Stacked autoencoder with novel integrated activation functions for the diagnosis of autism spectrum disorder
Autism screening is crucial for the early diagnosis of developmental disorder. The combination of machine learning (ML) and deep learning (DL) approaches are applied to produce memory efficient and less complex deep learning models for the computer aided diagnosis (CAD) of autism screening. In the p...
Saved in:
Published in | Neural computing & applications Vol. 35; no. 23; pp. 17043 - 17075 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.08.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0941-0643 1433-3058 |
DOI | 10.1007/s00521-023-08565-2 |
Cover
Loading…
Abstract | Autism screening is crucial for the early diagnosis of developmental disorder. The combination of machine learning (ML) and deep learning (DL) approaches are applied to produce memory efficient and less complex deep learning models for the computer aided diagnosis (CAD) of autism screening. In the proposed work, two novel integrated activation functions such as Li-ReLU and S-RReLU are developed to aid in the classification of autistic subjects and typical controls (TC) with maximum accuracy. As functional magnetic resonance imaging (fMRI) data is noisy, it undergoes temporal and spatial pre-processing. The artifact free high dimensional fMRI data is exercised for the process of feature extraction and dimensionality reduction employing group principal component analysis (Group PCA) and group independent component analysis (Group ICA). The selected features are normalized using 0–1 normalization and converted to tensors. Stacked autoencoder (SAE) utilizes the fMRI tensor data for the classification of autism spectrum disorder (ASD) subjects and typical controls. The proposed work is implemented and tested on all datasets of ABIDE I database. The validation accuracy of CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets are obtained as 100, 80, 71.43, 100, 85.71 and 93.33% using novel Li-ReLU activation function in the proposed system. With the help of new activation function called S-RReLU, the proposed system achieves validation accuracy of about 10, 100, 57.14, 100, 78.57 and 93.33% for CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets. Thus, the proposed method outperforms all other existing state-of-the-art works in terms of accuracy. |
---|---|
AbstractList | Autism screening is crucial for the early diagnosis of developmental disorder. The combination of machine learning (ML) and deep learning (DL) approaches are applied to produce memory efficient and less complex deep learning models for the computer aided diagnosis (CAD) of autism screening. In the proposed work, two novel integrated activation functions such as Li-ReLU and S-RReLU are developed to aid in the classification of autistic subjects and typical controls (TC) with maximum accuracy. As functional magnetic resonance imaging (fMRI) data is noisy, it undergoes temporal and spatial pre-processing. The artifact free high dimensional fMRI data is exercised for the process of feature extraction and dimensionality reduction employing group principal component analysis (Group PCA) and group independent component analysis (Group ICA). The selected features are normalized using 0–1 normalization and converted to tensors. Stacked autoencoder (SAE) utilizes the fMRI tensor data for the classification of autism spectrum disorder (ASD) subjects and typical controls. The proposed work is implemented and tested on all datasets of ABIDE I database. The validation accuracy of CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets are obtained as 100, 80, 71.43, 100, 85.71 and 93.33% using novel Li-ReLU activation function in the proposed system. With the help of new activation function called S-RReLU, the proposed system achieves validation accuracy of about 10, 100, 57.14, 100, 78.57 and 93.33% for CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets. Thus, the proposed method outperforms all other existing state-of-the-art works in terms of accuracy. Autism screening is crucial for the early diagnosis of developmental disorder. The combination of machine learning (ML) and deep learning (DL) approaches are applied to produce memory efficient and less complex deep learning models for the computer aided diagnosis (CAD) of autism screening. In the proposed work, two novel integrated activation functions such as Li-ReLU and S-RReLU are developed to aid in the classification of autistic subjects and typical controls (TC) with maximum accuracy. As functional magnetic resonance imaging (fMRI) data is noisy, it undergoes temporal and spatial pre-processing. The artifact free high dimensional fMRI data is exercised for the process of feature extraction and dimensionality reduction employing group principal component analysis (Group PCA) and group independent component analysis (Group ICA). The selected features are normalized using 0–1 normalization and converted to tensors. Stacked autoencoder (SAE) utilizes the fMRI tensor data for the classification of autism spectrum disorder (ASD) subjects and typical controls. The proposed work is implemented and tested on all datasets of ABIDE I database. The validation accuracy of CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets are obtained as 100, 80, 71.43, 100, 85.71 and 93.33% using novel Li-ReLU activation function in the proposed system. With the help of new activation function called S-RReLU, the proposed system achieves validation accuracy of about 10, 100, 57.14, 100, 78.57 and 93.33% for CMU_a, KKI, UCLA_2, OLIN, Yale and NYU datasets. Thus, the proposed method outperforms all other existing state-of-the-art works in terms of accuracy. |
Author | Dejey M, Kaviya Elakkiya |
Author_xml | – sequence: 1 givenname: Kaviya Elakkiya orcidid: 0000-0003-0607-3422 surname: M fullname: M, Kaviya Elakkiya email: kaviya.m@auttvl.ac.in organization: Department of Computer Science and Engineering, Anna University Regional Campus – Tirunelveli – sequence: 2 orcidid: 0000-0002-5173-4878 surname: Dejey fullname: Dejey organization: Department of Computer Science and Engineering, Anna University Regional Campus – Tirunelveli |
BookMark | eNp9kM1KAzEURoNUsFVfwFXA9ejNZJKZWUrxDwou1HVIJ0mb2iY1yVR8e9OOILjoKoH7ne9ezgSNnHcaoSsCNwSgvo0ArCQFlLSAhnFWlCdoTCpKCwqsGaExtFUe84qeoUmMKwCoeMPGaP2aZPehFZZ98tp1XumAv2xaYud3eo2tS3oRZNonumR3MlnvsOldt_9EbHzAaamxsnLhfLQRe7PvsnGD41Z3KfSbPIw-5OILdGrkOurL3_ccvT_cv02fitnL4_P0blZ0lLSpILwG1tYtJ8a0lDVUzduKGlbzuZJEKwVGcQ5c16XRXErCKgm8rbID2qhK0XN0PfRug__sdUxi5fvg8kpRNpQTQltocqocUl3wMQZtxDbYjQzfgoDYWxWDVZGtioNVUWao-Qd1Nh2kpCDt-jhKBzTmPW6hw99VR6gfpoePog |
CitedBy_id | crossref_primary_10_1007_s00521_024_10770_6 crossref_primary_10_1016_j_eswa_2023_122102 |
Cites_doi | 10.4236/ajcm.2014.42006 10.1007/978-1-4419-8065-6 10.1109/ACCESS.2019.2940198 10.1016/j.neuroimage.2014.07.051 10.1016/j.nicl.2017.08.017 10.1007/978-3-319-71210-9 10.1155/2018/5105709 10.1007/s11042-018-5625-1 10.1155/2012/961257 10.1016/j.nicl.2020.102181 10.1155/2021/1051172 10.33564/ijeast.2020.v04i12.054 10.1007/978-3-030-31756-0 10.13005/bpj/1748 10.3389/fnhum.2019.00164 10.1038/mp.2013.78 10.1109/ACCESS.2019.2936639 10.1007/s11831-019-09344-w 10.1007/s10462-020-09825-6 10.1007/s13312-010-0077-3 10.1007/s00702-014-1237-8 10.1007/s00521-019-04160-6 10.1002/ima.20166 10.3390/children7100182 10.1016/j.eswa.2020.114048 10.1016/j.engappai.2022.105034 10.20944/preprints202106.0252.v1 10.1109/IJCNN.2017.7965949 10.1109/ICACI.2018.8377471 10.1007/978-1-4939-5611-1 10.1109/ICCIC.2017.8524276 10.1109/SECON.2018.8479125 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00521-023-08565-2 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 17075 |
ExternalDocumentID | 10_1007_s00521_023_08565_2 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-1670597961ff93583db943f576bda1edd0fd6606e72fe6aa154a069400538d4d3 |
IEDL.DBID | 8FG |
ISSN | 0941-0643 |
IngestDate | Sat Jul 26 02:20:09 EDT 2025 Tue Jul 01 03:04:43 EDT 2025 Thu Apr 24 23:04:19 EDT 2025 Fri Feb 21 02:42:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Group PCA Stacked autoencoder Functional MRI Group ICA Activation function Autism spectrum disorder |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-1670597961ff93583db943f576bda1edd0fd6606e72fe6aa154a069400538d4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0607-3422 0000-0002-5173-4878 |
PQID | 2836113908 |
PQPubID | 2043988 |
PageCount | 33 |
ParticipantIDs | proquest_journals_2836113908 crossref_primary_10_1007_s00521_023_08565_2 crossref_citationtrail_10_1007_s00521_023_08565_2 springer_journals_10_1007_s00521_023_08565_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230800 2023-08-00 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 8 year: 2023 text: 20230800 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Daimiwal, Shriram (CR48) 2019; 12 Mahmoudi, Takerkart, Regragui (CR15) 2012; 2012 CR38 CR37 CR35 CR79 CR78 CR33 CR77 CR32 CR76 Rakic, Cabezas, Kushibar (CR10) 2020; 25 Al-Zubaidi, Mertins, Heldmann (CR14) 2019; 13 CR31 CR75 CR74 CR73 CR72 CR71 Mostafa, Yin, Wu, Murali, Narasimhan, Rajasekaran, Skums, Zelikovsky (CR22) 2020 Soniya Paul, Singh (CR19) 2015 Ambrosino, Bos, Van Raalten (CR52) 2014; 121 Heinsfeld, Franco, Craddock (CR25) 2018; 17 CR4 CR6 Pedrycz, Chen (CR17) 2020 CR5 CR8 CR7 CR9 CR47 Fan, Wang, Jiang (CR20) 2021; 2021 Maguolo, Nanni, Ghidoni (CR58) 2021; 166 CR45 CR89 CR44 CR88 CR43 CR87 CR42 CR86 Sarveniazi (CR36) 2014; 4 CR41 CR85 CR40 CR84 CR83 CR82 CR81 Sharma, Sharma, Athaiya (CR70) 2020; 4 CR80 Dargan, Kumar, Ayyagari, Kumar (CR18) 2020; 27 Lazar (CR34) 2008 Behroozi, Daliri, Boyaci (CR39) 2011; 2 Wang, Xiao, Wang, Wu (CR28) 2019; 7 Gao, Zhu, Zhu, Huang, Han, Gromiha (CR61) 2014 Do, Yang, Yen, Park (CR56) 2014 CR16 CR59 CR13 CR57 CR12 Sewani, Kashef (CR26) 2020; 7 CR55 CR54 Matson (CR3) 2017 CR53 Xiao, Wang, Jia (CR11) 2018; 77 CR51 CR50 Kaviya Elakkiya, Dejey (CR95) 2022; 114 CR93 CR92 CR91 Khan, Sohail, Zahoora (CR64) 2020; 53 CR90 Mostafa, Tang, Wu (CR30) 2017; 7 Poon, Larosa, Shashidhar Pai (CR1) 2010; 47 Smith, Hyvärinen, Varoquaux (CR49) 2014; 101 Matson, Sturney (CR2) 2011 Kriegeskorte, Bodurka, Bandettini (CR46) 2008; 18 CR27 Goodfellow, Bengio, Courville (CR60) 2016 CR69 CR24 CR68 CR23 CR67 CR66 CR65 CR63 CR62 Di Martino, Yan, Li (CR29) 2014; 19 Baldominos, Saez, Isasi (CR94) 2020; 32 Liu, Bao, Han (CR21) 2018; 2018 8565_CR33 8565_CR77 8565_CR78 8565_CR31 8565_CR75 A Baldominos (8565_CR94) 2020; 32 A Mahmoudi (8565_CR15) 2012; 2012 G Liu (8565_CR21) 2018; 2018 8565_CR32 8565_CR76 8565_CR37 8565_CR38 8565_CR35 8565_CR79 LN Do (8565_CR56) 2014 S Dargan (8565_CR18) 2020; 27 A Di Martino (8565_CR29) 2014; 19 SM Smith (8565_CR49) 2014; 101 8565_CR73 8565_CR74 8565_CR71 8565_CR72 8565_CR66 8565_CR23 8565_CR67 H Sewani (8565_CR26) 2020; 7 8565_CR65 8565_CR27 S Mostafa (8565_CR22) 2020 8565_CR24 8565_CR68 G Maguolo (8565_CR58) 2021; 166 8565_CR69 I Goodfellow (8565_CR60) 2016 A Khan (8565_CR64) 2020; 53 N Lazar (8565_CR34) 2008 Z Xiao (8565_CR11) 2018; 77 A Al-Zubaidi (8565_CR14) 2019; 13 JL Matson (8565_CR2) 2011 M Behroozi (8565_CR39) 2011; 2 8565_CR62 8565_CR63 AS Heinsfeld (8565_CR25) 2018; 17 8565_CR55 8565_CR12 Y Gao (8565_CR61) 2014 8565_CR53 8565_CR54 M Rakic (8565_CR10) 2020; 25 8565_CR59 8565_CR16 8565_CR13 S Ambrosino (8565_CR52) 2014; 121 8565_CR57 8565_CR4 JL Matson (8565_CR3) 2017 8565_CR5 8565_CR6 8565_CR7 A Sarveniazi (8565_CR36) 2014; 4 8565_CR8 8565_CR9 X Fan (8565_CR20) 2021; 2021 8565_CR91 8565_CR92 8565_CR90 8565_CR51 8565_CR93 8565_CR50 8565_CR44 8565_CR88 8565_CR45 8565_CR89 8565_CR42 8565_CR86 8565_CR43 8565_CR87 S Soniya Paul (8565_CR19) 2015 C Wang (8565_CR28) 2019; 7 8565_CR47 S Sharma (8565_CR70) 2020; 4 W Pedrycz (8565_CR17) 2020 M Kaviya Elakkiya (8565_CR95) 2022; 114 S Mostafa (8565_CR30) 2017; 7 N Kriegeskorte (8565_CR46) 2008; 18 JK Poon (8565_CR1) 2010; 47 8565_CR80 8565_CR81 N Daimiwal (8565_CR48) 2019; 12 8565_CR40 8565_CR84 8565_CR41 8565_CR85 8565_CR82 8565_CR83 |
References_xml | – ident: CR45 – start-page: 71 year: 2014 end-page: 76 ident: CR56 article-title: A robust feature selection method for classification of cognitive states with fMRI data publication-title: Advanced in computer science and its applications lecture notes in electrical engineering – volume: 4 start-page: 55 year: 2014 end-page: 72 ident: CR36 article-title: An actual survey of dimensionality reduction publication-title: Am J Comput Math doi: 10.4236/ajcm.2014.42006 – year: 2016 ident: CR60 publication-title: Deep Learning – start-page: 1 year: 2015 end-page: 6 ident: CR19 publication-title: A review on advances in deep learning. 2015 IEEE workshop on computational intelligence: theories, applications and future directions (WCI) – ident: CR68 – ident: CR74 – ident: CR93 – ident: CR4 – ident: CR87 – ident: CR16 – ident: CR51 – year: 2011 ident: CR2 publication-title: International handbook of autism and pervasive developmental disorders doi: 10.1007/978-1-4419-8065-6 – ident: CR12 – volume: 7 start-page: 128474 year: 2017 end-page: 128486 ident: CR30 article-title: Diagnosis of autism spectrum disorder based on eigenvalues of brain networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940198 – volume: 101 start-page: 738 year: 2014 end-page: 749 ident: CR49 article-title: Group-PCA for very large fMRI Datasets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.051 – volume: 17 start-page: 16 year: 2018 end-page: 23 ident: CR25 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2017.08.017 – ident: CR35 – ident: CR54 – ident: CR80 – ident: CR77 – ident: CR8 – start-page: 10 year: 2014 end-page: 14 ident: CR61 article-title: Extract features using stacked denoised autoencoder publication-title: Intelligent computing in bioinformatics lecture notes in computer sciences – ident: CR84 – ident: CR42 – year: 2017 ident: CR3 publication-title: Handbook of childhood psychopathology and developmental disabilities treatment doi: 10.1007/978-3-319-71210-9 – volume: 2018 start-page: 1 year: 2018 end-page: 10 ident: CR21 article-title: A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis publication-title: Math Probl Eng doi: 10.1155/2018/5105709 – ident: CR71 – year: 2008 ident: CR34 publication-title: The statistical analysis of functional MRI data – volume: 77 start-page: 22809 year: 2018 end-page: 22820 ident: CR11 article-title: SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5625-1 – ident: CR67 – ident: CR75 – ident: CR92 – volume: 2012 start-page: 1 year: 2012 end-page: 15 ident: CR15 article-title: Multivoxel pattern analysis for fMRI data: a review, computational and mathematical methods in medicine publication-title: Comput Math Methods Med doi: 10.1155/2012/961257 – ident: CR88 – ident: CR50 – ident: CR9 – ident: CR57 – ident: CR32 – ident: CR78 – ident: CR85 – ident: CR5 – volume: 25 start-page: 1 year: 2020 end-page: 9 ident: CR10 article-title: Improving the detection of autism spectrum disorder by combining structural and functional MRI information publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2020.102181 – year: 2020 ident: CR22 article-title: Autoencoder based methods for diagnosis of autism spectrum disorder publication-title: Măndoiu I computational advances in bio and medical sciences – ident: CR81 – volume: 2021 start-page: 1 year: 2021 end-page: 9 ident: CR20 article-title: An improved stacked autoencoder for metabolomic data classification publication-title: Intell Neuroscience doi: 10.1155/2021/1051172 – volume: 4 start-page: 310 year: 2020 end-page: 316 ident: CR70 article-title: Activation functions in neural networks publication-title: Int J Eng Appl Sci Technol doi: 10.33564/ijeast.2020.v04i12.054 – year: 2020 ident: CR17 publication-title: Deep learning: concepts and architectures doi: 10.1007/978-3-030-31756-0 – volume: 2 start-page: 67 year: 2011 end-page: 74 ident: CR39 article-title: Statistical analysis method for the fMRI data publication-title: Basic Clin Neurosci – ident: CR43 – volume: 12 start-page: 1193 year: 2019 end-page: 1200 ident: CR48 article-title: Power spectral density analysis of time series of pixel of functional magnetic resonance image for different motor activity publication-title: Biomed Pharmacol J doi: 10.13005/bpj/1748 – ident: CR66 – ident: CR91 – volume: 13 start-page: 1 year: 2019 end-page: 14 ident: CR14 article-title: Machine learning based classification of resting-state fMRI features exemplified by metabolic state (Hunger/Satiety) publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2019.00164 – ident: CR47 – ident: CR72 – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: CR29 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol Psychiatry doi: 10.1038/mp.2013.78 – ident: CR37 – ident: CR53 – ident: CR89 – volume: 7 start-page: 118030 year: 2019 end-page: 118036 ident: CR28 article-title: Identification of autism based on SVM-RFE and stacked sparse auto-encoder publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936639 – ident: CR33 – ident: CR82 – volume: 27 start-page: 1071 year: 2020 end-page: 1092 ident: CR18 article-title: A survey of deep learning and its applications: a new paradigm to machine learning publication-title: Arch Computat Methods Eng doi: 10.1007/s11831-019-09344-w – ident: CR6 – ident: CR79 – ident: CR86 – volume: 53 start-page: 5455 year: 2020 end-page: 5516 ident: CR64 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09825-6 – ident: CR40 – ident: CR63 – volume: 47 start-page: 415 year: 2010 end-page: 422 ident: CR1 article-title: Developmental delay: timely identification and assessment publication-title: Indian Pediatr doi: 10.1007/s13312-010-0077-3 – ident: CR27 – ident: CR23 – ident: CR69 – ident: CR44 – ident: CR73 – ident: CR65 – ident: CR90 – volume: 121 start-page: 1145 year: 2014 end-page: 1155 ident: CR52 article-title: Functional connectivity during cognitive control in children with autism spectrum disorder: an independent component analysis publication-title: J Neural Transm doi: 10.1007/s00702-014-1237-8 – ident: CR38 – volume: 32 start-page: 519 year: 2020 end-page: 545 ident: CR94 article-title: On the automated, evolutionary design of neural networks: past, present, and future publication-title: Neural Comput & Applic doi: 10.1007/s00521-019-04160-6 – ident: CR31 – ident: CR13 – volume: 18 start-page: 345 year: 2008 end-page: 349 ident: CR46 article-title: Artifactual time-course correlations in echo-planar fMRI with implications for studies of brain function publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.20166 – volume: 7 start-page: 1 year: 2020 end-page: 18 ident: CR26 article-title: An autoencoder-based deep learning classifier for efficient diagnosis of autism publication-title: Children doi: 10.3390/children7100182 – ident: CR55 – ident: CR7 – volume: 166 start-page: 1 year: 2021 end-page: 8 ident: CR58 article-title: Ensemble of convolutional neural networks trained with different activation functions publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114048 – ident: CR59 – ident: CR76 – ident: CR83 – volume: 114 start-page: 1 year: 2022 end-page: 28 ident: CR95 article-title: RGM-GP with novel kernels coupled deep learning model for autism screening publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105034 – ident: CR41 – ident: CR62 – ident: CR24 – ident: 8565_CR54 – start-page: 1 volume-title: A review on advances in deep learning. 2015 IEEE workshop on computational intelligence: theories, applications and future directions (WCI) year: 2015 ident: 8565_CR19 – volume: 4 start-page: 310 year: 2020 ident: 8565_CR70 publication-title: Int J Eng Appl Sci Technol doi: 10.33564/ijeast.2020.v04i12.054 – volume: 2021 start-page: 1 year: 2021 ident: 8565_CR20 publication-title: Intell Neuroscience doi: 10.1155/2021/1051172 – ident: 8565_CR83 – volume: 2018 start-page: 1 year: 2018 ident: 8565_CR21 publication-title: Math Probl Eng doi: 10.1155/2018/5105709 – ident: 8565_CR73 – volume: 32 start-page: 519 year: 2020 ident: 8565_CR94 publication-title: Neural Comput & Applic doi: 10.1007/s00521-019-04160-6 – ident: 8565_CR12 – volume: 7 start-page: 128474 year: 2017 ident: 8565_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940198 – ident: 8565_CR35 – volume: 101 start-page: 738 year: 2014 ident: 8565_CR49 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.051 – ident: 8565_CR9 – volume: 25 start-page: 1 year: 2020 ident: 8565_CR10 publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2020.102181 – ident: 8565_CR41 – ident: 8565_CR38 – ident: 8565_CR87 – volume: 114 start-page: 1 year: 2022 ident: 8565_CR95 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105034 – ident: 8565_CR45 – ident: 8565_CR68 – ident: 8565_CR93 – volume: 47 start-page: 415 year: 2010 ident: 8565_CR1 publication-title: Indian Pediatr doi: 10.1007/s13312-010-0077-3 – ident: 8565_CR5 – ident: 8565_CR77 doi: 10.20944/preprints202106.0252.v1 – volume: 19 start-page: 659 year: 2014 ident: 8565_CR29 publication-title: Mol Psychiatry doi: 10.1038/mp.2013.78 – ident: 8565_CR51 – ident: 8565_CR76 – ident: 8565_CR55 – volume: 18 start-page: 345 year: 2008 ident: 8565_CR46 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.20166 – ident: 8565_CR82 – volume: 7 start-page: 118030 year: 2019 ident: 8565_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936639 – ident: 8565_CR13 – volume: 2012 start-page: 1 year: 2012 ident: 8565_CR15 publication-title: Comput Math Methods Med doi: 10.1155/2012/961257 – ident: 8565_CR86 – volume: 121 start-page: 1145 year: 2014 ident: 8565_CR52 publication-title: J Neural Transm doi: 10.1007/s00702-014-1237-8 – ident: 8565_CR16 – ident: 8565_CR40 – ident: 8565_CR44 – ident: 8565_CR69 – ident: 8565_CR37 – ident: 8565_CR71 – ident: 8565_CR92 – ident: 8565_CR65 – ident: 8565_CR50 doi: 10.1109/IJCNN.2017.7965949 – ident: 8565_CR24 doi: 10.1109/ICACI.2018.8377471 – ident: 8565_CR6 – start-page: 10 volume-title: Intelligent computing in bioinformatics lecture notes in computer sciences year: 2014 ident: 8565_CR61 – ident: 8565_CR79 – ident: 8565_CR75 – ident: 8565_CR27 – ident: 8565_CR81 – start-page: 71 volume-title: Advanced in computer science and its applications lecture notes in electrical engineering year: 2014 ident: 8565_CR56 – ident: 8565_CR85 – volume-title: Măndoiu I computational advances in bio and medical sciences year: 2020 ident: 8565_CR22 – ident: 8565_CR33 – ident: 8565_CR66 – ident: 8565_CR91 – ident: 8565_CR43 – ident: 8565_CR59 doi: 10.1007/978-1-4939-5611-1 – ident: 8565_CR89 – ident: 8565_CR62 – ident: 8565_CR47 – ident: 8565_CR72 – volume: 4 start-page: 55 year: 2014 ident: 8565_CR36 publication-title: Am J Comput Math doi: 10.4236/ajcm.2014.42006 – volume: 166 start-page: 1 year: 2021 ident: 8565_CR58 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114048 – volume: 2 start-page: 67 year: 2011 ident: 8565_CR39 publication-title: Basic Clin Neurosci – ident: 8565_CR7 – ident: 8565_CR78 – ident: 8565_CR53 – ident: 8565_CR32 – volume-title: The statistical analysis of functional MRI data year: 2008 ident: 8565_CR34 – ident: 8565_CR23 doi: 10.1109/ICCIC.2017.8524276 – ident: 8565_CR74 – ident: 8565_CR80 – ident: 8565_CR57 – ident: 8565_CR84 – volume: 27 start-page: 1071 year: 2020 ident: 8565_CR18 publication-title: Arch Computat Methods Eng doi: 10.1007/s11831-019-09344-w – volume-title: Deep Learning year: 2016 ident: 8565_CR60 – volume: 12 start-page: 1193 year: 2019 ident: 8565_CR48 publication-title: Biomed Pharmacol J doi: 10.13005/bpj/1748 – ident: 8565_CR31 doi: 10.1109/SECON.2018.8479125 – ident: 8565_CR42 – volume-title: Deep learning: concepts and architectures year: 2020 ident: 8565_CR17 doi: 10.1007/978-3-030-31756-0 – volume: 17 start-page: 16 year: 2018 ident: 8565_CR25 publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2017.08.017 – ident: 8565_CR8 – ident: 8565_CR88 – ident: 8565_CR63 – volume: 13 start-page: 1 year: 2019 ident: 8565_CR14 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2019.00164 – volume: 77 start-page: 22809 year: 2018 ident: 8565_CR11 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5625-1 – ident: 8565_CR67 – volume-title: International handbook of autism and pervasive developmental disorders year: 2011 ident: 8565_CR2 doi: 10.1007/978-1-4419-8065-6 – ident: 8565_CR90 – volume-title: Handbook of childhood psychopathology and developmental disabilities treatment year: 2017 ident: 8565_CR3 doi: 10.1007/978-3-319-71210-9 – volume: 7 start-page: 1 year: 2020 ident: 8565_CR26 publication-title: Children doi: 10.3390/children7100182 – volume: 53 start-page: 5455 year: 2020 ident: 8565_CR64 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09825-6 – ident: 8565_CR4 |
SSID | ssj0004685 |
Score | 2.3339999 |
Snippet | Autism screening is crucial for the early diagnosis of developmental disorder. The combination of machine learning (ML) and deep learning (DL) approaches are... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17043 |
SubjectTerms | Accuracy Artificial Intelligence Autism Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Deep learning Diagnosis Feature extraction Image Processing and Computer Vision Independent component analysis Machine learning Magnetic resonance imaging Mathematical analysis Original Article Principal components analysis Probability and Statistics in Computer Science Screening Tensors |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCy8EYWCPLCBpTgvJyNCVBUSTFTqFtk5W6rUJoi0_H7OjpMCAiRmOx7ukfvOvu-OkGsltQhVohgAOnmcR4rlEQeWJSYUIhFaOob303M6mcaPs2TmSWFNV-3ePUm6P3VPdrM3mJj6hhFDmGBrs7bJToK5u7XraXj3iQ3pBnFi3mJreuLIU2V-PuNrONpgzG_Poi7ajA_InoeJ9K7V6yHZ0tUR2e9GMFDvkcdkgWAR_RCoXK9q25MScNXerdKqftcL2neDwB1lN8mM2mDm7I0iZKUIASm0FXfzhtbGnjVvltSRMN_WSwq-Q-cJmY4fXu4nzA9QYCV61orxVCB6EnnKjbHvnRGoPI4MphgKJNcAgYEUMxhUl9GplAinpCXCWs_MIIbolAyqutJnhCY5poKgpIgRf0iuMsDQFphSilyJWIsh4Z0ci9J3F7dDLhZF3xfZyb5A2RdO9kU4JDf9N69tb40_d4869RTez5oCwVHKEcQG2ZDcdirbLP9-2vn_tl-Q3bC1GhbwERmg9PUlopGVunLG9wGM1tXJ priority: 102 providerName: Springer Nature |
Title | Stacked autoencoder with novel integrated activation functions for the diagnosis of autism spectrum disorder |
URI | https://link.springer.com/article/10.1007/s00521-023-08565-2 https://www.proquest.com/docview/2836113908 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULl58G1EkPXjTRrqv7p4MGh7RSIyRBE-bdqebmACLAv5-p6ULaiKnTdpuD_PofNPOg5BLJbXwVKgYACp5kPiKJT4HFoe5J0QotLQZ3k_9qDcIHobh0F24zVxYZXkm2oMaiszckd-gGYw4wpVmfDv9YKZrlHlddS00tkmVo6UxEh53uj_yIm1LTvRgTHRP4LukGZs6Z-5DcdTzGYIOE-n12zCt0eafB1Jrdzr7ZNcBRtpacviAbOnJIdkrmzFQp5tHZISwETUSqFzMC1OdEnDW3LLSSfGlR3RVFwJXZGVPM2rMmpU8iuCVIhiksIy9e5_RIjd7vc_G1KZjfi7GFFytzmMy6LRf73vMtVJgGerYnPFIII4SScTz3Lx8-qCSwM_R2VAguQZo5hChL4OMy3UkJQIraVJijY7GEIB_QiqTYqJPCQ0TdApBSREgEpFcxYBGrplnUiRKBFrUCC_pmGauzrhpdzFKVxWSLe1TpH1qaZ96NXK1-me6rLKxcXW9ZE_qNG6WruWjRq5Llq2n_9_tbPNu52THW0oJa_I6qSC19QXikLlqWGFrkGqr-_bYxu9du__8gqMDr_UNlBHc_w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHODCjiirD3ACiyZO4uSAEAJKWU8gcQt2xpGQSgO0gPgpvpGxk7SABDeucTJSxs8zz_YsAJtaGenrUHNEWuRBIjRPhIc8DnNfylAa5TK8L6-i9k1wdhvejsBHnQtjwyprm-gMNRaZPSPfJTcYeURXmvH-4xO3XaPs7WrdQqOExbl5f6MtW2_v9Ijmd8v3W8fXh21edRXgGcGtz71IEqWQSeTlub0EFKiTQOTEuzUqzyA2c4yI1tM_5CZSijiGstmhFq4xBihI7iiMB0IkNoQwbp18ycN0LUBpx2SjiQJRJem4VD17_kpPfcGJ5NjIsu-OcMhuf1zIOj_XmoGpiqCygxJRszBiunMwXTd_YJUtmIcO0VSyAMjUS7-w1TCRRu2pLusWr6bDBnUo6I2s7qHGrBt1SGdElhmRT4ZlrN99jxW5lXXfe2Au_fP55YFhVRt0AW7-RcmLMNYtumYJWJjQJhS1kgExH-XpGMmpNvNMyUTLwMgGeLUe06yqa27ba3TSQUVmp_uUdJ863ad-A7YH3zyWVT3-fHu1np60WuG9dIjHBuzUUzYc_l3a8t_SNmCifX15kV6cXp2vwKRfIoY3vVUYI82bNeJAfb3ugMfg7r-R_gll7hSl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA7coNrSV9rjBEzjNXFg0m5VMicS0tZOrOP346SPDQRInJP6YMf158SfTcilFIq7MpAOADq5H3vSiT0GThRol_OAK2EZ3s-DsD_0H0bBaIXFb6vdqyfJgtNgujSleXsGul0T38xtJqbBrucgZDB1WutkA3_HzBR1Dd3uCjPSDuXEHMbU9_heSZv5WcbX0LTEm9-eSG3k6e2S7RIy0m5h4z2yptJ9slONY6Cldx6QCQJH9EmgYpFnpj8l4Kq5Z6Vp9qEmtO4MgTvG1VQzagKbPXsU4StFOEihqL57m9NMG1lv8ym1hMz3xZRC2a3zkAx7d683faccpuCM0ctyh4UckRSPQ6a1efv0QMa-pzHdkCCYAuhoCDGbQdNpFQqB0EoYUqzx0gh88I5II81SdUxoEGNaCFJwH7GIYDICDHMdPRY8ltxXvElYpcdkXHYaNwMvJkndI9nqPkHdJ1b3idskV_U3s6LPxp-7W5V5ktLn5gkCpZAhoO1ETXJdmWy5_Lu0k_9tvyCbL7e95Ol-8HhKttziADkd1iINNIQ6Q5CSy3N7Dj8BdTTc-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+autoencoder+with+novel+integrated+activation+functions+for+the+diagnosis+of+autism+spectrum+disorder&rft.jtitle=Neural+computing+%26+applications&rft.au=M%2C+Kaviya+Elakkiya&rft.au=Dejey&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=23&rft.spage=17043&rft.epage=17075&rft_id=info:doi/10.1007%2Fs00521-023-08565-2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |