Face recognition in unconstrained environment with CNN
In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, we develop such a framework to learn a robust face verification in an unconstrained environment using aggressive data augmentation. Our objective is to learn a deep face...
Saved in:
Published in | The Visual computer Vol. 37; no. 2; pp. 217 - 226 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, we develop such a framework to learn a robust face verification in an unconstrained environment using aggressive data augmentation. Our objective is to learn a deep face representation from large-scale data with massive noisy and occluded face. Besides, we add an adaptive fusion of softmax loss and center loss as supervision signals, which are helpful to improve the performance and to conduct the final classification. The experiment results show that the suggested system achieves comparable performances with other state-of-the-art methods on the Labeled Faces in the Wild and YouTube face verification tasks. |
---|---|
AbstractList | In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, we develop such a framework to learn a robust face verification in an unconstrained environment using aggressive data augmentation. Our objective is to learn a deep face representation from large-scale data with massive noisy and occluded face. Besides, we add an adaptive fusion of softmax loss and center loss as supervision signals, which are helpful to improve the performance and to conduct the final classification. The experiment results show that the suggested system achieves comparable performances with other state-of-the-art methods on the Labeled Faces in the Wild and YouTube face verification tasks. |
Author | Souani, Chokri Ben Fredj, Hana Bouguezzi, Safa |
Author_xml | – sequence: 1 givenname: Hana orcidid: 0000-0003-2667-6132 surname: Ben Fredj fullname: Ben Fredj, Hana email: ben.fredj.hanaa@gmail.com organization: Laboratoire de microélectronique et instrumentations, Faculté des sciences de Monastir, Université de Monastir – sequence: 2 givenname: Safa surname: Bouguezzi fullname: Bouguezzi, Safa organization: Laboratoire de microélectronique et instrumentations, Faculté des sciences de Monastir, Université de Monastir – sequence: 3 givenname: Chokri surname: Souani fullname: Souani, Chokri organization: Institut supérieur des sciences appliquées et de technologie de Sousse, Université de Sousse |
BookMark | eNp9kE9LAzEQxYNUsK1-AU8LnqP5s22SoxSrgtSLnkM2ma0pbVKTreK3N-sKgoeehhneb2bem6BRiAEQuqTkmhIibjIhXFBMGMGEClVjdYLGtOYMM05nIzQuU4mZkOoMTXLekNKLWo3RfGksVAlsXAff-RgqH6pDsDHkLhkfwFUQPnyKYQehqz5991YtVqtzdNqabYaL3zpFr8u7l8UDfnq-f1zcPmHLqeow5VwKZ4y1aqYsc_3NRgrhFDBwElxTKyHbGWvn1NF5bZyRTEDTNo2krLF8iq6GvfsU3w-QO72JhxTKSc1UMcoVJ3VRyUFlU8w5Qaut70zvpvew1ZToPiU9pKRLSvonJa0Kyv6h--R3Jn0dh_gA5SIOa0h_Xx2hvgHvQ3vX |
CitedBy_id | crossref_primary_10_1007_s11042_023_16182_3 crossref_primary_10_3390_s23177517 crossref_primary_10_1007_s00500_024_09954_y crossref_primary_10_1117_1_JEI_33_4_043012 crossref_primary_10_1007_s00371_023_02822_0 crossref_primary_10_1515_nleng_2022_0290 crossref_primary_10_3390_electronics10182272 crossref_primary_10_1007_s00371_020_01960_z crossref_primary_10_1007_s00521_023_08953_8 crossref_primary_10_17798_bitlisfen_1518498 crossref_primary_10_3390_electronics11233909 crossref_primary_10_1007_s00371_022_02455_9 crossref_primary_10_1007_s11042_023_17232_6 crossref_primary_10_70395_cunas_1504238 crossref_primary_10_1016_j_gene_2023_147246 crossref_primary_10_1109_JSTARS_2024_3449923 crossref_primary_10_1109_ACCESS_2023_3331118 crossref_primary_10_1109_TBIOM_2022_3213545 crossref_primary_10_1002_jsid_1108 crossref_primary_10_1007_s00371_021_02350_9 crossref_primary_10_1007_s11277_022_10127_z crossref_primary_10_3390_solar3040036 crossref_primary_10_1007_s00371_021_02163_w crossref_primary_10_5604_01_3001_0015_8254 crossref_primary_10_1016_j_ecoinf_2022_101628 crossref_primary_10_1007_s00371_020_01949_8 crossref_primary_10_3390_s22103728 crossref_primary_10_1007_s00371_022_02690_0 crossref_primary_10_1007_s00371_023_02919_6 crossref_primary_10_1155_2023_2501022 crossref_primary_10_3233_IDT_210127 crossref_primary_10_1109_ACCESS_2024_3447899 crossref_primary_10_1007_s42044_025_00234_y crossref_primary_10_1007_s00371_023_02920_z crossref_primary_10_3390_electronics9081188 crossref_primary_10_1007_s11042_021_11688_0 crossref_primary_10_1007_s00371_022_02712_x crossref_primary_10_1109_ACCESS_2021_3090196 crossref_primary_10_1007_s00371_021_02253_9 crossref_primary_10_1016_j_dcan_2024_05_003 crossref_primary_10_1007_s00371_022_02443_z crossref_primary_10_1007_s11042_023_17624_8 crossref_primary_10_1007_s42044_020_00076_w crossref_primary_10_1364_OE_495425 crossref_primary_10_1007_s00371_023_03116_1 crossref_primary_10_2478_jsiot_2024_0007 crossref_primary_10_1007_s41060_024_00683_x |
Cites_doi | 10.1016/j.neucom.2016.12.025 10.1016/j.neucom.2018.01.079 10.1007/s00371-019-01635-4 10.1109/TPAMI.2010.128 10.1016/j.neucom.2016.12.013 10.1016/j.trit.2017.03.001 10.1007/s00371-019-01779-3 10.1007/s00371-019-01775-7 10.1049/iet-ipr.2017.1085 10.1162/neco.1989.1.4.541 10.1016/j.ins.2013.02.051 10.1109/TIFS.2018.2833032 10.1016/j.image.2016.03.011 10.1109/LSP.2016.2603342 10.1007/s00371-017-1429-y 10.1109/CVPR.2014.220 10.5244/C.28.6 10.1109/CADIAG.2017.8075658 10.1109/CVPR.2019.00482 10.1109/CVPR.2018.00552 10.1109/CVPR.2015.7298594 10.1109/ICIP.2017.8296803 10.1109/CVPR42600.2020.00525 10.1007/978-3-319-46454-1_35 10.1109/CVPR.2015.7298682 10.1007/978-3-540-74549-5_10 10.1109/CVPR.2016.91 10.1109/CRV.2014.21 10.1109/CVPR.2015.7298907 10.1109/CVPR.2016.90 10.1109/CVPR.2014.244 10.1007/978-3-319-46478-7_31 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-020-01794-9 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 226 |
ExternalDocumentID | 10_1007_s00371_020_01794_9 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c319t-13387daacc959c2d7749b877d9e2ed8edb4978f52f61d164ada827ebfbb812bc3 |
IEDL.DBID | BENPR |
ISSN | 0178-2789 |
IngestDate | Sat Aug 23 14:11:44 EDT 2025 Tue Jul 01 01:05:48 EDT 2025 Thu Apr 24 22:59:22 EDT 2025 Fri Feb 21 02:49:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Deep learning Face recognition Data augmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-13387daacc959c2d7749b877d9e2ed8edb4978f52f61d164ada827ebfbb812bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2667-6132 |
PQID | 2917939304 |
PQPubID | 2043737 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2917939304 crossref_citationtrail_10_1007_s00371_020_01794_9 crossref_primary_10_1007_s00371_020_01794_9 springer_journals_10_1007_s00371_020_01794_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Lv, Cheng, Tian, Zhou, Zhou (CR24) 2016; 47 Wang, Chen, Wang, Hu (CR16) 2019; 35 CR19 CR18 Wu, He, Sun, Tan (CR25) 2018; 13 CR39 CR38 CR15 Leng, Yu, Jingyan (CR36) 2017; 235 LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (CR10) 1989; 1 Faiedh, Hamdi, Bouguezzi, Farhat, Souani (CR13) 2018; 232 An, Liu (CR23) 2019; 35 CR35 CR12 CR34 CR11 CR32 CR30 Zhang, Zhang, Li, Qiao (CR33) 2016; 23 CR2 CR4 CR3 CR6 CR5 Farhat, Sghaier, Faiedh, Souani (CR14) 2018; 10 Xi, Guan, Shu, Borgeat, Goubran (CR17) 2019; 35 CR7 CR29 CR9 CR27 Naseem, Togneri, Bennamoun (CR31) 2010; 32 Xu, Zhu, Fan, Zhang, Mi, Lai (CR1) 2013; 238 Guo, Wu, Xu (CR22) 2017; 2 Choi (CR8) 2018; 34 CR21 CR43 CR20 CR42 CR41 CR40 Zhang, Shang, Wang, Li, Zhang (CR26) 2018; 12 Wen, Chen, Cai, He (CR28) 2018; 287 Lv, Shao, Huang, Zhou, Zhou (CR37) 2017; 230 1794_CR39 1794_CR38 1794_CR15 1794_CR19 1794_CR18 P Xi (1794_CR17) 2019; 35 F An (1794_CR23) 2019; 35 B Wang (1794_CR16) 2019; 35 JY Choi (1794_CR8) 2018; 34 B Leng (1794_CR36) 2017; 235 I Naseem (1794_CR31) 2010; 32 X Wu (1794_CR25) 2018; 13 W Farhat (1794_CR14) 2018; 10 Y Zhang (1794_CR26) 2018; 12 1794_CR30 K Zhang (1794_CR33) 2016; 23 1794_CR35 1794_CR12 1794_CR34 1794_CR11 Y Xu (1794_CR1) 2013; 238 K Guo (1794_CR22) 2017; 2 1794_CR32 1794_CR27 G Wen (1794_CR28) 2018; 287 1794_CR29 H Faiedh (1794_CR13) 2018; 232 1794_CR9 1794_CR6 1794_CR5 1794_CR7 1794_CR2 1794_CR20 JJ Lv (1794_CR24) 2016; 47 1794_CR42 Y LeCun (1794_CR10) 1989; 1 JJ Lv (1794_CR37) 2017; 230 1794_CR41 1794_CR4 1794_CR40 1794_CR3 1794_CR21 1794_CR43 |
References_xml | – volume: 10 start-page: 1 year: 2018 end-page: 17 ident: CR14 article-title: Design of efficient embedded system for road sign recognition publication-title: J. Ambient Intell. Humanized Comput. – ident: CR18 – ident: CR43 – volume: 230 start-page: 184 year: 2017 end-page: 196 ident: CR37 article-title: Data augmentation for face recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.025 – volume: 287 start-page: 45 year: 2018 end-page: 51 ident: CR28 article-title: Improving face recognition with domain adaptation publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.079 – ident: CR4 – ident: CR39 – ident: CR2 – ident: CR12 – ident: CR30 – volume: 35 start-page: 1 year: 2019 end-page: 16 ident: CR23 article-title: Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM publication-title: Vis. Comput. doi: 10.1007/s00371-019-01635-4 – volume: 232 start-page: 772 issue: 6 year: 2018 end-page: 783 ident: CR13 article-title: Architectural exploration of multilayer perceptron models for on-chip and real-time road sign classification publication-title: Pro. Inst. Mech. Eng. Part I J. Syst. Control Eng. – volume: 32 start-page: 2106 issue: 11 year: 2010 end-page: 2112 ident: CR31 article-title: Linear regression for face recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.128 – volume: 235 start-page: 10 year: 2017 end-page: 14 ident: CR36 article-title: Data augmentation for unbalanced face recognition training sets publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.013 – ident: CR35 – ident: CR6 – ident: CR29 – volume: 2 start-page: 39 issue: 1 year: 2017 end-page: 47 ident: CR22 article-title: Face recognition using both visible light image and near-infrared image and a deep network publication-title: CAAI Trans. Intell. Technol. doi: 10.1016/j.trit.2017.03.001 – ident: CR40 – volume: 35 start-page: 1 year: 2019 end-page: 12 ident: CR16 article-title: Residual feature pyramid networks for salient object detection publication-title: Vis. Comput. doi: 10.1007/s00371-019-01779-3 – ident: CR27 – ident: CR42 – volume: 35 start-page: 1 year: 2019 end-page: 14 ident: CR17 article-title: An integrated approach for medical abnormality detection using deep patch convolutional neural networks publication-title: Vis. Comput. doi: 10.1007/s00371-019-01775-7 – ident: CR21 – ident: CR19 – volume: 12 start-page: 819 issue: 5 year: 2018 end-page: 825 ident: CR26 article-title: Patch strategy for deep face recognition publication-title: IET Image Proc. doi: 10.1049/iet-ipr.2017.1085 – volume: 1 start-page: 541 issue: 4 year: 1989 end-page: 551 ident: CR10 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – ident: CR3 – ident: CR15 – ident: CR38 – volume: 238 start-page: 138 year: 2013 end-page: 148 ident: CR1 article-title: Using the idea of the sparse representation to perform coarse to-fine face recognition publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.02.051 – ident: CR11 – ident: CR9 – volume: 13 start-page: 2884 issue: 11 year: 2018 end-page: 2896 ident: CR25 article-title: A light cnn for deep face representation with noisy labels publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2833032 – ident: CR32 – ident: CR34 – ident: CR5 – ident: CR7 – volume: 47 start-page: 465 year: 2016 end-page: 475 ident: CR24 article-title: Landmark perturbation-based data augmentation for unconstrained face recognition publication-title: Sig. Process. Image Commun. doi: 10.1016/j.image.2016.03.011 – volume: 23 start-page: 1499 issue: 10 year: 2016 end-page: 1503 ident: CR33 article-title: Joint face detection and alignment using multitask cascaded convolutional networks publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2603342 – ident: CR41 – volume: 34 start-page: 1535 issue: 11 year: 2018 end-page: 1549 ident: CR8 article-title: Spatial pyramid face feature representation and weighted dissimilarity matching for improved face recognition publication-title: Vis. Comput. doi: 10.1007/s00371-017-1429-y – ident: CR20 – volume: 230 start-page: 184 year: 2017 ident: 1794_CR37 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.025 – ident: 1794_CR6 doi: 10.1109/CVPR.2014.220 – volume: 34 start-page: 1535 issue: 11 year: 2018 ident: 1794_CR8 publication-title: Vis. Comput. doi: 10.1007/s00371-017-1429-y – ident: 1794_CR21 doi: 10.5244/C.28.6 – ident: 1794_CR15 doi: 10.1109/CADIAG.2017.8075658 – volume: 35 start-page: 1 year: 2019 ident: 1794_CR16 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01779-3 – ident: 1794_CR41 doi: 10.1109/CVPR.2019.00482 – ident: 1794_CR43 doi: 10.1109/CVPR.2018.00552 – volume: 238 start-page: 138 year: 2013 ident: 1794_CR1 publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.02.051 – volume: 232 start-page: 772 issue: 6 year: 2018 ident: 1794_CR13 publication-title: Pro. Inst. Mech. Eng. Part I J. Syst. Control Eng. – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: 1794_CR33 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2603342 – ident: 1794_CR9 doi: 10.1109/CVPR.2015.7298594 – volume: 13 start-page: 2884 issue: 11 year: 2018 ident: 1794_CR25 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2833032 – volume: 35 start-page: 1 year: 2019 ident: 1794_CR23 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01635-4 – ident: 1794_CR20 – ident: 1794_CR12 – ident: 1794_CR32 doi: 10.1109/ICIP.2017.8296803 – ident: 1794_CR34 doi: 10.1109/CVPR42600.2020.00525 – ident: 1794_CR35 doi: 10.1007/978-3-319-46454-1_35 – ident: 1794_CR18 doi: 10.1109/CVPR.2015.7298682 – ident: 1794_CR4 doi: 10.1007/978-3-540-74549-5_10 – ident: 1794_CR3 doi: 10.1109/CVPR.2016.91 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 1794_CR10 publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – ident: 1794_CR30 – volume: 12 start-page: 819 issue: 5 year: 2018 ident: 1794_CR26 publication-title: IET Image Proc. doi: 10.1049/iet-ipr.2017.1085 – volume: 287 start-page: 45 year: 2018 ident: 1794_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.079 – volume: 10 start-page: 1 year: 2018 ident: 1794_CR14 publication-title: J. Ambient Intell. Humanized Comput. – volume: 2 start-page: 39 issue: 1 year: 2017 ident: 1794_CR22 publication-title: CAAI Trans. Intell. Technol. doi: 10.1016/j.trit.2017.03.001 – ident: 1794_CR29 doi: 10.1109/CRV.2014.21 – volume: 47 start-page: 465 year: 2016 ident: 1794_CR24 publication-title: Sig. Process. Image Commun. doi: 10.1016/j.image.2016.03.011 – ident: 1794_CR39 doi: 10.1109/CVPR.2015.7298907 – ident: 1794_CR7 – ident: 1794_CR42 – ident: 1794_CR2 doi: 10.1109/CVPR.2016.90 – volume: 32 start-page: 2106 issue: 11 year: 2010 ident: 1794_CR31 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.128 – ident: 1794_CR19 doi: 10.1109/CVPR.2014.244 – ident: 1794_CR38 – volume: 35 start-page: 1 year: 2019 ident: 1794_CR17 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01775-7 – volume: 235 start-page: 10 year: 2017 ident: 1794_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.013 – ident: 1794_CR40 – ident: 1794_CR5 – ident: 1794_CR11 – ident: 1794_CR27 doi: 10.1007/978-3-319-46478-7_31 |
SSID | ssj0017749 |
Score | 2.5188768 |
Snippet | In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, we develop such a framework... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 217 |
SubjectTerms | Accuracy Artificial Intelligence Artificial neural networks Computer Graphics Computer Science Data augmentation Datasets Deep learning Face recognition Facial recognition technology Image Processing and Computer Vision Methods Neural networks Original Article Verification |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAY4AoDJQDN6jUpo80x2limpDYiUm7RXlKSKhDbPx_4qztBgIkzk2j1E7iz7U_G-BWaw8zvF5jyZGSI10e80S7mGlZZoZLZjIkCj9Ny8ksf5wX84YUtmyz3duQZLipO7JbqC4Xo7sTdlHMd2GvQN_d7-IZHXaxAw9oAuhNvX-EPM-GKvPzHF_N0QZjfguLBmszPobDBiaS4VqvJ7Bj6z4ctS0YSHMi-3CwVU_wFMqx1JZ0OUGLmrzUxBsuxIDYCsIaskVsI_gPloym0zOYjR-eR5O4aYwQa39isH18VjEjpda84Joa_GJVMWa4pdZU1ijsG-cK6srUeH9IGllRZpVTyttzpbNz6NWL2l4AYcw5k3GsWqNypRJltE2o4t6QO6-qNIK0lY_QTdVwXPGr6OodB5kKL1MRZCp4BHfdO2_rmhl_jh60YhfN-VkKyvHi4FmSR3DfqmLz-PfZLv83_Ar2KSaphDTsAfRW7x_22qOMlboJm-oTwbHHQw priority: 102 providerName: Springer Nature |
Title | Face recognition in unconstrained environment with CNN |
URI | https://link.springer.com/article/10.1007/s00371-020-01794-9 https://www.proquest.com/docview/2917939304 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4IXPRgfEYUSQ_edCPdQts9GSQUorExRhI8NftqYmIKCv5_d5ZtQRO59rFpZ2Z3vnkDXElpYIbhK-EMS3J43iWsI3MSSR4GivFIBVgo_JSG40n3YdqbOofbwqVVlmeiPajVTKKP_JYyFCVmrO-7-SfBqVEYXXUjNGrQMEdwbIyvxv0wfX6p4ggG3FgA7BtbCWs-XdmMLZ6z3eoImk9WKgn7rZrWePNPiNRqnuQA9h1k9PorHh_Cji6OYG-jkeAxhAmX2quSgWaF9154RmMh-MMZEFp5GxVtHjpfvUGansAkGb4OxsRNRCDSbBWcGx_EkeJcStZjkir8PRFHkWKaahVrJXBgXN6jeegrYwhxxWMaaZELYRS5kMEp1ItZoc_Ai6I8VwHDdjWiK0RHKKk7VDCjwXPDI78JfkmMTLp24fjFH1nV6NgSMDMEzCwBM9aE6-qd-apZxtanWyWNM7dxFtmazU24Kem-vv3_aufbV7uAXYrZKDbfugX15de3vjRwYinaUIuTURsa_dHb47DtJMhcndD-D8mdyOM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4oHtSD8RlR1D3oSRthW9ruwRiDIsjjBAm3uq8mJqagYIx_yt_oztIWNJEb57aT5ttvdmZ25wFwLqVxM8y6OpxhSQ6PPYeVZewEkvuuYjxQLhYKd7p-o-89DaqDFfjOamEwrTLbE-1GrYYSz8ivKUMqMRN9347eHJwahber2QiNKS1a-uvThGzjm-a9Wd8LSusPvVrDSacKONLQDWevu2GgOJeSVZmkyvg_TIRBoJimWoVaCRy6Fldp7FeUCSa44iENtIiFMMZQSNfIXYU1z3UZalRYf8xvLVCUTZk0kRlWmKZFOrZUz_bGczBYszrgsN-GcObd_rmQtXauvg1bqYNK7qaM2oEVnezC5lzbwj3w61xqkqceDRPykhBjH9HVxIkTWpG5-jmCR72k1u3uQ38pSB1AIRkm-hBIEMSxchk2xxGeEGWhpC5TwYy_EBtGVIpQycCIZNqcHP_4NcrbKlsAIwNgZAGMWBEu829G09YcC98uZRhHqZqOoxmpinCV4T57_L-0o8XSzmC90eu0o3az2zqGDYp5MDbTuwSFyfuHPjGOzEScWvYQeF42XX8AV7cCkQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBNEHL1NxOjUPvmmxTbumeRzTMm_FBwd7C7mCIN3Q-f9NsrabooLPTUNzTpLzpTnfdwDOpbQww_o14NRRcrhJAhpKExDJ01hRTlTsiMKPRTocJXfj3niJxe-z3esryTmnwak0lbOrqTJXDfHNK80F7ujjZ1RAV2HNbseRm9cj3G_uESy48QA4smclx_msaDM_9_E1NC3w5rcrUh958h3YqiAj6s99vAsrumzDdl2OAVWrsw2bS9qCe5DmXGrU5AdNSvRSIhvEHB50ZSG0QkskN-T-x6JBUezDKL95HgyDqkhCIO1wXSn5OCOKcylpj0qs3IhFRoiiGmuVaSVcDTnTwyaNlD0bccUzTLQwQtjYLmR8AK1yUupDQIQYo2LqFGxEIkQolNQhFtQGdWPdFnUgqu3DZKUg7r74lTXax96mzNqUeZsy2oGL5p3pXD_jz9bd2uysWkvvDFO3idA4TDpwWbti8fj33o7-1_wM1p-uc_ZwW9wfwwZ2uSs-O7sLrdnbhz6x4GMmTv38-gRTus5y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+recognition+in+unconstrained+environment+with+CNN&rft.jtitle=The+Visual+computer&rft.au=Ben+Fredj%2C+Hana&rft.au=Bouguezzi%2C+Safa&rft.au=Souani%2C+Chokri&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=37&rft.issue=2&rft.spage=217&rft.epage=226&rft_id=info:doi/10.1007%2Fs00371-020-01794-9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |