A reinforcement learning-based evolutionary algorithm for the unmanned aerial vehicles maritime search and rescue path planning problem considering multiple rescue centers

In the realm of maritime emergencies, unmanned aerial vehicles (UAVs) play a crucial role in enhancing search and rescue (SAR) operations. They help in efficiently rescuing distressed crews, strengthening maritime surveillance, and maintaining national security due to their cost-effectiveness, versa...

Full description

Saved in:
Bibliographic Details
Published inMemetic computing Vol. 16; no. 3; pp. 373 - 386
Main Authors Zhan, Haowen, Zhang, Yue, Huang, Jingbo, Song, Yanjie, Xing, Lining, Wu, Jie, Gao, Zengyun
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1865-9284
1865-9292
DOI10.1007/s12293-024-00420-8

Cover

Abstract In the realm of maritime emergencies, unmanned aerial vehicles (UAVs) play a crucial role in enhancing search and rescue (SAR) operations. They help in efficiently rescuing distressed crews, strengthening maritime surveillance, and maintaining national security due to their cost-effectiveness, versatility, and effectiveness. However, the vast expanse of sea territories and the rapid changes in maritime conditions make a single SAR center insufficient for handling complex emergencies. Thus, it is vital to develop strategies for quickly deploying UAV resources from multiple SAR centers for area reconnaissance and supporting maritime rescue operations. This study introduces a graph-structured planning model for the maritime SAR path planning problem, considering multiple rescue centers (MSARPPP-MRC). It incorporates workload distribution among SAR centers and UAV operational constraints. We propose a reinforcement learning-based genetic algorithm (GA-RL) to tackle the MSARPPP-MRC problem. GA-RL uses heuristic rules to initialize the population and employs the Q-learning method to manage the progeny during each generation, including their retention, storage, or disposal. When the elite repository’s capacity is reached, a decision is made on the utilization of these members to refresh the population. Additionally, adaptive crossover and perturbation strategies are applied to develop a more effective SAR scheme. Extensive testing proves that GA-RL surpasses other algorithms in optimization efficacy and efficiency, highlighting the benefits of reinforcement learning in population management.
AbstractList In the realm of maritime emergencies, unmanned aerial vehicles (UAVs) play a crucial role in enhancing search and rescue (SAR) operations. They help in efficiently rescuing distressed crews, strengthening maritime surveillance, and maintaining national security due to their cost-effectiveness, versatility, and effectiveness. However, the vast expanse of sea territories and the rapid changes in maritime conditions make a single SAR center insufficient for handling complex emergencies. Thus, it is vital to develop strategies for quickly deploying UAV resources from multiple SAR centers for area reconnaissance and supporting maritime rescue operations. This study introduces a graph-structured planning model for the maritime SAR path planning problem, considering multiple rescue centers (MSARPPP-MRC). It incorporates workload distribution among SAR centers and UAV operational constraints. We propose a reinforcement learning-based genetic algorithm (GA-RL) to tackle the MSARPPP-MRC problem. GA-RL uses heuristic rules to initialize the population and employs the Q-learning method to manage the progeny during each generation, including their retention, storage, or disposal. When the elite repository’s capacity is reached, a decision is made on the utilization of these members to refresh the population. Additionally, adaptive crossover and perturbation strategies are applied to develop a more effective SAR scheme. Extensive testing proves that GA-RL surpasses other algorithms in optimization efficacy and efficiency, highlighting the benefits of reinforcement learning in population management.
Author Huang, Jingbo
Zhan, Haowen
Xing, Lining
Gao, Zengyun
Zhang, Yue
Wu, Jie
Song, Yanjie
Author_xml – sequence: 1
  givenname: Haowen
  surname: Zhan
  fullname: Zhan, Haowen
  organization: College of Systems Engineering, National University of Defense Technology
– sequence: 2
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  email: zhangyue1127@buaa.edu.cn
  organization: School of Reliability and Systems Engineering, Beihang University
– sequence: 3
  givenname: Jingbo
  surname: Huang
  fullname: Huang, Jingbo
  organization: College of Systems Engineering, National University of Defense Technology
– sequence: 4
  givenname: Yanjie
  surname: Song
  fullname: Song, Yanjie
  email: songyj_2017@163.com
  organization: Wuyi Intelligent Manufacturing Institute of Industrial Technology
– sequence: 5
  givenname: Lining
  surname: Xing
  fullname: Xing, Lining
  organization: Key Laboratory of Collaborative Intelligence Systems, Xidian University
– sequence: 6
  givenname: Jie
  surname: Wu
  fullname: Wu, Jie
  organization: School of Geography and Ocean Science, Nanjing University
– sequence: 7
  givenname: Zengyun
  surname: Gao
  fullname: Gao, Zengyun
  organization: China Maritime Service Center
BookMark eNp9kc1O3TAQhS0EUinwAl1Z6jrFf0nsJUKlrYTEBtaW40yIkWOntoPEM_GS9eVSkFjgja3R-eaM53xFhyEGQOgbJT8oIf15powp3hAmGkIEI408QMdUdm2jmGKHb28pvqCznB9IPZz1UtBj9HyBE7gwxWRhgVCwB5OCC_fNYDKMGB6j34qLwaQnbPx9TK7MC656XGbAW1hMCFVnIDnj8SPMznrIeDFV6BbAufazMzZhrEbZboBXU2a8-spVG7ymOHhYsI0hu7F2qbVl88WtHv4Ttg4GKZ-io8n4DGev9wm6u_p5e_m7ub759efy4rqxnKrSUNb37SQkMD4q2knBLbMdtVJOnaWEGzoOTClhh9bSiRIzjIR3VvVTN7Vtz_gJ-r7vW2f7u0Eu-iFuKVRLzSkRom9Vx6uK7VU2xZwTTHpNrn77SVOid7nofS665qJfctGyQvIDZF0xu_2WZJz_HOV7NK-7JUF6n-oT6h-Jmag0
CitedBy_id crossref_primary_10_1016_j_cie_2025_110933
Cites_doi 10.1007/s12293-022-00377-6
10.1016/j.oceaneng.2022.112178
10.1016/j.swevo.2023.101236
10.1016/j.oceaneng.2023.116403
10.1109/TASE.2023.3327792
10.1016/j.oceaneng.2022.110797
10.1007/s12293-022-00365-w
10.1016/j.ejor.2021.09.008
10.1109/TETCI.2024.3369485
10.1016/j.oceaneng.2022.113444
10.3390/app13042169
10.1109/JIOT.2022.3155697
10.1109/TAES.2024.3371964
10.1016/j.oceaneng.2021.110098
10.1016/j.oceaneng.2024.116921
10.3390/app9224964
10.3390/su11072084
10.3390/jmse11040781
10.1016/j.swevo.2024.101517
10.1109/SSRR.2018.8468640
10.1109/ICIBA50161.2020.9277470
10.1109/ICUAS.2015.7152409
10.1287/opre.5.5.613
10.1177/1729881419868126
10.5121/cseij.2014.4103
10.1109/IROS45743.2020.9340934
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s12293-024-00420-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1865-9292
EndPage 386
ExternalDocumentID 10_1007_s12293_024_00420_8
GrantInformation_xml – fundername: Science and Technology Innovation Team of Shaanxi Province
  grantid: 2023-CX-TD-07
– fundername: Natural Science Foundation Project of Hunan Province
  grantid: 2024JJ5109
– fundername: National Natural Science Foundation of China
  grantid: 723B2002
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Key R&D Program Projects in Shaanxi Province
  grantid: 2024GH-ZDXM-48
GroupedDBID -5B
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
203
29M
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
BA0
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z83
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-12775f48e23d916843c2c61c88f6c103a1db2994cb5c1f10abd036c97f6f55723
IEDL.DBID U2A
ISSN 1865-9284
IngestDate Sat Jul 26 02:05:28 EDT 2025
Tue Jul 01 02:52:12 EDT 2025
Thu Apr 24 22:56:53 EDT 2025
Fri Feb 21 02:38:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Maritime search and rescue
Genetic
Path planning
UAV
Evolutionary algorithm
Reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-12775f48e23d916843c2c61c88f6c103a1db2994cb5c1f10abd036c97f6f55723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3104475963
PQPubID 2044125
PageCount 14
ParticipantIDs proquest_journals_3104475963
crossref_primary_10_1007_s12293_024_00420_8
crossref_citationtrail_10_1007_s12293_024_00420_8
springer_journals_10_1007_s12293_024_00420_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Memetic computing
PublicationTitleAbbrev Memetic Comp
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Li, Gong, Wang, Lu, Pan, Zhuang (CR20) 2023
Song, Wu, Guo, Yan, Suganthan, Zhang, Pedrycz, Das, Mallipeddi, Ajani (CR27) 2024; 86
CR19
CR17
Yang, Yin, Xue, Tian, Liu (CR14) 2023
CR16
CR15
CR13
CR12
Zhou, Kong, Yan, Liu, Wang (CR23) 2024; 10
Song, Wei, Yang, Wu, Xing, Chen (CR21) 2023; 77
Palubeckis (CR25) 2022; 14
Ma, Zhang, Wan, Zhang, Lyu (CR10) 2022; 261
Agbissoh, Li, Ai, Gao, Xu, Chen, Lv (CR1) 2019; 11
CR3
Xi, Yang, Wen, Liu, Li, Song (CR18) 2022; 9
(CR6) 2019; 9
Kyriakakis, Marinaki, Matsatsinis, Marinakis (CR8) 2022; 300
Ma, Li, Huang, Fan (CR9) 2023; 11
Zhou (CR2) 2022; 248
Wang, Gao, Li, Wang, Gong (CR5) 2024
Song, Suganthan, Pedrycz, Yan, Fan, Zhang (CR28) 2024
Ai, Jia, Xu, Xu, Wen, Li, Zhang (CR4) 2021; 241
Chen, Liu, Liu, Gu (CR24) 2022; 14
Hollander, Wolfe, Chicken (CR30) 2013
Wu, Cheng, Chu (CR11) 2023; 270
Rani, Babbar, Kaur, Alshehri, Shah (CR22) 2022; 24
Zhao, Bai, Paik (CR7) 2024; 296
Wu, Cheng, Chu, Song (CR26) 2024; 291
Yao, Song, Zhang, Xing, Ma, Li (CR29) 2019; 16
Y Song (420_CR21) 2023; 77
Y Song (420_CR28) 2024
S Rani (420_CR22) 2022; 24
L Yang (420_CR14) 2023
420_CR13
420_CR12
Q Ma (420_CR10) 2022; 261
M Xi (420_CR18) 2022; 9
B Ai (420_CR4) 2021; 241
L Zhao (420_CR7) 2024; 296
OTOTED Agbissoh (420_CR1) 2019; 11
M Hollander (420_CR30) 2013
Y Zhou (420_CR23) 2024; 10
Yue Guan Wang (420_CR6) 2019; 9
J Wu (420_CR11) 2023; 270
R Li (420_CR20) 2023
NA Kyriakakis (420_CR8) 2022; 300
420_CR3
420_CR19
420_CR17
420_CR16
G Palubeckis (420_CR25) 2022; 14
Z Wang (420_CR5) 2024
Y Ma (420_CR9) 2023; 11
420_CR15
F Yao (420_CR29) 2019; 16
Y Song (420_CR27) 2024; 86
X Zhou (420_CR2) 2022; 248
L Chen (420_CR24) 2022; 14
J Wu (420_CR26) 2024; 291
References_xml – volume: 14
  start-page: 423
  issue: 4
  year: 2022
  end-page: 432
  ident: CR24
  article-title: A bi-level transformation based evolutionary algorithm framework for equality constrained optimization
  publication-title: Memetic Comput
  doi: 10.1007/s12293-022-00377-6
– volume: 261
  start-page: 112178
  year: 2022
  ident: CR10
  article-title: Multi-objective emergency resources allocation optimization for maritime search and rescue considering accident black-spots
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.112178
– ident: CR16
– volume: 24
  start-page: 2548
  issue: 2
  year: 2022
  end-page: 2555
  ident: CR22
  article-title: An optimized approach of dynamic target nodes in wireless sensor network using bio inspired algorithms for maritime rescue
  publication-title: IEEE Trans Intell Transp Syst
– volume: 16
  start-page: 1729881419868126
  issue: 4
  year: 2019
  ident: CR29
  article-title: Multi-mobile robots and multi-trips feeding scheduling problem in smart manufacturing system: an improved hybrid genetic algorithm
  publication-title: Int J Adv Rob Syst
– ident: CR12
– volume: 77
  start-page: 101236101236
  year: 2023
  ident: CR21
  article-title: Rl-ga: a reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2023.101236
– volume: 291
  start-page: 116403
  year: 2024
  ident: CR26
  article-title: An autonomous coverage path planning algorithm for maritime search and rescue of persons-in-water based on deep reinforcement learning
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.116403
– year: 2023
  ident: CR20
  article-title: Double dqn-based coevolution for green distributed heterogeneous hybrid flowshop scheduling with multiple priorities of jobs
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2023.3327792
– volume: 248
  start-page: 110797
  year: 2022
  ident: CR2
  article-title: A comprehensive framework for assessing navigation risk and deploying maritime emergency resources in the south china sea
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.110797
– volume: 14
  start-page: 253
  issue: 3
  year: 2022
  end-page: 285
  ident: CR25
  article-title: Metaheuristic approaches for ratio cut and normalized cut graph partitioning
  publication-title: Memetic Comput
  doi: 10.1007/s12293-022-00365-w
– volume: 300
  start-page: 992
  year: 2022
  end-page: 1004
  ident: CR8
  article-title: A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2021.09.008
– year: 2013
  ident: CR30
  publication-title: Nonparametric statistical methods
– year: 2024
  ident: CR5
  article-title: Path planning for unmanned aerial vehicle via off-policy reinforcement learning with enhanced exploration
  publication-title: IEEE Trans Emerg Topics Comput Intell
  doi: 10.1109/TETCI.2024.3369485
– ident: CR19
– volume: 270
  start-page: 113444
  year: 2023
  ident: CR11
  article-title: Modeling the leeway drift characteristics of persons-in-water at a sea-area scale in the seas of China
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.113444
– year: 2023
  ident: CR14
  article-title: A time-domain planning method for surface rescue process of amphibious aircraft for medium/distant maritime rescue
  publication-title: Appl Sci-basel
  doi: 10.3390/app13042169
– volume: 9
  start-page: 17440
  issue: 18
  year: 2022
  end-page: 17451
  ident: CR18
  article-title: Comprehensive ocean information-enabled AUV path planning via reinforcement learning
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3155697
– year: 2024
  ident: CR28
  article-title: Energy-efficient satellite range scheduling using a reinforcement learning-based memetic algorithm
  publication-title: IEEE Trans Aerosp Electr Syst
  doi: 10.1109/TAES.2024.3371964
– ident: CR3
– ident: CR15
– ident: CR17
– volume: 10
  start-page: 1
  year: 2024
  end-page: 15
  ident: CR23
  article-title: A memetic algorithm for a real-world dynamic pickup and delivery problem
  publication-title: Memetic Comput
– ident: CR13
– volume: 241
  start-page: 110098
  year: 2021
  ident: CR4
  article-title: Coverage path planning for maritime search and rescue using reinforcement learning
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.110098
– volume: 296
  start-page: 116921
  year: 2024
  ident: CR7
  article-title: Optimal coverage path planning for usv-assisted coastal bathymetric survey: models, solutions, and lake trials
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.116921
– volume: 9
  start-page: 4964
  issue: 22
  year: 2019
  ident: CR6
  article-title: A novel searching method using reinforcement learning scheme for multi-uavs in unknown environments
  publication-title: Appl Sci
  doi: 10.3390/app9224964
– volume: 11
  start-page: 2084
  issue: 7
  year: 2019
  ident: CR1
  article-title: A decision-making algorithm for maritime search and rescue plan
  publication-title: Sustainability
  doi: 10.3390/su11072084
– volume: 11
  start-page: 781
  issue: 4
  year: 2023
  ident: CR9
  article-title: An improved NSGA-II based on multi-task optimization for multi-uav maritime search and rescue under severe weather
  publication-title: J Marine Sci Eng
  doi: 10.3390/jmse11040781
– volume: 86
  start-page: 101517
  year: 2024
  ident: CR27
  article-title: Reinforcement learning-assisted evolutionary algorithm: a survey and research opportunities
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2024.101517
– volume: 300
  start-page: 992
  year: 2022
  ident: 420_CR8
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2021.09.008
– volume: 261
  start-page: 112178
  year: 2022
  ident: 420_CR10
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.112178
– volume: 14
  start-page: 423
  issue: 4
  year: 2022
  ident: 420_CR24
  publication-title: Memetic Comput
  doi: 10.1007/s12293-022-00377-6
– volume: 291
  start-page: 116403
  year: 2024
  ident: 420_CR26
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.116403
– volume: 241
  start-page: 110098
  year: 2021
  ident: 420_CR4
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.110098
– year: 2023
  ident: 420_CR20
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2023.3327792
– ident: 420_CR16
  doi: 10.1109/SSRR.2018.8468640
– ident: 420_CR17
  doi: 10.1109/ICIBA50161.2020.9277470
– year: 2024
  ident: 420_CR28
  publication-title: IEEE Trans Aerosp Electr Syst
  doi: 10.1109/TAES.2024.3371964
– ident: 420_CR3
  doi: 10.1109/ICUAS.2015.7152409
– ident: 420_CR12
  doi: 10.1287/opre.5.5.613
– volume: 248
  start-page: 110797
  year: 2022
  ident: 420_CR2
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.110797
– volume: 9
  start-page: 4964
  issue: 22
  year: 2019
  ident: 420_CR6
  publication-title: Appl Sci
  doi: 10.3390/app9224964
– volume: 24
  start-page: 2548
  issue: 2
  year: 2022
  ident: 420_CR22
  publication-title: IEEE Trans Intell Transp Syst
– ident: 420_CR19
– volume: 10
  start-page: 1
  year: 2024
  ident: 420_CR23
  publication-title: Memetic Comput
– volume: 14
  start-page: 253
  issue: 3
  year: 2022
  ident: 420_CR25
  publication-title: Memetic Comput
  doi: 10.1007/s12293-022-00365-w
– volume: 11
  start-page: 781
  issue: 4
  year: 2023
  ident: 420_CR9
  publication-title: J Marine Sci Eng
  doi: 10.3390/jmse11040781
– volume: 270
  start-page: 113444
  year: 2023
  ident: 420_CR11
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.113444
– volume: 296
  start-page: 116921
  year: 2024
  ident: 420_CR7
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.116921
– volume: 11
  start-page: 2084
  issue: 7
  year: 2019
  ident: 420_CR1
  publication-title: Sustainability
  doi: 10.3390/su11072084
– volume: 16
  start-page: 172988141986812
  issue: 4
  year: 2019
  ident: 420_CR29
  publication-title: Int J Adv Rob Syst
  doi: 10.1177/1729881419868126
– volume: 9
  start-page: 17440
  issue: 18
  year: 2022
  ident: 420_CR18
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3155697
– year: 2024
  ident: 420_CR5
  publication-title: IEEE Trans Emerg Topics Comput Intell
  doi: 10.1109/TETCI.2024.3369485
– ident: 420_CR13
  doi: 10.5121/cseij.2014.4103
– year: 2023
  ident: 420_CR14
  publication-title: Appl Sci-basel
  doi: 10.3390/app13042169
– volume: 86
  start-page: 101517
  year: 2024
  ident: 420_CR27
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2024.101517
– volume: 77
  start-page: 101236101236
  year: 2023
  ident: 420_CR21
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2023.101236
– volume-title: Nonparametric statistical methods
  year: 2013
  ident: 420_CR30
– ident: 420_CR15
  doi: 10.1109/IROS45743.2020.9340934
SSID ssj0000327841
Score 2.3493316
Snippet In the realm of maritime emergencies, unmanned aerial vehicles (UAVs) play a crucial role in enhancing search and rescue (SAR) operations. They help in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 373
SubjectTerms Adaptive algorithms
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Complex Systems
Control
Cost effectiveness
Emergency plans
Engineering
Evacuations & rescues
Evolutionary algorithms
Genetic algorithms
Heuristic methods
Machine learning
Mathematical and Computational Engineering
Mechatronics
Path planning
Reconnaissance aircraft
Regular Research Paper
Rescue operations
Rescue vehicles
Robotics
Unmanned aerial vehicles
Title A reinforcement learning-based evolutionary algorithm for the unmanned aerial vehicles maritime search and rescue path planning problem considering multiple rescue centers
URI https://link.springer.com/article/10.1007/s12293-024-00420-8
https://www.proquest.com/docview/3104475963
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0BvcCBHVE2zYEbWErsLO6xQiwCwYlKcIocL4BE06qbxDfxk9iu0wICJK6J7RzejOc5nnkDcCwZS6ThTvoy1iQRJiel4hFRkokWVZEwxtU7395lV53k-iF9CEVhwzrbvb6S9Dv1vNiNUpdrRhPiLC0ifBEaqT27O3fs0Pbsz0rE_GWaO2nxLCUtuwGHapmfl_kakeY089vNqA84F-uwGpgitqfQbsCCrjZhre7CgMEpN2Hlk6TgFry3caC9Gqr0P_4wtIV4Ii5eKdSTYGti8Ibi9ak3eBk9d9GOR0sFcVx1hdt5UXjLxIl-9nlz2BVO_airceoaKCplPzSUY42uqTH2Q_MjDB1qUIZOoO5ZnbVYz3AZoZZ2bkPn4vz-7IqEhgxEWk8dkZjmeWoSrilTllbyhEkqs1hybjIZR0zEqrThLZFlKmMTR6JUNkDKVm4yk6Y5ZTuwVPUqvQuoqVAWh1JITZOspIIJy8yoaRlmlMqiJsQ1KIUMauWuacZrMddZdkAWFsjCA1nwJpzM5vSnWh1_jj6osS6C3w4LS3a9AmLGmnBa4z9__ftqe_8bvg_L1JugS1Y7gKXRYKwPLbsZlUfQaF8-3pwfeaP-ALN79cY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdkRZ58ANLCV2FvdYIVBZT1TiFjleAIkG1AWJb-InsV2nBQRIXBPbObwZz4s9Mw_gUDKWSMNd68tYk0SYnJSKR0RJJlpURcIYV-98fZN1usnFXXoXisIGdbZ7fSXpd-ppsRulLteMJsRZWkT4LMxZMsCdbkGXticnKxHzl2nuT4tnKWnZDThUy_y8zNeINKWZ325GfcA5W4GlwBSxPYZ2FWZ0tQbLtQoDBqdcg8VPLQXX4b2Nfe27oUp_8IdBFuKeuHilUL8GWxP9NxRP98_9x-FDD-14tFQQR1VPuJ0XhbdMfNUPPm8Oe8J1P-ppHLsGikrZDw3kSKMTNcaXIH6EQaEGZVACdc_qrMV6hssItbRzA7pnp7cnHRIEGYi0njokMc3z1CRcU6YsreQJk1RmseTcZDKOmIhVacNbIstUxiaORKlsgJSt3GQmTXPKNqFRPVd6C1BToSwOpZCaJllJBROWmVHTMswolUVNiGtQChm6lTvRjKdi2mfZAVlYIAsPZMGbcDSZ8zLu1fHn6N0a6yL47aCwZNd3QMxYE45r_Kevf19t-3_DD2C-c3t9VVyd31zuwAL15ugS13ahMeyP9J5lOsNy3xv2B7iM9yU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFA5AKWtWJ5z4FYsYjsP73EFrHgVcehK3CLHD6jEhtWSReI38SexvQ5LK4rUa2I7h2_G88We-QZgT3GeKiu89CU1JJW2IJUWCdGKyy7TibTW1zv_vMxPBunZdXb9poo_ZLu3V5LTmgav0lQ3ByNtD2aFb4z5vDOWEm91CRGfYMFtx9Rb-oD1Xk9ZEh4u1vxfl8gz0nWbcayceX-ZP6PTjHL-dUsagk9_FZYja8TeFOYvMGfqNVhpOzJgdNA1WHojL_gVnns4NkEZVYVDQIwtIm6Ij10azWO0Ozl-Qnl3cz_-3dwO0Y1HRwtxUg-l34VRBivFR3MbcuhwKL0S0tDg1E1Q1tp96EFNDPoGxziKjZAwdqtBFbuC-mdtBmM7w2eHOgr6DQb941-HJyQ2ZyDKeW1DKCuKzKbCMK4dxRQpV0zlVAlhc0UTLqmuXKhLVZUpamkiK-2CpeoWNrdZVjD-Hebr-9qsAxomtcOhksqwNK-Y5NKxNGa7llut86QDtAWlVFG53DfQuCtnmsseyNIBWQYgS9GBH69zRlPdjg9Hb7VYl9GHH0pHfIMaYs47sN_iP3v979U2_m_4LixeHfXLi9PL8034zII1-hy2LZhvxhOz7UhPU-0Eu34Bu7L7YQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reinforcement+learning-based+evolutionary+algorithm+for+the+unmanned+aerial+vehicles+maritime+search+and+rescue+path+planning+problem+considering+multiple+rescue+centers&rft.jtitle=Memetic+computing&rft.au=Zhan%2C+Haowen&rft.au=Zhang%2C+Yue&rft.au=Huang%2C+Jingbo&rft.au=Song%2C+Yanjie&rft.date=2024-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1865-9284&rft.eissn=1865-9292&rft.volume=16&rft.issue=3&rft.spage=373&rft.epage=386&rft_id=info:doi/10.1007%2Fs12293-024-00420-8&rft.externalDocID=10_1007_s12293_024_00420_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-9284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-9284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-9284&client=summon