TARDB-Net: triple-attention guided residual dense and BiLSTM networks for hyperspectral image classification
Each sample in the hyperspectral remote sensing image has high-dimensional features and contains rich spatial and spectral information, which greatly increases the difficulty of feature selection and mining. In view of these difficulties, we propose a novel Triple-attention Guided Residual Dense and...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 7; pp. 11291 - 11312 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-020-10188-x |
Cover
Loading…
Abstract | Each sample in the hyperspectral remote sensing image has high-dimensional features and contains rich spatial and spectral information, which greatly increases the difficulty of feature selection and mining. In view of these difficulties, we propose a novel Triple-attention Guided Residual Dense and BiLSTM networks(TARDB-Net) to reduce redundant features while increasing feature fusion capabilities, which ultimately improves the ability to classify hyperspectral images. First, a novel Triple-attention mechanism is proposed to assign different weights to each feature. Then, the residual network is used to perform the residual operation on the features, and the initial features of the multiple residual blocks and the generated deep residual features are intensively fused, retaining a host number of prior features. And use the bidirectional long short-term memory network to integrate the contextual semantics of deep fusion features. Finally, the classification task is completed by Softmax classifier. Experiments on three hyperspectral datasets—Indian Pines, University of Pavia, and Salinas—show that under 10% of the training samples, the overall accuracy of our method is 87%, 96% and 96%, which is superior to several well-known methods. |
---|---|
AbstractList | Each sample in the hyperspectral remote sensing image has high-dimensional features and contains rich spatial and spectral information, which greatly increases the difficulty of feature selection and mining. In view of these difficulties, we propose a novel Triple-attention Guided Residual Dense and BiLSTM networks(TARDB-Net) to reduce redundant features while increasing feature fusion capabilities, which ultimately improves the ability to classify hyperspectral images. First, a novel Triple-attention mechanism is proposed to assign different weights to each feature. Then, the residual network is used to perform the residual operation on the features, and the initial features of the multiple residual blocks and the generated deep residual features are intensively fused, retaining a host number of prior features. And use the bidirectional long short-term memory network to integrate the contextual semantics of deep fusion features. Finally, the classification task is completed by Softmax classifier. Experiments on three hyperspectral datasets—Indian Pines, University of Pavia, and Salinas—show that under 10% of the training samples, the overall accuracy of our method is 87%, 96% and 96%, which is superior to several well-known methods. |
Author | Li, Meilin Kan, Jiangming Wei, Zhanguo Liu, Botao Cai, Weiwei |
Author_xml | – sequence: 1 givenname: Weiwei surname: Cai fullname: Cai, Weiwei organization: School of Logistics and Transportation, Central South University of Forestry and Technology, Changsha Astra Information Technology Co., Ltd – sequence: 2 givenname: Botao surname: Liu fullname: Liu, Botao organization: Central South University – sequence: 3 givenname: Zhanguo orcidid: 0000-0001-9736-502X surname: Wei fullname: Wei, Zhanguo email: t20110778@csuft.edu.cn organization: School of Logistics and Transportation, Central South University of Forestry and Technology – sequence: 4 givenname: Meilin surname: Li fullname: Li, Meilin organization: School of Logistics and Transportation, Central South University of Forestry and Technology – sequence: 5 givenname: Jiangming surname: Kan fullname: Kan, Jiangming organization: Beijing Forestry University |
BookMark | eNp9kE9PHDEMxaMKpPLvC_QUqecUO5nMBG5Aoa20LRJsz1F24llCh8w0yarw7RvYSkg9cLJlvZ_9_PbZTpwiMfYB4RMCdMcZERopQIJAQGPE4zu2h7pTousk7tReGRCdBnzP9nO-B8BWy2aPjcuzm8_n4geVU15SmEcSrhSKJUyRrzfBk-eJcvAbN3JPMRN30fPzsLhdfueRyp8p_cp8mBK_e5op5Zn6kqo2PLg18X50OYch9O554SHbHdyY6ehfPWA_ry6XF1_F4vrLt4uzhegVnhSBTdMYOYBRGmUrUfo6dtjIlTQro7pucNSTRFDOadPrDvzKe-NbRy3BoNQB-7jdO6fp94ZysffTJsV60koNWmoDJ21Vma2qT1POiQbbh_Lisz4QRotgn7O122xtzda-ZGsfKyr_Q-dUH05Pb0NqC-UqjmtKr67eoP4C4wGPEw |
CitedBy_id | crossref_primary_10_1155_2022_4379317 crossref_primary_10_32604_iasc_2023_029923 crossref_primary_10_1155_2022_5434346 crossref_primary_10_1155_2021_1632393 crossref_primary_10_1007_s00521_021_05988_7 crossref_primary_10_1007_s10489_022_04008_y crossref_primary_10_1155_2021_9601420 crossref_primary_10_1155_2021_9934363 crossref_primary_10_1007_s13753_022_00405_6 crossref_primary_10_1016_j_engstruct_2023_117413 crossref_primary_10_1080_01431161_2022_2093621 crossref_primary_10_1155_2021_7058723 crossref_primary_10_1016_j_sigpro_2023_109151 crossref_primary_10_1155_2021_2348494 crossref_primary_10_1016_j_measurement_2021_110137 crossref_primary_10_1155_2021_9948811 crossref_primary_10_1007_s11042_022_12911_2 crossref_primary_10_1016_j_eswa_2022_118707 crossref_primary_10_1016_j_autcon_2023_105050 crossref_primary_10_1007_s11042_022_12703_8 crossref_primary_10_1155_2021_6971906 crossref_primary_10_1155_2022_3496810 crossref_primary_10_1155_2021_3370580 crossref_primary_10_1080_07038992_2023_2246158 crossref_primary_10_3390_agriculture13030567 crossref_primary_10_1155_2021_5284457 crossref_primary_10_1007_s11042_022_12849_5 crossref_primary_10_1080_10255842_2023_2280883 crossref_primary_10_1080_10106049_2023_2231428 crossref_primary_10_1155_2021_9962057 crossref_primary_10_1109_TCSVT_2023_3289142 crossref_primary_10_1007_s00521_021_06151_y crossref_primary_10_3390_f13010033 crossref_primary_10_1016_j_ins_2024_120735 crossref_primary_10_1007_s44196_023_00370_y crossref_primary_10_1155_2021_9961963 crossref_primary_10_1155_2021_9930740 crossref_primary_10_1155_2021_4132016 crossref_primary_10_1155_2021_9976623 crossref_primary_10_1016_j_patcog_2022_108870 crossref_primary_10_1155_2021_3058141 crossref_primary_10_1155_2021_7629994 crossref_primary_10_1155_2021_5795884 crossref_primary_10_1155_2021_9919992 crossref_primary_10_1155_2021_9993677 crossref_primary_10_1007_s11042_022_12078_w crossref_primary_10_1080_1206212X_2023_2212945 crossref_primary_10_1155_2021_9920421 crossref_primary_10_1109_TGRS_2022_3203980 crossref_primary_10_3390_rs14143394 crossref_primary_10_1155_2021_9993916 crossref_primary_10_1155_2021_9920186 crossref_primary_10_1155_2022_3442610 crossref_primary_10_1155_2021_5522899 crossref_primary_10_1038_s41598_021_97636_2 crossref_primary_10_1155_2021_9961978 crossref_primary_10_1155_2021_9914908 crossref_primary_10_1142_S0218126623501967 crossref_primary_10_1155_2022_5162828 crossref_primary_10_1093_bioinformatics_btad375 crossref_primary_10_1080_13682199_2023_2208927 crossref_primary_10_1155_2021_9962906 crossref_primary_10_1007_s00521_021_06159_4 crossref_primary_10_1016_j_asr_2023_04_025 crossref_primary_10_1155_2021_1651560 crossref_primary_10_1155_2021_9918433 crossref_primary_10_1109_LGRS_2023_3330608 crossref_primary_10_1016_j_eswa_2022_116733 crossref_primary_10_1007_s11042_022_13080_y crossref_primary_10_4018_IJSIR_324074 crossref_primary_10_1155_2021_9920751 crossref_primary_10_1007_s11042_022_12809_z crossref_primary_10_3390_rs14030785 crossref_primary_10_1155_2022_7253832 crossref_primary_10_32604_cmc_2022_029438 |
Cites_doi | 10.1109/ACCESS.2020.2986267 10.1109/IGARSS.2019.8898131 10.1109/IGARSS.2018.8517520 10.1109/IGARSS39084.2020.9323316 10.1109/TGRS.2019.2899129 10.1109/TGRS.2018.2860125 10.1080/01431161.2020.1734253 10.1109/JSTARS.2019.2914715 10.1109/ACCESS.2019.2957163 10.1016/j.rse.2019.111322 10.1109/ELNANO.2019.8783604 10.1109/IGARSS.2019.8898899 10.1016/j.chemolab.2020.103936 10.1109/SIU.2018.8404199 10.1016/j.lwt.2020.109815 10.1109/MGRS.2013.2244672 10.1109/TIFS.2018.2871746 10.1109/TGRS.2020.3009918 10.1109/IWCMC.2019.8766466 10.1109/TGRS.2019.2945591 10.3390/rs12091366 10.1109/JSTARS.2019.2940278 10.1201/9781351003827 10.1109/IJCNN.2018.8489351 10.1007/978-3-030-03000-1_16 10.1016/j.asoc.2018.11.014 10.3934/mbe.2019167 10.1016/j.rse.2019.111458 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-020-10188-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 11312 |
ExternalDocumentID | 10_1007_s11042_020_10188_x |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-144482f0835126212d319a142b28b8377faece2103aa58c570dbdd8d6ae6e0f33 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Sat Jul 26 00:00:48 EDT 2025 Tue Jul 01 04:13:07 EDT 2025 Thu Apr 24 23:14:46 EDT 2025 Fri Feb 21 02:49:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Triple-attention mechanism Hyperspectral image Bi-directional long-short term memory networks Residual and dense networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-144482f0835126212d319a142b28b8377faece2103aa58c570dbdd8d6ae6e0f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9736-502X |
PQID | 2505258096 |
PQPubID | 54626 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2505258096 crossref_citationtrail_10_1007_s11042_020_10188_x crossref_primary_10_1007_s11042_020_10188_x springer_journals_10_1007_s11042_020_10188_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210300 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | XuLChenQRemote-sensing image usability assessment based on ResNet by combining edge and texture mapsIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing20191261825183410.1109/JSTARS.2019.2914715 Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 Hassaballah M, Awad AI (2020) Deep Learning in Computer Vision: Principles and Applications, CRC Presss Chen Y, Wan J, Zhang J, Zhao J, Ye F, Wang Z, Liu S (2019) Automatic Extraction Method of Sargassum Based on Spectral-Texture Features of Remote Sensing Images. In IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium.; pp. 3705–3707 LiJLinDWangYXuGZhangYDingCZhouYDeep discriminative representation learning with attention map for scene classificationRemote Sens2020129136610.3390/rs12091366 WangZZouCCaiWSmall sample classification of Hyperspectral remote sensing images based on sequential joint Deeping learning modelIEEE Access20208713537136310.1109/ACCESS.2020.2986267 Yang G, Gewali UB, Ientilucci E, Gartley M, Monteiro ST (2018) Dual-channel DenseNet for hyperspectral image classification. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium.; pp. 2595–2598 Zhang S, Yuan Q, Li J, Sun J, Zhang X (2020) Scene-adaptive remote sensing image super-resolution using a multiscale attention network. IEEE Trans Geosci Remote Sens Zhou Y, Wang M (2019) Remote sensing image classification based on AlexNet network model. In international conference on frontier computing.; pp. 913–918 Su H, Yang X, Yan XH (2019) Estimating Ocean Subsurface Salinity from Remote Sensing Data by Machine Learning. In IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium.; pp. 8139–8142 Bioucas-DiasHyperspectral remote sensing data analysis and future challengesIEEE Geosci. Remote Sens. Mag.20131263610.1109/MGRS.2013.2244672 El-Shafie AHA, Zaki M, Habib SED (2019) Fast CNN-based object tracking using localization layers and deep features interpolation. In 2019 15th international wireless communications and Mobile computing conference (IWCMC).; pp. 1476–1481 ZhangJLuCLiXKimHJWangJA full convolutional network based on DenseNet for remote sensing scene classificationMath Biosci Eng20191653345336710.3934/mbe.2019167 He Q, Lee Y, Huang D, He S, Song W, Du Y (2018) Multi-modal remote sensing image classification for low sample size data. In 2018 international joint conference on neural networks (IJCNN).: pp. 1-6. YangZ-LRNN-stega: linguistic steganography based on recurrent neural networksIEEE Transactions on Information Forensics and Security20181451280129510.1109/TIFS.2018.2871746 Dong X, Sun X, Jia X, Xi Z, Gao L, Zhang B (2020) Remote sensing image super-resolution using novel dense-sampling networks. IEEE Trans Geosci Remote Sens Sowmya V, Soman KP, Hassaballah M (2019) Hyperspectral image: fundamentals and advances. Recent Advances in Computer Vision. Springer, Cham, 401–424 Liu, Ziwei, et al. (2020) Using convolution neural network and hyperspectral image to identify moldy peanut kernels. LWT 132 109815 TaoRZhaoXLiWLiH-CduQHyperspectral anomaly detection by fractional Fourier entropyIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing201912124920492910.1109/JSTARS.2019.2940278 XieFLiFLeiCYangJZhangYUnsupervised band selection based on artificial bee colony algorithm for hyperspectral image classificationAppl Soft Comput20197542844010.1016/j.asoc.2018.11.014 Salman M, Yüksel SE (2018) Fusion of hyperspectral image and LiDAR data and classification using deep convolutional neural networks. In 2018 26th signal processing and communications applications conference (SIU).; pp. 1–4 TongXYXiaGSLuQShenHLiSYouSZhangLLand-cover classification with high-resolution remote sensing images using transferable deep modelsRemote Sens Environ202023711132210.1016/j.rse.2019.111322 ZhouWSO–CNN based urban functional zone fine division with VHR remote sensing imageRemote Sensing of Environment202023611145810.1016/j.rse.2019.111458 HangRLiuQHongDGhamisiPCascaded recurrent neural networks for hyperspectral image classificationIEEE Trans Geosci Remote Sens20195785384539410.1109/TGRS.2019.2899129 JiaBEssential processing methods of hyperspectral images of agricultural and food productsChemom Intell Lab Syst202019810393610.1016/j.chemolab.2020.103936 JingRLiuSGongZWangZGuanHGautamAZhaoWObject-based change detection for VHR remote sensing images based on a Trisiamese-LSTMInt J Remote Sens202041166209623110.1080/01431161.2020.1734253 GaoHYangYYaoDLiCHyperspectral image classification with pre-activation residual attention networkIEEE Access2019717658717659910.1109/ACCESS.2019.2957163 Shumilo L, Yailymov B, Kussul N, Lavreniuk M, Shelestov A, Korsunska Y (2019) Rivne City land cover and land surface temperature analysis using remote sensing data. In 2019 IEEE 39th international conference on electronics and nanotechnology (ELNANO); pp. 813–816 PaolettiMEHautJMFernandez-BeltranRPlazaJPlazaAJPlaFDeep pyramidal residual networks for spectral–spatial hyperspectral image classificationIEEE Trans Geosci Remote Sens201857274075410.1109/TGRS.2018.2860125 Raju KK, Saradhi Varma GP, Rajyalakshmi D (2020) A comprehensive review on effect of band selection on the recital of hyper-spectral image classification. Microelectronics, Electromagnetics and Telecommunications 303–320 YouHTianSYuLLvYPixel-level remote sensing image recognition based on bidirectional word vectorsIEEE Trans Geosci Remote Sens20195821281129310.1109/TGRS.2019.2945591 10188_CR18 10188_CR17 10188_CR16 10188_CR15 10188_CR19 L Xu (10188_CR24) 2019; 12 R Tao (10188_CR20) 2019; 12 H You (10188_CR27) 2019; 58 W Zhou (10188_CR31) 2020; 236 Z Wang (10188_CR22) 2020; 8 R Jing (10188_CR11) 2020; 41 10188_CR29 Z-L Yang (10188_CR25) 2018; 14 10188_CR26 Bioucas-Dias (10188_CR2) 2013; 1 10188_CR3 B Jia (10188_CR10) 2020; 198 10188_CR1 J Li (10188_CR12) 2020; 12 ME Paoletti (10188_CR14) 2018; 57 10188_CR5 10188_CR4 XY Tong (10188_CR21) 2020; 237 10188_CR9 F Xie (10188_CR23) 2019; 75 10188_CR8 J Zhang (10188_CR28) 2019; 16 10188_CR30 H Gao (10188_CR6) 2019; 7 R Hang (10188_CR7) 2019; 57 10188_CR13 |
References_xml | – reference: TongXYXiaGSLuQShenHLiSYouSZhangLLand-cover classification with high-resolution remote sensing images using transferable deep modelsRemote Sens Environ202023711132210.1016/j.rse.2019.111322 – reference: Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 – reference: Salman M, Yüksel SE (2018) Fusion of hyperspectral image and LiDAR data and classification using deep convolutional neural networks. In 2018 26th signal processing and communications applications conference (SIU).; pp. 1–4 – reference: PaolettiMEHautJMFernandez-BeltranRPlazaJPlazaAJPlaFDeep pyramidal residual networks for spectral–spatial hyperspectral image classificationIEEE Trans Geosci Remote Sens201857274075410.1109/TGRS.2018.2860125 – reference: XuLChenQRemote-sensing image usability assessment based on ResNet by combining edge and texture mapsIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing20191261825183410.1109/JSTARS.2019.2914715 – reference: Sowmya V, Soman KP, Hassaballah M (2019) Hyperspectral image: fundamentals and advances. Recent Advances in Computer Vision. Springer, Cham, 401–424 – reference: He Q, Lee Y, Huang D, He S, Song W, Du Y (2018) Multi-modal remote sensing image classification for low sample size data. In 2018 international joint conference on neural networks (IJCNN).: pp. 1-6. – reference: LiJLinDWangYXuGZhangYDingCZhouYDeep discriminative representation learning with attention map for scene classificationRemote Sens2020129136610.3390/rs12091366 – reference: YouHTianSYuLLvYPixel-level remote sensing image recognition based on bidirectional word vectorsIEEE Trans Geosci Remote Sens20195821281129310.1109/TGRS.2019.2945591 – reference: Zhang S, Yuan Q, Li J, Sun J, Zhang X (2020) Scene-adaptive remote sensing image super-resolution using a multiscale attention network. IEEE Trans Geosci Remote Sens – reference: ZhouWSO–CNN based urban functional zone fine division with VHR remote sensing imageRemote Sensing of Environment202023611145810.1016/j.rse.2019.111458 – reference: HangRLiuQHongDGhamisiPCascaded recurrent neural networks for hyperspectral image classificationIEEE Trans Geosci Remote Sens20195785384539410.1109/TGRS.2019.2899129 – reference: Zhou Y, Wang M (2019) Remote sensing image classification based on AlexNet network model. In international conference on frontier computing.; pp. 913–918 – reference: JingRLiuSGongZWangZGuanHGautamAZhaoWObject-based change detection for VHR remote sensing images based on a Trisiamese-LSTMInt J Remote Sens202041166209623110.1080/01431161.2020.1734253 – reference: El-Shafie AHA, Zaki M, Habib SED (2019) Fast CNN-based object tracking using localization layers and deep features interpolation. In 2019 15th international wireless communications and Mobile computing conference (IWCMC).; pp. 1476–1481 – reference: GaoHYangYYaoDLiCHyperspectral image classification with pre-activation residual attention networkIEEE Access2019717658717659910.1109/ACCESS.2019.2957163 – reference: Raju KK, Saradhi Varma GP, Rajyalakshmi D (2020) A comprehensive review on effect of band selection on the recital of hyper-spectral image classification. Microelectronics, Electromagnetics and Telecommunications 303–320 – reference: ZhangJLuCLiXKimHJWangJA full convolutional network based on DenseNet for remote sensing scene classificationMath Biosci Eng20191653345336710.3934/mbe.2019167 – reference: Dong X, Sun X, Jia X, Xi Z, Gao L, Zhang B (2020) Remote sensing image super-resolution using novel dense-sampling networks. IEEE Trans Geosci Remote Sens – reference: XieFLiFLeiCYangJZhangYUnsupervised band selection based on artificial bee colony algorithm for hyperspectral image classificationAppl Soft Comput20197542844010.1016/j.asoc.2018.11.014 – reference: Liu, Ziwei, et al. (2020) Using convolution neural network and hyperspectral image to identify moldy peanut kernels. LWT 132 109815 – reference: Hassaballah M, Awad AI (2020) Deep Learning in Computer Vision: Principles and Applications, CRC Presss – reference: Bioucas-DiasHyperspectral remote sensing data analysis and future challengesIEEE Geosci. Remote Sens. Mag.20131263610.1109/MGRS.2013.2244672 – reference: Chen Y, Wan J, Zhang J, Zhao J, Ye F, Wang Z, Liu S (2019) Automatic Extraction Method of Sargassum Based on Spectral-Texture Features of Remote Sensing Images. In IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium.; pp. 3705–3707 – reference: Su H, Yang X, Yan XH (2019) Estimating Ocean Subsurface Salinity from Remote Sensing Data by Machine Learning. In IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium.; pp. 8139–8142 – reference: WangZZouCCaiWSmall sample classification of Hyperspectral remote sensing images based on sequential joint Deeping learning modelIEEE Access20208713537136310.1109/ACCESS.2020.2986267 – reference: YangZ-LRNN-stega: linguistic steganography based on recurrent neural networksIEEE Transactions on Information Forensics and Security20181451280129510.1109/TIFS.2018.2871746 – reference: JiaBEssential processing methods of hyperspectral images of agricultural and food productsChemom Intell Lab Syst202019810393610.1016/j.chemolab.2020.103936 – reference: Yang G, Gewali UB, Ientilucci E, Gartley M, Monteiro ST (2018) Dual-channel DenseNet for hyperspectral image classification. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium.; pp. 2595–2598 – reference: Shumilo L, Yailymov B, Kussul N, Lavreniuk M, Shelestov A, Korsunska Y (2019) Rivne City land cover and land surface temperature analysis using remote sensing data. In 2019 IEEE 39th international conference on electronics and nanotechnology (ELNANO); pp. 813–816 – reference: TaoRZhaoXLiWLiH-CduQHyperspectral anomaly detection by fractional Fourier entropyIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing201912124920492910.1109/JSTARS.2019.2940278 – volume: 8 start-page: 71353 year: 2020 ident: 10188_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986267 – ident: 10188_CR3 doi: 10.1109/IGARSS.2019.8898131 – ident: 10188_CR26 doi: 10.1109/IGARSS.2018.8517520 – ident: 10188_CR4 doi: 10.1109/IGARSS39084.2020.9323316 – volume: 57 start-page: 5384 issue: 8 year: 2019 ident: 10188_CR7 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2019.2899129 – volume: 57 start-page: 740 issue: 2 year: 2018 ident: 10188_CR14 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2018.2860125 – ident: 10188_CR1 – volume: 41 start-page: 6209 issue: 16 year: 2020 ident: 10188_CR11 publication-title: Int J Remote Sens doi: 10.1080/01431161.2020.1734253 – volume: 12 start-page: 1825 issue: 6 year: 2019 ident: 10188_CR24 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2019.2914715 – volume: 7 start-page: 176587 year: 2019 ident: 10188_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957163 – volume: 237 start-page: 111322 year: 2020 ident: 10188_CR21 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2019.111322 – ident: 10188_CR17 doi: 10.1109/ELNANO.2019.8783604 – ident: 10188_CR19 doi: 10.1109/IGARSS.2019.8898899 – volume: 198 start-page: 103936 year: 2020 ident: 10188_CR10 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2020.103936 – ident: 10188_CR16 doi: 10.1109/SIU.2018.8404199 – ident: 10188_CR13 doi: 10.1016/j.lwt.2020.109815 – volume: 1 start-page: 6 issue: 2 year: 2013 ident: 10188_CR2 publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2013.2244672 – volume: 14 start-page: 1280 issue: 5 year: 2018 ident: 10188_CR25 publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2018.2871746 – ident: 10188_CR30 – ident: 10188_CR29 doi: 10.1109/TGRS.2020.3009918 – ident: 10188_CR5 doi: 10.1109/IWCMC.2019.8766466 – volume: 58 start-page: 1281 issue: 2 year: 2019 ident: 10188_CR27 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2019.2945591 – volume: 12 start-page: 1366 issue: 9 year: 2020 ident: 10188_CR12 publication-title: Remote Sens doi: 10.3390/rs12091366 – volume: 12 start-page: 4920 issue: 12 year: 2019 ident: 10188_CR20 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2019.2940278 – ident: 10188_CR8 doi: 10.1201/9781351003827 – ident: 10188_CR9 doi: 10.1109/IJCNN.2018.8489351 – ident: 10188_CR15 – ident: 10188_CR18 doi: 10.1007/978-3-030-03000-1_16 – volume: 75 start-page: 428 year: 2019 ident: 10188_CR23 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.11.014 – volume: 16 start-page: 3345 issue: 5 year: 2019 ident: 10188_CR28 publication-title: Math Biosci Eng doi: 10.3934/mbe.2019167 – volume: 236 start-page: 111458 year: 2020 ident: 10188_CR31 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2019.111458 |
SSID | ssj0016524 |
Score | 2.515783 |
Snippet | Each sample in the hyperspectral remote sensing image has high-dimensional features and contains rich spatial and spectral information, which greatly increases... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11291 |
SubjectTerms | Accuracy Algorithms Classification Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Deep learning Experiments Feature selection Hyperspectral imaging Image classification Mining Multimedia Multimedia Information Systems Neural networks Remote sensing Semantics Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UL3rwgRpRND1408Z9U70YUJEY9aCQcNv0hZLoirAk_Hxnul1RE7nutj10OvPNtDPfEHIsuUgi6UsGyqQYMnIxAajNjOK-AcDwI22zfB-TTi-668d9d-E2cWmVpU20hlp_KLwjPwtsxzUOHvfl6JNh1yh8XXUtNJbJig9Igyect2-_XxGS2DW15R4DZPRd0UxROudjYQoGT8hZxdnsNzDNvc0_D6QWd9qbZN05jLRZSHiLLJmsSjbKZgzU6WaVrP1gFtwmb93m03WLPZr8guZjvExnSKRpUxvpy3SojaYQaNtKLAqmZ2KoyDRtDe-fuw80K3LDJxQ8WvoKkWpRkDmGscN3MEBUoc-NSUZWrjuk177pXnWYa6zAFGhcziCIingwQO8Ltg3AS8Nn4UeBDLiEiLUxEEYZCAZDIWKu4oanpdZcJ8IkxhuE4S6pZB-Z2SOUhzIyA6Gk9FSkvViG4hw5yBqAelEoZY345a6myrGOY_OLt3TOl4ySSEESqZVEOquRk-85o4JzY-Hoeims1OnfJJ2flho5LQU4__3_avuLVzsgqwEmtdgktDqp5OOpOQSvJJdH9uh9AWH83L4 priority: 102 providerName: ProQuest |
Title | TARDB-Net: triple-attention guided residual dense and BiLSTM networks for hyperspectral image classification |
URI | https://link.springer.com/article/10.1007/s11042-020-10188-x https://www.proquest.com/docview/2505258096 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPTgAzWiSPbgTTfpm9UbKGB8EIOQ4KnZF0qC1UBJ_PnOLi2oURNPTdrtHvrt7MzXnfkG4FgwHgXCFRSNSVKjyEU5em2qJXM1Ogw3UDbLtxNd9YPrQTjIisKmebZ7fiRpd-plsZtrSkkM3TEqU4xi5FgMkbubdd336ouzgyjMWtkyh6I_dLNSmZ_n-OqOljHmt2NR621aW7CRhYmkPsd1G1Z0UoLNvAUDySyyBOuf9AR3YNyrdy8btKPTc5JOzC90auQzbUIjeZqNlFYE6bWtvyK44Uw14YkijdHtQ--OJPOM8CnBOJY8Iz-dl2FOcOzoBbcdIk2kbVKLLJq70G81exdXNGunQCXaWUqROgXMG5qYy_UidFkKb3M38ITHBPLU2pBrqZEC-pyHTIY1RwmlmIq4jrQz9P09KCSvid4HwnwR6CGXQjgyUE4ofH5mlMdq6OsCX4gyuPlXjWWmNW5aXozjpUqyQSJGJGKLRPxehpPFO29zpY0_R1dysOLM6qaxZ7vyMWRlZTjNAVw-_n22g_8NP4Q1z6S22FS0ChTSyUwfYWySiiqssla7CsV6-_GmiddGs3PfrdoF-gGXFd4r |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4heqAc2gJFpKXgA5yo1X14N06lquKVBgg5tEHitviVNlK60GSjwp_iN3bGu0sAqdy47to-eMbzsL_5BmBLS5UKHWqOh8lwYuTiCr02d0aGDh1GKKxH-fbSzpk4Pk_O5-C2roUhWGVtE72htpeG7sg_Rb7jmsSI--vVH05do-h1tW6hUarFibv5iynb5MvRAcp3O4rah_39Dq-6CnCD6lZwzCCEjAYUeoRRipbb4mcVikhHUmO61hwoZxxmQrFSiTRJM7DaWmlT5VIXDOgCFE3-CxHHLYIQyva3u1eLNKma6MqAoycOqyKdslQvpEIYStaII0vy64eOcBbdPnqQ9X6u_QZeVQEq2y01agnmXL4Mr-vmD6yyBcuweI_JcAVG_d3vB3u854rPrBjT5T0n4k4PpWQ_p0PrLMPE3ld-MTR1E8dUbtnesPujf8ryEos-YRhBs1-YGZcFoGMcO_yNBo8ZivEJ1OT16C2cPcuWr8J8fpm7NWAy1sINlNE6MMIGiY5VizjPmuhlRax1A8J6VzNTsZxTs41RNuNnJklkKInMSyK7bsDO3ZyrkuPjydHrtbCy6rxPspl2NuBjLcDZ7_-v9u7p1TZhodM_7Wbdo97Je3gZEaDGA-DWYb4YT90HjIgKveHVkMHFc-v9PxKsGIs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC0hkFA4hEBADBDoA5xCC-_TQYoiYBjWjBAMEjfTm8NIYMiMEeTX8nVUtW0GkODG1dvB9bqW7lf1AFaUkEmkfMVxMWlOE7m4xKjNrRa-xYDhR8axfDvJ3ll0cB6fj8D_uheGaJW1T3SO2txo2iNfD5zimsCMez2raBHHrfav27-cFKTopLWW0yghcmj_3WP5Nvi530JbrwZBe6e7vccrhQGuEXoFx2oiEkFGaYgfJOjFDV6WfhSoQCgs3ZqZtNpiVRRKGQsdNz2jjBEmkTaxXkaboej-x5qh8Eg9QbR3n04wkrgS1BUex6jsVw07ZdueT00xVLjRvCzBH14GxWGm--pw1sW89hf4XCWrbLNE1xSM2HwaJmshCFb5hWmYeDbV8CtcdTdPWlu8Y4sNVvRpI5_TEE9Hq2R_7nrGGoZFvusCY-j2BpbJ3LCt3tFp9zfLS176gGE2zS6xSi6bQfv4bO8anR_TlO8TwclhagbOPuSXz8JofpPbOWAiVJHNpFbK05HxYhXKHzT_rIkRNwqVaoBf_9VUVxPPSXjjKh3OaiZLpGiJ1FkifWjA96d3bst5H-8-vVgbK63W_iAdIrUBa7UBh7ff_tr8-19bhnFEfHq03zlcgE8BcWscF24RRov-nf2GyVGhlhwKGVx8NOwfARreHLg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TARDB-Net%3A+triple-attention+guided+residual+dense+and+BiLSTM+networks+for+hyperspectral+image+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Cai%2C+Weiwei&rft.au=Liu%2C+Botao&rft.au=Wei%2C+Zhanguo&rft.au=Li%2C+Meilin&rft.date=2021-03-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=7&rft.spage=11291&rft.epage=11312&rft_id=info:doi/10.1007%2Fs11042-020-10188-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_020_10188_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |