Max-Confidence Boosting With Uncertainty for Visual Tracking
The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of...
Saved in:
Published in | IEEE transactions on image processing Vol. 24; no. 5; pp. 1650 - 1659 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of the classification models, however, most of them overlook the ambiguity in visual modeling and do not consider the prior information in the tracking process. In this paper, we present a novel visual tracking method called max-confidence boosting (MCB), which explores a new way of online updating ambiguous visual phenomenon. The MCB framework models uncertainty in prior knowledge utilizing the indeterministic labels, which are used in updating models from previous frames and the new frame. Our proposed MCB tracker allows ambiguity in the tracking process and can effectively alleviate the drift problem. Many experimental results in challenging video sequences verify the success of our method, and our MCB tracker outperforms a number of the state-of-the-art tracking by classification methods. |
---|---|
AbstractList | The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of the classification models, however, most of them overlook the ambiguity in visual modeling and do not consider the prior information in the tracking process. In this paper, we present a novel visual tracking method called max-confidence boosting (MCB), which explores a new way of online updating ambiguous visual phenomenon. The MCB framework models uncertainty in prior knowledge utilizing the indeterministic labels, which are used in updating models from previous frames and the new frame. Our proposed MCB tracker allows ambiguity in the tracking process and can effectively alleviate the drift problem. Many experimental results in challenging video sequences verify the success of our method, and our MCB tracker outperforms a number of the state-of-the-art tracking by classification methods. The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of the classification models, however, most of them overlook the ambiguity in visual modeling and do not consider the prior information in the tracking process. In this paper, we present a novel visual tracking method called max-confidence boosting (MCB), which explores a new way of online updating ambiguous visual phenomenon. The MCB framework models uncertainty in prior knowledge utilizing the indeterministic labels, which are used in updating models from previous frames and the new frame. Our proposed MCB tracker allows ambiguity in the tracking process and can effectively alleviate the drift problem. Many experimental results in challenging video sequences verify the success of our method, and our MCB tracker outperforms a number of the state-of-the-art tracking by classification methods.The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of the classification models, however, most of them overlook the ambiguity in visual modeling and do not consider the prior information in the tracking process. In this paper, we present a novel visual tracking method called max-confidence boosting (MCB), which explores a new way of online updating ambiguous visual phenomenon. The MCB framework models uncertainty in prior knowledge utilizing the indeterministic labels, which are used in updating models from previous frames and the new frame. Our proposed MCB tracker allows ambiguity in the tracking process and can effectively alleviate the drift problem. Many experimental results in challenging video sequences verify the success of our method, and our MCB tracker outperforms a number of the state-of-the-art tracking by classification methods. |
Author | Changsheng Xu Wen Guo Shuicheng Yan Liangliang Cao Han, Tony X. |
Author_xml | – sequence: 1 surname: Wen Guo fullname: Wen Guo email: wguo@nlpr.ia.ac.cn organization: Dept. of Electron. Eng., Shandong Bus. & Technol. Univ., Yantai, China – sequence: 2 surname: Liangliang Cao fullname: Liangliang Cao email: liangliang.cao@gmail.com organization: IBM Watson Res. Center, New York, NY, USA – sequence: 3 givenname: Tony X. surname: Han fullname: Han, Tony X. email: hantx@missouri.edu organization: Univ. of Missouri, Columbia, MO, USA – sequence: 4 surname: Shuicheng Yan fullname: Shuicheng Yan email: eleyans@nus.edu.sg organization: Nat. Univ. of Singapore, Singapore, Singapore – sequence: 5 surname: Changsheng Xu fullname: Changsheng Xu email: csxu@nlpr.ia.ac.cn organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25769152$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1Lw0AQhhdRbKveBUFy9JI6k2STLHjR4hcoemj1GHaTia6m2bq7AfvvTWntwYOnGYbnnWGeEdttTUuMHSOMEUGcT--fxxEgH0cJCM7jHTZEkWAIkES7fQ88CzNMxICNnPsAwIRjus8GEc9SgTwasotH-R1OTFvritqSgitjnNftW_Cq_Xsw60fWS936ZVAbG7xo18kmmFpZfvbQIdurZePoaFMP2Ozmejq5Cx-ebu8nlw9hGaPwIcYKiIu8VJXiooS4SqpMRVKqCmRe16pWVKUgK5KUqohylRLkILMcY6pzHh-ws_XehTVfHTlfzLUrqWlkS6ZzBaY5YMZjTHv0dIN2ak5VsbB6Lu2y-P24B2ANlNY4Z6neIgjFSmrRSy1WUouN1D6S_omU2kuvTeut1M1_wZN1UBPR9k4GnAvA-AfFeoPU |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1109_TIE_2024_3357842 crossref_primary_10_1007_s00530_022_01001_w crossref_primary_10_1109_TIP_2017_2745205 crossref_primary_10_1109_TIP_2018_2813166 crossref_primary_10_1109_TIP_2017_2656628 crossref_primary_10_1117_1_JEI_27_2_023012 crossref_primary_10_1109_TIP_2020_2987425 crossref_primary_10_1155_2017_3276103 crossref_primary_10_1587_transinf_2018EDP7052 |
Cites_doi | 10.1023/A:1007939232436 10.1109/CVPR.2010.5540231 10.1109/TPAMI.2003.1233903 10.1109/CVPR.2004.1315111 10.1109/CVPR.2005.305 10.1111/j.2517-6161.1977.tb01600.x 10.1109/ICIP.2007.4379319 10.1007/s11263-006-7067-x 10.1214/aos/1016218223 10.1109/CVPR.2000.855824 10.1109/CVPR.2000.854761 10.1023/B:VISI.0000013087.49260.fb 10.1109/CVPR.2006.94 10.1109/CVPR.2011.5995716 10.1109/CVPR.2001.990474 10.1109/TPAMI.2005.205 10.1109/ICCV.2001.937709 10.1109/TPAMI.2004.16 10.1109/CVPR.2006.153 10.1109/ICCV.2013.86 10.1109/TPAMI.2003.1195991 10.1109/CVPR.2010.5539860 10.1109/TPAMI.2014.2299812 10.1109/CVPR.2004.1315241 10.1109/ICCV.2003.1238473 10.1109/CVPR.2006.215 10.1109/34.1000236 10.1109/CVPR.2005.144 10.1023/A:1007614523901 10.1109/ICCV.2003.1238365 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TIP.2015.2409553 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 1659 |
ExternalDocumentID | 25769152 10_1109_TIP_2015_2409553 7055901 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Program on Key Basic Research Project (973 Program) grantid: 2012CB316304 – fundername: National Natural Science Foundation of China grantid: 61173173; 61225009; 61303086; 61328205; 614722227; 61432019 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c319t-13b0e598cbdb59c03d4d7b2aabd0a8ffbfbed60adeae6b2e8b6e080a7813ef853 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 00:41:29 EDT 2025 Mon Jul 21 05:55:27 EDT 2025 Tue Jul 01 02:03:02 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Tue Aug 26 16:40:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Max-confidence boosting visual tracking semi-supervised learning |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/EU.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-13b0e598cbdb59c03d4d7b2aabd0a8ffbfbed60adeae6b2e8b6e080a7813ef853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25769152 |
PQID | 1680175316 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TIP_2015_2409553 crossref_citationtrail_10_1109_TIP_2015_2409553 pubmed_primary_25769152 ieee_primary_7055901 proquest_miscellaneous_1680175316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-May 2015-5-00 20150501 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-May |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref31 edwards (ref16) 1998 ref11 ref32 ref10 ref2 ref1 li (ref48) 2015; 37 ref39 bennett (ref9) 1998; 10 ref38 ref19 grandvalet (ref20) 2004; 13 zhu (ref43) 2003 freund (ref17) 1996 pérez (ref28) 2002 viola (ref24) 2006; 18 liu (ref18) 2009 bishop (ref34) 2006 lu (ref25) 2009 ref45 ref23 zhou (ref41) 2004; 16 dempster (ref33) 1977; 39 ref22 ref44 ref21 saffari (ref5) 2008 ref27 ref29 ref8 zhang (ref46) 2012 ref4 hong (ref30) 2014 ref3 grabner (ref47) 2008 ref6 liu (ref26) 2003 babenko (ref7) 2009 ref40 zhu (ref42) 2006 |
References_xml | – year: 2006 ident: ref34 publication-title: Pattern Recognition and Machine Learning – ident: ref10 doi: 10.1023/A:1007939232436 – volume: 18 start-page: 1417 year: 2006 ident: ref24 article-title: Multiple instance boosting for object detection publication-title: Proc Adv Neural Inf Process Syst – ident: ref11 doi: 10.1109/CVPR.2010.5540231 – ident: ref22 doi: 10.1109/TPAMI.2003.1233903 – ident: ref21 doi: 10.1109/CVPR.2004.1315111 – ident: ref39 doi: 10.1109/CVPR.2005.305 – volume: 39 start-page: 1 year: 1977 ident: ref33 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Statist Soc B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – start-page: 1491 year: 2006 ident: ref42 article-title: Fast human detection using a cascade of histograms of oriented gradients publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit – ident: ref45 doi: 10.1109/ICIP.2007.4379319 – ident: ref40 doi: 10.1007/s11263-006-7067-x – ident: ref19 doi: 10.1214/aos/1016218223 – year: 2009 ident: ref25 article-title: Fundamental limitations of semi-supervised learning – ident: ref8 doi: 10.1109/CVPR.2000.855824 – ident: ref15 doi: 10.1109/CVPR.2000.854761 – ident: ref38 doi: 10.1023/B:VISI.0000013087.49260.fb – ident: ref29 doi: 10.1109/CVPR.2006.94 – ident: ref37 doi: 10.1109/CVPR.2011.5995716 – start-page: 912 year: 2003 ident: ref43 article-title: Semi-supervised learning using Gaussian fields and harmonic functions publication-title: Proc 20th Int Conf Mach Learn – start-page: 148 year: 1996 ident: ref17 article-title: Experiments with a new boosting algorithm publication-title: Proc Int Conf Mach Learn – start-page: 155 year: 2014 ident: ref30 article-title: Tracking using multilevel quantizations publication-title: Proc 13th Eur Conf Comput Vis – ident: ref2 doi: 10.1109/CVPR.2001.990474 – start-page: 470 year: 2012 ident: ref46 article-title: Low-rank sparse learning for robust visual tracking publication-title: Proc 12th Eur Conf Comput Vis – ident: ref12 doi: 10.1109/TPAMI.2005.205 – start-page: 234 year: 2008 ident: ref47 article-title: Semi-supervised on-line boosting for robust tracking publication-title: Proc 10th Eur Conf Comput Vis – ident: ref23 doi: 10.1109/ICCV.2001.937709 – start-page: 588 year: 2008 ident: ref5 article-title: SERBoost: Semi-supervised boosting with expectation regularization publication-title: Proc 10th Eur Conf Comput Vis – ident: ref44 doi: 10.1109/TPAMI.2004.16 – ident: ref27 doi: 10.1109/CVPR.2006.153 – start-page: 1459 year: 2009 ident: ref18 article-title: A robust boosting tracker with minimum error bound in a co-training framework publication-title: Proc IEEE 12th Int Conf Comput Vis – ident: ref31 doi: 10.1109/ICCV.2013.86 – ident: ref14 doi: 10.1109/TPAMI.2003.1195991 – ident: ref6 doi: 10.1109/CVPR.2010.5539860 – volume: 13 start-page: 553 year: 2004 ident: ref20 article-title: Semi-supervised MarginBoost publication-title: Proc Adv Neural Inf Process Syst – volume: 37 start-page: 175 year: 2015 ident: ref48 article-title: Towards making unlabeled data never hurt publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2299812 – volume: 16 start-page: 321 year: 2004 ident: ref41 article-title: Learning with local and global consistency publication-title: Proc Adv Neural Inf Process Syst – ident: ref35 doi: 10.1109/CVPR.2004.1315241 – start-page: -587i year: 2003 ident: ref26 article-title: Kullback-Leibler boosting publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit – ident: ref36 doi: 10.1109/ICCV.2003.1238473 – ident: ref4 doi: 10.1109/CVPR.2006.215 – start-page: 260 year: 2009 ident: ref7 article-title: Visual tracking with online multiple instance learning publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit – ident: ref13 doi: 10.1109/34.1000236 – volume: 10 start-page: 368 year: 1998 ident: ref9 article-title: Semi-supervised support vector machines publication-title: Proc Adv Neural Inf Process Syst – start-page: 661 year: 2002 ident: ref28 article-title: Color-based probabilistic tracking publication-title: Proc 7th Eur Comput Conf – ident: ref1 doi: 10.1109/CVPR.2005.144 – start-page: 581 year: 1998 ident: ref16 article-title: Face recognition using active appearance models publication-title: Proc 5th Eur Conf Comput Vis – ident: ref32 doi: 10.1023/A:1007614523901 – ident: ref3 doi: 10.1109/ICCV.2003.1238365 |
SSID | ssj0014516 |
Score | 2.232799 |
Snippet | The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1650 |
SubjectTerms | Algorithm design and analysis Boosting Cost function Lighting Max-Confidence Boosting semi-supervised learning Semisupervised learning Tracking Visual Tracking Visualization |
Title | Max-Confidence Boosting With Uncertainty for Visual Tracking |
URI | https://ieeexplore.ieee.org/document/7055901 https://www.ncbi.nlm.nih.gov/pubmed/25769152 https://www.proquest.com/docview/1680175316 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6FnOiBQFIgpSBX4oKEEzvx2rsSl4KIQqUgDgnkZu1jrEZFMSK21PbXM-OXoCqIi2VZu157v13NNzsvgNda2gCFE740wvpRgtKXWmZ-RrIvsI40gIwVxdXneLmJLrZi24O3XSwMIlbOZzjh28qW73Jb8lHZlDO_KA7WekCKWx2r1VkMuOBsZdkUiZ8Q7W9NkoGarj99YR8uMSHppYTg0jlMs1UoZn9Io6q8yt-ZZiVxFgNYtd9aO5pcTcrCTOztnTSO__szj-FRQz2983qtPIEe7ocwaGio12zywxCOfstROIJ3K33tc1xgXX3Ue5_nB3aV9r7tiktvQ48qn4LixiP6633dHUoagySg5TP4Y9gsPq4_LP2m5IJvaS9yYXpD0ClpjTNC2WDuIpeYmdbGBQRhZjKDLg60Q42xmaE0MRLn1IkM55iR6H8K_X2-x-fgza0xZmYTg5GM0CoZEfqxpIsUUmdqDNN26lPb5CPnshjf00ovCVRKuKWMW9rgNoY3XY8fdS6Of7Qd8ZR37ZrZHsNZi25K-4iNI3qPeXlIw5hkNeluYTyGZzXsXed2tZzc_9IX8JCHrt0gT6Ff_CzxJVGVwryq1ugvCiziwQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS9xAFH-IHtoe1Gqra62m0Euh2U12M8kMeLFFWVtXeti13sJ8vKAoG3ETUP_6vpcv2mKLlxDCTDKZN8Pv9-Z9AXzU0gYonPClEdaPEpS-1DLzM8K-wDrSADJWFCdn8XgWfbsQF0vwuYuFQcTK-Qz7fFvZ8l1uSz4qG3DmF8XBWiuE-yKso7U6mwGXnK1smyLxEyL-rVEyUIPpyQ_24hJ9wi8lBBfPYaKtQjH8A4-qAiv_5poV5hyvwaQdbe1qct0vC9O3j38lcnzu76zDakM-vcN6tbyGJZxvwFpDRL1mmy824NVvWQo34WCi732ODKzrj3pf8nzBztLez6vi0pvRo8qroHjwiAB751eLkr5BGGj5FP4NzI6Ppl_HflN0wbe0G7k0vSHhKWmNM0LZYOQil5ih1sYFJMTMZAZdHGiHGmMzRGliJNapExmOMCPwfwvL83yO2-CNrDFmaBODkYzQKhmR_GNJFymkzlQPBu3Up7bJSM6FMW7SSjMJVEpyS1luaSO3HnzqetzW2Tj-03aTp7xr18x2Dz600k1pJ7F5RM8xLxdpGBNak_YWxj3YqsXedW5Xy87TL92HF-Pp5DQ9PTn7_g5e8jBqp8hdWC7uSnxPxKUwe9V6_QUIhuYK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Max-confidence+boosting+with+uncertainty+for+visual+tracking&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Guo%2C+Wen&rft.au=Cao%2C+Liangliang&rft.au=Han%2C+Tony+X&rft.au=Yan%2C+Shuicheng&rft.date=2015-05-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=24&rft.issue=5&rft.spage=1650&rft_id=info:doi/10.1109%2FTIP.2015.2409553&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |