MHD Casson nanofluid flow over nonlinearly heated porous medium in presence of extending surface effect with suction/injection
An exertion is executed to explicate thermophysical aspects of viscoelastic fluid flow produced by a nonlinearized stretched surface. Here, viscoelasticity is characterized by Casson fluid model and expressed rheologically in momentum equation. Flow attributes of Casson fluid are thoroughly investig...
Saved in:
Published in | Indian journal of physics Vol. 95; no. 12; pp. 2703 - 2717 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An exertion is executed to explicate thermophysical aspects of viscoelastic fluid flow produced by a nonlinearized stretched surface. Here, viscoelasticity is characterized by Casson fluid model and expressed rheologically in momentum equation. Flow attributes of Casson fluid are thoroughly investigated under transversal magnetized field and along with provision of suction/injection to surface. Flow medium is also considered to be porous. Convective heating is supplied to the surface to depict heat transfer change within the flow domain. Nanosized particles are hanged into the Casson fluid to understand the effectiveness of Brownian motion and thermophoretic forces on the diffusion of particles. Generative chemical reactions are also considered to measure mass transport. Initially, flow narrating differential equations for concerning a problem are attained in differential equations and later on transforming into ordinary differential coupled system via similarity approach. Variations in flow associated distributions against involved parameters are divulged through graphical structures. Wall drag, thermal and mass fluxes are also calculated. Credibility of computing results is tested with the aid of comparison with previously published data in limiting sense. |
---|---|
AbstractList | An exertion is executed to explicate thermophysical aspects of viscoelastic fluid flow produced by a nonlinearized stretched surface. Here, viscoelasticity is characterized by Casson fluid model and expressed rheologically in momentum equation. Flow attributes of Casson fluid are thoroughly investigated under transversal magnetized field and along with provision of suction/injection to surface. Flow medium is also considered to be porous. Convective heating is supplied to the surface to depict heat transfer change within the flow domain. Nanosized particles are hanged into the Casson fluid to understand the effectiveness of Brownian motion and thermophoretic forces on the diffusion of particles. Generative chemical reactions are also considered to measure mass transport. Initially, flow narrating differential equations for concerning a problem are attained in differential equations and later on transforming into ordinary differential coupled system via similarity approach. Variations in flow associated distributions against involved parameters are divulged through graphical structures. Wall drag, thermal and mass fluxes are also calculated. Credibility of computing results is tested with the aid of comparison with previously published data in limiting sense. |
Author | Abo-Dahab, S. M. Abdelhafez, M. A. Bilal, S. M. Mebarek-Oudina, Fateh |
Author_xml | – sequence: 1 givenname: S. M. surname: Abo-Dahab fullname: Abo-Dahab, S. M. organization: Department of Mathematics, Faculty of Science, South Valley University, Department of Computer Science, Faculty of Computers and Information, Luxor University – sequence: 2 givenname: M. A. surname: Abdelhafez fullname: Abdelhafez, M. A. organization: Department of Mathematics, Faculty of Science, Sohag University – sequence: 3 givenname: Fateh orcidid: 0000-0001-6145-8195 surname: Mebarek-Oudina fullname: Mebarek-Oudina, Fateh email: oudina2003@yahoo.fr, f.mebarek_oudina@univ-skikda.dz organization: Department of Physics, Faculty of Sciences, University of 20 août 1955-Skikda – sequence: 4 givenname: S. M. surname: Bilal fullname: Bilal, S. M. organization: Department of Mathematics, AIR University |
BookMark | eNp9kE1PAyEQhonRxM8_4InE81pgYXc5mvpRE40XPRNkB6XZQgVWrQd_u9iamHjwNJPJPPPCs4-2ffCA0DElp5SQdpIoa3hXEUYqQiWrq48ttEdkyyvZcbG97uuKctHtov2U5oQ0krZiD33ezs7xVKcUPPbaBzuMrsd2CG84vELEJWdwHnQcVvgZdIYeL0MMY8IL6N24wM7jZYQE3gAOFsN7Bt87_4TTGK0uQ7AWTMZvLj-Xmcku-Inzc1h3h2jH6iHB0U89QA-XF_fTWXVzd3U9PbupTE1lrqjQzEirgVmrSSsME6aWnXxsBZdd99hz2WtDGwAm-94Iy4WRDCzjTWdaYusDdLK5u4zhZYSU1TyM0ZdIxZrihvKmEWWLbbZMDClFsGoZ3ULHlaJEfXtWG8-qeFZrz-qjQN0fyLisvz-Xo3bD_2i9QVPJ8U8Qf1_1D_UF22CYJw |
CitedBy_id | crossref_primary_10_1142_S0217979223502843 crossref_primary_10_1166_jon_2023_1976 crossref_primary_10_1515_ijcre_2021_0124 crossref_primary_10_1016_j_finmec_2022_100102 crossref_primary_10_1155_2021_6641835 crossref_primary_10_1080_02286203_2022_2164156 crossref_primary_10_3390_pr10061221 crossref_primary_10_1155_2021_5592024 crossref_primary_10_1016_j_csite_2024_104783 crossref_primary_10_1080_17455030_2022_2102689 crossref_primary_10_1166_jon_2022_1834 crossref_primary_10_1016_j_icheatmasstransfer_2021_105479 crossref_primary_10_1166_jon_2024_2162 crossref_primary_10_1007_s12648_022_02326_y crossref_primary_10_1080_17455030_2022_2123969 crossref_primary_10_3390_mi12121474 crossref_primary_10_1155_2023_3210794 crossref_primary_10_1080_10407782_2023_2219831 crossref_primary_10_1142_S0217979224502941 crossref_primary_10_1007_s10973_020_10518_z crossref_primary_10_1142_S0217979224400071 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2024048454 crossref_primary_10_26565_2312_4334_2024_4_11 crossref_primary_10_3390_nano12091512 crossref_primary_10_1007_s13369_021_06355_3 crossref_primary_10_1166_jon_2022_1863 crossref_primary_10_1108_HFF_04_2021_0288 crossref_primary_10_32604_fhmt_2024_048045 crossref_primary_10_1080_01430750_2022_2086919 crossref_primary_10_1142_S0217984924501082 crossref_primary_10_1016_j_aej_2023_12_057 crossref_primary_10_1080_16583655_2021_2014691 crossref_primary_10_1140_epjs_s11734_024_01439_1 crossref_primary_10_1080_10420150_2025_2467348 crossref_primary_10_1515_nleng_2021_0016 crossref_primary_10_1002_zamm_202400767 crossref_primary_10_1155_2021_5521684 crossref_primary_10_3390_mi12040374 crossref_primary_10_1007_s10973_021_10816_0 crossref_primary_10_1177_09544089221078153 crossref_primary_10_1166_jon_2021_1807 crossref_primary_10_1515_ijcre_2021_0110 crossref_primary_10_1016_j_ijft_2022_100176 crossref_primary_10_1007_s40065_024_00459_y crossref_primary_10_1016_j_asej_2021_08_005 crossref_primary_10_1140_epjp_s13360_021_01394_z crossref_primary_10_3390_sym16070826 crossref_primary_10_3390_en14185953 crossref_primary_10_1016_j_cjph_2022_06_019 crossref_primary_10_1007_s10237_021_01515_8 crossref_primary_10_1051_e3sconf_202459108001 crossref_primary_10_1007_s12043_022_02465_1 crossref_primary_10_1007_s10973_021_10976_z crossref_primary_10_1080_01430750_2021_2023044 crossref_primary_10_1108_MMMS_01_2024_0019 crossref_primary_10_1016_j_mechrescom_2025_104381 crossref_primary_10_1142_S0217979224500036 crossref_primary_10_3390_en15176269 crossref_primary_10_1080_10407782_2023_2241186 crossref_primary_10_1016_j_molliq_2023_123035 crossref_primary_10_1080_10407782_2023_2269475 crossref_primary_10_1088_1361_6528_ad32d3 crossref_primary_10_3390_app11041722 crossref_primary_10_1007_s10973_020_10432_4 crossref_primary_10_1002_zamm_202200419 crossref_primary_10_1615_ComputThermalScien_2023038739 crossref_primary_10_1016_j_csite_2021_101526 crossref_primary_10_1016_j_csite_2022_102214 crossref_primary_10_1038_s41598_022_23271_0 crossref_primary_10_1080_17455030_2022_2056260 crossref_primary_10_1007_s11071_021_06823_3 crossref_primary_10_1016_j_icheatmasstransfer_2021_105279 crossref_primary_10_2174_1386207324666210412122544 crossref_primary_10_3390_en14133859 crossref_primary_10_1038_s41598_022_20332_2 crossref_primary_10_1615_JPorMedia_2022041423 crossref_primary_10_1007_s10973_023_12288_w crossref_primary_10_1063_5_0047213 crossref_primary_10_1007_s40042_022_00414_0 crossref_primary_10_1016_j_jrras_2024_101212 crossref_primary_10_3934_math_2024448 crossref_primary_10_1002_htj_22546 crossref_primary_10_1080_16583655_2021_2004728 crossref_primary_10_1016_j_rineng_2025_104346 crossref_primary_10_1155_2021_5560900 crossref_primary_10_1080_17455030_2022_2055204 crossref_primary_10_1166_jon_2023_2045 crossref_primary_10_1088_1402_4896_abf794 crossref_primary_10_1002_fld_5216 crossref_primary_10_1016_j_padiff_2024_100646 crossref_primary_10_1080_17455030_2022_2066218 crossref_primary_10_1002_htj_22117 crossref_primary_10_1016_j_csite_2024_104539 crossref_primary_10_1088_1402_4896_abfe31 crossref_primary_10_1002_zamm_202100167 crossref_primary_10_13005_OJPS06_01_02_04 crossref_primary_10_1016_j_csite_2021_101151 crossref_primary_10_1016_j_jmmm_2023_170712 crossref_primary_10_1016_j_aej_2024_07_109 crossref_primary_10_1166_jon_2022_1892 crossref_primary_10_1016_j_cmpb_2021_106044 crossref_primary_10_1142_S0217984925500976 crossref_primary_10_1515_ntrev_2023_0191 crossref_primary_10_1007_s13399_021_01613_8 crossref_primary_10_1016_j_rinp_2024_108008 |
Cites_doi | 10.1007/s10973-020-09488-z 10.18280/ijht.370314 10.1108/hff-05-2020-0321 10.1016/j.rinp.2018.01.005 10.1108/mmms-07-2018-0133 10.1590/S0104-66322008000400001 10.1016/j.ijheatmasstransfer.2010.01.032 10.1063/1.4935639 10.1016/j.jestch.2017.08.003 10.1007/s40819-018-0513-y 10.1088/0256-307X/29/11/114704 10.1007/s10973-020-09690-z 10.1063/1.1341218 10.4028/www.scientific.net/DDF.387.417 10.1007/978-981-15-4308-1_70 10.1080/08916150600619281 10.1115/1.2825978 10.1016/j.molliq.2016.12.097 10.1007/s12043-015-1137-y 10.2298/TSCI1002341K 10.1007/s110973-019-08348-9 10.1016/j.chaos.2018.09.007 10.1063/1.1408272 10.1108/mmms-11-2018-0190 10.1590/S0104-66322013000100020 10.1108/mmms-11-2018-0183 10.1016/j.aej.2016.01.004 10.1016/j.molliq.2017.02.030 10.4028/www.scientific.net/DDF.387.51 10.1016/j.jestch.2014.12.006 10.1007/s10973-018-7054-9 10.1140/epjp/i2018-12037-7 10.1115/1.2150834 10.1016/j.ijheatmasstransfer.2018.06.124 10.1016/j.cnsns.2011.05.009 10.1016/j.ijthermalsci.2009.07.015 10.1023/B:ABME.0000030236.75826.8a 10.1007/s10598-020-09480-0 10.1002/htj.21375 10.1016/j.ijthermalsci.2010.01.026 10.3390/magnetochemistry4010018 10.1007/s12648-018-1226-0 10.1016/j.rinp.2016.12.033 10.1016/j.icheatmasstransfer.2013.08.019 10.5098/hmt.12.3 10.3390/sym12040663 10.1002/htj.21618 10.1155/2020/1675350 10.1140/epjp/i2016-16377-x 10.1063/1.4927449 10.1007/s13369-020-04680-7 10.1007/s13204-013-0267-0 10.4028/www.scientific.net/DDF.401 10.1515/jnet-2018-0099 10.1007/s10973-019-09097-5 10.1002/htj.21065 10.1016/j.aej.2015.04.014 10.1016/j.ijthermalsci.2013.12.001 10.1002/htj.21902 10.1016/j.radphyschem.2018.07.006 10.1080/10407780590959907 10.1007/s10973-020-09662-3 10.1016/j.asej.2013.05.003 10.1016/j.proeng.2014.12.425 10.1016/j.icheatmasstransfer.2020.104737 10.3390/app10113886 |
ContentType | Journal Article |
Copyright | Indian Association for the Cultivation of Science 2021 Indian Association for the Cultivation of Science 2021. |
Copyright_xml | – notice: Indian Association for the Cultivation of Science 2021 – notice: Indian Association for the Cultivation of Science 2021. |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1007/s12648-020-01923-z |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0974-9845 |
EndPage | 2717 |
ExternalDocumentID | 10_1007_s12648_020_01923_z |
GroupedDBID | -EM 04Q 04W 06D 0R~ 0VY 203 29I 29~ 2JN 2KG 2VQ 30V 3V. 406 408 5GY 5VS 67Z 8FE 8FG 8G5 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACCUX ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY AZQEC BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CSCUP C~6 DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXC IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M2O M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P62 P9T PQQKQ PROAC PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z45 Z7X Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7U5 8FD ABRTQ H8D L7M |
ID | FETCH-LOGICAL-c319t-15a2c9fae2ffa075c25c3989b754988bd49dac16ee29ddc5f45c92ef2468c70f3 |
IEDL.DBID | U2A |
ISSN | 0973-1458 |
IngestDate | Fri Jul 25 04:32:22 EDT 2025 Tue Jul 01 03:02:33 EDT 2025 Thu Apr 24 22:49:25 EDT 2025 Fri Feb 21 02:47:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Suction Convectively Heat source Casson nanofluid Injection Porous medium |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-15a2c9fae2ffa075c25c3989b754988bd49dac16ee29ddc5f45c92ef2468c70f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6145-8195 |
PQID | 2609714665 |
PQPubID | 2034531 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2609714665 crossref_primary_10_1007_s12648_020_01923_z crossref_citationtrail_10_1007_s12648_020_01923_z springer_journals_10_1007_s12648_020_01923_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: West Bengal |
PublicationTitle | Indian journal of physics |
PublicationTitleAbbrev | Indian J Phys |
PublicationYear | 2021 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | MahanthaGS Shaw Alex. Eng. J.201554365310.1016/j.aej.2015.04.014 SaqibMShafieSKhanIY M Chu & K S Nisar Symmetry202012466310.3390/sym12040663 T Salahuddin, M Y Malik, A Hussain, M Awais, I Khan and M Khan Results Phys.7 426 (2017). https://doi.org/10.1016/j.rinp.2016.12.033 KolsiLAbidiANM Borjini and BH Aïssia Thermal Science20101423412010AIPC.1235..341K10.2298/TSCI1002341K F Mebarek-Oudina Heat Transf. Asian Res.48 135 (2019). https://doi.org/10.1002/htj.21375 WangXA S Mujumdar BrazilianJ. Chem. Eng.20082561310.1590/S0104-66322008000400001 M Mustafa and J A Khan AIP Adv.5 077148 (2015). https://doi.org/10.1063/1.4927449 RezaMEllahiRSadiqMSSarfarazMMShadlooMSand I WaheedJ. Therm. Anal. Calorm.2020140127710.1007/s10973-019-09097-5 R Nandkeolyar, B K Mahatha and G K Mahato Magnetochemistry4 (2018). https://doi.org/10.3390/magnetochemistry4010018. ShehzadlSAHayatTQasimMand S Asghar BrazilJ. Chem. Eng.20133018710.1590/S0104-66322013000100020 WakifABoulahiaZFarhadAM R Eid and R Sehaqui IntJ. Appl. Comput. Math201848110.1007/s40819-018-0513-y HayatTShehzadSAAlsaediAand MS Alhothuli ChinPhys. Letter.20122925610.1088/0256-307X/29/11/114704 HayatTM WaqasSA Shehzad, and A Alsaedi Pramana201686310.1007/s12043-015-1137-y M Y Malik, I Khan, A Hussain and T Salahuddin AIP Adv.5 (2015). https://doi.org/10.1063/1.4935639 RazaJMebarek-OudinaFRamPand S Sharma DefDiff. Forum20204019210.4028/www.scientific.net/DDF.401 LaouiraHMebarek-OudinaFHusseinAKKolsiLA Merah and O Younis Heat TranAsian Res.202049140610.1002/htj.21618 SaqibMI Khan & S Shafie ChaosSolitons & Fractals2018116792018CSF...116...79S388701110.1016/j.chaos.2018.09.007 F Mebarek-Oudina, N Keerthi Reddy and M Sankar Advances in Fluid Dynamics, Lecture Notes in Mechanical Engineering p 923 (2021). https://doi.org/10.1007/978-981-15-4308-1_70 MarzouguiSMebarek-OudinaFAissaAMagherbiMShahZK Ramesh J. Therm. Anal. Calorim.202010.1007/s10973-020-09662-3 F Mebarek-Oudina and O D Makinde Def. Diff. Forum387 417 (2018). https://doi.org/10.4028/www.scientific.net/DDF.387.417 A Wakif, M Qasim, M I Afridi, S Saleem and M M Al-Qarni J. Non-Equilibrium Thermodyn.44 (4) 385 (2019). https://doi.org/10.1515/jnet-2018-0099 KangHUKimSHOhJMExp. Heat Transf.20061931811912006ExHT...19..181K10.1080/08916150600619281 KhanMAzamMand A MunirJ. Molec. Liq.20172304810.1016/j.molliq.2016.12.097 M Venkata Subba Rao, K Gangadhar and P L N Varma Indian J. Phys. 92 1577 (2018). https://doi.org/10.1007/s12648-018-1226-0 KhanWAI Pop IntJ. Heat Mass Transf.201053247710.1016/j.ijheatmasstransfer.2010.01.032 HayatTKiyaniMZAlsaediAKhanMIand I Ahmad IntJ. Heat Mass Transf.201812742210.1016/j.ijheatmasstransfer.2018.06.124 KhanLARezaMMirNAand R EllahiJ. Therm. Anal. Calorm.202014087910.1007/s110973-019-08348-9 ZaimAAissaAMebarek-OudinaFRashadAMHafizMASahnounMEl GanaouiMJ. Therm. Anal. Calorim.202010.1007/s10973-020-09690-z S Mukhopadhyay, I C Mondal and A J Chamkha Heat Transf. Asian Res.42(8) 665 (2013). https://doi.org/10.1002/htj.21065 MaatkiCKolsiLOztopHFChamkhaAM Naceur Borjini and H Ben Aissia IntComm. Heat Mass Transf.2013498610.1016/j.icheatmasstransfer.2013.08.019 ChoiSUSZhangZGYuWLockwoodFEEA Grulke Appl. Phys. Lett.20017922522001ApPhL..79.2252C10.1063/1.1408272 Mebarek-OudinaFAissaAB Mahanthesh and HF Öztop International Communications in Heat and Mass Transfer202011710473710.1016/j.icheatmasstransfer.2020.104737 J Raza, F Mebarek-Oudina and A J Chamkha Multidiscip. Model. Mater. Struct.15(4) 737 (2019). https://doi.org/10.1108/mmms-07-2018-0133 A Wakif Math. Probl. Eng. 1675350 (2020). https://doi.org/10.1155/2020/1675350 R Dharmalingam, K K Sivagnanaprabhu, B S Kumar and R Thirumalai Procedia Eng.97 1434 (2014). https://doi.org/10.1016/j.proeng.2014.12.425 BachokNIshakAand I Pop IntJ. Therm. Sci.201049166310.1016/j.ijthermalsci.2010.01.026 HamrelaineSMebarek-OudinaFM R SariJ. Adv. Res. Fluid Mech. Therm. Sciences2019582173 J Buongiorno ASME J. Heat Transf.128 240 (2006). https://doi.org/10.1115/1.2150834 SaqibMKhanIChuYMQushairiAS Shafie & K S Nisar ApplSci.20201011388610.3390/app10113886 J Raza, M Farooq, F Mebarek-Oudina and B Mahanthesh Multidiscip. Model. Mater. Struct.15(5) 913 (2019). https://doi.org/10.1108/mmms-11-2018-0190 KunzetsovAVDA Nield Int. J. Ther. Sci.201049224310.1016/j.ijthermalsci.2009.07.015 NadeemSMehmoodRand NS Akbar InteJ. Therm. Sci.2014789010.1016/j.ijthermalsci.2013.12.001 S Pramanik Ain Shams Eng. J.5 205 (2014). https://doi.org/10.1016/j.asej.2013.05.003 WakifABoulahiaZMishraSRM M Rashidi and R Sehaqui EurPhys. J. Plus201813318110.1140/epjp/i2018-12037-7 GourariSMebarek-OudinaFHusseinAKL Kolsi W Hassen and O Younis IntJ. Heat Technology201937377910.18280/ijht.370314 F Mebarek-Oudina, R Bessaih, B Mahanthesh, A J Chamkha and J Raza Int. J. Numer. Methods Heat Fluid Flow (2020). https://doi.org/10.1108/hff-05-2020-0321 WakifAChamkhaAThummaTAnimasaunILR Sehaqui J. Therm. Anal. Calorim.202010.1007/s10973-020-09488-z S Lee, S U S Choi, S Li and J A Eastman ASME J. Heat Transf.121(2) 280 (1999). https://doi.org/10.1115/1.2825978 M Y Malik, M Naseer, S Nadeem and A Rehman Appl. Nanosci.4(7) 869 (2014). https://doi.org/10.1007/s13204-013-0267-0 RanaPP Bhargva CommNonlin. Sci. Numer. Simul.20121721210.1016/j.cnsns.2011.05.009 WakifABoulahiaZAmineAAnimasaunILAfridiMIQasimdMR Sehaqui Frontiers in Heat and Mass Transfer201912310.5098/hmt.12.3 RazaJF Mebarek-Oudina & O D Makinde DefDiff. Forum20183875110.4028/www.scientific.net/DDF.387.51 NagaraniPSarojammaGand G Jayaraman AnnBiomed. Eng.20043270610.1023/B:ABME.0000030236.75826.8a S U S Choi The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition (San Francisco USA, ASME) p 99 (1995) FarhanMOmarZMebarek-OudinaFRazaJShahZChoudhariRVOD Makinde Computational Mathematics and Modeling202031111610.1007/s10598-020-09480-0 KhanMMalikMYSalahuddinTand A Hussian ResulPhys.2018886210.1016/j.rinp.2018.01.005 HussainAMalikMYSalahuddinTBilalSand M AwaisJ. Molec. Liq.201723134110.1016/j.molliq.2017.02.030 KhanUA Zaib and F Mebarek-Oudina Arab. J. Sci. Eng.202010.1007/s13369-020-04680-7 KhalidAKhanIKhanAand S Shafie EngSci. Tech.20151830910.1016/j.jestch.2014.12.006 M Saqib, F Ali, I Khan, N A Sheikh and S B Shafie J. Therm. Anal. Calorim.135(1) 523 (2019). https://doi.org/10.1007/s10973-018-7054-9 AliFSaqibMI Khan & N A Sheikh European Physical Journal Plus2016131103772016EPJP..131..377A10.1140/epjp/i2016-16377-x HayatTUllahIAlsaediAand S Asghar RadPhys. Chem.20181521512018RaPC..152..151H10.1016/j.radphyschem.2018.07.006 J Raza, F Mebarek-Oudina and B Mahanthesh Multidiscip. Model. Mater. Struct.15(5) 871 (2019). https://doi.org/10.1108/mmms-11-2018-0183 SwainKMahantheshBMebarek-OudinaFHeat Transf. Asian Res.202010.1002/htj.21902 EastmanJAChoiSUSLiSYuWand LJ Thompson ApplPhys. Letter.2001787182001ApPhL..78..718E10.1063/1.1341218 YejjerOKolsiLAichWAl-RashedAAAAM Naceur Borjini, H Ben Aissia Heat TransfAsian Res.201746131210.1016/j.aej.2016.01.004 M Naceur Borjini, L Kolsi and H Ben Aissia Numer. Heat Transf. Part A Appl.48(5) 483 (2005). https://doi.org/10.1080/10407780590959907. F Mebarek-Oudina Eng. Sci. Technol.20(4) 1324 (2017). https://doi.org/10.1016/j.jestch.2017.08.003 X Wang (1923_CR6) 2008; 25 P Rana (1923_CR11) 2012; 17 M Khan (1923_CR15) 2017; 230 U Khan (1923_CR19) 2020 A Wakif (1923_CR64) 2020 M Farhan (1923_CR58) 2020; 31 1923_CR21 1923_CR65 1923_CR24 1923_CR68 LA Khan (1923_CR13) 2020; 140 S Marzougui (1923_CR16) 2020 1923_CR20 M Saqib (1923_CR56) 2020; 12 1923_CR29 HU Kang (1923_CR5) 2006; 19 A Khalid (1923_CR47) 2015; 18 M Reza (1923_CR12) 2020; 140 WA Khan (1923_CR9) 2010; 53 T Hayat (1923_CR49) 2016; 86 A Hussain (1923_CR18) 2017; 231 A Wakif (1923_CR54) 2018; 4 K Swain (1923_CR67) 2020 J Raza (1923_CR23) 2020; 401 1923_CR33 1923_CR34 J Raza (1923_CR40) 2018; 387 L Kolsi (1923_CR61) 2010; 14 1923_CR36 1923_CR39 JA Eastman (1923_CR3) 2001; 78 1923_CR38 T Hayat (1923_CR22) 2018; 152 S Gourari (1923_CR30) 2019; 37 S Hamrelaine (1923_CR32) 2019; 58 T Hayat (1923_CR41) 2012; 29 A Zaim (1923_CR66) 2020 H Laouira (1923_CR62) 2020; 49 A Wakif (1923_CR37) 2019; 12 1923_CR44 1923_CR46 F Ali (1923_CR57) 2016; 131 O Yejjer (1923_CR63) 2017; 46 M Khan (1923_CR27) 2018; 8 1923_CR48 C Maatki (1923_CR35) 2013; 49 S Nadeem (1923_CR50) 2014; 78 M Saqib (1923_CR28) 2018; 116 1923_CR2 1923_CR1 SUS Choi (1923_CR4) 2001; 79 T Hayat (1923_CR26) 2018; 127 1923_CR60 F Mebarek-Oudina (1923_CR17) 2020; 117 AV Kunzetsov (1923_CR8) 2010; 49 P Nagarani (1923_CR42) 2004; 32 1923_CR55 M Saqib (1923_CR25) 2020; 10 G Mahantha (1923_CR45) 2015; 54 1923_CR51 1923_CR53 1923_CR52 N Bachok (1923_CR10) 2010; 49 1923_CR7 1923_CR59 1923_CR14 A Wakif (1923_CR31) 2018; 133 SA Shehzadl (1923_CR43) 2013; 30 |
References_xml | – reference: M Naceur Borjini, L Kolsi and H Ben Aissia Numer. Heat Transf. Part A Appl.48(5) 483 (2005). https://doi.org/10.1080/10407780590959907. – reference: RanaPP Bhargva CommNonlin. Sci. Numer. Simul.20121721210.1016/j.cnsns.2011.05.009 – reference: S Lee, S U S Choi, S Li and J A Eastman ASME J. Heat Transf.121(2) 280 (1999). https://doi.org/10.1115/1.2825978 – reference: NagaraniPSarojammaGand G Jayaraman AnnBiomed. Eng.20043270610.1023/B:ABME.0000030236.75826.8a – reference: KhalidAKhanIKhanAand S Shafie EngSci. Tech.20151830910.1016/j.jestch.2014.12.006 – reference: SwainKMahantheshBMebarek-OudinaFHeat Transf. Asian Res.202010.1002/htj.21902 – reference: KunzetsovAVDA Nield Int. J. Ther. Sci.201049224310.1016/j.ijthermalsci.2009.07.015 – reference: J Raza, F Mebarek-Oudina and B Mahanthesh Multidiscip. Model. Mater. Struct.15(5) 871 (2019). https://doi.org/10.1108/mmms-11-2018-0183 – reference: HayatTM WaqasSA Shehzad, and A Alsaedi Pramana201686310.1007/s12043-015-1137-y – reference: KhanMAzamMand A MunirJ. Molec. Liq.20172304810.1016/j.molliq.2016.12.097 – reference: WakifABoulahiaZMishraSRM M Rashidi and R Sehaqui EurPhys. J. Plus201813318110.1140/epjp/i2018-12037-7 – reference: F Mebarek-Oudina, N Keerthi Reddy and M Sankar Advances in Fluid Dynamics, Lecture Notes in Mechanical Engineering p 923 (2021). https://doi.org/10.1007/978-981-15-4308-1_70 – reference: F Mebarek-Oudina Heat Transf. Asian Res.48 135 (2019). https://doi.org/10.1002/htj.21375 – reference: WangXA S Mujumdar BrazilianJ. Chem. Eng.20082561310.1590/S0104-66322008000400001 – reference: RezaMEllahiRSadiqMSSarfarazMMShadlooMSand I WaheedJ. Therm. Anal. Calorm.2020140127710.1007/s10973-019-09097-5 – reference: HamrelaineSMebarek-OudinaFM R SariJ. Adv. Res. Fluid Mech. Therm. Sciences2019582173 – reference: FarhanMOmarZMebarek-OudinaFRazaJShahZChoudhariRVOD Makinde Computational Mathematics and Modeling202031111610.1007/s10598-020-09480-0 – reference: S Mukhopadhyay, I C Mondal and A J Chamkha Heat Transf. Asian Res.42(8) 665 (2013). https://doi.org/10.1002/htj.21065 – reference: M Venkata Subba Rao, K Gangadhar and P L N Varma Indian J. Phys. 92 1577 (2018). https://doi.org/10.1007/s12648-018-1226-0 – reference: KangHUKimSHOhJMExp. Heat Transf.20061931811912006ExHT...19..181K10.1080/08916150600619281 – reference: F Mebarek-Oudina, R Bessaih, B Mahanthesh, A J Chamkha and J Raza Int. J. Numer. Methods Heat Fluid Flow (2020). https://doi.org/10.1108/hff-05-2020-0321 – reference: MahanthaGS Shaw Alex. Eng. J.201554365310.1016/j.aej.2015.04.014 – reference: S Pramanik Ain Shams Eng. J.5 205 (2014). https://doi.org/10.1016/j.asej.2013.05.003 – reference: MarzouguiSMebarek-OudinaFAissaAMagherbiMShahZK Ramesh J. Therm. Anal. Calorim.202010.1007/s10973-020-09662-3 – reference: F Mebarek-Oudina and O D Makinde Def. Diff. Forum387 417 (2018). https://doi.org/10.4028/www.scientific.net/DDF.387.417 – reference: HayatTUllahIAlsaediAand S Asghar RadPhys. Chem.20181521512018RaPC..152..151H10.1016/j.radphyschem.2018.07.006 – reference: R Dharmalingam, K K Sivagnanaprabhu, B S Kumar and R Thirumalai Procedia Eng.97 1434 (2014). https://doi.org/10.1016/j.proeng.2014.12.425 – reference: SaqibMKhanIChuYMQushairiAS Shafie & K S Nisar ApplSci.20201011388610.3390/app10113886 – reference: GourariSMebarek-OudinaFHusseinAKL Kolsi W Hassen and O Younis IntJ. Heat Technology201937377910.18280/ijht.370314 – reference: S U S Choi The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition (San Francisco USA, ASME) p 99 (1995) – reference: J Buongiorno ASME J. Heat Transf.128 240 (2006). https://doi.org/10.1115/1.2150834 – reference: HayatTKiyaniMZAlsaediAKhanMIand I Ahmad IntJ. Heat Mass Transf.201812742210.1016/j.ijheatmasstransfer.2018.06.124 – reference: BachokNIshakAand I Pop IntJ. Therm. Sci.201049166310.1016/j.ijthermalsci.2010.01.026 – reference: M Y Malik, M Naseer, S Nadeem and A Rehman Appl. Nanosci.4(7) 869 (2014). https://doi.org/10.1007/s13204-013-0267-0 – reference: HayatTShehzadSAAlsaediAand MS Alhothuli ChinPhys. Letter.20122925610.1088/0256-307X/29/11/114704 – reference: YejjerOKolsiLAichWAl-RashedAAAAM Naceur Borjini, H Ben Aissia Heat TransfAsian Res.201746131210.1016/j.aej.2016.01.004 – reference: R Nandkeolyar, B K Mahatha and G K Mahato Magnetochemistry4 (2018). https://doi.org/10.3390/magnetochemistry4010018. – reference: LaouiraHMebarek-OudinaFHusseinAKKolsiLA Merah and O Younis Heat TranAsian Res.202049140610.1002/htj.21618 – reference: SaqibMShafieSKhanIY M Chu & K S Nisar Symmetry202012466310.3390/sym12040663 – reference: J Raza, M Farooq, F Mebarek-Oudina and B Mahanthesh Multidiscip. Model. Mater. Struct.15(5) 913 (2019). https://doi.org/10.1108/mmms-11-2018-0190 – reference: M Mustafa and J A Khan AIP Adv.5 077148 (2015). https://doi.org/10.1063/1.4927449 – reference: ChoiSUSZhangZGYuWLockwoodFEEA Grulke Appl. Phys. Lett.20017922522001ApPhL..79.2252C10.1063/1.1408272 – reference: T Salahuddin, M Y Malik, A Hussain, M Awais, I Khan and M Khan Results Phys.7 426 (2017). https://doi.org/10.1016/j.rinp.2016.12.033 – reference: HussainAMalikMYSalahuddinTBilalSand M AwaisJ. Molec. Liq.201723134110.1016/j.molliq.2017.02.030 – reference: F Mebarek-Oudina Eng. Sci. Technol.20(4) 1324 (2017). https://doi.org/10.1016/j.jestch.2017.08.003 – reference: KhanUA Zaib and F Mebarek-Oudina Arab. J. Sci. Eng.202010.1007/s13369-020-04680-7 – reference: MaatkiCKolsiLOztopHFChamkhaAM Naceur Borjini and H Ben Aissia IntComm. Heat Mass Transf.2013498610.1016/j.icheatmasstransfer.2013.08.019 – reference: KolsiLAbidiANM Borjini and BH Aïssia Thermal Science20101423412010AIPC.1235..341K10.2298/TSCI1002341K – reference: KhanMMalikMYSalahuddinTand A Hussian ResulPhys.2018886210.1016/j.rinp.2018.01.005 – reference: Mebarek-OudinaFAissaAB Mahanthesh and HF Öztop International Communications in Heat and Mass Transfer202011710473710.1016/j.icheatmasstransfer.2020.104737 – reference: WakifABoulahiaZFarhadAM R Eid and R Sehaqui IntJ. Appl. Comput. Math201848110.1007/s40819-018-0513-y – reference: SaqibMI Khan & S Shafie ChaosSolitons & Fractals2018116792018CSF...116...79S388701110.1016/j.chaos.2018.09.007 – reference: M Y Malik, I Khan, A Hussain and T Salahuddin AIP Adv.5 (2015). https://doi.org/10.1063/1.4935639 – reference: ShehzadlSAHayatTQasimMand S Asghar BrazilJ. Chem. Eng.20133018710.1590/S0104-66322013000100020 – reference: A Wakif, M Qasim, M I Afridi, S Saleem and M M Al-Qarni J. Non-Equilibrium Thermodyn.44 (4) 385 (2019). https://doi.org/10.1515/jnet-2018-0099 – reference: WakifABoulahiaZAmineAAnimasaunILAfridiMIQasimdMR Sehaqui Frontiers in Heat and Mass Transfer201912310.5098/hmt.12.3 – reference: EastmanJAChoiSUSLiSYuWand LJ Thompson ApplPhys. Letter.2001787182001ApPhL..78..718E10.1063/1.1341218 – reference: NadeemSMehmoodRand NS Akbar InteJ. Therm. Sci.2014789010.1016/j.ijthermalsci.2013.12.001 – reference: AliFSaqibMI Khan & N A Sheikh European Physical Journal Plus2016131103772016EPJP..131..377A10.1140/epjp/i2016-16377-x – reference: WakifAChamkhaAThummaTAnimasaunILR Sehaqui J. Therm. Anal. Calorim.202010.1007/s10973-020-09488-z – reference: KhanLARezaMMirNAand R EllahiJ. Therm. Anal. Calorm.202014087910.1007/s110973-019-08348-9 – reference: RazaJF Mebarek-Oudina & O D Makinde DefDiff. Forum20183875110.4028/www.scientific.net/DDF.387.51 – reference: ZaimAAissaAMebarek-OudinaFRashadAMHafizMASahnounMEl GanaouiMJ. Therm. Anal. Calorim.202010.1007/s10973-020-09690-z – reference: J Raza, F Mebarek-Oudina and A J Chamkha Multidiscip. Model. Mater. Struct.15(4) 737 (2019). https://doi.org/10.1108/mmms-07-2018-0133 – reference: RazaJMebarek-OudinaFRamPand S Sharma DefDiff. Forum20204019210.4028/www.scientific.net/DDF.401 – reference: A Wakif Math. Probl. Eng. 1675350 (2020). https://doi.org/10.1155/2020/1675350 – reference: M Saqib, F Ali, I Khan, N A Sheikh and S B Shafie J. Therm. Anal. Calorim.135(1) 523 (2019). https://doi.org/10.1007/s10973-018-7054-9 – reference: KhanWAI Pop IntJ. Heat Mass Transf.201053247710.1016/j.ijheatmasstransfer.2010.01.032 – year: 2020 ident: 1923_CR64 publication-title: R Sehaqui J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09488-z – volume: 37 start-page: 779 issue: 3 year: 2019 ident: 1923_CR30 publication-title: J. Heat Technology doi: 10.18280/ijht.370314 – ident: 1923_CR38 doi: 10.1108/hff-05-2020-0321 – volume: 8 start-page: 862 year: 2018 ident: 1923_CR27 publication-title: Phys. doi: 10.1016/j.rinp.2018.01.005 – ident: 1923_CR53 doi: 10.1108/mmms-07-2018-0133 – volume: 25 start-page: 613 year: 2008 ident: 1923_CR6 publication-title: J. Chem. Eng. doi: 10.1590/S0104-66322008000400001 – volume: 53 start-page: 2477 year: 2010 ident: 1923_CR9 publication-title: J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.01.032 – ident: 1923_CR14 doi: 10.1063/1.4935639 – ident: 1923_CR60 doi: 10.1016/j.jestch.2017.08.003 – volume: 4 start-page: 81 year: 2018 ident: 1923_CR54 publication-title: J. Appl. Comput. Math doi: 10.1007/s40819-018-0513-y – volume: 29 start-page: 256 year: 2012 ident: 1923_CR41 publication-title: Phys. Letter. doi: 10.1088/0256-307X/29/11/114704 – year: 2020 ident: 1923_CR66 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09690-z – volume: 78 start-page: 718 year: 2001 ident: 1923_CR3 publication-title: Phys. Letter. doi: 10.1063/1.1341218 – ident: 1923_CR33 doi: 10.4028/www.scientific.net/DDF.387.417 – ident: 1923_CR20 doi: 10.1007/978-981-15-4308-1_70 – volume: 19 start-page: 181 issue: 3 year: 2006 ident: 1923_CR5 publication-title: Exp. Heat Transf. doi: 10.1080/08916150600619281 – ident: 1923_CR2 doi: 10.1115/1.2825978 – volume: 230 start-page: 48 year: 2017 ident: 1923_CR15 publication-title: J. Molec. Liq. doi: 10.1016/j.molliq.2016.12.097 – volume: 86 start-page: 3 year: 2016 ident: 1923_CR49 publication-title: SA Shehzad, and A Alsaedi Pramana doi: 10.1007/s12043-015-1137-y – volume: 14 start-page: 341 issue: 2 year: 2010 ident: 1923_CR61 publication-title: NM Borjini and BH Aïssia Thermal Science doi: 10.2298/TSCI1002341K – volume: 140 start-page: 879 year: 2020 ident: 1923_CR13 publication-title: J. Therm. Anal. Calorm. doi: 10.1007/s110973-019-08348-9 – volume: 116 start-page: 79 year: 2018 ident: 1923_CR28 publication-title: Solitons & Fractals doi: 10.1016/j.chaos.2018.09.007 – volume: 79 start-page: 2252 year: 2001 ident: 1923_CR4 publication-title: EA Grulke Appl. Phys. Lett. doi: 10.1063/1.1408272 – ident: 1923_CR34 doi: 10.1108/mmms-11-2018-0190 – volume: 30 start-page: 187 year: 2013 ident: 1923_CR43 publication-title: J. Chem. Eng. doi: 10.1590/S0104-66322013000100020 – ident: 1923_CR55 doi: 10.1108/mmms-11-2018-0183 – volume: 46 start-page: 1312 year: 2017 ident: 1923_CR63 publication-title: Asian Res. doi: 10.1016/j.aej.2016.01.004 – volume: 231 start-page: 341 year: 2017 ident: 1923_CR18 publication-title: J. Molec. Liq. doi: 10.1016/j.molliq.2017.02.030 – volume: 387 start-page: 51 year: 2018 ident: 1923_CR40 publication-title: Diff. Forum doi: 10.4028/www.scientific.net/DDF.387.51 – volume: 18 start-page: 309 year: 2015 ident: 1923_CR47 publication-title: Sci. Tech. doi: 10.1016/j.jestch.2014.12.006 – ident: 1923_CR59 doi: 10.1007/s10973-018-7054-9 – volume: 133 start-page: 181 year: 2018 ident: 1923_CR31 publication-title: Phys. J. Plus doi: 10.1140/epjp/i2018-12037-7 – ident: 1923_CR7 doi: 10.1115/1.2150834 – volume: 127 start-page: 422 year: 2018 ident: 1923_CR26 publication-title: J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.06.124 – volume: 17 start-page: 212 year: 2012 ident: 1923_CR11 publication-title: Nonlin. Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.05.009 – volume: 49 start-page: 243 issue: 2 year: 2010 ident: 1923_CR8 publication-title: DA Nield Int. J. Ther. Sci. doi: 10.1016/j.ijthermalsci.2009.07.015 – volume: 32 start-page: 706 year: 2004 ident: 1923_CR42 publication-title: Biomed. Eng. doi: 10.1023/B:ABME.0000030236.75826.8a – volume: 31 start-page: 116 issue: 1 year: 2020 ident: 1923_CR58 publication-title: OD Makinde Computational Mathematics and Modeling doi: 10.1007/s10598-020-09480-0 – ident: 1923_CR24 doi: 10.1002/htj.21375 – volume: 49 start-page: 1663 year: 2010 ident: 1923_CR10 publication-title: J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.01.026 – ident: 1923_CR29 doi: 10.3390/magnetochemistry4010018 – ident: 1923_CR68 doi: 10.1007/s12648-018-1226-0 – ident: 1923_CR21 doi: 10.1016/j.rinp.2016.12.033 – volume: 49 start-page: 86 year: 2013 ident: 1923_CR35 publication-title: Comm. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2013.08.019 – volume: 12 start-page: 3 year: 2019 ident: 1923_CR37 publication-title: R Sehaqui Frontiers in Heat and Mass Transfer doi: 10.5098/hmt.12.3 – volume: 12 start-page: 663 issue: 4 year: 2020 ident: 1923_CR56 publication-title: Y M Chu & K S Nisar Symmetry doi: 10.3390/sym12040663 – volume: 49 start-page: 406 issue: 1 year: 2020 ident: 1923_CR62 publication-title: Asian Res. doi: 10.1002/htj.21618 – ident: 1923_CR36 doi: 10.1155/2020/1675350 – volume: 131 start-page: 377 issue: 10 year: 2016 ident: 1923_CR57 publication-title: I Khan & N A Sheikh European Physical Journal Plus doi: 10.1140/epjp/i2016-16377-x – ident: 1923_CR48 doi: 10.1063/1.4927449 – year: 2020 ident: 1923_CR19 publication-title: A Zaib and F Mebarek-Oudina Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04680-7 – ident: 1923_CR51 doi: 10.1007/s13204-013-0267-0 – volume: 401 start-page: 92 year: 2020 ident: 1923_CR23 publication-title: Diff. Forum doi: 10.4028/www.scientific.net/DDF.401 – ident: 1923_CR65 doi: 10.1515/jnet-2018-0099 – volume: 140 start-page: 1277 year: 2020 ident: 1923_CR12 publication-title: J. Therm. Anal. Calorm. doi: 10.1007/s10973-019-09097-5 – ident: 1923_CR1 – volume: 58 start-page: 173 issue: 2 year: 2019 ident: 1923_CR32 publication-title: J. Adv. Res. Fluid Mech. Therm. Sciences – ident: 1923_CR44 doi: 10.1002/htj.21065 – volume: 54 start-page: 653 issue: 3 year: 2015 ident: 1923_CR45 publication-title: S Shaw Alex. Eng. J. doi: 10.1016/j.aej.2015.04.014 – volume: 78 start-page: 90 year: 2014 ident: 1923_CR50 publication-title: J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2013.12.001 – year: 2020 ident: 1923_CR67 publication-title: Heat Transf. Asian Res. doi: 10.1002/htj.21902 – volume: 152 start-page: 151 year: 2018 ident: 1923_CR22 publication-title: Phys. Chem. doi: 10.1016/j.radphyschem.2018.07.006 – ident: 1923_CR39 doi: 10.1080/10407780590959907 – year: 2020 ident: 1923_CR16 publication-title: K Ramesh J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09662-3 – ident: 1923_CR46 doi: 10.1016/j.asej.2013.05.003 – ident: 1923_CR52 doi: 10.1016/j.proeng.2014.12.425 – volume: 117 start-page: 104737 year: 2020 ident: 1923_CR17 publication-title: B Mahanthesh and HF Öztop International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.104737 – volume: 10 start-page: 3886 issue: 11 year: 2020 ident: 1923_CR25 publication-title: Sci. doi: 10.3390/app10113886 |
SSID | ssj0069175 |
Score | 2.567587 |
Snippet | An exertion is executed to explicate thermophysical aspects of viscoelastic fluid flow produced by a nonlinearized stretched surface. Here, viscoelasticity is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2703 |
SubjectTerms | Astrophysics and Astroparticles Brownian motion Chemical reactions Differential equations Fluid dynamics Fluid flow Mass transport Nanofluids Original Paper Physics Physics and Astronomy Porous media Rheological properties Suction Viscoelastic fluids Viscoelasticity |
Title | MHD Casson nanofluid flow over nonlinearly heated porous medium in presence of extending surface effect with suction/injection |
URI | https://link.springer.com/article/10.1007/s12648-020-01923-z https://www.proquest.com/docview/2609714665 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS-QwFA6usrAXUXdlx1XJwZsGJ2nSNsfxxzgoenJAT6XzkgcjY0ecGRY87N--L2nrsKILngppGkK_5OV7yfdeGDswZU6wohRoHQoNmRVlqlFg1wJI0CBdCHC-vkkHQ315Z-6aoLBZq3ZvjySjpV4GuwUxlgjuTqQl4uULWzPBd6dRPFS91v6m5IBE4aLNEiG1yZtQmffb-Hc5WnLMN8eicbXpb7D1hibyXo3rJlvx1Rb7GuWaMPvO_lwPzvgp8d5pxauymuJkMXYcJ9PfPEgyeVUnwAjJi3mwtt5x4tnk5PNwlr545OOKP8XAI_B8irzeCqee8NniGUsqrHUePGzTUlkMfjgeVw9RuFX9YMP--e3pQDQ3KQigKTYX0pQKLJZeIZZEEkAZSGxuRxm5h3k-ctq6EmTqvbLOgUFtwCqPSqc5ZF1Mttkq9dz_ZNxiNzE6Aymhq523eZojkQgMrooHlXSYbH9oAU2a8XDbxaRYJkgOIBQEQhFBKF467PD1m6c6ycZ_a--2OBXNhJsV5JbZjKx-ajrsqMVu-frj1nY-V_0X-6aCqiUKWnbZ6vx54feIlsxH-2yt1z85uQnPi_ur8_04Kv8C-Mjeug |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEBVtSmkuoU0b6tRNdcitFbW00q50NPnAaeOcYshtWY804OCuQ2wTyCG_vSPtbkxLG8hVqxVi32r0RvNmxNihqSzBilKg8yg0FE5UuUaBAwcgQYP0McF5fJGPJvrHlblqk8KWndq9C0kmS71JdotiLBHdnURLxP1L9orIgI1CrokadvY3JwckCRddkQmpjW1TZf49xp_b0YZj_hUWTbvN6Vu209JEPmxwfcdehHqXvU5yTVi-Zw_j0TE_It67qHld1Qucr2ee43xxx6Mkk9dNAYxYvJhHaxs8J55NTj6PsfT1Lz6r-U1KPILAF8ibo3CaCV-ub7GixkbnweMxLbWl5Ifvs_o6CbfqD2xyenJ5NBLtTQoCaImthDSVAodVUIgVkQRQBjJn3bQg99DaqdfOVyDzEJTzHgxqA04FVDq3UAww22NbNPPwkXGHg8zoAqSEgfbB2dwikQiMrkoAlfWY7D5oCW2Z8XjbxbzcFEiOIJQEQplAKO977OvjOzdNkY0ne_c7nMp2wS1LcstcQVY_Nz32rcNu8_j_o-0_r_sX9mZ0OT4vz88ufn5i2yoqXJK4pc-2Vrfr8Jkoymp6kP7I36lq3p0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFBZtx0YvYz9ptm7VobdNJJIl2zqWtiHrL3ZYoDfjPOlBRqaEJmHQQ__2Psl2s41t0KtsC6FPlr4nfd8TY4emLglWlAKtQ6GhsKLONQocWAAJGqSLBufLq3w01mfX5voXF39Su3dHko2nIWZpCqv-wmF_Y3yLwiwRQ59EUcTtNntC07GM43qsjrq5OKdgJIkYbZEJqU3Z2mb-XsfvS9OGb_5xRJpWnuEL9ryljPyowfgl2_LhFXuapJuwfM3uLkcn_Jg48DzwUIc5ztZTx3E2_8mjPJOHJhlGTGTM48zrHSfOTQE_j-fq6x98GvgimZDA8znyZlucWsKX6xusqbDRfPC4ZUtlyQjRn4bvScQV3rDx8PTb8Ui0tyoIoP5ZCWlqBRZrrxBrIgygDGS2tJOCQsWynDhtXQ0y915Z58CgNmCVR6XzEooBZm_ZDrXc7zFucZAZXYCUMNDO2zIvkQgFxrDFg8p6THYdWkGbcjzefDGrNsmSIwgVgVAlEKrbHvv08M2iSbjx37f3O5yq9udbVhSi2YJWgNz02OcOu83jf9f27nGvH7BnX0-G1cWXq_P3bFdFsUvSueyzndXN2n8gtrKafEwD8h59xOLZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MHD+Casson+nanofluid+flow+over+nonlinearly+heated+porous+medium+in+presence+of+extending+surface+effect+with+suction%2Finjection&rft.jtitle=Indian+journal+of+physics&rft.au=Abo-Dahab%2C+S+M&rft.au=Abdelhafez%2C+M+A&rft.au=Mebarek-Oudina+Fateh&rft.au=Bilal%2C+S+M&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=95&rft.issue=12&rft.spage=2703&rft.epage=2717&rft_id=info:doi/10.1007%2Fs12648-020-01923-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon |