyprm-gMNRaZPSPfJTcYeURXmvH-4xO3XaPs7WrdQqOExbl5f6MtW2_v9Ijmd8v3W8fXh21edRXgGcGtz71IEqWQSeTlub0EFKiTQOTEuzUqzyA2c4yI1tM_5CZSijiGstmhFq4xBihI7iiMB0IkNoQwbp18ycN0LUBpx2SjiQJRJem4VD17_kpPfcGJ5NjIsu-OcMhuf1zIOj_XmoGpiqCygxJRszBiunMwXTd_YJUtmIcO0VSyAMjUS7-w1TCRRu2pLusWr6bDBnUo6I2s7qHGrBt1SGdElhmRT4ZlrN99jxW5lXXfe2Au_fP55YFhVRt0AW7-RcmLMNYtumYJWJjQJhS1kgExH-XpGMmpNvNMyUTLwMgGeLUe06yqa27ba3TSQUVmp_uUdJ863ad-A7YH3zyWVT3-fHu1np60WuG9dIjHBuzUUzYc_l3a8t_SNmCifX15kV6cXp2vwKRfIoY3vVUYI82bNeJAfb3ugMfg7r-R_gll7hSl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA7coNrSV9rjBEzjNXFg0m5VMicS0tZOrOP346SPDQRInJP6YMf158SfTcilFIq7MpAOADq5H3vSiT0GThRol_OAK2EZ3s-DsD_0H0bBaIXFb6vdqyfJgtNgujSleXsGul0T38xtJqbBrucgZDB1WutkA3_HzBR1Dd3uCjPSDuXEHMbU9_heSZv5WcbX0LTEm9-eSG3k6e2S7RIy0m5h4z2yptJ9slONY6Cldx6QCQJH9EmgYpFnpj8l4Kq5Z6Vp9qEmtO4MgTvG1VQzagKbPXsU4StFOEihqL57m9NMG1lv8ym1hMz3xZRC2a3zkAx7d683faccpuCM0ctyh4UckRSPQ6a1efv0QMa-pzHdkCCYAuhoCDGbQdNpFQqB0EoYUqzx0gh88I5II81SdUxoEGNaCFJwH7GIYDICDHMdPRY8ltxXvElYpcdkXHYaNwMvJkndI9nqPkHdJ1b3idskV_U3s6LPxp-7W5V5ktLn5gkCpZAhoO1ETXJdmWy5_Lu0k_9tvyCbL7e95Ol-8HhKttziADkd1iINNIQ6Q5CSy3N7Dj8BdTTc-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+autoencoder+with+novel+integrated+activation+functions+for+the+diagnosis+of+autism+spectrum+disorder&rft.jtitle=Neural+computing+%26+applications&rft.au=M%2C+Kaviya+Elakkiya&rft.au=Dejey&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=23&rft.spage=17043&rft.epage=17075&rft_id=info:doi/10.1007%2Fs00521-023-08565-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon