Max-Confidence Boosting With Uncertainty for Visual Tracking

The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 24; no. 5; pp. 1650 - 1659
Main Authors Wen Guo, Liangliang Cao, Han, Tony X., Shuicheng Yan, Changsheng Xu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of the classification models, however, most of them overlook the ambiguity in visual modeling and do not consider the prior information in the tracking process. In this paper, we present a novel visual tracking method called max-confidence boosting (MCB), which explores a new way of online updating ambiguous visual phenomenon. The MCB framework models uncertainty in prior knowledge utilizing the indeterministic labels, which are used in updating models from previous frames and the new frame. Our proposed MCB tracker allows ambiguity in the tracking process and can effectively alleviate the drift problem. Many experimental results in challenging video sequences verify the success of our method, and our MCB tracker outperforms a number of the state-of-the-art tracking by classification methods.
AbstractList The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of the classification models, however, most of them overlook the ambiguity in visual modeling and do not consider the prior information in the tracking process. In this paper, we present a novel visual tracking method called max-confidence boosting (MCB), which explores a new way of online updating ambiguous visual phenomenon. The MCB framework models uncertainty in prior knowledge utilizing the indeterministic labels, which are used in updating models from previous frames and the new frame. Our proposed MCB tracker allows ambiguity in the tracking process and can effectively alleviate the drift problem. Many experimental results in challenging video sequences verify the success of our method, and our MCB tracker outperforms a number of the state-of-the-art tracking by classification methods.
The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of the classification models, however, most of them overlook the ambiguity in visual modeling and do not consider the prior information in the tracking process. In this paper, we present a novel visual tracking method called max-confidence boosting (MCB), which explores a new way of online updating ambiguous visual phenomenon. The MCB framework models uncertainty in prior knowledge utilizing the indeterministic labels, which are used in updating models from previous frames and the new frame. Our proposed MCB tracker allows ambiguity in the tracking process and can effectively alleviate the drift problem. Many experimental results in challenging video sequences verify the success of our method, and our MCB tracker outperforms a number of the state-of-the-art tracking by classification methods.The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the background and the foreground change with time. Many existing studies model this problem as tracking by classification with online updating of the classification models, however, most of them overlook the ambiguity in visual modeling and do not consider the prior information in the tracking process. In this paper, we present a novel visual tracking method called max-confidence boosting (MCB), which explores a new way of online updating ambiguous visual phenomenon. The MCB framework models uncertainty in prior knowledge utilizing the indeterministic labels, which are used in updating models from previous frames and the new frame. Our proposed MCB tracker allows ambiguity in the tracking process and can effectively alleviate the drift problem. Many experimental results in challenging video sequences verify the success of our method, and our MCB tracker outperforms a number of the state-of-the-art tracking by classification methods.
Author Changsheng Xu
Wen Guo
Shuicheng Yan
Liangliang Cao
Han, Tony X.
Author_xml – sequence: 1
  surname: Wen Guo
  fullname: Wen Guo
  email: wguo@nlpr.ia.ac.cn
  organization: Dept. of Electron. Eng., Shandong Bus. & Technol. Univ., Yantai, China
– sequence: 2
  surname: Liangliang Cao
  fullname: Liangliang Cao
  email: liangliang.cao@gmail.com
  organization: IBM Watson Res. Center, New York, NY, USA
– sequence: 3
  givenname: Tony X.
  surname: Han
  fullname: Han, Tony X.
  email: hantx@missouri.edu
  organization: Univ. of Missouri, Columbia, MO, USA
– sequence: 4
  surname: Shuicheng Yan
  fullname: Shuicheng Yan
  email: eleyans@nus.edu.sg
  organization: Nat. Univ. of Singapore, Singapore, Singapore
– sequence: 5
  surname: Changsheng Xu
  fullname: Changsheng Xu
  email: csxu@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25769152$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhdRbKveBUFy9JI6k2STLHjR4hcoemj1GHaTia6m2bq7AfvvTWntwYOnGYbnnWGeEdttTUuMHSOMEUGcT--fxxEgH0cJCM7jHTZEkWAIkES7fQ88CzNMxICNnPsAwIRjus8GEc9SgTwasotH-R1OTFvritqSgitjnNftW_Cq_Xsw60fWS936ZVAbG7xo18kmmFpZfvbQIdurZePoaFMP2Ozmejq5Cx-ebu8nlw9hGaPwIcYKiIu8VJXiooS4SqpMRVKqCmRe16pWVKUgK5KUqohylRLkILMcY6pzHh-ws_XehTVfHTlfzLUrqWlkS6ZzBaY5YMZjTHv0dIN2ak5VsbB6Lu2y-P24B2ANlNY4Z6neIgjFSmrRSy1WUouN1D6S_omU2kuvTeut1M1_wZN1UBPR9k4GnAvA-AfFeoPU
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TIE_2024_3357842
crossref_primary_10_1007_s00530_022_01001_w
crossref_primary_10_1109_TIP_2017_2745205
crossref_primary_10_1109_TIP_2018_2813166
crossref_primary_10_1109_TIP_2017_2656628
crossref_primary_10_1117_1_JEI_27_2_023012
crossref_primary_10_1109_TIP_2020_2987425
crossref_primary_10_1155_2017_3276103
crossref_primary_10_1587_transinf_2018EDP7052
Cites_doi 10.1023/A:1007939232436
10.1109/CVPR.2010.5540231
10.1109/TPAMI.2003.1233903
10.1109/CVPR.2004.1315111
10.1109/CVPR.2005.305
10.1111/j.2517-6161.1977.tb01600.x
10.1109/ICIP.2007.4379319
10.1007/s11263-006-7067-x
10.1214/aos/1016218223
10.1109/CVPR.2000.855824
10.1109/CVPR.2000.854761
10.1023/B:VISI.0000013087.49260.fb
10.1109/CVPR.2006.94
10.1109/CVPR.2011.5995716
10.1109/CVPR.2001.990474
10.1109/TPAMI.2005.205
10.1109/ICCV.2001.937709
10.1109/TPAMI.2004.16
10.1109/CVPR.2006.153
10.1109/ICCV.2013.86
10.1109/TPAMI.2003.1195991
10.1109/CVPR.2010.5539860
10.1109/TPAMI.2014.2299812
10.1109/CVPR.2004.1315241
10.1109/ICCV.2003.1238473
10.1109/CVPR.2006.215
10.1109/34.1000236
10.1109/CVPR.2005.144
10.1023/A:1007614523901
10.1109/ICCV.2003.1238365
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2015.2409553
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1659
ExternalDocumentID 25769152
10_1109_TIP_2015_2409553
7055901
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Program on Key Basic Research Project (973 Program)
  grantid: 2012CB316304
– fundername: National Natural Science Foundation of China
  grantid: 61173173; 61225009; 61303086; 61328205; 614722227; 61432019
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c319t-13b0e598cbdb59c03d4d7b2aabd0a8ffbfbed60adeae6b2e8b6e080a7813ef853
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 00:41:29 EDT 2025
Mon Jul 21 05:55:27 EDT 2025
Tue Jul 01 02:03:02 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Tue Aug 26 16:40:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Max-confidence boosting
visual tracking
semi-supervised learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/EU.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-13b0e598cbdb59c03d4d7b2aabd0a8ffbfbed60adeae6b2e8b6e080a7813ef853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25769152
PQID 1680175316
PQPubID 23479
PageCount 10
ParticipantIDs crossref_primary_10_1109_TIP_2015_2409553
crossref_citationtrail_10_1109_TIP_2015_2409553
pubmed_primary_25769152
ieee_primary_7055901
proquest_miscellaneous_1680175316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-May
2015-5-00
20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref31
edwards (ref16) 1998
ref11
ref32
ref10
ref2
ref1
li (ref48) 2015; 37
ref39
bennett (ref9) 1998; 10
ref38
ref19
grandvalet (ref20) 2004; 13
zhu (ref43) 2003
freund (ref17) 1996
pérez (ref28) 2002
viola (ref24) 2006; 18
liu (ref18) 2009
bishop (ref34) 2006
lu (ref25) 2009
ref45
ref23
zhou (ref41) 2004; 16
dempster (ref33) 1977; 39
ref22
ref44
ref21
saffari (ref5) 2008
ref27
ref29
ref8
zhang (ref46) 2012
ref4
hong (ref30) 2014
ref3
grabner (ref47) 2008
ref6
liu (ref26) 2003
babenko (ref7) 2009
ref40
zhu (ref42) 2006
References_xml – year: 2006
  ident: ref34
  publication-title: Pattern Recognition and Machine Learning
– ident: ref10
  doi: 10.1023/A:1007939232436
– volume: 18
  start-page: 1417
  year: 2006
  ident: ref24
  article-title: Multiple instance boosting for object detection
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref11
  doi: 10.1109/CVPR.2010.5540231
– ident: ref22
  doi: 10.1109/TPAMI.2003.1233903
– ident: ref21
  doi: 10.1109/CVPR.2004.1315111
– ident: ref39
  doi: 10.1109/CVPR.2005.305
– volume: 39
  start-page: 1
  year: 1977
  ident: ref33
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Statist Soc B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– start-page: 1491
  year: 2006
  ident: ref42
  article-title: Fast human detection using a cascade of histograms of oriented gradients
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– ident: ref45
  doi: 10.1109/ICIP.2007.4379319
– ident: ref40
  doi: 10.1007/s11263-006-7067-x
– ident: ref19
  doi: 10.1214/aos/1016218223
– year: 2009
  ident: ref25
  article-title: Fundamental limitations of semi-supervised learning
– ident: ref8
  doi: 10.1109/CVPR.2000.855824
– ident: ref15
  doi: 10.1109/CVPR.2000.854761
– ident: ref38
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref29
  doi: 10.1109/CVPR.2006.94
– ident: ref37
  doi: 10.1109/CVPR.2011.5995716
– start-page: 912
  year: 2003
  ident: ref43
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
  publication-title: Proc 20th Int Conf Mach Learn
– start-page: 148
  year: 1996
  ident: ref17
  article-title: Experiments with a new boosting algorithm
  publication-title: Proc Int Conf Mach Learn
– start-page: 155
  year: 2014
  ident: ref30
  article-title: Tracking using multilevel quantizations
  publication-title: Proc 13th Eur Conf Comput Vis
– ident: ref2
  doi: 10.1109/CVPR.2001.990474
– start-page: 470
  year: 2012
  ident: ref46
  article-title: Low-rank sparse learning for robust visual tracking
  publication-title: Proc 12th Eur Conf Comput Vis
– ident: ref12
  doi: 10.1109/TPAMI.2005.205
– start-page: 234
  year: 2008
  ident: ref47
  article-title: Semi-supervised on-line boosting for robust tracking
  publication-title: Proc 10th Eur Conf Comput Vis
– ident: ref23
  doi: 10.1109/ICCV.2001.937709
– start-page: 588
  year: 2008
  ident: ref5
  article-title: SERBoost: Semi-supervised boosting with expectation regularization
  publication-title: Proc 10th Eur Conf Comput Vis
– ident: ref44
  doi: 10.1109/TPAMI.2004.16
– ident: ref27
  doi: 10.1109/CVPR.2006.153
– start-page: 1459
  year: 2009
  ident: ref18
  article-title: A robust boosting tracker with minimum error bound in a co-training framework
  publication-title: Proc IEEE 12th Int Conf Comput Vis
– ident: ref31
  doi: 10.1109/ICCV.2013.86
– ident: ref14
  doi: 10.1109/TPAMI.2003.1195991
– ident: ref6
  doi: 10.1109/CVPR.2010.5539860
– volume: 13
  start-page: 553
  year: 2004
  ident: ref20
  article-title: Semi-supervised MarginBoost
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 37
  start-page: 175
  year: 2015
  ident: ref48
  article-title: Towards making unlabeled data never hurt
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2299812
– volume: 16
  start-page: 321
  year: 2004
  ident: ref41
  article-title: Learning with local and global consistency
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref35
  doi: 10.1109/CVPR.2004.1315241
– start-page: -587i
  year: 2003
  ident: ref26
  article-title: Kullback-Leibler boosting
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– ident: ref36
  doi: 10.1109/ICCV.2003.1238473
– ident: ref4
  doi: 10.1109/CVPR.2006.215
– start-page: 260
  year: 2009
  ident: ref7
  article-title: Visual tracking with online multiple instance learning
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit
– ident: ref13
  doi: 10.1109/34.1000236
– volume: 10
  start-page: 368
  year: 1998
  ident: ref9
  article-title: Semi-supervised support vector machines
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 661
  year: 2002
  ident: ref28
  article-title: Color-based probabilistic tracking
  publication-title: Proc 7th Eur Comput Conf
– ident: ref1
  doi: 10.1109/CVPR.2005.144
– start-page: 581
  year: 1998
  ident: ref16
  article-title: Face recognition using active appearance models
  publication-title: Proc 5th Eur Conf Comput Vis
– ident: ref32
  doi: 10.1023/A:1007614523901
– ident: ref3
  doi: 10.1109/ICCV.2003.1238365
SSID ssj0014516
Score 2.232799
Snippet The challenges in visual tracking call for a method which can reliably recognize the subject of interests in an environment, where the appearance of both the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1650
SubjectTerms Algorithm design and analysis
Boosting
Cost function
Lighting
Max-Confidence Boosting
semi-supervised learning
Semisupervised learning
Tracking
Visual Tracking
Visualization
Title Max-Confidence Boosting With Uncertainty for Visual Tracking
URI https://ieeexplore.ieee.org/document/7055901
https://www.ncbi.nlm.nih.gov/pubmed/25769152
https://www.proquest.com/docview/1680175316
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6FnOiBQFIgpSBX4oKEEzvx2rsSl4KIQqUgDgnkZu1jrEZFMSK21PbXM-OXoCqIi2VZu157v13NNzsvgNda2gCFE740wvpRgtKXWmZ-RrIvsI40gIwVxdXneLmJLrZi24O3XSwMIlbOZzjh28qW73Jb8lHZlDO_KA7WekCKWx2r1VkMuOBsZdkUiZ8Q7W9NkoGarj99YR8uMSHppYTg0jlMs1UoZn9Io6q8yt-ZZiVxFgNYtd9aO5pcTcrCTOztnTSO__szj-FRQz2983qtPIEe7ocwaGio12zywxCOfstROIJ3K33tc1xgXX3Ue5_nB3aV9r7tiktvQ48qn4LixiP6633dHUoagySg5TP4Y9gsPq4_LP2m5IJvaS9yYXpD0ClpjTNC2WDuIpeYmdbGBQRhZjKDLg60Q42xmaE0MRLn1IkM55iR6H8K_X2-x-fgza0xZmYTg5GM0CoZEfqxpIsUUmdqDNN26lPb5CPnshjf00ovCVRKuKWMW9rgNoY3XY8fdS6Of7Qd8ZR37ZrZHsNZi25K-4iNI3qPeXlIw5hkNeluYTyGZzXsXed2tZzc_9IX8JCHrt0gT6Ff_CzxJVGVwryq1ugvCiziwQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS9xAFH-IHtoe1Gqra62m0Euh2U12M8kMeLFFWVtXeti13sJ8vKAoG3ETUP_6vpcv2mKLlxDCTDKZN8Pv9-Z9AXzU0gYonPClEdaPEpS-1DLzM8K-wDrSADJWFCdn8XgWfbsQF0vwuYuFQcTK-Qz7fFvZ8l1uSz4qG3DmF8XBWiuE-yKso7U6mwGXnK1smyLxEyL-rVEyUIPpyQ_24hJ9wi8lBBfPYaKtQjH8A4-qAiv_5poV5hyvwaQdbe1qct0vC9O3j38lcnzu76zDakM-vcN6tbyGJZxvwFpDRL1mmy824NVvWQo34WCi732ODKzrj3pf8nzBztLez6vi0pvRo8qroHjwiAB751eLkr5BGGj5FP4NzI6Ppl_HflN0wbe0G7k0vSHhKWmNM0LZYOQil5ih1sYFJMTMZAZdHGiHGmMzRGliJNapExmOMCPwfwvL83yO2-CNrDFmaBODkYzQKhmR_GNJFymkzlQPBu3Up7bJSM6FMW7SSjMJVEpyS1luaSO3HnzqetzW2Tj-03aTp7xr18x2Dz600k1pJ7F5RM8xLxdpGBNak_YWxj3YqsXedW5Xy87TL92HF-Pp5DQ9PTn7_g5e8jBqp8hdWC7uSnxPxKUwe9V6_QUIhuYK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Max-confidence+boosting+with+uncertainty+for+visual+tracking&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Guo%2C+Wen&rft.au=Cao%2C+Liangliang&rft.au=Han%2C+Tony+X&rft.au=Yan%2C+Shuicheng&rft.date=2015-05-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=24&rft.issue=5&rft.spage=1650&rft_id=info:doi/10.1109%2FTIP.2015.2409553&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon