Condition monitoring and life prediction of the turning tool based on extreme learning machine and transfer learning

When the turning tool has worn and failed but the failure is not found, if it continues to be used for processing, it will break, and cause the workpiece to be scrapped, and even damage the machine tool. In order to avoid the loss caused by turning tool wear, the remaining useful life (RUL) predicti...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 34; no. 5; pp. 3399 - 3410
Main Authors Gao, Zhan, Hu, Qiguo, Xu, Xiangyang
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When the turning tool has worn and failed but the failure is not found, if it continues to be used for processing, it will break, and cause the workpiece to be scrapped, and even damage the machine tool. In order to avoid the loss caused by turning tool wear, the remaining useful life (RUL) prediction of turning tool wear has become a hot research topic in recent years. For RUL prediction in turning tools, the traditional machine is difficult to acquire sufficient degradation data and inconsistent data distribution among different turning tools in engineering, and they cannot provide better prediction accuracy to some extent. To solve the above problems, this paper proposes a multi-granularity feature extraction (MGFE) method based on the gray-level co-occurrence matrix (GLCM) and random forest (RF). Moreover, a health indicator (HI) of turning tools in the source domain was obtained. The common representative features in HI sequence of target domain was transferred to source domain and builds the condition monitoring and life prediction system of turning tools based on extreme learning machine and transfer learning. Finally, extreme vector machine (ELM) is used to construct the RUL prediction model. The research results show that the model constructed in this paper is effective in RUL prediction and can significantly improve the prediction accuracy of remaining useful life.
AbstractList When the turning tool has worn and failed but the failure is not found, if it continues to be used for processing, it will break, and cause the workpiece to be scrapped, and even damage the machine tool. In order to avoid the loss caused by turning tool wear, the remaining useful life (RUL) prediction of turning tool wear has become a hot research topic in recent years. For RUL prediction in turning tools, the traditional machine is difficult to acquire sufficient degradation data and inconsistent data distribution among different turning tools in engineering, and they cannot provide better prediction accuracy to some extent. To solve the above problems, this paper proposes a multi-granularity feature extraction (MGFE) method based on the gray-level co-occurrence matrix (GLCM) and random forest (RF). Moreover, a health indicator (HI) of turning tools in the source domain was obtained. The common representative features in HI sequence of target domain was transferred to source domain and builds the condition monitoring and life prediction system of turning tools based on extreme learning machine and transfer learning. Finally, extreme vector machine (ELM) is used to construct the RUL prediction model. The research results show that the model constructed in this paper is effective in RUL prediction and can significantly improve the prediction accuracy of remaining useful life.
Author Hu, Qiguo
Gao, Zhan
Xu, Xiangyang
Author_xml – sequence: 1
  givenname: Zhan
  surname: Gao
  fullname: Gao, Zhan
  email: gemini_gz@sina.com
  organization: Department of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University
– sequence: 2
  givenname: Qiguo
  surname: Hu
  fullname: Hu, Qiguo
  email: swpihqg@cqjtu.edu.cn
  organization: Department of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University
– sequence: 3
  givenname: Xiangyang
  surname: Xu
  fullname: Xu, Xiangyang
  organization: Department of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University
BookMark eNp9kM1KxDAUhYOM4Iz6Aq4CrqtJk7bJUgb_YMCNrkOa3joZ2qQmGdC3t52KgotZXLL4zrk596zQwnkHCF1RckMJqW4jIUVOMzJNUdEyoydoSTljGSOFWKAlkXxEJWdnaBXjjhDCS1EsUVp719hkvcO9dzb5YN071q7BnW0BDwEaaw7YtzhtAad9cJMked_hWkdo8AjhMwXoAXegZ9xrs7UODptS0C62EH7pBTptdRfh8uc9R28P96_rp2zz8vi8vttkhlGZMpo3DLSWGppSCMq5BGBaG5MT0YLkLZdlbVoiamN4LThntC6kqGpeGlPxip2j63nvEPzHHmJSOz_GH79UeclyLopKylElZpUJPsYArTI26enmMbjtFCVq6ljNHSsyzdSxoqM1_2cdgu11-DpuYrMpDlPZEP5SHXF9Ax9jktw
CitedBy_id crossref_primary_10_1016_j_knosys_2022_109537
crossref_primary_10_1007_s11063_024_11492_5
crossref_primary_10_1007_s00521_023_08426_y
crossref_primary_10_3390_machines12120833
crossref_primary_10_1007_s40544_024_0879_2
crossref_primary_10_1016_j_cie_2023_109359
crossref_primary_10_1007_s12065_023_00852_0
crossref_primary_10_1177_09544089221142161
crossref_primary_10_1016_j_jmsy_2024_08_028
crossref_primary_10_1007_s11831_023_09979_w
crossref_primary_10_1016_j_measurement_2023_112816
crossref_primary_10_1007_s00170_024_13713_6
crossref_primary_10_1007_s12008_023_01663_4
crossref_primary_10_1007_s00521_024_10756_4
crossref_primary_10_1007_s00521_022_07237_x
crossref_primary_10_1007_s00521_021_06363_2
crossref_primary_10_1016_j_jmapro_2022_11_017
crossref_primary_10_3390_pr11010277
crossref_primary_10_1007_s00170_023_11302_7
crossref_primary_10_1088_2631_8695_ad7d65
crossref_primary_10_1007_s00170_024_13055_3
crossref_primary_10_1016_j_ymssp_2023_110410
crossref_primary_10_1007_s40430_022_03493_z
Cites_doi 10.1007/s00170-015-7922-4
10.1016/j.neucom.2017.05.063
10.1177/0954405413500243
10.1016/j.precisioneng.2013.06.007
10.1109/TIE.2019.2959492
10.1016/j.acme.2014.05.001
10.1007/s00170-013-5585-6
10.1080/15732479.2014.999794
10.1016/j.neucom.2018.02.083
10.1126/science.1205438
10.3901/JME.2013.02.183
10.1007/s10845-013-0774-6
10.1007/s40544-017-0141-2
10.1007/s12206-015-0931-2
10.1080/10426914.2014.952037
10.1007/s00170-014-6747-x
10.1177/0954406215616145
10.1007/s10845-014-0933-4
10.1016/j.ymssp.2006.10.001
10.1016/S1003-6326(14)63412-9
10.1016/j.precisioneng.2013.06.006
10.1016/j.measurement.2015.11.042
10.1007/s13198-013-0195-0
10.1007/s00170-016-8810-2
10.1109/TSMC.2017.2697842
10.1109/TIE.2014.2327917
10.1080/10426914.2014.880460
10.1016/j.ceramint.2015.02.012
10.1177/0954406215590167
10.1007/s40436-018-0215-z
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-021-05716-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Collection (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 3410
ExternalDocumentID 10_1007_s00521_021_05716_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-12d3eaa9aed6881449ee3aacc208fe94f496bcf08bcc4b84431b5987b46cc7473
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Mon Jul 14 09:43:53 EDT 2025
Tue Jul 01 01:47:00 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Fri Feb 21 02:47:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Condition monitoring
Life prediction
Turning tool
Extreme learning machine
Transfer learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-12d3eaa9aed6881449ee3aacc208fe94f496bcf08bcc4b84431b5987b46cc7473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2632485799
PQPubID 2043988
PageCount 12
ParticipantIDs proquest_journals_2632485799
crossref_citationtrail_10_1007_s00521_021_05716_1
crossref_primary_10_1007_s00521_021_05716_1
springer_journals_10_1007_s00521_021_05716_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Karandikar, Abbas, Schmitz (CR3) 2014; 38
Fernández-Valdivielso, López de Lacalle, Urbikain (CR19) 2016; 230
Karandikar, Abbas, Schmitz (CR1) 2014; 38
Leo Kumar, Jerald, Kumanan (CR18) 2014; 29
Das, Dhupal, Kumar (CR15) 2015; 29
Ahmadzadeh, Lundberg (CR13) 2014; 5
Madariaga, Esnaola, Fernandez (CR22) 2014; 71
Bensouilah, Aouici, Meddour (CR20) 2016; 82
Yin, Huang, Yuan (CR2) 2015; 41
Qin, Xiang, Chai, Chen (CR6) 2020; 67
Gupta, Sood (CR14) 2017; 5
Mao, He, Zuo (CR9) 2019; PP
Frangopol, Soliman (CR23) 2016; 12
Shihab, Khan, Mohammad (CR11) 2014; 2
Mia, Dhar (CR17) 2017; 88
Krolczyk, Nieslony, Legutko (CR5) 2015; 15
Mosallam, Medjaher, Zerhouni (CR10) 2016; 27
Suresh, Marimuthu, Ranganathan (CR28) 2014; 24
Guo, Lei, Li (CR29) 2018; 292
Benkedjouh, Medjaher, Zerhouni (CR4) 2015; 26
Deutsch, He (CR32) 2017; 48
Khorasani, Yazdi (CR26) 2017; 93
Gupta, Kumar (CR21) 2015; 18
Pervaiz, Rashid, Deiab (CR27) 2014; 29
Dong, He (CR7) 2007; 21
Sun, Brandt, Mo (CR25) 2014; 228
Reshef, Reshef, Finucane (CR33) 2011; 334
Liu, Zuo, Qin (CR30) 2016; 230
Wu, Yuan, Dong, Lin (CR31) 2018; 275
Shen, Chen, He (CR8) 2013; 49
Kim, Bajpai, Kim (CR12) 2015; 78
Kumar, Sahoo, Mishra (CR16) 2018; 6
Javed, Gouriveau, Zerhouni (CR24) 2014; 62
S Pervaiz (5716_CR27) 2014; 29
K Javed (5716_CR24) 2014; 62
M Mia (5716_CR17) 2017; 88
SK Shihab (5716_CR11) 2014; 2
F Ahmadzadeh (5716_CR13) 2014; 5
Yi Qin (5716_CR6) 2020; 67
ZJ Shen (5716_CR8) 2013; 49
A Mosallam (5716_CR10) 2016; 27
S Sun (5716_CR25) 2014; 228
Z Liu (5716_CR30) 2016; 230
M Dong (5716_CR7) 2007; 21
J Deutsch (5716_CR32) 2017; 48
SR Das (5716_CR15) 2015; 29
MK Gupta (5716_CR14) 2017; 5
A Madariaga (5716_CR22) 2014; 71
JM Karandikar (5716_CR1) 2014; 38
Z Yin (5716_CR2) 2015; 41
JM Karandikar (5716_CR3) 2014; 38
R Kumar (5716_CR16) 2018; 6
T Benkedjouh (5716_CR4) 2015; 26
DM Frangopol (5716_CR23) 2016; 12
DN Reshef (5716_CR33) 2011; 334
W Mao (5716_CR9) 2019; PP
L Guo (5716_CR29) 2018; 292
DM Kim (5716_CR12) 2015; 78
M Gupta (5716_CR21) 2015; 18
P Suresh (5716_CR28) 2014; 24
Y Wu (5716_CR31) 2018; 275
H Bensouilah (5716_CR20) 2016; 82
GM Krolczyk (5716_CR5) 2015; 15
SP Leo Kumar (5716_CR18) 2014; 29
AM Khorasani (5716_CR26) 2017; 93
A Fernández-Valdivielso (5716_CR19) 2016; 230
References_xml – volume: 93
  start-page: 141
  issue: 1–4
  year: 2017
  end-page: 151
  ident: CR26
  article-title: Development of a dynamic surface roughness monitoring system based on artificial neural networks (ANN) in milling operation
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7922-4
– volume: 275
  start-page: 167
  year: 2018
  end-page: 179
  ident: CR31
  article-title: Remaining useful life estimation of engineered systems using vanilla lstm neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.063
– volume: 228
  start-page: 191
  issue: 2
  year: 2014
  end-page: 202
  ident: CR25
  article-title: Evolution of tool wear and its effect on cutting forces during dry machining of Ti–6Al–4V alloy
  publication-title: Proc Inst Mech Eng Part B J Eng Manuf
  doi: 10.1177/0954405413500243
– volume: 38
  start-page: 18
  issue: 1
  year: 2014
  end-page: 27
  ident: CR1
  article-title: Tool life prediction using Bayesian updating. Part 2: turning tool life using a Markov Chain Monte Carlo approach
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2013.06.007
– volume: 67
  start-page: 10865
  issue: 12
  year: 2020
  end-page: 10875
  ident: CR6
  article-title: Macroscopic-microscopic attention in LSTM networks based on fusion features for gear remaining life prediction
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2959492
– volume: 15
  start-page: 347
  issue: 2
  year: 2015
  end-page: 354
  ident: CR5
  article-title: Determination of tool life and research wear during duplex stainless steel turning
  publication-title: Arch Civ Mech Eng
  doi: 10.1016/j.acme.2014.05.001
– volume: 71
  start-page: 1587
  issue: 9–12
  year: 2014
  end-page: 1598
  ident: CR22
  article-title: Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-013-5585-6
– volume: 12
  start-page: 1
  issue: 1
  year: 2016
  end-page: 20
  ident: CR23
  article-title: Life-cycle of structural systems: recent achievements and future directions
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2014.999794
– volume: 292
  start-page: 142
  issue: 31
  year: 2018
  end-page: 150
  ident: CR29
  article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.083
– volume: 334
  start-page: 1518
  issue: 6062
  year: 2011
  end-page: 1524
  ident: CR33
  article-title: Detectingnovel associations in large data sets
  publication-title: Science (New York, NY)
  doi: 10.1126/science.1205438
– volume: 49
  start-page: 183
  issue: 2
  year: 2013
  end-page: 189
  ident: CR8
  article-title: Remaining life predictions of rolling bearing based on relative features and multivariable support vector machine
  publication-title: J Mech Eng (in Chinese)
  doi: 10.3901/JME.2013.02.183
– volume: 26
  start-page: 213
  issue: 2
  year: 2015
  end-page: 223
  ident: CR4
  article-title: Health assessment and life prediction of cutting tools based on support vector regression
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0774-6
– volume: 5
  start-page: 155
  issue: 2
  year: 2017
  end-page: 170
  ident: CR14
  article-title: Surface roughness measurements in NFMQL assisted turning of titanium alloys: an optimization approach
  publication-title: Friction
  doi: 10.1007/s40544-017-0141-2
– volume: 29
  start-page: 4329
  issue: 10
  year: 2015
  end-page: 4340
  ident: CR15
  article-title: Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-015-0931-2
– volume: 29
  start-page: 1291
  issue: 11–12
  year: 2014
  end-page: 1337
  ident: CR18
  article-title: A review on current research aspects in tool-based micromachining processes
  publication-title: Mater Manuf Process
  doi: 10.1080/10426914.2014.952037
– volume: 78
  start-page: 1393
  issue: 9–12
  year: 2015
  end-page: 1405
  ident: CR12
  article-title: Finite element modeling of hard turning process via a micro-textured tool
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6747-x
– volume: 230
  start-page: 3725
  issue: 20
  year: 2016
  end-page: 3742
  ident: CR19
  article-title: Detecting the key geometrical features and grades of carbide inserts for the turning of nickel-based alloys concerning surface integrity
  publication-title: Proc Inst Mech Eng Part C J Mech Eng Sci
  doi: 10.1177/0954406215616145
– volume: 27
  start-page: 1037
  issue: 5
  year: 2016
  end-page: 1048
  ident: CR10
  article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-014-0933-4
– volume: 21
  start-page: 2248
  issue: 5
  year: 2007
  end-page: 2266
  ident: CR7
  article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2006.10.001
– volume: 24
  start-page: 2805
  issue: 9
  year: 2014
  end-page: 2814
  ident: CR28
  article-title: Optimization of machining parameters in turning of Al–SiC–Gr hybrid metal matrix composites using grey-fuzzy algorithm
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(14)63412-9
– volume: 2
  start-page: 24
  issue: 1
  year: 2014
  end-page: 49
  ident: CR11
  article-title: A review of turning of hard steels used in bearing and automotive applications
  publication-title: Prod Manuf Res
– volume: 38
  start-page: 9
  issue: 1
  year: 2014
  end-page: 17
  ident: CR3
  article-title: Tool life prediction using Bayesian updating. Part 1: milling tool life model using a discrete grid method
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2013.06.006
– volume: 82
  start-page: 1
  year: 2016
  end-page: 18
  ident: CR20
  article-title: Performance of coated and uncoated mixed ceramic tools in hard turning process
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.11.042
– volume: 5
  start-page: 461
  issue: 4
  year: 2014
  end-page: 474
  ident: CR13
  article-title: Remaining useful life estimation
  publication-title: Int J Syst Assur Eng Manag
  doi: 10.1007/s13198-013-0195-0
– volume: 88
  start-page: 739
  issue: 1–4
  year: 2017
  end-page: 753
  ident: CR17
  article-title: Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-8810-2
– volume: 48
  start-page: 11
  issue: 1
  year: 2017
  end-page: 20
  ident: CR32
  article-title: Using deep learning-based approach to predict remaining useful life of rotating components
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2017.2697842
– volume: PP
  start-page: 1
  issue: 99
  year: 2019
  end-page: 1
  ident: CR9
  article-title: Predicting remaining useful life of rolling bearings based on deep feature representation and transfer learning
  publication-title: IEEE Trans Instrum Meas
– volume: 62
  start-page: 647
  issue: 1
  year: 2014
  end-page: 656
  ident: CR24
  article-title: Enabling health monitoring approach based on vibration data for accurate prognostics
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2327917
– volume: 18
  start-page: 70
  issue: 1
  year: 2015
  end-page: 81
  ident: CR21
  article-title: Investigation of surface roughness and MRR for turning of UD-GFRP using PCA and Taguchi method
  publication-title: Eng Sci Technol Int J
– volume: 29
  start-page: 219
  issue: 3
  year: 2014
  end-page: 252
  ident: CR27
  article-title: Influence of tool materials on machinability of titanium-and nickel-based alloys: a review
  publication-title: Mater Manuf Process
  doi: 10.1080/10426914.2014.880460
– volume: 41
  start-page: 7059
  issue: 5
  year: 2015
  end-page: 7065
  ident: CR2
  article-title: Cutting performance and life prediction of an Al O /TiC micro–nano-composite ceramic tool when machining austenitic stainless steel
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2015.02.012
– volume: 230
  start-page: 314
  issue: 2
  year: 2016
  end-page: 330
  ident: CR30
  article-title: Remaining useful life prediction of rolling element bearings based on health state assessment
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci
  doi: 10.1177/0954406215590167
– volume: 6
  start-page: 52
  issue: 1
  year: 2018
  end-page: 70
  ident: CR16
  article-title: Comparative investigation towards machinability improvement in hard turning using coated and uncoated carbide inserts: part I experimental investigation
  publication-title: Adv Manuf
  doi: 10.1007/s40436-018-0215-z
– volume: 228
  start-page: 191
  issue: 2
  year: 2014
  ident: 5716_CR25
  publication-title: Proc Inst Mech Eng Part B J Eng Manuf
  doi: 10.1177/0954405413500243
– volume: 29
  start-page: 219
  issue: 3
  year: 2014
  ident: 5716_CR27
  publication-title: Mater Manuf Process
  doi: 10.1080/10426914.2014.880460
– volume: 21
  start-page: 2248
  issue: 5
  year: 2007
  ident: 5716_CR7
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2006.10.001
– volume: 334
  start-page: 1518
  issue: 6062
  year: 2011
  ident: 5716_CR33
  publication-title: Science (New York, NY)
  doi: 10.1126/science.1205438
– volume: 292
  start-page: 142
  issue: 31
  year: 2018
  ident: 5716_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.083
– volume: 29
  start-page: 1291
  issue: 11–12
  year: 2014
  ident: 5716_CR18
  publication-title: Mater Manuf Process
  doi: 10.1080/10426914.2014.952037
– volume: 38
  start-page: 9
  issue: 1
  year: 2014
  ident: 5716_CR3
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2013.06.006
– volume: 2
  start-page: 24
  issue: 1
  year: 2014
  ident: 5716_CR11
  publication-title: Prod Manuf Res
– volume: 62
  start-page: 647
  issue: 1
  year: 2014
  ident: 5716_CR24
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2327917
– volume: 78
  start-page: 1393
  issue: 9–12
  year: 2015
  ident: 5716_CR12
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6747-x
– volume: 88
  start-page: 739
  issue: 1–4
  year: 2017
  ident: 5716_CR17
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-8810-2
– volume: 48
  start-page: 11
  issue: 1
  year: 2017
  ident: 5716_CR32
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2017.2697842
– volume: 38
  start-page: 18
  issue: 1
  year: 2014
  ident: 5716_CR1
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2013.06.007
– volume: 67
  start-page: 10865
  issue: 12
  year: 2020
  ident: 5716_CR6
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2959492
– volume: 93
  start-page: 141
  issue: 1–4
  year: 2017
  ident: 5716_CR26
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7922-4
– volume: 49
  start-page: 183
  issue: 2
  year: 2013
  ident: 5716_CR8
  publication-title: J Mech Eng (in Chinese)
  doi: 10.3901/JME.2013.02.183
– volume: 275
  start-page: 167
  year: 2018
  ident: 5716_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.063
– volume: 6
  start-page: 52
  issue: 1
  year: 2018
  ident: 5716_CR16
  publication-title: Adv Manuf
  doi: 10.1007/s40436-018-0215-z
– volume: 27
  start-page: 1037
  issue: 5
  year: 2016
  ident: 5716_CR10
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-014-0933-4
– volume: 24
  start-page: 2805
  issue: 9
  year: 2014
  ident: 5716_CR28
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(14)63412-9
– volume: 12
  start-page: 1
  issue: 1
  year: 2016
  ident: 5716_CR23
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2014.999794
– volume: 230
  start-page: 314
  issue: 2
  year: 2016
  ident: 5716_CR30
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci
  doi: 10.1177/0954406215590167
– volume: 18
  start-page: 70
  issue: 1
  year: 2015
  ident: 5716_CR21
  publication-title: Eng Sci Technol Int J
– volume: PP
  start-page: 1
  issue: 99
  year: 2019
  ident: 5716_CR9
  publication-title: IEEE Trans Instrum Meas
– volume: 41
  start-page: 7059
  issue: 5
  year: 2015
  ident: 5716_CR2
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2015.02.012
– volume: 5
  start-page: 461
  issue: 4
  year: 2014
  ident: 5716_CR13
  publication-title: Int J Syst Assur Eng Manag
  doi: 10.1007/s13198-013-0195-0
– volume: 5
  start-page: 155
  issue: 2
  year: 2017
  ident: 5716_CR14
  publication-title: Friction
  doi: 10.1007/s40544-017-0141-2
– volume: 29
  start-page: 4329
  issue: 10
  year: 2015
  ident: 5716_CR15
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-015-0931-2
– volume: 15
  start-page: 347
  issue: 2
  year: 2015
  ident: 5716_CR5
  publication-title: Arch Civ Mech Eng
  doi: 10.1016/j.acme.2014.05.001
– volume: 230
  start-page: 3725
  issue: 20
  year: 2016
  ident: 5716_CR19
  publication-title: Proc Inst Mech Eng Part C J Mech Eng Sci
  doi: 10.1177/0954406215616145
– volume: 26
  start-page: 213
  issue: 2
  year: 2015
  ident: 5716_CR4
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0774-6
– volume: 82
  start-page: 1
  year: 2016
  ident: 5716_CR20
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.11.042
– volume: 71
  start-page: 1587
  issue: 9–12
  year: 2014
  ident: 5716_CR22
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-013-5585-6
SSID ssj0004685
Score 2.415902
Snippet When the turning tool has worn and failed but the failure is not found, if it continues to be used for processing, it will break, and cause the workpiece to be...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3399
SubjectTerms Accuracy
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Condition monitoring
Costs
Data Mining and Knowledge Discovery
Domains
Efficiency
Failure
Feature extraction
Image Processing and Computer Vision
Life prediction
Machine learning
Machine tools
Neural networks
Prediction models
Probability and Statistics in Computer Science
Special Issue on Multi-modal Information Learning and Analytics on Big Data
Tool wear
Useful life
Workpieces
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSsNAcNH24sW3WK2yB28aTJpNOjmJSksRLCIWegv7FKFNahv_353tplXBHjaHTDKBzM5z50HIlWSAfcrTAIQIAyZUGHBlvZRuwjWPJAcTYYHz8zAdjNjTOBn7gNvCp1XWMtEJalVKjJHfur7ikHSz7G72GeDUKDxd9SM0tknTimCABmk-9IYvrz8qI91QTuvDYH4Pi33ZjCuew4iovYsrsV5DEP1WTWt7888RqdM8_X2y601Ger-k8QHZ0sUh2avHMVDPnUcER0crl4FFp45TER3lhaKTD6PpbI5nMg5cGmrtPmq1DUZFaFWWE4rqTFELtNIaY4bUz5N4p1OXb6kdpsrZufarNfSYjPq9t8dB4IcqBNJyWxVEHRVrjj25VQpg3alM65hzKTshGJ0xw7JUSBOCkJIJYNbAEEkGXcFSKa3vEZ-QRlEW-pRQrWWWAE9TzQ3TUoPBzjoSQIUGLy0S1f8zl77jOA6-mOSrXsmOBnmIC2mQRy1yvXpntuy3sfHpdk2m3PPeIl_vlBa5qUm3Bv-P7WwztnOy08HaB5eA1iaNav6lL6xFUolLv-2-AU_s3sg
  priority: 102
  providerName: ProQuest
Title Condition monitoring and life prediction of the turning tool based on extreme learning machine and transfer learning
URI https://link.springer.com/article/10.1007/s00521-021-05716-1
https://www.proquest.com/docview/2632485799
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu3DhjRiMKQduUKnt0i49brBuAjEhxKRxqpI0QUhbO23l_2Nn7QYIkDi0OTh1pbqO7cT-TMilYhxxykOHS-k6TKauI1KIUjqB0MJTghsPC5wfRuFwzO4mwaQsCltW2e7VkaRdqdfFbriDCaEvXgF4-Q7EPPUAYndM5Br73U_VkLYRJ8QtmNPD2mWpzM88vpqjjY_57VjUWpt4n-yWbiLtruR6QLZ0dkj2qhYMtNTII4LtolObdUVnVjuRHRVZSqdvRtP5As9hLDk3FHw9ChYGd0JokedTiiYspUCEFRr3CWnZQ-KVzmyOpbacCuvbwlsr6jEZx_3nm6FTNlJwFGhY4Xh-2tYCcbjTkHMIoSKt20Io5bvc6IgZFoVSGZdLpZjkDJwKGUS8I1moFMQb7RNSy_JMnxKqtYoCLsJQC8O00twgmo7iPHUN3hrEq75nokqUcWx2MU3W-MhWBomLF8og8Rrkav3MfIWx8efsZiWmpNS3ZWJR53nQiaIGua5EtyH_zu3sf9PPyY6P9Q82Ca1JasXiXV-AV1LIFtnm8aBF6t3ebS_GcfBy34ex1x89PrXsL_oBCbXfnQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR27TuNAcMSFgmt4HScCAbaAirPOj7VZFwghIIRnBRKd2SdCCnEAI8RP8Y3MbGxynAQdxbrw2GNpZzyvnQfAuuaC-pRngVAqDLgyYSANeilbqbQy0lK4iAqcz86z3iU_vkqvJuC1qYWhtMpGJnpBbUpNMfK_vq-4SLfyfGd4H9DUKDpdbUZojNjixL48o8v2uH20j_TdiOPuwcVeL6inCgQa2a0KotgkVlJTapMJgf5Ebm0ipdZxKJzNueN5prQLhdKaK8FRw6oUPXPFM63R-E4Q7w-Y5AlqcqpM7x7-U4fpR4Cix0TZRDypi3R8qR7FX_EurRR9lCD6qAjH1u1_B7Jez3VnYbo2UNnuiKPmYMIO5mGmGf7AalnwC2hQtfH5XuzOywVCx-TAsP6ts2z4QCdAHlw6hlYmQ91GMRhWlWWfkfI0DIGoGyhCyerpFTfszmd3Wo-p8lY1frWBLsDlt2z2b2gNyoFdBGatzlMhs8xKx622wlEfHy2ECR1d2hA1-1nour85jdnoF--dmT0NipAW0aCI2rD5_s5w1N3jy6c7DZmK-k9_LMZ82YY_DenG4M-xLX2NbQ2mehdnp8Xp0fnJMvyMqerCp751oFU9PNkVtIUqteoZkMH1d3P8GxVzG10
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8QwDLZ4SIiFN-J4ZoAJKtpeWtKBAQEn3mLgJLaSJ0I6eicoQvwrfiJ2rj0eAiQGhnRx6lZxEtuJ_RlgXXNBOOVpIJQKA65MGEiDXspOIq2MtBQuogTn84v0qM1PrpPrIXitc2F8tHt9JdnPaSCUpqLc7hm3PUh8o9NMdIOpJWjxB1EVVnlqX57RaXvcPT5ACW_Ecevwav8oqOoKBBonXBlEsWlaSbDUJhUCPYrM2qaUWsehcDbjjmep0i4USmuuBEcdqxL0zRVPtUbzu4l8h2GUU_YxrqB2vPchE9MXAUWfieKJeLNK0_n-nz-rwnf79suVrNd0rSmYqExUttefU9MwZIsZmKzLP7BqN5gFKlVtfMQXu_c7A7FjsjCsc-cs6z3QHZAndx1DO5OhdqNTGFZ2ux1G6tMwJKJ2oDNKVtWvuGX3Pr7Tek6lt6vxqzV1Dtr_MtjzMFJ0C7sAzFqdJUKmqZWOW22FIyQfLYQJHT0aENXjmesK4ZwKbXTyATazl0EeUiMZ5FEDNgfv9Pr4Hr_2Xq7FlFdr_TH3iPci2cmyBmzVonsn_8xt8W_d12Ds8qCVnx1fnC7BeExpGD4WbhlGyocnu4LGUalW_XxkcPPfC-ANsYUcZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Condition+monitoring+and+life+prediction+of+the+turning+tool+based+on+extreme+learning+machine+and+transfer+learning&rft.jtitle=Neural+computing+%26+applications&rft.au=Gao%2C+Zhan&rft.au=Hu%2C+Qiguo&rft.au=Xu%2C+Xiangyang&rft.date=2022-03-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=5&rft.spage=3399&rft.epage=3410&rft_id=info:doi/10.1007%2Fs00521-021-05716-1&rft.externalDocID=10_1007_s00521_021_05716_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon