Condition monitoring and life prediction of the turning tool based on extreme learning machine and transfer learning
When the turning tool has worn and failed but the failure is not found, if it continues to be used for processing, it will break, and cause the workpiece to be scrapped, and even damage the machine tool. In order to avoid the loss caused by turning tool wear, the remaining useful life (RUL) predicti...
Saved in:
Published in | Neural computing & applications Vol. 34; no. 5; pp. 3399 - 3410 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When the turning tool has worn and failed but the failure is not found, if it continues to be used for processing, it will break, and cause the workpiece to be scrapped, and even damage the machine tool. In order to avoid the loss caused by turning tool wear, the remaining useful life (RUL) prediction of turning tool wear has become a hot research topic in recent years. For RUL prediction in turning tools, the traditional machine is difficult to acquire sufficient degradation data and inconsistent data distribution among different turning tools in engineering, and they cannot provide better prediction accuracy to some extent. To solve the above problems, this paper proposes a multi-granularity feature extraction (MGFE) method based on the gray-level co-occurrence matrix (GLCM) and random forest (RF). Moreover, a health indicator (HI) of turning tools in the source domain was obtained. The common representative features in HI sequence of target domain was transferred to source domain and builds the condition monitoring and life prediction system of turning tools based on extreme learning machine and transfer learning. Finally, extreme vector machine (ELM) is used to construct the RUL prediction model. The research results show that the model constructed in this paper is effective in RUL prediction and can significantly improve the prediction accuracy of remaining useful life. |
---|---|
AbstractList | When the turning tool has worn and failed but the failure is not found, if it continues to be used for processing, it will break, and cause the workpiece to be scrapped, and even damage the machine tool. In order to avoid the loss caused by turning tool wear, the remaining useful life (RUL) prediction of turning tool wear has become a hot research topic in recent years. For RUL prediction in turning tools, the traditional machine is difficult to acquire sufficient degradation data and inconsistent data distribution among different turning tools in engineering, and they cannot provide better prediction accuracy to some extent. To solve the above problems, this paper proposes a multi-granularity feature extraction (MGFE) method based on the gray-level co-occurrence matrix (GLCM) and random forest (RF). Moreover, a health indicator (HI) of turning tools in the source domain was obtained. The common representative features in HI sequence of target domain was transferred to source domain and builds the condition monitoring and life prediction system of turning tools based on extreme learning machine and transfer learning. Finally, extreme vector machine (ELM) is used to construct the RUL prediction model. The research results show that the model constructed in this paper is effective in RUL prediction and can significantly improve the prediction accuracy of remaining useful life. |
Author | Hu, Qiguo Gao, Zhan Xu, Xiangyang |
Author_xml | – sequence: 1 givenname: Zhan surname: Gao fullname: Gao, Zhan email: gemini_gz@sina.com organization: Department of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University – sequence: 2 givenname: Qiguo surname: Hu fullname: Hu, Qiguo email: swpihqg@cqjtu.edu.cn organization: Department of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University – sequence: 3 givenname: Xiangyang surname: Xu fullname: Xu, Xiangyang organization: Department of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University |
BookMark | eNp9kM1KxDAUhYOM4Iz6Aq4CrqtJk7bJUgb_YMCNrkOa3joZ2qQmGdC3t52KgotZXLL4zrk596zQwnkHCF1RckMJqW4jIUVOMzJNUdEyoydoSTljGSOFWKAlkXxEJWdnaBXjjhDCS1EsUVp719hkvcO9dzb5YN071q7BnW0BDwEaaw7YtzhtAad9cJMked_hWkdo8AjhMwXoAXegZ9xrs7UODptS0C62EH7pBTptdRfh8uc9R28P96_rp2zz8vi8vttkhlGZMpo3DLSWGppSCMq5BGBaG5MT0YLkLZdlbVoiamN4LThntC6kqGpeGlPxip2j63nvEPzHHmJSOz_GH79UeclyLopKylElZpUJPsYArTI26enmMbjtFCVq6ljNHSsyzdSxoqM1_2cdgu11-DpuYrMpDlPZEP5SHXF9Ax9jktw |
CitedBy_id | crossref_primary_10_1016_j_knosys_2022_109537 crossref_primary_10_1007_s11063_024_11492_5 crossref_primary_10_1007_s00521_023_08426_y crossref_primary_10_3390_machines12120833 crossref_primary_10_1007_s40544_024_0879_2 crossref_primary_10_1016_j_cie_2023_109359 crossref_primary_10_1007_s12065_023_00852_0 crossref_primary_10_1177_09544089221142161 crossref_primary_10_1016_j_jmsy_2024_08_028 crossref_primary_10_1007_s11831_023_09979_w crossref_primary_10_1016_j_measurement_2023_112816 crossref_primary_10_1007_s00170_024_13713_6 crossref_primary_10_1007_s12008_023_01663_4 crossref_primary_10_1007_s00521_024_10756_4 crossref_primary_10_1007_s00521_022_07237_x crossref_primary_10_1007_s00521_021_06363_2 crossref_primary_10_1016_j_jmapro_2022_11_017 crossref_primary_10_3390_pr11010277 crossref_primary_10_1007_s00170_023_11302_7 crossref_primary_10_1088_2631_8695_ad7d65 crossref_primary_10_1007_s00170_024_13055_3 crossref_primary_10_1016_j_ymssp_2023_110410 crossref_primary_10_1007_s40430_022_03493_z |
Cites_doi | 10.1007/s00170-015-7922-4 10.1016/j.neucom.2017.05.063 10.1177/0954405413500243 10.1016/j.precisioneng.2013.06.007 10.1109/TIE.2019.2959492 10.1016/j.acme.2014.05.001 10.1007/s00170-013-5585-6 10.1080/15732479.2014.999794 10.1016/j.neucom.2018.02.083 10.1126/science.1205438 10.3901/JME.2013.02.183 10.1007/s10845-013-0774-6 10.1007/s40544-017-0141-2 10.1007/s12206-015-0931-2 10.1080/10426914.2014.952037 10.1007/s00170-014-6747-x 10.1177/0954406215616145 10.1007/s10845-014-0933-4 10.1016/j.ymssp.2006.10.001 10.1016/S1003-6326(14)63412-9 10.1016/j.precisioneng.2013.06.006 10.1016/j.measurement.2015.11.042 10.1007/s13198-013-0195-0 10.1007/s00170-016-8810-2 10.1109/TSMC.2017.2697842 10.1109/TIE.2014.2327917 10.1080/10426914.2014.880460 10.1016/j.ceramint.2015.02.012 10.1177/0954406215590167 10.1007/s40436-018-0215-z |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-021-05716-1 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Collection (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 3410 |
ExternalDocumentID | 10_1007_s00521_021_05716_1 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-12d3eaa9aed6881449ee3aacc208fe94f496bcf08bcc4b84431b5987b46cc7473 |
IEDL.DBID | U2A |
ISSN | 0941-0643 |
IngestDate | Mon Jul 14 09:43:53 EDT 2025 Tue Jul 01 01:47:00 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Fri Feb 21 02:47:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Condition monitoring Life prediction Turning tool Extreme learning machine Transfer learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-12d3eaa9aed6881449ee3aacc208fe94f496bcf08bcc4b84431b5987b46cc7473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2632485799 |
PQPubID | 2043988 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2632485799 crossref_citationtrail_10_1007_s00521_021_05716_1 crossref_primary_10_1007_s00521_021_05716_1 springer_journals_10_1007_s00521_021_05716_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220300 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Karandikar, Abbas, Schmitz (CR3) 2014; 38 Fernández-Valdivielso, López de Lacalle, Urbikain (CR19) 2016; 230 Karandikar, Abbas, Schmitz (CR1) 2014; 38 Leo Kumar, Jerald, Kumanan (CR18) 2014; 29 Das, Dhupal, Kumar (CR15) 2015; 29 Ahmadzadeh, Lundberg (CR13) 2014; 5 Madariaga, Esnaola, Fernandez (CR22) 2014; 71 Bensouilah, Aouici, Meddour (CR20) 2016; 82 Yin, Huang, Yuan (CR2) 2015; 41 Qin, Xiang, Chai, Chen (CR6) 2020; 67 Gupta, Sood (CR14) 2017; 5 Mao, He, Zuo (CR9) 2019; PP Frangopol, Soliman (CR23) 2016; 12 Shihab, Khan, Mohammad (CR11) 2014; 2 Mia, Dhar (CR17) 2017; 88 Krolczyk, Nieslony, Legutko (CR5) 2015; 15 Mosallam, Medjaher, Zerhouni (CR10) 2016; 27 Suresh, Marimuthu, Ranganathan (CR28) 2014; 24 Guo, Lei, Li (CR29) 2018; 292 Benkedjouh, Medjaher, Zerhouni (CR4) 2015; 26 Deutsch, He (CR32) 2017; 48 Khorasani, Yazdi (CR26) 2017; 93 Gupta, Kumar (CR21) 2015; 18 Pervaiz, Rashid, Deiab (CR27) 2014; 29 Dong, He (CR7) 2007; 21 Sun, Brandt, Mo (CR25) 2014; 228 Reshef, Reshef, Finucane (CR33) 2011; 334 Liu, Zuo, Qin (CR30) 2016; 230 Wu, Yuan, Dong, Lin (CR31) 2018; 275 Shen, Chen, He (CR8) 2013; 49 Kim, Bajpai, Kim (CR12) 2015; 78 Kumar, Sahoo, Mishra (CR16) 2018; 6 Javed, Gouriveau, Zerhouni (CR24) 2014; 62 S Pervaiz (5716_CR27) 2014; 29 K Javed (5716_CR24) 2014; 62 M Mia (5716_CR17) 2017; 88 SK Shihab (5716_CR11) 2014; 2 F Ahmadzadeh (5716_CR13) 2014; 5 Yi Qin (5716_CR6) 2020; 67 ZJ Shen (5716_CR8) 2013; 49 A Mosallam (5716_CR10) 2016; 27 S Sun (5716_CR25) 2014; 228 Z Liu (5716_CR30) 2016; 230 M Dong (5716_CR7) 2007; 21 J Deutsch (5716_CR32) 2017; 48 SR Das (5716_CR15) 2015; 29 MK Gupta (5716_CR14) 2017; 5 A Madariaga (5716_CR22) 2014; 71 JM Karandikar (5716_CR1) 2014; 38 Z Yin (5716_CR2) 2015; 41 JM Karandikar (5716_CR3) 2014; 38 R Kumar (5716_CR16) 2018; 6 T Benkedjouh (5716_CR4) 2015; 26 DM Frangopol (5716_CR23) 2016; 12 DN Reshef (5716_CR33) 2011; 334 W Mao (5716_CR9) 2019; PP L Guo (5716_CR29) 2018; 292 DM Kim (5716_CR12) 2015; 78 M Gupta (5716_CR21) 2015; 18 P Suresh (5716_CR28) 2014; 24 Y Wu (5716_CR31) 2018; 275 H Bensouilah (5716_CR20) 2016; 82 GM Krolczyk (5716_CR5) 2015; 15 SP Leo Kumar (5716_CR18) 2014; 29 AM Khorasani (5716_CR26) 2017; 93 A Fernández-Valdivielso (5716_CR19) 2016; 230 |
References_xml | – volume: 93 start-page: 141 issue: 1–4 year: 2017 end-page: 151 ident: CR26 article-title: Development of a dynamic surface roughness monitoring system based on artificial neural networks (ANN) in milling operation publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7922-4 – volume: 275 start-page: 167 year: 2018 end-page: 179 ident: CR31 article-title: Remaining useful life estimation of engineered systems using vanilla lstm neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.063 – volume: 228 start-page: 191 issue: 2 year: 2014 end-page: 202 ident: CR25 article-title: Evolution of tool wear and its effect on cutting forces during dry machining of Ti–6Al–4V alloy publication-title: Proc Inst Mech Eng Part B J Eng Manuf doi: 10.1177/0954405413500243 – volume: 38 start-page: 18 issue: 1 year: 2014 end-page: 27 ident: CR1 article-title: Tool life prediction using Bayesian updating. Part 2: turning tool life using a Markov Chain Monte Carlo approach publication-title: Precis Eng doi: 10.1016/j.precisioneng.2013.06.007 – volume: 67 start-page: 10865 issue: 12 year: 2020 end-page: 10875 ident: CR6 article-title: Macroscopic-microscopic attention in LSTM networks based on fusion features for gear remaining life prediction publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2019.2959492 – volume: 15 start-page: 347 issue: 2 year: 2015 end-page: 354 ident: CR5 article-title: Determination of tool life and research wear during duplex stainless steel turning publication-title: Arch Civ Mech Eng doi: 10.1016/j.acme.2014.05.001 – volume: 71 start-page: 1587 issue: 9–12 year: 2014 end-page: 1598 ident: CR22 article-title: Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-013-5585-6 – volume: 12 start-page: 1 issue: 1 year: 2016 end-page: 20 ident: CR23 article-title: Life-cycle of structural systems: recent achievements and future directions publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2014.999794 – volume: 292 start-page: 142 issue: 31 year: 2018 end-page: 150 ident: CR29 article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.083 – volume: 334 start-page: 1518 issue: 6062 year: 2011 end-page: 1524 ident: CR33 article-title: Detectingnovel associations in large data sets publication-title: Science (New York, NY) doi: 10.1126/science.1205438 – volume: 49 start-page: 183 issue: 2 year: 2013 end-page: 189 ident: CR8 article-title: Remaining life predictions of rolling bearing based on relative features and multivariable support vector machine publication-title: J Mech Eng (in Chinese) doi: 10.3901/JME.2013.02.183 – volume: 26 start-page: 213 issue: 2 year: 2015 end-page: 223 ident: CR4 article-title: Health assessment and life prediction of cutting tools based on support vector regression publication-title: J Intell Manuf doi: 10.1007/s10845-013-0774-6 – volume: 5 start-page: 155 issue: 2 year: 2017 end-page: 170 ident: CR14 article-title: Surface roughness measurements in NFMQL assisted turning of titanium alloys: an optimization approach publication-title: Friction doi: 10.1007/s40544-017-0141-2 – volume: 29 start-page: 4329 issue: 10 year: 2015 end-page: 4340 ident: CR15 article-title: Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts publication-title: J Mech Sci Technol doi: 10.1007/s12206-015-0931-2 – volume: 29 start-page: 1291 issue: 11–12 year: 2014 end-page: 1337 ident: CR18 article-title: A review on current research aspects in tool-based micromachining processes publication-title: Mater Manuf Process doi: 10.1080/10426914.2014.952037 – volume: 78 start-page: 1393 issue: 9–12 year: 2015 end-page: 1405 ident: CR12 article-title: Finite element modeling of hard turning process via a micro-textured tool publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6747-x – volume: 230 start-page: 3725 issue: 20 year: 2016 end-page: 3742 ident: CR19 article-title: Detecting the key geometrical features and grades of carbide inserts for the turning of nickel-based alloys concerning surface integrity publication-title: Proc Inst Mech Eng Part C J Mech Eng Sci doi: 10.1177/0954406215616145 – volume: 27 start-page: 1037 issue: 5 year: 2016 end-page: 1048 ident: CR10 article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction publication-title: J Intell Manuf doi: 10.1007/s10845-014-0933-4 – volume: 21 start-page: 2248 issue: 5 year: 2007 end-page: 2266 ident: CR7 article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2006.10.001 – volume: 24 start-page: 2805 issue: 9 year: 2014 end-page: 2814 ident: CR28 article-title: Optimization of machining parameters in turning of Al–SiC–Gr hybrid metal matrix composites using grey-fuzzy algorithm publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(14)63412-9 – volume: 2 start-page: 24 issue: 1 year: 2014 end-page: 49 ident: CR11 article-title: A review of turning of hard steels used in bearing and automotive applications publication-title: Prod Manuf Res – volume: 38 start-page: 9 issue: 1 year: 2014 end-page: 17 ident: CR3 article-title: Tool life prediction using Bayesian updating. Part 1: milling tool life model using a discrete grid method publication-title: Precis Eng doi: 10.1016/j.precisioneng.2013.06.006 – volume: 82 start-page: 1 year: 2016 end-page: 18 ident: CR20 article-title: Performance of coated and uncoated mixed ceramic tools in hard turning process publication-title: Measurement doi: 10.1016/j.measurement.2015.11.042 – volume: 5 start-page: 461 issue: 4 year: 2014 end-page: 474 ident: CR13 article-title: Remaining useful life estimation publication-title: Int J Syst Assur Eng Manag doi: 10.1007/s13198-013-0195-0 – volume: 88 start-page: 739 issue: 1–4 year: 2017 end-page: 753 ident: CR17 article-title: Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-8810-2 – volume: 48 start-page: 11 issue: 1 year: 2017 end-page: 20 ident: CR32 article-title: Using deep learning-based approach to predict remaining useful life of rotating components publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2017.2697842 – volume: PP start-page: 1 issue: 99 year: 2019 end-page: 1 ident: CR9 article-title: Predicting remaining useful life of rolling bearings based on deep feature representation and transfer learning publication-title: IEEE Trans Instrum Meas – volume: 62 start-page: 647 issue: 1 year: 2014 end-page: 656 ident: CR24 article-title: Enabling health monitoring approach based on vibration data for accurate prognostics publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2014.2327917 – volume: 18 start-page: 70 issue: 1 year: 2015 end-page: 81 ident: CR21 article-title: Investigation of surface roughness and MRR for turning of UD-GFRP using PCA and Taguchi method publication-title: Eng Sci Technol Int J – volume: 29 start-page: 219 issue: 3 year: 2014 end-page: 252 ident: CR27 article-title: Influence of tool materials on machinability of titanium-and nickel-based alloys: a review publication-title: Mater Manuf Process doi: 10.1080/10426914.2014.880460 – volume: 41 start-page: 7059 issue: 5 year: 2015 end-page: 7065 ident: CR2 article-title: Cutting performance and life prediction of an Al O /TiC micro–nano-composite ceramic tool when machining austenitic stainless steel publication-title: Ceram Int doi: 10.1016/j.ceramint.2015.02.012 – volume: 230 start-page: 314 issue: 2 year: 2016 end-page: 330 ident: CR30 article-title: Remaining useful life prediction of rolling element bearings based on health state assessment publication-title: Proc Inst Mech Eng C J Mech Eng Sci doi: 10.1177/0954406215590167 – volume: 6 start-page: 52 issue: 1 year: 2018 end-page: 70 ident: CR16 article-title: Comparative investigation towards machinability improvement in hard turning using coated and uncoated carbide inserts: part I experimental investigation publication-title: Adv Manuf doi: 10.1007/s40436-018-0215-z – volume: 228 start-page: 191 issue: 2 year: 2014 ident: 5716_CR25 publication-title: Proc Inst Mech Eng Part B J Eng Manuf doi: 10.1177/0954405413500243 – volume: 29 start-page: 219 issue: 3 year: 2014 ident: 5716_CR27 publication-title: Mater Manuf Process doi: 10.1080/10426914.2014.880460 – volume: 21 start-page: 2248 issue: 5 year: 2007 ident: 5716_CR7 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2006.10.001 – volume: 334 start-page: 1518 issue: 6062 year: 2011 ident: 5716_CR33 publication-title: Science (New York, NY) doi: 10.1126/science.1205438 – volume: 292 start-page: 142 issue: 31 year: 2018 ident: 5716_CR29 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.083 – volume: 29 start-page: 1291 issue: 11–12 year: 2014 ident: 5716_CR18 publication-title: Mater Manuf Process doi: 10.1080/10426914.2014.952037 – volume: 38 start-page: 9 issue: 1 year: 2014 ident: 5716_CR3 publication-title: Precis Eng doi: 10.1016/j.precisioneng.2013.06.006 – volume: 2 start-page: 24 issue: 1 year: 2014 ident: 5716_CR11 publication-title: Prod Manuf Res – volume: 62 start-page: 647 issue: 1 year: 2014 ident: 5716_CR24 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2014.2327917 – volume: 78 start-page: 1393 issue: 9–12 year: 2015 ident: 5716_CR12 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6747-x – volume: 88 start-page: 739 issue: 1–4 year: 2017 ident: 5716_CR17 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-8810-2 – volume: 48 start-page: 11 issue: 1 year: 2017 ident: 5716_CR32 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2017.2697842 – volume: 38 start-page: 18 issue: 1 year: 2014 ident: 5716_CR1 publication-title: Precis Eng doi: 10.1016/j.precisioneng.2013.06.007 – volume: 67 start-page: 10865 issue: 12 year: 2020 ident: 5716_CR6 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2019.2959492 – volume: 93 start-page: 141 issue: 1–4 year: 2017 ident: 5716_CR26 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7922-4 – volume: 49 start-page: 183 issue: 2 year: 2013 ident: 5716_CR8 publication-title: J Mech Eng (in Chinese) doi: 10.3901/JME.2013.02.183 – volume: 275 start-page: 167 year: 2018 ident: 5716_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.063 – volume: 6 start-page: 52 issue: 1 year: 2018 ident: 5716_CR16 publication-title: Adv Manuf doi: 10.1007/s40436-018-0215-z – volume: 27 start-page: 1037 issue: 5 year: 2016 ident: 5716_CR10 publication-title: J Intell Manuf doi: 10.1007/s10845-014-0933-4 – volume: 24 start-page: 2805 issue: 9 year: 2014 ident: 5716_CR28 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(14)63412-9 – volume: 12 start-page: 1 issue: 1 year: 2016 ident: 5716_CR23 publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2014.999794 – volume: 230 start-page: 314 issue: 2 year: 2016 ident: 5716_CR30 publication-title: Proc Inst Mech Eng C J Mech Eng Sci doi: 10.1177/0954406215590167 – volume: 18 start-page: 70 issue: 1 year: 2015 ident: 5716_CR21 publication-title: Eng Sci Technol Int J – volume: PP start-page: 1 issue: 99 year: 2019 ident: 5716_CR9 publication-title: IEEE Trans Instrum Meas – volume: 41 start-page: 7059 issue: 5 year: 2015 ident: 5716_CR2 publication-title: Ceram Int doi: 10.1016/j.ceramint.2015.02.012 – volume: 5 start-page: 461 issue: 4 year: 2014 ident: 5716_CR13 publication-title: Int J Syst Assur Eng Manag doi: 10.1007/s13198-013-0195-0 – volume: 5 start-page: 155 issue: 2 year: 2017 ident: 5716_CR14 publication-title: Friction doi: 10.1007/s40544-017-0141-2 – volume: 29 start-page: 4329 issue: 10 year: 2015 ident: 5716_CR15 publication-title: J Mech Sci Technol doi: 10.1007/s12206-015-0931-2 – volume: 15 start-page: 347 issue: 2 year: 2015 ident: 5716_CR5 publication-title: Arch Civ Mech Eng doi: 10.1016/j.acme.2014.05.001 – volume: 230 start-page: 3725 issue: 20 year: 2016 ident: 5716_CR19 publication-title: Proc Inst Mech Eng Part C J Mech Eng Sci doi: 10.1177/0954406215616145 – volume: 26 start-page: 213 issue: 2 year: 2015 ident: 5716_CR4 publication-title: J Intell Manuf doi: 10.1007/s10845-013-0774-6 – volume: 82 start-page: 1 year: 2016 ident: 5716_CR20 publication-title: Measurement doi: 10.1016/j.measurement.2015.11.042 – volume: 71 start-page: 1587 issue: 9–12 year: 2014 ident: 5716_CR22 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-013-5585-6 |
SSID | ssj0004685 |
Score | 2.415902 |
Snippet | When the turning tool has worn and failed but the failure is not found, if it continues to be used for processing, it will break, and cause the workpiece to be... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3399 |
SubjectTerms | Accuracy Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Condition monitoring Costs Data Mining and Knowledge Discovery Domains Efficiency Failure Feature extraction Image Processing and Computer Vision Life prediction Machine learning Machine tools Neural networks Prediction models Probability and Statistics in Computer Science Special Issue on Multi-modal Information Learning and Analytics on Big Data Tool wear Useful life Workpieces |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSsNAcNH24sW3WK2yB28aTJpNOjmJSksRLCIWegv7FKFNahv_353tplXBHjaHTDKBzM5z50HIlWSAfcrTAIQIAyZUGHBlvZRuwjWPJAcTYYHz8zAdjNjTOBn7gNvCp1XWMtEJalVKjJHfur7ikHSz7G72GeDUKDxd9SM0tknTimCABmk-9IYvrz8qI91QTuvDYH4Pi33ZjCuew4iovYsrsV5DEP1WTWt7888RqdM8_X2y601Ger-k8QHZ0sUh2avHMVDPnUcER0crl4FFp45TER3lhaKTD6PpbI5nMg5cGmrtPmq1DUZFaFWWE4rqTFELtNIaY4bUz5N4p1OXb6kdpsrZufarNfSYjPq9t8dB4IcqBNJyWxVEHRVrjj25VQpg3alM65hzKTshGJ0xw7JUSBOCkJIJYNbAEEkGXcFSKa3vEZ-QRlEW-pRQrWWWAE9TzQ3TUoPBzjoSQIUGLy0S1f8zl77jOA6-mOSrXsmOBnmIC2mQRy1yvXpntuy3sfHpdk2m3PPeIl_vlBa5qUm3Bv-P7WwztnOy08HaB5eA1iaNav6lL6xFUolLv-2-AU_s3sg priority: 102 providerName: ProQuest |
Title | Condition monitoring and life prediction of the turning tool based on extreme learning machine and transfer learning |
URI | https://link.springer.com/article/10.1007/s00521-021-05716-1 https://www.proquest.com/docview/2632485799 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu3DhjRiMKQduUKnt0i49brBuAjEhxKRxqpI0QUhbO23l_2Nn7QYIkDi0OTh1pbqO7cT-TMilYhxxykOHS-k6TKauI1KIUjqB0MJTghsPC5wfRuFwzO4mwaQsCltW2e7VkaRdqdfFbriDCaEvXgF4-Q7EPPUAYndM5Br73U_VkLYRJ8QtmNPD2mWpzM88vpqjjY_57VjUWpt4n-yWbiLtruR6QLZ0dkj2qhYMtNTII4LtolObdUVnVjuRHRVZSqdvRtP5As9hLDk3FHw9ChYGd0JokedTiiYspUCEFRr3CWnZQ-KVzmyOpbacCuvbwlsr6jEZx_3nm6FTNlJwFGhY4Xh-2tYCcbjTkHMIoSKt20Io5bvc6IgZFoVSGZdLpZjkDJwKGUS8I1moFMQb7RNSy_JMnxKqtYoCLsJQC8O00twgmo7iPHUN3hrEq75nokqUcWx2MU3W-MhWBomLF8og8Rrkav3MfIWx8efsZiWmpNS3ZWJR53nQiaIGua5EtyH_zu3sf9PPyY6P9Q82Ca1JasXiXV-AV1LIFtnm8aBF6t3ebS_GcfBy34ex1x89PrXsL_oBCbXfnQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR27TuNAcMSFgmt4HScCAbaAirPOj7VZFwghIIRnBRKd2SdCCnEAI8RP8Y3MbGxynAQdxbrw2GNpZzyvnQfAuuaC-pRngVAqDLgyYSANeilbqbQy0lK4iAqcz86z3iU_vkqvJuC1qYWhtMpGJnpBbUpNMfK_vq-4SLfyfGd4H9DUKDpdbUZojNjixL48o8v2uH20j_TdiOPuwcVeL6inCgQa2a0KotgkVlJTapMJgf5Ebm0ipdZxKJzNueN5prQLhdKaK8FRw6oUPXPFM63R-E4Q7w-Y5AlqcqpM7x7-U4fpR4Cix0TZRDypi3R8qR7FX_EurRR9lCD6qAjH1u1_B7Jez3VnYbo2UNnuiKPmYMIO5mGmGf7AalnwC2hQtfH5XuzOywVCx-TAsP6ts2z4QCdAHlw6hlYmQ91GMRhWlWWfkfI0DIGoGyhCyerpFTfszmd3Wo-p8lY1frWBLsDlt2z2b2gNyoFdBGatzlMhs8xKx622wlEfHy2ECR1d2hA1-1nour85jdnoF--dmT0NipAW0aCI2rD5_s5w1N3jy6c7DZmK-k9_LMZ82YY_DenG4M-xLX2NbQ2mehdnp8Xp0fnJMvyMqerCp751oFU9PNkVtIUqteoZkMH1d3P8GxVzG10 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8QwDLZ4SIiFN-J4ZoAJKtpeWtKBAQEn3mLgJLaSJ0I6eicoQvwrfiJ2rj0eAiQGhnRx6lZxEtuJ_RlgXXNBOOVpIJQKA65MGEiDXspOIq2MtBQuogTn84v0qM1PrpPrIXitc2F8tHt9JdnPaSCUpqLc7hm3PUh8o9NMdIOpJWjxB1EVVnlqX57RaXvcPT5ACW_Ecevwav8oqOoKBBonXBlEsWlaSbDUJhUCPYrM2qaUWsehcDbjjmep0i4USmuuBEcdqxL0zRVPtUbzu4l8h2GUU_YxrqB2vPchE9MXAUWfieKJeLNK0_n-nz-rwnf79suVrNd0rSmYqExUttefU9MwZIsZmKzLP7BqN5gFKlVtfMQXu_c7A7FjsjCsc-cs6z3QHZAndx1DO5OhdqNTGFZ2ux1G6tMwJKJ2oDNKVtWvuGX3Pr7Tek6lt6vxqzV1Dtr_MtjzMFJ0C7sAzFqdJUKmqZWOW22FIyQfLYQJHT0aENXjmesK4ZwKbXTyATazl0EeUiMZ5FEDNgfv9Pr4Hr_2Xq7FlFdr_TH3iPci2cmyBmzVonsn_8xt8W_d12Ds8qCVnx1fnC7BeExpGD4WbhlGyocnu4LGUalW_XxkcPPfC-ANsYUcZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Condition+monitoring+and+life+prediction+of+the+turning+tool+based+on+extreme+learning+machine+and+transfer+learning&rft.jtitle=Neural+computing+%26+applications&rft.au=Gao%2C+Zhan&rft.au=Hu%2C+Qiguo&rft.au=Xu%2C+Xiangyang&rft.date=2022-03-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=5&rft.spage=3399&rft.epage=3410&rft_id=info:doi/10.1007%2Fs00521-021-05716-1&rft.externalDocID=10_1007_s00521_021_05716_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |