TARDB-Net: triple-attention guided residual dense and BiLSTM networks for hyperspectral image classification

Each sample in the hyperspectral remote sensing image has high-dimensional features and contains rich spatial and spectral information, which greatly increases the difficulty of feature selection and mining. In view of these difficulties, we propose a novel Triple-attention Guided Residual Dense and...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 7; pp. 11291 - 11312
Main Authors Cai, Weiwei, Liu, Botao, Wei, Zhanguo, Li, Meilin, Kan, Jiangming
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-020-10188-x

Cover

Loading…
Abstract Each sample in the hyperspectral remote sensing image has high-dimensional features and contains rich spatial and spectral information, which greatly increases the difficulty of feature selection and mining. In view of these difficulties, we propose a novel Triple-attention Guided Residual Dense and BiLSTM networks(TARDB-Net) to reduce redundant features while increasing feature fusion capabilities, which ultimately improves the ability to classify hyperspectral images. First, a novel Triple-attention mechanism is proposed to assign different weights to each feature. Then, the residual network is used to perform the residual operation on the features, and the initial features of the multiple residual blocks and the generated deep residual features are intensively fused, retaining a host number of prior features. And use the bidirectional long short-term memory network to integrate the contextual semantics of deep fusion features. Finally, the classification task is completed by Softmax classifier. Experiments on three hyperspectral datasets—Indian Pines, University of Pavia, and Salinas—show that under 10% of the training samples, the overall accuracy of our method is 87%, 96% and 96%, which is superior to several well-known methods.
AbstractList Each sample in the hyperspectral remote sensing image has high-dimensional features and contains rich spatial and spectral information, which greatly increases the difficulty of feature selection and mining. In view of these difficulties, we propose a novel Triple-attention Guided Residual Dense and BiLSTM networks(TARDB-Net) to reduce redundant features while increasing feature fusion capabilities, which ultimately improves the ability to classify hyperspectral images. First, a novel Triple-attention mechanism is proposed to assign different weights to each feature. Then, the residual network is used to perform the residual operation on the features, and the initial features of the multiple residual blocks and the generated deep residual features are intensively fused, retaining a host number of prior features. And use the bidirectional long short-term memory network to integrate the contextual semantics of deep fusion features. Finally, the classification task is completed by Softmax classifier. Experiments on three hyperspectral datasets—Indian Pines, University of Pavia, and Salinas—show that under 10% of the training samples, the overall accuracy of our method is 87%, 96% and 96%, which is superior to several well-known methods.
Author Li, Meilin
Kan, Jiangming
Wei, Zhanguo
Liu, Botao
Cai, Weiwei
Author_xml – sequence: 1
  givenname: Weiwei
  surname: Cai
  fullname: Cai, Weiwei
  organization: School of Logistics and Transportation, Central South University of Forestry and Technology, Changsha Astra Information Technology Co., Ltd
– sequence: 2
  givenname: Botao
  surname: Liu
  fullname: Liu, Botao
  organization: Central South University
– sequence: 3
  givenname: Zhanguo
  orcidid: 0000-0001-9736-502X
  surname: Wei
  fullname: Wei, Zhanguo
  email: t20110778@csuft.edu.cn
  organization: School of Logistics and Transportation, Central South University of Forestry and Technology
– sequence: 4
  givenname: Meilin
  surname: Li
  fullname: Li, Meilin
  organization: School of Logistics and Transportation, Central South University of Forestry and Technology
– sequence: 5
  givenname: Jiangming
  surname: Kan
  fullname: Kan, Jiangming
  organization: Beijing Forestry University
BookMark eNp9kE9PHDEMxaMKpPLvC_QUqecUO5nMBG5Aoa20LRJsz1F24llCh8w0yarw7RvYSkg9cLJlvZ_9_PbZTpwiMfYB4RMCdMcZERopQIJAQGPE4zu2h7pTousk7tReGRCdBnzP9nO-B8BWy2aPjcuzm8_n4geVU15SmEcSrhSKJUyRrzfBk-eJcvAbN3JPMRN30fPzsLhdfueRyp8p_cp8mBK_e5op5Zn6kqo2PLg18X50OYch9O554SHbHdyY6ehfPWA_ry6XF1_F4vrLt4uzhegVnhSBTdMYOYBRGmUrUfo6dtjIlTQro7pucNSTRFDOadPrDvzKe-NbRy3BoNQB-7jdO6fp94ZysffTJsV60koNWmoDJ21Vma2qT1POiQbbh_Lisz4QRotgn7O122xtzda-ZGsfKyr_Q-dUH05Pb0NqC-UqjmtKr67eoP4C4wGPEw
CitedBy_id crossref_primary_10_1155_2022_4379317
crossref_primary_10_32604_iasc_2023_029923
crossref_primary_10_1155_2022_5434346
crossref_primary_10_1155_2021_1632393
crossref_primary_10_1007_s00521_021_05988_7
crossref_primary_10_1007_s10489_022_04008_y
crossref_primary_10_1155_2021_9601420
crossref_primary_10_1155_2021_9934363
crossref_primary_10_1007_s13753_022_00405_6
crossref_primary_10_1016_j_engstruct_2023_117413
crossref_primary_10_1080_01431161_2022_2093621
crossref_primary_10_1155_2021_7058723
crossref_primary_10_1016_j_sigpro_2023_109151
crossref_primary_10_1155_2021_2348494
crossref_primary_10_1016_j_measurement_2021_110137
crossref_primary_10_1155_2021_9948811
crossref_primary_10_1007_s11042_022_12911_2
crossref_primary_10_1016_j_eswa_2022_118707
crossref_primary_10_1016_j_autcon_2023_105050
crossref_primary_10_1007_s11042_022_12703_8
crossref_primary_10_1155_2021_6971906
crossref_primary_10_1155_2022_3496810
crossref_primary_10_1155_2021_3370580
crossref_primary_10_1080_07038992_2023_2246158
crossref_primary_10_3390_agriculture13030567
crossref_primary_10_1155_2021_5284457
crossref_primary_10_1007_s11042_022_12849_5
crossref_primary_10_1080_10255842_2023_2280883
crossref_primary_10_1080_10106049_2023_2231428
crossref_primary_10_1155_2021_9962057
crossref_primary_10_1109_TCSVT_2023_3289142
crossref_primary_10_1007_s00521_021_06151_y
crossref_primary_10_3390_f13010033
crossref_primary_10_1016_j_ins_2024_120735
crossref_primary_10_1007_s44196_023_00370_y
crossref_primary_10_1155_2021_9961963
crossref_primary_10_1155_2021_9930740
crossref_primary_10_1155_2021_4132016
crossref_primary_10_1155_2021_9976623
crossref_primary_10_1016_j_patcog_2022_108870
crossref_primary_10_1155_2021_3058141
crossref_primary_10_1155_2021_7629994
crossref_primary_10_1155_2021_5795884
crossref_primary_10_1155_2021_9919992
crossref_primary_10_1155_2021_9993677
crossref_primary_10_1007_s11042_022_12078_w
crossref_primary_10_1080_1206212X_2023_2212945
crossref_primary_10_1155_2021_9920421
crossref_primary_10_1109_TGRS_2022_3203980
crossref_primary_10_3390_rs14143394
crossref_primary_10_1155_2021_9993916
crossref_primary_10_1155_2021_9920186
crossref_primary_10_1155_2022_3442610
crossref_primary_10_1155_2021_5522899
crossref_primary_10_1038_s41598_021_97636_2
crossref_primary_10_1155_2021_9961978
crossref_primary_10_1155_2021_9914908
crossref_primary_10_1142_S0218126623501967
crossref_primary_10_1155_2022_5162828
crossref_primary_10_1093_bioinformatics_btad375
crossref_primary_10_1080_13682199_2023_2208927
crossref_primary_10_1155_2021_9962906
crossref_primary_10_1007_s00521_021_06159_4
crossref_primary_10_1016_j_asr_2023_04_025
crossref_primary_10_1155_2021_1651560
crossref_primary_10_1155_2021_9918433
crossref_primary_10_1109_LGRS_2023_3330608
crossref_primary_10_1016_j_eswa_2022_116733
crossref_primary_10_1007_s11042_022_13080_y
crossref_primary_10_4018_IJSIR_324074
crossref_primary_10_1155_2021_9920751
crossref_primary_10_1007_s11042_022_12809_z
crossref_primary_10_3390_rs14030785
crossref_primary_10_1155_2022_7253832
crossref_primary_10_32604_cmc_2022_029438
Cites_doi 10.1109/ACCESS.2020.2986267
10.1109/IGARSS.2019.8898131
10.1109/IGARSS.2018.8517520
10.1109/IGARSS39084.2020.9323316
10.1109/TGRS.2019.2899129
10.1109/TGRS.2018.2860125
10.1080/01431161.2020.1734253
10.1109/JSTARS.2019.2914715
10.1109/ACCESS.2019.2957163
10.1016/j.rse.2019.111322
10.1109/ELNANO.2019.8783604
10.1109/IGARSS.2019.8898899
10.1016/j.chemolab.2020.103936
10.1109/SIU.2018.8404199
10.1016/j.lwt.2020.109815
10.1109/MGRS.2013.2244672
10.1109/TIFS.2018.2871746
10.1109/TGRS.2020.3009918
10.1109/IWCMC.2019.8766466
10.1109/TGRS.2019.2945591
10.3390/rs12091366
10.1109/JSTARS.2019.2940278
10.1201/9781351003827
10.1109/IJCNN.2018.8489351
10.1007/978-3-030-03000-1_16
10.1016/j.asoc.2018.11.014
10.3934/mbe.2019167
10.1016/j.rse.2019.111458
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-020-10188-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 11312
ExternalDocumentID 10_1007_s11042_020_10188_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-144482f0835126212d319a142b28b8377faece2103aa58c570dbdd8d6ae6e0f33
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Sat Jul 26 00:00:48 EDT 2025
Tue Jul 01 04:13:07 EDT 2025
Thu Apr 24 23:14:46 EDT 2025
Fri Feb 21 02:49:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Triple-attention mechanism
Hyperspectral image
Bi-directional long-short term memory networks
Residual and dense networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-144482f0835126212d319a142b28b8377faece2103aa58c570dbdd8d6ae6e0f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9736-502X
PQID 2505258096
PQPubID 54626
PageCount 22
ParticipantIDs proquest_journals_2505258096
crossref_citationtrail_10_1007_s11042_020_10188_x
crossref_primary_10_1007_s11042_020_10188_x
springer_journals_10_1007_s11042_020_10188_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References XuLChenQRemote-sensing image usability assessment based on ResNet by combining edge and texture mapsIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing20191261825183410.1109/JSTARS.2019.2914715
Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473
Hassaballah M, Awad AI (2020) Deep Learning in Computer Vision: Principles and Applications, CRC Presss
Chen Y, Wan J, Zhang J, Zhao J, Ye F, Wang Z, Liu S (2019) Automatic Extraction Method of Sargassum Based on Spectral-Texture Features of Remote Sensing Images. In IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium.; pp. 3705–3707
LiJLinDWangYXuGZhangYDingCZhouYDeep discriminative representation learning with attention map for scene classificationRemote Sens2020129136610.3390/rs12091366
WangZZouCCaiWSmall sample classification of Hyperspectral remote sensing images based on sequential joint Deeping learning modelIEEE Access20208713537136310.1109/ACCESS.2020.2986267
Yang G, Gewali UB, Ientilucci E, Gartley M, Monteiro ST (2018) Dual-channel DenseNet for hyperspectral image classification. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium.; pp. 2595–2598
Zhang S, Yuan Q, Li J, Sun J, Zhang X (2020) Scene-adaptive remote sensing image super-resolution using a multiscale attention network. IEEE Trans Geosci Remote Sens
Zhou Y, Wang M (2019) Remote sensing image classification based on AlexNet network model. In international conference on frontier computing.; pp. 913–918
Su H, Yang X, Yan XH (2019) Estimating Ocean Subsurface Salinity from Remote Sensing Data by Machine Learning. In IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium.; pp. 8139–8142
Bioucas-DiasHyperspectral remote sensing data analysis and future challengesIEEE Geosci. Remote Sens. Mag.20131263610.1109/MGRS.2013.2244672
El-Shafie AHA, Zaki M, Habib SED (2019) Fast CNN-based object tracking using localization layers and deep features interpolation. In 2019 15th international wireless communications and Mobile computing conference (IWCMC).; pp. 1476–1481
ZhangJLuCLiXKimHJWangJA full convolutional network based on DenseNet for remote sensing scene classificationMath Biosci Eng20191653345336710.3934/mbe.2019167
He Q, Lee Y, Huang D, He S, Song W, Du Y (2018) Multi-modal remote sensing image classification for low sample size data. In 2018 international joint conference on neural networks (IJCNN).: pp. 1-6.
YangZ-LRNN-stega: linguistic steganography based on recurrent neural networksIEEE Transactions on Information Forensics and Security20181451280129510.1109/TIFS.2018.2871746
Dong X, Sun X, Jia X, Xi Z, Gao L, Zhang B (2020) Remote sensing image super-resolution using novel dense-sampling networks. IEEE Trans Geosci Remote Sens
Sowmya V, Soman KP, Hassaballah M (2019) Hyperspectral image: fundamentals and advances. Recent Advances in Computer Vision. Springer, Cham, 401–424
Liu, Ziwei, et al. (2020) Using convolution neural network and hyperspectral image to identify moldy peanut kernels. LWT 132 109815
TaoRZhaoXLiWLiH-CduQHyperspectral anomaly detection by fractional Fourier entropyIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing201912124920492910.1109/JSTARS.2019.2940278
XieFLiFLeiCYangJZhangYUnsupervised band selection based on artificial bee colony algorithm for hyperspectral image classificationAppl Soft Comput20197542844010.1016/j.asoc.2018.11.014
Salman M, Yüksel SE (2018) Fusion of hyperspectral image and LiDAR data and classification using deep convolutional neural networks. In 2018 26th signal processing and communications applications conference (SIU).; pp. 1–4
TongXYXiaGSLuQShenHLiSYouSZhangLLand-cover classification with high-resolution remote sensing images using transferable deep modelsRemote Sens Environ202023711132210.1016/j.rse.2019.111322
ZhouWSO–CNN based urban functional zone fine division with VHR remote sensing imageRemote Sensing of Environment202023611145810.1016/j.rse.2019.111458
HangRLiuQHongDGhamisiPCascaded recurrent neural networks for hyperspectral image classificationIEEE Trans Geosci Remote Sens20195785384539410.1109/TGRS.2019.2899129
JiaBEssential processing methods of hyperspectral images of agricultural and food productsChemom Intell Lab Syst202019810393610.1016/j.chemolab.2020.103936
JingRLiuSGongZWangZGuanHGautamAZhaoWObject-based change detection for VHR remote sensing images based on a Trisiamese-LSTMInt J Remote Sens202041166209623110.1080/01431161.2020.1734253
GaoHYangYYaoDLiCHyperspectral image classification with pre-activation residual attention networkIEEE Access2019717658717659910.1109/ACCESS.2019.2957163
Shumilo L, Yailymov B, Kussul N, Lavreniuk M, Shelestov A, Korsunska Y (2019) Rivne City land cover and land surface temperature analysis using remote sensing data. In 2019 IEEE 39th international conference on electronics and nanotechnology (ELNANO); pp. 813–816
PaolettiMEHautJMFernandez-BeltranRPlazaJPlazaAJPlaFDeep pyramidal residual networks for spectral–spatial hyperspectral image classificationIEEE Trans Geosci Remote Sens201857274075410.1109/TGRS.2018.2860125
Raju KK, Saradhi Varma GP, Rajyalakshmi D (2020) A comprehensive review on effect of band selection on the recital of hyper-spectral image classification. Microelectronics, Electromagnetics and Telecommunications 303–320
YouHTianSYuLLvYPixel-level remote sensing image recognition based on bidirectional word vectorsIEEE Trans Geosci Remote Sens20195821281129310.1109/TGRS.2019.2945591
10188_CR18
10188_CR17
10188_CR16
10188_CR15
10188_CR19
L Xu (10188_CR24) 2019; 12
R Tao (10188_CR20) 2019; 12
H You (10188_CR27) 2019; 58
W Zhou (10188_CR31) 2020; 236
Z Wang (10188_CR22) 2020; 8
R Jing (10188_CR11) 2020; 41
10188_CR29
Z-L Yang (10188_CR25) 2018; 14
10188_CR26
Bioucas-Dias (10188_CR2) 2013; 1
10188_CR3
B Jia (10188_CR10) 2020; 198
10188_CR1
J Li (10188_CR12) 2020; 12
ME Paoletti (10188_CR14) 2018; 57
10188_CR5
10188_CR4
XY Tong (10188_CR21) 2020; 237
10188_CR9
F Xie (10188_CR23) 2019; 75
10188_CR8
J Zhang (10188_CR28) 2019; 16
10188_CR30
H Gao (10188_CR6) 2019; 7
R Hang (10188_CR7) 2019; 57
10188_CR13
References_xml – reference: TongXYXiaGSLuQShenHLiSYouSZhangLLand-cover classification with high-resolution remote sensing images using transferable deep modelsRemote Sens Environ202023711132210.1016/j.rse.2019.111322
– reference: Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473
– reference: Salman M, Yüksel SE (2018) Fusion of hyperspectral image and LiDAR data and classification using deep convolutional neural networks. In 2018 26th signal processing and communications applications conference (SIU).; pp. 1–4
– reference: PaolettiMEHautJMFernandez-BeltranRPlazaJPlazaAJPlaFDeep pyramidal residual networks for spectral–spatial hyperspectral image classificationIEEE Trans Geosci Remote Sens201857274075410.1109/TGRS.2018.2860125
– reference: XuLChenQRemote-sensing image usability assessment based on ResNet by combining edge and texture mapsIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing20191261825183410.1109/JSTARS.2019.2914715
– reference: Sowmya V, Soman KP, Hassaballah M (2019) Hyperspectral image: fundamentals and advances. Recent Advances in Computer Vision. Springer, Cham, 401–424
– reference: He Q, Lee Y, Huang D, He S, Song W, Du Y (2018) Multi-modal remote sensing image classification for low sample size data. In 2018 international joint conference on neural networks (IJCNN).: pp. 1-6.
– reference: LiJLinDWangYXuGZhangYDingCZhouYDeep discriminative representation learning with attention map for scene classificationRemote Sens2020129136610.3390/rs12091366
– reference: YouHTianSYuLLvYPixel-level remote sensing image recognition based on bidirectional word vectorsIEEE Trans Geosci Remote Sens20195821281129310.1109/TGRS.2019.2945591
– reference: Zhang S, Yuan Q, Li J, Sun J, Zhang X (2020) Scene-adaptive remote sensing image super-resolution using a multiscale attention network. IEEE Trans Geosci Remote Sens
– reference: ZhouWSO–CNN based urban functional zone fine division with VHR remote sensing imageRemote Sensing of Environment202023611145810.1016/j.rse.2019.111458
– reference: HangRLiuQHongDGhamisiPCascaded recurrent neural networks for hyperspectral image classificationIEEE Trans Geosci Remote Sens20195785384539410.1109/TGRS.2019.2899129
– reference: Zhou Y, Wang M (2019) Remote sensing image classification based on AlexNet network model. In international conference on frontier computing.; pp. 913–918
– reference: JingRLiuSGongZWangZGuanHGautamAZhaoWObject-based change detection for VHR remote sensing images based on a Trisiamese-LSTMInt J Remote Sens202041166209623110.1080/01431161.2020.1734253
– reference: El-Shafie AHA, Zaki M, Habib SED (2019) Fast CNN-based object tracking using localization layers and deep features interpolation. In 2019 15th international wireless communications and Mobile computing conference (IWCMC).; pp. 1476–1481
– reference: GaoHYangYYaoDLiCHyperspectral image classification with pre-activation residual attention networkIEEE Access2019717658717659910.1109/ACCESS.2019.2957163
– reference: Raju KK, Saradhi Varma GP, Rajyalakshmi D (2020) A comprehensive review on effect of band selection on the recital of hyper-spectral image classification. Microelectronics, Electromagnetics and Telecommunications 303–320
– reference: ZhangJLuCLiXKimHJWangJA full convolutional network based on DenseNet for remote sensing scene classificationMath Biosci Eng20191653345336710.3934/mbe.2019167
– reference: Dong X, Sun X, Jia X, Xi Z, Gao L, Zhang B (2020) Remote sensing image super-resolution using novel dense-sampling networks. IEEE Trans Geosci Remote Sens
– reference: XieFLiFLeiCYangJZhangYUnsupervised band selection based on artificial bee colony algorithm for hyperspectral image classificationAppl Soft Comput20197542844010.1016/j.asoc.2018.11.014
– reference: Liu, Ziwei, et al. (2020) Using convolution neural network and hyperspectral image to identify moldy peanut kernels. LWT 132 109815
– reference: Hassaballah M, Awad AI (2020) Deep Learning in Computer Vision: Principles and Applications, CRC Presss
– reference: Bioucas-DiasHyperspectral remote sensing data analysis and future challengesIEEE Geosci. Remote Sens. Mag.20131263610.1109/MGRS.2013.2244672
– reference: Chen Y, Wan J, Zhang J, Zhao J, Ye F, Wang Z, Liu S (2019) Automatic Extraction Method of Sargassum Based on Spectral-Texture Features of Remote Sensing Images. In IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium.; pp. 3705–3707
– reference: Su H, Yang X, Yan XH (2019) Estimating Ocean Subsurface Salinity from Remote Sensing Data by Machine Learning. In IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium.; pp. 8139–8142
– reference: WangZZouCCaiWSmall sample classification of Hyperspectral remote sensing images based on sequential joint Deeping learning modelIEEE Access20208713537136310.1109/ACCESS.2020.2986267
– reference: YangZ-LRNN-stega: linguistic steganography based on recurrent neural networksIEEE Transactions on Information Forensics and Security20181451280129510.1109/TIFS.2018.2871746
– reference: JiaBEssential processing methods of hyperspectral images of agricultural and food productsChemom Intell Lab Syst202019810393610.1016/j.chemolab.2020.103936
– reference: Yang G, Gewali UB, Ientilucci E, Gartley M, Monteiro ST (2018) Dual-channel DenseNet for hyperspectral image classification. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium.; pp. 2595–2598
– reference: Shumilo L, Yailymov B, Kussul N, Lavreniuk M, Shelestov A, Korsunska Y (2019) Rivne City land cover and land surface temperature analysis using remote sensing data. In 2019 IEEE 39th international conference on electronics and nanotechnology (ELNANO); pp. 813–816
– reference: TaoRZhaoXLiWLiH-CduQHyperspectral anomaly detection by fractional Fourier entropyIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing201912124920492910.1109/JSTARS.2019.2940278
– volume: 8
  start-page: 71353
  year: 2020
  ident: 10188_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986267
– ident: 10188_CR3
  doi: 10.1109/IGARSS.2019.8898131
– ident: 10188_CR26
  doi: 10.1109/IGARSS.2018.8517520
– ident: 10188_CR4
  doi: 10.1109/IGARSS39084.2020.9323316
– volume: 57
  start-page: 5384
  issue: 8
  year: 2019
  ident: 10188_CR7
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2019.2899129
– volume: 57
  start-page: 740
  issue: 2
  year: 2018
  ident: 10188_CR14
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2018.2860125
– ident: 10188_CR1
– volume: 41
  start-page: 6209
  issue: 16
  year: 2020
  ident: 10188_CR11
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2020.1734253
– volume: 12
  start-page: 1825
  issue: 6
  year: 2019
  ident: 10188_CR24
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2019.2914715
– volume: 7
  start-page: 176587
  year: 2019
  ident: 10188_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957163
– volume: 237
  start-page: 111322
  year: 2020
  ident: 10188_CR21
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2019.111322
– ident: 10188_CR17
  doi: 10.1109/ELNANO.2019.8783604
– ident: 10188_CR19
  doi: 10.1109/IGARSS.2019.8898899
– volume: 198
  start-page: 103936
  year: 2020
  ident: 10188_CR10
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2020.103936
– ident: 10188_CR16
  doi: 10.1109/SIU.2018.8404199
– ident: 10188_CR13
  doi: 10.1016/j.lwt.2020.109815
– volume: 1
  start-page: 6
  issue: 2
  year: 2013
  ident: 10188_CR2
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2013.2244672
– volume: 14
  start-page: 1280
  issue: 5
  year: 2018
  ident: 10188_CR25
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2018.2871746
– ident: 10188_CR30
– ident: 10188_CR29
  doi: 10.1109/TGRS.2020.3009918
– ident: 10188_CR5
  doi: 10.1109/IWCMC.2019.8766466
– volume: 58
  start-page: 1281
  issue: 2
  year: 2019
  ident: 10188_CR27
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2019.2945591
– volume: 12
  start-page: 1366
  issue: 9
  year: 2020
  ident: 10188_CR12
  publication-title: Remote Sens
  doi: 10.3390/rs12091366
– volume: 12
  start-page: 4920
  issue: 12
  year: 2019
  ident: 10188_CR20
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2019.2940278
– ident: 10188_CR8
  doi: 10.1201/9781351003827
– ident: 10188_CR9
  doi: 10.1109/IJCNN.2018.8489351
– ident: 10188_CR15
– ident: 10188_CR18
  doi: 10.1007/978-3-030-03000-1_16
– volume: 75
  start-page: 428
  year: 2019
  ident: 10188_CR23
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.11.014
– volume: 16
  start-page: 3345
  issue: 5
  year: 2019
  ident: 10188_CR28
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2019167
– volume: 236
  start-page: 111458
  year: 2020
  ident: 10188_CR31
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.111458
SSID ssj0016524
Score 2.515783
Snippet Each sample in the hyperspectral remote sensing image has high-dimensional features and contains rich spatial and spectral information, which greatly increases...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11291
SubjectTerms Accuracy
Algorithms
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Deep learning
Experiments
Feature selection
Hyperspectral imaging
Image classification
Mining
Multimedia
Multimedia Information Systems
Neural networks
Remote sensing
Semantics
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UL3rwgRpRND1408Z9U70YUJEY9aCQcNv0hZLoirAk_Hxnul1RE7nutj10OvPNtDPfEHIsuUgi6UsGyqQYMnIxAajNjOK-AcDwI22zfB-TTi-668d9d-E2cWmVpU20hlp_KLwjPwtsxzUOHvfl6JNh1yh8XXUtNJbJig9Igyect2-_XxGS2DW15R4DZPRd0UxROudjYQoGT8hZxdnsNzDNvc0_D6QWd9qbZN05jLRZSHiLLJmsSjbKZgzU6WaVrP1gFtwmb93m03WLPZr8guZjvExnSKRpUxvpy3SojaYQaNtKLAqmZ2KoyDRtDe-fuw80K3LDJxQ8WvoKkWpRkDmGscN3MEBUoc-NSUZWrjuk177pXnWYa6zAFGhcziCIingwQO8Ltg3AS8Nn4UeBDLiEiLUxEEYZCAZDIWKu4oanpdZcJ8IkxhuE4S6pZB-Z2SOUhzIyA6Gk9FSkvViG4hw5yBqAelEoZY345a6myrGOY_OLt3TOl4ySSEESqZVEOquRk-85o4JzY-Hoeims1OnfJJ2flho5LQU4__3_avuLVzsgqwEmtdgktDqp5OOpOQSvJJdH9uh9AWH83L4
  priority: 102
  providerName: ProQuest
Title TARDB-Net: triple-attention guided residual dense and BiLSTM networks for hyperspectral image classification
URI https://link.springer.com/article/10.1007/s11042-020-10188-x
https://www.proquest.com/docview/2505258096
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPTgAzWiSPbgTTfpm9UbKGB8EIOQ4KnZF0qC1UBJ_PnOLi2oURNPTdrtHvrt7MzXnfkG4FgwHgXCFRSNSVKjyEU5em2qJXM1Ogw3UDbLtxNd9YPrQTjIisKmebZ7fiRpd-plsZtrSkkM3TEqU4xi5FgMkbubdd336ouzgyjMWtkyh6I_dLNSmZ_n-OqOljHmt2NR621aW7CRhYmkPsd1G1Z0UoLNvAUDySyyBOuf9AR3YNyrdy8btKPTc5JOzC90auQzbUIjeZqNlFYE6bWtvyK44Uw14YkijdHtQ--OJPOM8CnBOJY8Iz-dl2FOcOzoBbcdIk2kbVKLLJq70G81exdXNGunQCXaWUqROgXMG5qYy_UidFkKb3M38ITHBPLU2pBrqZEC-pyHTIY1RwmlmIq4jrQz9P09KCSvid4HwnwR6CGXQjgyUE4ofH5mlMdq6OsCX4gyuPlXjWWmNW5aXozjpUqyQSJGJGKLRPxehpPFO29zpY0_R1dysOLM6qaxZ7vyMWRlZTjNAVw-_n22g_8NP4Q1z6S22FS0ChTSyUwfYWySiiqssla7CsV6-_GmiddGs3PfrdoF-gGXFd4r
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4heqAc2gJFpKXgA5yo1X14N06lquKVBgg5tEHitviVNlK60GSjwp_iN3bGu0sAqdy47to-eMbzsL_5BmBLS5UKHWqOh8lwYuTiCr02d0aGDh1GKKxH-fbSzpk4Pk_O5-C2roUhWGVtE72htpeG7sg_Rb7jmsSI--vVH05do-h1tW6hUarFibv5iynb5MvRAcp3O4rah_39Dq-6CnCD6lZwzCCEjAYUeoRRipbb4mcVikhHUmO61hwoZxxmQrFSiTRJM7DaWmlT5VIXDOgCFE3-CxHHLYIQyva3u1eLNKma6MqAoycOqyKdslQvpEIYStaII0vy64eOcBbdPnqQ9X6u_QZeVQEq2y01agnmXL4Mr-vmD6yyBcuweI_JcAVG_d3vB3u854rPrBjT5T0n4k4PpWQ_p0PrLMPE3ld-MTR1E8dUbtnesPujf8ryEos-YRhBs1-YGZcFoGMcO_yNBo8ZivEJ1OT16C2cPcuWr8J8fpm7NWAy1sINlNE6MMIGiY5VizjPmuhlRax1A8J6VzNTsZxTs41RNuNnJklkKInMSyK7bsDO3ZyrkuPjydHrtbCy6rxPspl2NuBjLcDZ7_-v9u7p1TZhodM_7Wbdo97Je3gZEaDGA-DWYb4YT90HjIgKveHVkMHFc-v9PxKsGIs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC0hkFA4hEBADBDoA5xCC-_TQYoiYBjWjBAMEjfTm8NIYMiMEeTX8nVUtW0GkODG1dvB9bqW7lf1AFaUkEmkfMVxMWlOE7m4xKjNrRa-xYDhR8axfDvJ3ll0cB6fj8D_uheGaJW1T3SO2txo2iNfD5zimsCMez2raBHHrfav27-cFKTopLWW0yghcmj_3WP5Nvi530JbrwZBe6e7vccrhQGuEXoFx2oiEkFGaYgfJOjFDV6WfhSoQCgs3ZqZtNpiVRRKGQsdNz2jjBEmkTaxXkaboej-x5qh8Eg9QbR3n04wkrgS1BUex6jsVw07ZdueT00xVLjRvCzBH14GxWGm--pw1sW89hf4XCWrbLNE1xSM2HwaJmshCFb5hWmYeDbV8CtcdTdPWlu8Y4sNVvRpI5_TEE9Hq2R_7nrGGoZFvusCY-j2BpbJ3LCt3tFp9zfLS176gGE2zS6xSi6bQfv4bO8anR_TlO8TwclhagbOPuSXz8JofpPbOWAiVJHNpFbK05HxYhXKHzT_rIkRNwqVaoBf_9VUVxPPSXjjKh3OaiZLpGiJ1FkifWjA96d3bst5H-8-vVgbK63W_iAdIrUBa7UBh7ff_tr8-19bhnFEfHq03zlcgE8BcWscF24RRov-nf2GyVGhlhwKGVx8NOwfARreHLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TARDB-Net%3A+triple-attention+guided+residual+dense+and+BiLSTM+networks+for+hyperspectral+image+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Cai%2C+Weiwei&rft.au=Liu%2C+Botao&rft.au=Wei%2C+Zhanguo&rft.au=Li%2C+Meilin&rft.date=2021-03-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=7&rft.spage=11291&rft.epage=11312&rft_id=info:doi/10.1007%2Fs11042-020-10188-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_020_10188_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon