Face recognition in unconstrained environment with CNN

In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, we develop such a framework to learn a robust face verification in an unconstrained environment using aggressive data augmentation. Our objective is to learn a deep face...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 37; no. 2; pp. 217 - 226
Main Authors Ben Fredj, Hana, Bouguezzi, Safa, Souani, Chokri
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, we develop such a framework to learn a robust face verification in an unconstrained environment using aggressive data augmentation. Our objective is to learn a deep face representation from large-scale data with massive noisy and occluded face. Besides, we add an adaptive fusion of softmax loss and center loss as supervision signals, which are helpful to improve the performance and to conduct the final classification. The experiment results show that the suggested system achieves comparable performances with other state-of-the-art methods on the Labeled Faces in the Wild and YouTube face verification tasks.
AbstractList In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, we develop such a framework to learn a robust face verification in an unconstrained environment using aggressive data augmentation. Our objective is to learn a deep face representation from large-scale data with massive noisy and occluded face. Besides, we add an adaptive fusion of softmax loss and center loss as supervision signals, which are helpful to improve the performance and to conduct the final classification. The experiment results show that the suggested system achieves comparable performances with other state-of-the-art methods on the Labeled Faces in the Wild and YouTube face verification tasks.
Author Souani, Chokri
Ben Fredj, Hana
Bouguezzi, Safa
Author_xml – sequence: 1
  givenname: Hana
  orcidid: 0000-0003-2667-6132
  surname: Ben Fredj
  fullname: Ben Fredj, Hana
  email: ben.fredj.hanaa@gmail.com
  organization: Laboratoire de microélectronique et instrumentations, Faculté des sciences de Monastir, Université de Monastir
– sequence: 2
  givenname: Safa
  surname: Bouguezzi
  fullname: Bouguezzi, Safa
  organization: Laboratoire de microélectronique et instrumentations, Faculté des sciences de Monastir, Université de Monastir
– sequence: 3
  givenname: Chokri
  surname: Souani
  fullname: Souani, Chokri
  organization: Institut supérieur des sciences appliquées et de technologie de Sousse, Université de Sousse
BookMark eNp9kE9LAzEQxYNUsK1-AU8LnqP5s22SoxSrgtSLnkM2ma0pbVKTreK3N-sKgoeehhneb2bem6BRiAEQuqTkmhIibjIhXFBMGMGEClVjdYLGtOYMM05nIzQuU4mZkOoMTXLekNKLWo3RfGksVAlsXAff-RgqH6pDsDHkLhkfwFUQPnyKYQehqz5991YtVqtzdNqabYaL3zpFr8u7l8UDfnq-f1zcPmHLqeow5VwKZ4y1aqYsc_3NRgrhFDBwElxTKyHbGWvn1NF5bZyRTEDTNo2krLF8iq6GvfsU3w-QO72JhxTKSc1UMcoVJ3VRyUFlU8w5Qaut70zvpvew1ZToPiU9pKRLSvonJa0Kyv6h--R3Jn0dh_gA5SIOa0h_Xx2hvgHvQ3vX
CitedBy_id crossref_primary_10_1007_s11042_023_16182_3
crossref_primary_10_3390_s23177517
crossref_primary_10_1007_s00500_024_09954_y
crossref_primary_10_1117_1_JEI_33_4_043012
crossref_primary_10_1007_s00371_023_02822_0
crossref_primary_10_1515_nleng_2022_0290
crossref_primary_10_3390_electronics10182272
crossref_primary_10_1007_s00371_020_01960_z
crossref_primary_10_1007_s00521_023_08953_8
crossref_primary_10_17798_bitlisfen_1518498
crossref_primary_10_3390_electronics11233909
crossref_primary_10_1007_s00371_022_02455_9
crossref_primary_10_1007_s11042_023_17232_6
crossref_primary_10_70395_cunas_1504238
crossref_primary_10_1016_j_gene_2023_147246
crossref_primary_10_1109_JSTARS_2024_3449923
crossref_primary_10_1109_ACCESS_2023_3331118
crossref_primary_10_1109_TBIOM_2022_3213545
crossref_primary_10_1002_jsid_1108
crossref_primary_10_1007_s00371_021_02350_9
crossref_primary_10_1007_s11277_022_10127_z
crossref_primary_10_3390_solar3040036
crossref_primary_10_1007_s00371_021_02163_w
crossref_primary_10_5604_01_3001_0015_8254
crossref_primary_10_1016_j_ecoinf_2022_101628
crossref_primary_10_1007_s00371_020_01949_8
crossref_primary_10_3390_s22103728
crossref_primary_10_1007_s00371_022_02690_0
crossref_primary_10_1007_s00371_023_02919_6
crossref_primary_10_1155_2023_2501022
crossref_primary_10_3233_IDT_210127
crossref_primary_10_1109_ACCESS_2024_3447899
crossref_primary_10_1007_s42044_025_00234_y
crossref_primary_10_1007_s00371_023_02920_z
crossref_primary_10_3390_electronics9081188
crossref_primary_10_1007_s11042_021_11688_0
crossref_primary_10_1007_s00371_022_02712_x
crossref_primary_10_1109_ACCESS_2021_3090196
crossref_primary_10_1007_s00371_021_02253_9
crossref_primary_10_1016_j_dcan_2024_05_003
crossref_primary_10_1007_s00371_022_02443_z
crossref_primary_10_1007_s11042_023_17624_8
crossref_primary_10_1007_s42044_020_00076_w
crossref_primary_10_1364_OE_495425
crossref_primary_10_1007_s00371_023_03116_1
crossref_primary_10_2478_jsiot_2024_0007
crossref_primary_10_1007_s41060_024_00683_x
Cites_doi 10.1016/j.neucom.2016.12.025
10.1016/j.neucom.2018.01.079
10.1007/s00371-019-01635-4
10.1109/TPAMI.2010.128
10.1016/j.neucom.2016.12.013
10.1016/j.trit.2017.03.001
10.1007/s00371-019-01779-3
10.1007/s00371-019-01775-7
10.1049/iet-ipr.2017.1085
10.1162/neco.1989.1.4.541
10.1016/j.ins.2013.02.051
10.1109/TIFS.2018.2833032
10.1016/j.image.2016.03.011
10.1109/LSP.2016.2603342
10.1007/s00371-017-1429-y
10.1109/CVPR.2014.220
10.5244/C.28.6
10.1109/CADIAG.2017.8075658
10.1109/CVPR.2019.00482
10.1109/CVPR.2018.00552
10.1109/CVPR.2015.7298594
10.1109/ICIP.2017.8296803
10.1109/CVPR42600.2020.00525
10.1007/978-3-319-46454-1_35
10.1109/CVPR.2015.7298682
10.1007/978-3-540-74549-5_10
10.1109/CVPR.2016.91
10.1109/CRV.2014.21
10.1109/CVPR.2015.7298907
10.1109/CVPR.2016.90
10.1109/CVPR.2014.244
10.1007/978-3-319-46478-7_31
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-020-01794-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 226
ExternalDocumentID 10_1007_s00371_020_01794_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c319t-13387daacc959c2d7749b877d9e2ed8edb4978f52f61d164ada827ebfbb812bc3
IEDL.DBID BENPR
ISSN 0178-2789
IngestDate Sat Aug 23 14:11:44 EDT 2025
Tue Jul 01 01:05:48 EDT 2025
Thu Apr 24 22:59:22 EDT 2025
Fri Feb 21 02:49:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Face recognition
Data augmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-13387daacc959c2d7749b877d9e2ed8edb4978f52f61d164ada827ebfbb812bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2667-6132
PQID 2917939304
PQPubID 2043737
PageCount 10
ParticipantIDs proquest_journals_2917939304
crossref_citationtrail_10_1007_s00371_020_01794_9
crossref_primary_10_1007_s00371_020_01794_9
springer_journals_10_1007_s00371_020_01794_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lv, Cheng, Tian, Zhou, Zhou (CR24) 2016; 47
Wang, Chen, Wang, Hu (CR16) 2019; 35
CR19
CR18
Wu, He, Sun, Tan (CR25) 2018; 13
CR39
CR38
CR15
Leng, Yu, Jingyan (CR36) 2017; 235
LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (CR10) 1989; 1
Faiedh, Hamdi, Bouguezzi, Farhat, Souani (CR13) 2018; 232
An, Liu (CR23) 2019; 35
CR35
CR12
CR34
CR11
CR32
CR30
Zhang, Zhang, Li, Qiao (CR33) 2016; 23
CR2
CR4
CR3
CR6
CR5
Farhat, Sghaier, Faiedh, Souani (CR14) 2018; 10
Xi, Guan, Shu, Borgeat, Goubran (CR17) 2019; 35
CR7
CR29
CR9
CR27
Naseem, Togneri, Bennamoun (CR31) 2010; 32
Xu, Zhu, Fan, Zhang, Mi, Lai (CR1) 2013; 238
Guo, Wu, Xu (CR22) 2017; 2
Choi (CR8) 2018; 34
CR21
CR43
CR20
CR42
CR41
CR40
Zhang, Shang, Wang, Li, Zhang (CR26) 2018; 12
Wen, Chen, Cai, He (CR28) 2018; 287
Lv, Shao, Huang, Zhou, Zhou (CR37) 2017; 230
1794_CR39
1794_CR38
1794_CR15
1794_CR19
1794_CR18
P Xi (1794_CR17) 2019; 35
F An (1794_CR23) 2019; 35
B Wang (1794_CR16) 2019; 35
JY Choi (1794_CR8) 2018; 34
B Leng (1794_CR36) 2017; 235
I Naseem (1794_CR31) 2010; 32
X Wu (1794_CR25) 2018; 13
W Farhat (1794_CR14) 2018; 10
Y Zhang (1794_CR26) 2018; 12
1794_CR30
K Zhang (1794_CR33) 2016; 23
1794_CR35
1794_CR12
1794_CR34
1794_CR11
Y Xu (1794_CR1) 2013; 238
K Guo (1794_CR22) 2017; 2
1794_CR32
1794_CR27
G Wen (1794_CR28) 2018; 287
1794_CR29
H Faiedh (1794_CR13) 2018; 232
1794_CR9
1794_CR6
1794_CR5
1794_CR7
1794_CR2
1794_CR20
JJ Lv (1794_CR24) 2016; 47
1794_CR42
Y LeCun (1794_CR10) 1989; 1
JJ Lv (1794_CR37) 2017; 230
1794_CR41
1794_CR4
1794_CR40
1794_CR3
1794_CR21
1794_CR43
References_xml – volume: 10
  start-page: 1
  year: 2018
  end-page: 17
  ident: CR14
  article-title: Design of efficient embedded system for road sign recognition
  publication-title: J. Ambient Intell. Humanized Comput.
– ident: CR18
– ident: CR43
– volume: 230
  start-page: 184
  year: 2017
  end-page: 196
  ident: CR37
  article-title: Data augmentation for face recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.025
– volume: 287
  start-page: 45
  year: 2018
  end-page: 51
  ident: CR28
  article-title: Improving face recognition with domain adaptation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.079
– ident: CR4
– ident: CR39
– ident: CR2
– ident: CR12
– ident: CR30
– volume: 35
  start-page: 1
  year: 2019
  end-page: 16
  ident: CR23
  article-title: Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01635-4
– volume: 232
  start-page: 772
  issue: 6
  year: 2018
  end-page: 783
  ident: CR13
  article-title: Architectural exploration of multilayer perceptron models for on-chip and real-time road sign classification
  publication-title: Pro. Inst. Mech. Eng. Part I J. Syst. Control Eng.
– volume: 32
  start-page: 2106
  issue: 11
  year: 2010
  end-page: 2112
  ident: CR31
  article-title: Linear regression for face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.128
– volume: 235
  start-page: 10
  year: 2017
  end-page: 14
  ident: CR36
  article-title: Data augmentation for unbalanced face recognition training sets
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.013
– ident: CR35
– ident: CR6
– ident: CR29
– volume: 2
  start-page: 39
  issue: 1
  year: 2017
  end-page: 47
  ident: CR22
  article-title: Face recognition using both visible light image and near-infrared image and a deep network
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1016/j.trit.2017.03.001
– ident: CR40
– volume: 35
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR16
  article-title: Residual feature pyramid networks for salient object detection
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01779-3
– ident: CR27
– ident: CR42
– volume: 35
  start-page: 1
  year: 2019
  end-page: 14
  ident: CR17
  article-title: An integrated approach for medical abnormality detection using deep patch convolutional neural networks
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01775-7
– ident: CR21
– ident: CR19
– volume: 12
  start-page: 819
  issue: 5
  year: 2018
  end-page: 825
  ident: CR26
  article-title: Patch strategy for deep face recognition
  publication-title: IET Image Proc.
  doi: 10.1049/iet-ipr.2017.1085
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  end-page: 551
  ident: CR10
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– ident: CR3
– ident: CR15
– ident: CR38
– volume: 238
  start-page: 138
  year: 2013
  end-page: 148
  ident: CR1
  article-title: Using the idea of the sparse representation to perform coarse to-fine face recognition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.02.051
– ident: CR11
– ident: CR9
– volume: 13
  start-page: 2884
  issue: 11
  year: 2018
  end-page: 2896
  ident: CR25
  article-title: A light cnn for deep face representation with noisy labels
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2833032
– ident: CR32
– ident: CR34
– ident: CR5
– ident: CR7
– volume: 47
  start-page: 465
  year: 2016
  end-page: 475
  ident: CR24
  article-title: Landmark perturbation-based data augmentation for unconstrained face recognition
  publication-title: Sig. Process. Image Commun.
  doi: 10.1016/j.image.2016.03.011
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  end-page: 1503
  ident: CR33
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2603342
– ident: CR41
– volume: 34
  start-page: 1535
  issue: 11
  year: 2018
  end-page: 1549
  ident: CR8
  article-title: Spatial pyramid face feature representation and weighted dissimilarity matching for improved face recognition
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-017-1429-y
– ident: CR20
– volume: 230
  start-page: 184
  year: 2017
  ident: 1794_CR37
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.025
– ident: 1794_CR6
  doi: 10.1109/CVPR.2014.220
– volume: 34
  start-page: 1535
  issue: 11
  year: 2018
  ident: 1794_CR8
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-017-1429-y
– ident: 1794_CR21
  doi: 10.5244/C.28.6
– ident: 1794_CR15
  doi: 10.1109/CADIAG.2017.8075658
– volume: 35
  start-page: 1
  year: 2019
  ident: 1794_CR16
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01779-3
– ident: 1794_CR41
  doi: 10.1109/CVPR.2019.00482
– ident: 1794_CR43
  doi: 10.1109/CVPR.2018.00552
– volume: 238
  start-page: 138
  year: 2013
  ident: 1794_CR1
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.02.051
– volume: 232
  start-page: 772
  issue: 6
  year: 2018
  ident: 1794_CR13
  publication-title: Pro. Inst. Mech. Eng. Part I J. Syst. Control Eng.
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: 1794_CR33
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2603342
– ident: 1794_CR9
  doi: 10.1109/CVPR.2015.7298594
– volume: 13
  start-page: 2884
  issue: 11
  year: 2018
  ident: 1794_CR25
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2833032
– volume: 35
  start-page: 1
  year: 2019
  ident: 1794_CR23
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01635-4
– ident: 1794_CR20
– ident: 1794_CR12
– ident: 1794_CR32
  doi: 10.1109/ICIP.2017.8296803
– ident: 1794_CR34
  doi: 10.1109/CVPR42600.2020.00525
– ident: 1794_CR35
  doi: 10.1007/978-3-319-46454-1_35
– ident: 1794_CR18
  doi: 10.1109/CVPR.2015.7298682
– ident: 1794_CR4
  doi: 10.1007/978-3-540-74549-5_10
– ident: 1794_CR3
  doi: 10.1109/CVPR.2016.91
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 1794_CR10
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– ident: 1794_CR30
– volume: 12
  start-page: 819
  issue: 5
  year: 2018
  ident: 1794_CR26
  publication-title: IET Image Proc.
  doi: 10.1049/iet-ipr.2017.1085
– volume: 287
  start-page: 45
  year: 2018
  ident: 1794_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.079
– volume: 10
  start-page: 1
  year: 2018
  ident: 1794_CR14
  publication-title: J. Ambient Intell. Humanized Comput.
– volume: 2
  start-page: 39
  issue: 1
  year: 2017
  ident: 1794_CR22
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1016/j.trit.2017.03.001
– ident: 1794_CR29
  doi: 10.1109/CRV.2014.21
– volume: 47
  start-page: 465
  year: 2016
  ident: 1794_CR24
  publication-title: Sig. Process. Image Commun.
  doi: 10.1016/j.image.2016.03.011
– ident: 1794_CR39
  doi: 10.1109/CVPR.2015.7298907
– ident: 1794_CR7
– ident: 1794_CR42
– ident: 1794_CR2
  doi: 10.1109/CVPR.2016.90
– volume: 32
  start-page: 2106
  issue: 11
  year: 2010
  ident: 1794_CR31
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.128
– ident: 1794_CR19
  doi: 10.1109/CVPR.2014.244
– ident: 1794_CR38
– volume: 35
  start-page: 1
  year: 2019
  ident: 1794_CR17
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01775-7
– volume: 235
  start-page: 10
  year: 2017
  ident: 1794_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.013
– ident: 1794_CR40
– ident: 1794_CR5
– ident: 1794_CR11
– ident: 1794_CR27
  doi: 10.1007/978-3-319-46478-7_31
SSID ssj0017749
Score 2.5188768
Snippet In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, we develop such a framework...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms Accuracy
Artificial Intelligence
Artificial neural networks
Computer Graphics
Computer Science
Data augmentation
Datasets
Deep learning
Face recognition
Facial recognition technology
Image Processing and Computer Vision
Methods
Neural networks
Original Article
Verification
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAY4AoDJQDN6jUpo80x2limpDYiUm7RXlKSKhDbPx_4qztBgIkzk2j1E7iz7U_G-BWaw8zvF5jyZGSI10e80S7mGlZZoZLZjIkCj9Ny8ksf5wX84YUtmyz3duQZLipO7JbqC4Xo7sTdlHMd2GvQN_d7-IZHXaxAw9oAuhNvX-EPM-GKvPzHF_N0QZjfguLBmszPobDBiaS4VqvJ7Bj6z4ctS0YSHMi-3CwVU_wFMqx1JZ0OUGLmrzUxBsuxIDYCsIaskVsI_gPloym0zOYjR-eR5O4aYwQa39isH18VjEjpda84Joa_GJVMWa4pdZU1ijsG-cK6srUeH9IGllRZpVTyttzpbNz6NWL2l4AYcw5k3GsWqNypRJltE2o4t6QO6-qNIK0lY_QTdVwXPGr6OodB5kKL1MRZCp4BHfdO2_rmhl_jh60YhfN-VkKyvHi4FmSR3DfqmLz-PfZLv83_Ar2KSaphDTsAfRW7x_22qOMlboJm-oTwbHHQw
  priority: 102
  providerName: Springer Nature
Title Face recognition in unconstrained environment with CNN
URI https://link.springer.com/article/10.1007/s00371-020-01794-9
https://www.proquest.com/docview/2917939304
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4IXPRgfEYUSQ_edCPdQts9GSQUorExRhI8NftqYmIKCv5_d5ZtQRO59rFpZ2Z3vnkDXElpYIbhK-EMS3J43iWsI3MSSR4GivFIBVgo_JSG40n3YdqbOofbwqVVlmeiPajVTKKP_JYyFCVmrO-7-SfBqVEYXXUjNGrQMEdwbIyvxv0wfX6p4ggG3FgA7BtbCWs-XdmMLZ6z3eoImk9WKgn7rZrWePNPiNRqnuQA9h1k9PorHh_Cji6OYG-jkeAxhAmX2quSgWaF9154RmMh-MMZEFp5GxVtHjpfvUGansAkGb4OxsRNRCDSbBWcGx_EkeJcStZjkir8PRFHkWKaahVrJXBgXN6jeegrYwhxxWMaaZELYRS5kMEp1ItZoc_Ai6I8VwHDdjWiK0RHKKk7VDCjwXPDI78JfkmMTLp24fjFH1nV6NgSMDMEzCwBM9aE6-qd-apZxtanWyWNM7dxFtmazU24Kem-vv3_aufbV7uAXYrZKDbfugX15de3vjRwYinaUIuTURsa_dHb47DtJMhcndD-D8mdyOM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4oHtSD8RlR1D3oSRthW9ruwRiDIsjjBAm3uq8mJqagYIx_yt_oztIWNJEb57aT5ttvdmZ25wFwLqVxM8y6OpxhSQ6PPYeVZewEkvuuYjxQLhYKd7p-o-89DaqDFfjOamEwrTLbE-1GrYYSz8ivKUMqMRN9347eHJwahber2QiNKS1a-uvThGzjm-a9Wd8LSusPvVrDSacKONLQDWevu2GgOJeSVZmkyvg_TIRBoJimWoVaCRy6Fldp7FeUCSa44iENtIiFMMZQSNfIXYU1z3UZalRYf8xvLVCUTZk0kRlWmKZFOrZUz_bGczBYszrgsN-GcObd_rmQtXauvg1bqYNK7qaM2oEVnezC5lzbwj3w61xqkqceDRPykhBjH9HVxIkTWpG5-jmCR72k1u3uQ38pSB1AIRkm-hBIEMSxchk2xxGeEGWhpC5TwYy_EBtGVIpQycCIZNqcHP_4NcrbKlsAIwNgZAGMWBEu829G09YcC98uZRhHqZqOoxmpinCV4T57_L-0o8XSzmC90eu0o3az2zqGDYp5MDbTuwSFyfuHPjGOzEScWvYQeF42XX8AV7cCkQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBNEHL1NxOjUPvmmxTbumeRzTMm_FBwd7C7mCIN3Q-f9NsrabooLPTUNzTpLzpTnfdwDOpbQww_o14NRRcrhJAhpKExDJ01hRTlTsiMKPRTocJXfj3niJxe-z3esryTmnwak0lbOrqTJXDfHNK80F7ujjZ1RAV2HNbseRm9cj3G_uESy48QA4smclx_msaDM_9_E1NC3w5rcrUh958h3YqiAj6s99vAsrumzDdl2OAVWrsw2bS9qCe5DmXGrU5AdNSvRSIhvEHB50ZSG0QkskN-T-x6JBUezDKL95HgyDqkhCIO1wXSn5OCOKcylpj0qs3IhFRoiiGmuVaSVcDTnTwyaNlD0bccUzTLQwQtjYLmR8AK1yUupDQIQYo2LqFGxEIkQolNQhFtQGdWPdFnUgqu3DZKUg7r74lTXax96mzNqUeZsy2oGL5p3pXD_jz9bd2uysWkvvDFO3idA4TDpwWbti8fj33o7-1_wM1p-uc_ZwW9wfwwZ2uSs-O7sLrdnbhz6x4GMmTv38-gRTus5y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+recognition+in+unconstrained+environment+with+CNN&rft.jtitle=The+Visual+computer&rft.au=Ben+Fredj%2C+Hana&rft.au=Bouguezzi%2C+Safa&rft.au=Souani%2C+Chokri&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=37&rft.issue=2&rft.spage=217&rft.epage=226&rft_id=info:doi/10.1007%2Fs00371-020-01794-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon