A reinforcement learning-based evolutionary algorithm for the unmanned aerial vehicles maritime search and rescue path planning problem considering multiple rescue centers
In the realm of maritime emergencies, unmanned aerial vehicles (UAVs) play a crucial role in enhancing search and rescue (SAR) operations. They help in efficiently rescuing distressed crews, strengthening maritime surveillance, and maintaining national security due to their cost-effectiveness, versa...
Saved in:
Published in | Memetic computing Vol. 16; no. 3; pp. 373 - 386 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1865-9284 1865-9292 |
DOI | 10.1007/s12293-024-00420-8 |
Cover
Abstract | In the realm of maritime emergencies, unmanned aerial vehicles (UAVs) play a crucial role in enhancing search and rescue (SAR) operations. They help in efficiently rescuing distressed crews, strengthening maritime surveillance, and maintaining national security due to their cost-effectiveness, versatility, and effectiveness. However, the vast expanse of sea territories and the rapid changes in maritime conditions make a single SAR center insufficient for handling complex emergencies. Thus, it is vital to develop strategies for quickly deploying UAV resources from multiple SAR centers for area reconnaissance and supporting maritime rescue operations. This study introduces a graph-structured planning model for the maritime SAR path planning problem, considering multiple rescue centers (MSARPPP-MRC). It incorporates workload distribution among SAR centers and UAV operational constraints. We propose a reinforcement learning-based genetic algorithm (GA-RL) to tackle the MSARPPP-MRC problem. GA-RL uses heuristic rules to initialize the population and employs the Q-learning method to manage the progeny during each generation, including their retention, storage, or disposal. When the elite repository’s capacity is reached, a decision is made on the utilization of these members to refresh the population. Additionally, adaptive crossover and perturbation strategies are applied to develop a more effective SAR scheme. Extensive testing proves that GA-RL surpasses other algorithms in optimization efficacy and efficiency, highlighting the benefits of reinforcement learning in population management. |
---|---|
AbstractList | In the realm of maritime emergencies, unmanned aerial vehicles (UAVs) play a crucial role in enhancing search and rescue (SAR) operations. They help in efficiently rescuing distressed crews, strengthening maritime surveillance, and maintaining national security due to their cost-effectiveness, versatility, and effectiveness. However, the vast expanse of sea territories and the rapid changes in maritime conditions make a single SAR center insufficient for handling complex emergencies. Thus, it is vital to develop strategies for quickly deploying UAV resources from multiple SAR centers for area reconnaissance and supporting maritime rescue operations. This study introduces a graph-structured planning model for the maritime SAR path planning problem, considering multiple rescue centers (MSARPPP-MRC). It incorporates workload distribution among SAR centers and UAV operational constraints. We propose a reinforcement learning-based genetic algorithm (GA-RL) to tackle the MSARPPP-MRC problem. GA-RL uses heuristic rules to initialize the population and employs the Q-learning method to manage the progeny during each generation, including their retention, storage, or disposal. When the elite repository’s capacity is reached, a decision is made on the utilization of these members to refresh the population. Additionally, adaptive crossover and perturbation strategies are applied to develop a more effective SAR scheme. Extensive testing proves that GA-RL surpasses other algorithms in optimization efficacy and efficiency, highlighting the benefits of reinforcement learning in population management. |
Author | Huang, Jingbo Zhan, Haowen Xing, Lining Gao, Zengyun Zhang, Yue Wu, Jie Song, Yanjie |
Author_xml | – sequence: 1 givenname: Haowen surname: Zhan fullname: Zhan, Haowen organization: College of Systems Engineering, National University of Defense Technology – sequence: 2 givenname: Yue surname: Zhang fullname: Zhang, Yue email: zhangyue1127@buaa.edu.cn organization: School of Reliability and Systems Engineering, Beihang University – sequence: 3 givenname: Jingbo surname: Huang fullname: Huang, Jingbo organization: College of Systems Engineering, National University of Defense Technology – sequence: 4 givenname: Yanjie surname: Song fullname: Song, Yanjie email: songyj_2017@163.com organization: Wuyi Intelligent Manufacturing Institute of Industrial Technology – sequence: 5 givenname: Lining surname: Xing fullname: Xing, Lining organization: Key Laboratory of Collaborative Intelligence Systems, Xidian University – sequence: 6 givenname: Jie surname: Wu fullname: Wu, Jie organization: School of Geography and Ocean Science, Nanjing University – sequence: 7 givenname: Zengyun surname: Gao fullname: Gao, Zengyun organization: China Maritime Service Center |
BookMark | eNp9kc1O3TAQhS0EUinwAl1Z6jrFf0nsJUKlrYTEBtaW40yIkWOntoPEM_GS9eVSkFjgja3R-eaM53xFhyEGQOgbJT8oIf15powp3hAmGkIEI408QMdUdm2jmGKHb28pvqCznB9IPZz1UtBj9HyBE7gwxWRhgVCwB5OCC_fNYDKMGB6j34qLwaQnbPx9TK7MC656XGbAW1hMCFVnIDnj8SPMznrIeDFV6BbAufazMzZhrEbZboBXU2a8-spVG7ymOHhYsI0hu7F2qbVl88WtHv4Ttg4GKZ-io8n4DGev9wm6u_p5e_m7ub759efy4rqxnKrSUNb37SQkMD4q2knBLbMdtVJOnaWEGzoOTClhh9bSiRIzjIR3VvVTN7Vtz_gJ-r7vW2f7u0Eu-iFuKVRLzSkRom9Vx6uK7VU2xZwTTHpNrn77SVOid7nofS665qJfctGyQvIDZF0xu_2WZJz_HOV7NK-7JUF6n-oT6h-Jmag0 |
CitedBy_id | crossref_primary_10_1016_j_cie_2025_110933 |
Cites_doi | 10.1007/s12293-022-00377-6 10.1016/j.oceaneng.2022.112178 10.1016/j.swevo.2023.101236 10.1016/j.oceaneng.2023.116403 10.1109/TASE.2023.3327792 10.1016/j.oceaneng.2022.110797 10.1007/s12293-022-00365-w 10.1016/j.ejor.2021.09.008 10.1109/TETCI.2024.3369485 10.1016/j.oceaneng.2022.113444 10.3390/app13042169 10.1109/JIOT.2022.3155697 10.1109/TAES.2024.3371964 10.1016/j.oceaneng.2021.110098 10.1016/j.oceaneng.2024.116921 10.3390/app9224964 10.3390/su11072084 10.3390/jmse11040781 10.1016/j.swevo.2024.101517 10.1109/SSRR.2018.8468640 10.1109/ICIBA50161.2020.9277470 10.1109/ICUAS.2015.7152409 10.1287/opre.5.5.613 10.1177/1729881419868126 10.5121/cseij.2014.4103 10.1109/IROS45743.2020.9340934 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12293-024-00420-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1865-9292 |
EndPage | 386 |
ExternalDocumentID | 10_1007_s12293_024_00420_8 |
GrantInformation_xml | – fundername: Science and Technology Innovation Team of Shaanxi Province grantid: 2023-CX-TD-07 – fundername: Natural Science Foundation Project of Hunan Province grantid: 2024JJ5109 – fundername: National Natural Science Foundation of China grantid: 723B2002 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Key R&D Program Projects in Shaanxi Province grantid: 2024GH-ZDXM-48 |
GroupedDBID | -5B -5G -BR -EM -~C 06D 0R~ 0VY 1N0 203 29M 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 67Z 6NX 875 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY BA0 BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RIG RLLFE ROL RSV S1Z S27 S3B SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z83 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-12775f48e23d916843c2c61c88f6c103a1db2994cb5c1f10abd036c97f6f55723 |
IEDL.DBID | U2A |
ISSN | 1865-9284 |
IngestDate | Sat Jul 26 02:05:28 EDT 2025 Tue Jul 01 02:52:12 EDT 2025 Thu Apr 24 22:56:53 EDT 2025 Fri Feb 21 02:38:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Maritime search and rescue Genetic Path planning UAV Evolutionary algorithm Reinforcement learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-12775f48e23d916843c2c61c88f6c103a1db2994cb5c1f10abd036c97f6f55723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3104475963 |
PQPubID | 2044125 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3104475963 crossref_primary_10_1007_s12293_024_00420_8 crossref_citationtrail_10_1007_s12293_024_00420_8 springer_journals_10_1007_s12293_024_00420_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Memetic computing |
PublicationTitleAbbrev | Memetic Comp |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Li, Gong, Wang, Lu, Pan, Zhuang (CR20) 2023 Song, Wu, Guo, Yan, Suganthan, Zhang, Pedrycz, Das, Mallipeddi, Ajani (CR27) 2024; 86 CR19 CR17 Yang, Yin, Xue, Tian, Liu (CR14) 2023 CR16 CR15 CR13 CR12 Zhou, Kong, Yan, Liu, Wang (CR23) 2024; 10 Song, Wei, Yang, Wu, Xing, Chen (CR21) 2023; 77 Palubeckis (CR25) 2022; 14 Ma, Zhang, Wan, Zhang, Lyu (CR10) 2022; 261 Agbissoh, Li, Ai, Gao, Xu, Chen, Lv (CR1) 2019; 11 CR3 Xi, Yang, Wen, Liu, Li, Song (CR18) 2022; 9 (CR6) 2019; 9 Kyriakakis, Marinaki, Matsatsinis, Marinakis (CR8) 2022; 300 Ma, Li, Huang, Fan (CR9) 2023; 11 Zhou (CR2) 2022; 248 Wang, Gao, Li, Wang, Gong (CR5) 2024 Song, Suganthan, Pedrycz, Yan, Fan, Zhang (CR28) 2024 Ai, Jia, Xu, Xu, Wen, Li, Zhang (CR4) 2021; 241 Chen, Liu, Liu, Gu (CR24) 2022; 14 Hollander, Wolfe, Chicken (CR30) 2013 Wu, Cheng, Chu (CR11) 2023; 270 Rani, Babbar, Kaur, Alshehri, Shah (CR22) 2022; 24 Zhao, Bai, Paik (CR7) 2024; 296 Wu, Cheng, Chu, Song (CR26) 2024; 291 Yao, Song, Zhang, Xing, Ma, Li (CR29) 2019; 16 Y Song (420_CR21) 2023; 77 Y Song (420_CR28) 2024 S Rani (420_CR22) 2022; 24 L Yang (420_CR14) 2023 420_CR13 420_CR12 Q Ma (420_CR10) 2022; 261 M Xi (420_CR18) 2022; 9 B Ai (420_CR4) 2021; 241 L Zhao (420_CR7) 2024; 296 OTOTED Agbissoh (420_CR1) 2019; 11 M Hollander (420_CR30) 2013 Y Zhou (420_CR23) 2024; 10 Yue Guan Wang (420_CR6) 2019; 9 J Wu (420_CR11) 2023; 270 R Li (420_CR20) 2023 NA Kyriakakis (420_CR8) 2022; 300 420_CR3 420_CR19 420_CR17 420_CR16 G Palubeckis (420_CR25) 2022; 14 Z Wang (420_CR5) 2024 Y Ma (420_CR9) 2023; 11 420_CR15 F Yao (420_CR29) 2019; 16 Y Song (420_CR27) 2024; 86 X Zhou (420_CR2) 2022; 248 L Chen (420_CR24) 2022; 14 J Wu (420_CR26) 2024; 291 |
References_xml | – volume: 14 start-page: 423 issue: 4 year: 2022 end-page: 432 ident: CR24 article-title: A bi-level transformation based evolutionary algorithm framework for equality constrained optimization publication-title: Memetic Comput doi: 10.1007/s12293-022-00377-6 – volume: 261 start-page: 112178 year: 2022 ident: CR10 article-title: Multi-objective emergency resources allocation optimization for maritime search and rescue considering accident black-spots publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.112178 – ident: CR16 – volume: 24 start-page: 2548 issue: 2 year: 2022 end-page: 2555 ident: CR22 article-title: An optimized approach of dynamic target nodes in wireless sensor network using bio inspired algorithms for maritime rescue publication-title: IEEE Trans Intell Transp Syst – volume: 16 start-page: 1729881419868126 issue: 4 year: 2019 ident: CR29 article-title: Multi-mobile robots and multi-trips feeding scheduling problem in smart manufacturing system: an improved hybrid genetic algorithm publication-title: Int J Adv Rob Syst – ident: CR12 – volume: 77 start-page: 101236101236 year: 2023 ident: CR21 article-title: Rl-ga: a reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2023.101236 – volume: 291 start-page: 116403 year: 2024 ident: CR26 article-title: An autonomous coverage path planning algorithm for maritime search and rescue of persons-in-water based on deep reinforcement learning publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.116403 – year: 2023 ident: CR20 article-title: Double dqn-based coevolution for green distributed heterogeneous hybrid flowshop scheduling with multiple priorities of jobs publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2023.3327792 – volume: 248 start-page: 110797 year: 2022 ident: CR2 article-title: A comprehensive framework for assessing navigation risk and deploying maritime emergency resources in the south china sea publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.110797 – volume: 14 start-page: 253 issue: 3 year: 2022 end-page: 285 ident: CR25 article-title: Metaheuristic approaches for ratio cut and normalized cut graph partitioning publication-title: Memetic Comput doi: 10.1007/s12293-022-00365-w – volume: 300 start-page: 992 year: 2022 end-page: 1004 ident: CR8 article-title: A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2021.09.008 – year: 2013 ident: CR30 publication-title: Nonparametric statistical methods – year: 2024 ident: CR5 article-title: Path planning for unmanned aerial vehicle via off-policy reinforcement learning with enhanced exploration publication-title: IEEE Trans Emerg Topics Comput Intell doi: 10.1109/TETCI.2024.3369485 – ident: CR19 – volume: 270 start-page: 113444 year: 2023 ident: CR11 article-title: Modeling the leeway drift characteristics of persons-in-water at a sea-area scale in the seas of China publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113444 – year: 2023 ident: CR14 article-title: A time-domain planning method for surface rescue process of amphibious aircraft for medium/distant maritime rescue publication-title: Appl Sci-basel doi: 10.3390/app13042169 – volume: 9 start-page: 17440 issue: 18 year: 2022 end-page: 17451 ident: CR18 article-title: Comprehensive ocean information-enabled AUV path planning via reinforcement learning publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3155697 – year: 2024 ident: CR28 article-title: Energy-efficient satellite range scheduling using a reinforcement learning-based memetic algorithm publication-title: IEEE Trans Aerosp Electr Syst doi: 10.1109/TAES.2024.3371964 – ident: CR3 – ident: CR15 – ident: CR17 – volume: 10 start-page: 1 year: 2024 end-page: 15 ident: CR23 article-title: A memetic algorithm for a real-world dynamic pickup and delivery problem publication-title: Memetic Comput – ident: CR13 – volume: 241 start-page: 110098 year: 2021 ident: CR4 article-title: Coverage path planning for maritime search and rescue using reinforcement learning publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.110098 – volume: 296 start-page: 116921 year: 2024 ident: CR7 article-title: Optimal coverage path planning for usv-assisted coastal bathymetric survey: models, solutions, and lake trials publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.116921 – volume: 9 start-page: 4964 issue: 22 year: 2019 ident: CR6 article-title: A novel searching method using reinforcement learning scheme for multi-uavs in unknown environments publication-title: Appl Sci doi: 10.3390/app9224964 – volume: 11 start-page: 2084 issue: 7 year: 2019 ident: CR1 article-title: A decision-making algorithm for maritime search and rescue plan publication-title: Sustainability doi: 10.3390/su11072084 – volume: 11 start-page: 781 issue: 4 year: 2023 ident: CR9 article-title: An improved NSGA-II based on multi-task optimization for multi-uav maritime search and rescue under severe weather publication-title: J Marine Sci Eng doi: 10.3390/jmse11040781 – volume: 86 start-page: 101517 year: 2024 ident: CR27 article-title: Reinforcement learning-assisted evolutionary algorithm: a survey and research opportunities publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2024.101517 – volume: 300 start-page: 992 year: 2022 ident: 420_CR8 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2021.09.008 – volume: 261 start-page: 112178 year: 2022 ident: 420_CR10 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.112178 – volume: 14 start-page: 423 issue: 4 year: 2022 ident: 420_CR24 publication-title: Memetic Comput doi: 10.1007/s12293-022-00377-6 – volume: 291 start-page: 116403 year: 2024 ident: 420_CR26 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.116403 – volume: 241 start-page: 110098 year: 2021 ident: 420_CR4 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.110098 – year: 2023 ident: 420_CR20 publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2023.3327792 – ident: 420_CR16 doi: 10.1109/SSRR.2018.8468640 – ident: 420_CR17 doi: 10.1109/ICIBA50161.2020.9277470 – year: 2024 ident: 420_CR28 publication-title: IEEE Trans Aerosp Electr Syst doi: 10.1109/TAES.2024.3371964 – ident: 420_CR3 doi: 10.1109/ICUAS.2015.7152409 – ident: 420_CR12 doi: 10.1287/opre.5.5.613 – volume: 248 start-page: 110797 year: 2022 ident: 420_CR2 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.110797 – volume: 9 start-page: 4964 issue: 22 year: 2019 ident: 420_CR6 publication-title: Appl Sci doi: 10.3390/app9224964 – volume: 24 start-page: 2548 issue: 2 year: 2022 ident: 420_CR22 publication-title: IEEE Trans Intell Transp Syst – ident: 420_CR19 – volume: 10 start-page: 1 year: 2024 ident: 420_CR23 publication-title: Memetic Comput – volume: 14 start-page: 253 issue: 3 year: 2022 ident: 420_CR25 publication-title: Memetic Comput doi: 10.1007/s12293-022-00365-w – volume: 11 start-page: 781 issue: 4 year: 2023 ident: 420_CR9 publication-title: J Marine Sci Eng doi: 10.3390/jmse11040781 – volume: 270 start-page: 113444 year: 2023 ident: 420_CR11 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113444 – volume: 296 start-page: 116921 year: 2024 ident: 420_CR7 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.116921 – volume: 11 start-page: 2084 issue: 7 year: 2019 ident: 420_CR1 publication-title: Sustainability doi: 10.3390/su11072084 – volume: 16 start-page: 172988141986812 issue: 4 year: 2019 ident: 420_CR29 publication-title: Int J Adv Rob Syst doi: 10.1177/1729881419868126 – volume: 9 start-page: 17440 issue: 18 year: 2022 ident: 420_CR18 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3155697 – year: 2024 ident: 420_CR5 publication-title: IEEE Trans Emerg Topics Comput Intell doi: 10.1109/TETCI.2024.3369485 – ident: 420_CR13 doi: 10.5121/cseij.2014.4103 – year: 2023 ident: 420_CR14 publication-title: Appl Sci-basel doi: 10.3390/app13042169 – volume: 86 start-page: 101517 year: 2024 ident: 420_CR27 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2024.101517 – volume: 77 start-page: 101236101236 year: 2023 ident: 420_CR21 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2023.101236 – volume-title: Nonparametric statistical methods year: 2013 ident: 420_CR30 – ident: 420_CR15 doi: 10.1109/IROS45743.2020.9340934 |
SSID | ssj0000327841 |
Score | 2.3493316 |
Snippet | In the realm of maritime emergencies, unmanned aerial vehicles (UAVs) play a crucial role in enhancing search and rescue (SAR) operations. They help in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 373 |
SubjectTerms | Adaptive algorithms Applications of Mathematics Artificial Intelligence Bioinformatics Complex Systems Control Cost effectiveness Emergency plans Engineering Evacuations & rescues Evolutionary algorithms Genetic algorithms Heuristic methods Machine learning Mathematical and Computational Engineering Mechatronics Path planning Reconnaissance aircraft Regular Research Paper Rescue operations Rescue vehicles Robotics Unmanned aerial vehicles |
Title | A reinforcement learning-based evolutionary algorithm for the unmanned aerial vehicles maritime search and rescue path planning problem considering multiple rescue centers |
URI | https://link.springer.com/article/10.1007/s12293-024-00420-8 https://www.proquest.com/docview/3104475963 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0BvcCBHVE2zYEbWErsLO6xQiwCwYlKcIocL4BE06qbxDfxk9iu0wICJK6J7RzejOc5nnkDcCwZS6ThTvoy1iQRJiel4hFRkokWVZEwxtU7395lV53k-iF9CEVhwzrbvb6S9Dv1vNiNUpdrRhPiLC0ifBEaqT27O3fs0Pbsz0rE_GWaO2nxLCUtuwGHapmfl_kakeY089vNqA84F-uwGpgitqfQbsCCrjZhre7CgMEpN2Hlk6TgFry3caC9Gqr0P_4wtIV4Ii5eKdSTYGti8Ibi9ak3eBk9d9GOR0sFcVx1hdt5UXjLxIl-9nlz2BVO_airceoaKCplPzSUY42uqTH2Q_MjDB1qUIZOoO5ZnbVYz3AZoZZ2bkPn4vz-7IqEhgxEWk8dkZjmeWoSrilTllbyhEkqs1hybjIZR0zEqrThLZFlKmMTR6JUNkDKVm4yk6Y5ZTuwVPUqvQuoqVAWh1JITZOspIIJy8yoaRlmlMqiJsQ1KIUMauWuacZrMddZdkAWFsjCA1nwJpzM5vSnWh1_jj6osS6C3w4LS3a9AmLGmnBa4z9__ftqe_8bvg_L1JugS1Y7gKXRYKwPLbsZlUfQaF8-3pwfeaP-ALN79cY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdkRZ58ANLCV2FvdYIVBZT1TiFjleAIkG1AWJb-InsV2nBQRIXBPbObwZz4s9Mw_gUDKWSMNd68tYk0SYnJSKR0RJJlpURcIYV-98fZN1usnFXXoXisIGdbZ7fSXpd-ppsRulLteMJsRZWkT4LMxZMsCdbkGXticnKxHzl2nuT4tnKWnZDThUy_y8zNeINKWZ325GfcA5W4GlwBSxPYZ2FWZ0tQbLtQoDBqdcg8VPLQXX4b2Nfe27oUp_8IdBFuKeuHilUL8GWxP9NxRP98_9x-FDD-14tFQQR1VPuJ0XhbdMfNUPPm8Oe8J1P-ppHLsGikrZDw3kSKMTNcaXIH6EQaEGZVACdc_qrMV6hssItbRzA7pnp7cnHRIEGYi0njokMc3z1CRcU6YsreQJk1RmseTcZDKOmIhVacNbIstUxiaORKlsgJSt3GQmTXPKNqFRPVd6C1BToSwOpZCaJllJBROWmVHTMswolUVNiGtQChm6lTvRjKdi2mfZAVlYIAsPZMGbcDSZ8zLu1fHn6N0a6yL47aCwZNd3QMxYE45r_Kevf19t-3_DD2C-c3t9VVyd31zuwAL15ugS13ahMeyP9J5lOsNy3xv2B7iM9yU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFA5AKWtWJ5z4FYsYjsP73EFrHgVcehK3CLHD6jEhtWSReI38SexvQ5LK4rUa2I7h2_G88We-QZgT3GeKiu89CU1JJW2IJUWCdGKyy7TibTW1zv_vMxPBunZdXb9poo_ZLu3V5LTmgav0lQ3ByNtD2aFb4z5vDOWEm91CRGfYMFtx9Rb-oD1Xk9ZEh4u1vxfl8gz0nWbcayceX-ZP6PTjHL-dUsagk9_FZYja8TeFOYvMGfqNVhpOzJgdNA1WHojL_gVnns4NkEZVYVDQIwtIm6Ij10azWO0Ozl-Qnl3cz_-3dwO0Y1HRwtxUg-l34VRBivFR3MbcuhwKL0S0tDg1E1Q1tp96EFNDPoGxziKjZAwdqtBFbuC-mdtBmM7w2eHOgr6DQb941-HJyQ2ZyDKeW1DKCuKzKbCMK4dxRQpV0zlVAlhc0UTLqmuXKhLVZUpamkiK-2CpeoWNrdZVjD-Hebr-9qsAxomtcOhksqwNK-Y5NKxNGa7llut86QDtAWlVFG53DfQuCtnmsseyNIBWQYgS9GBH69zRlPdjg9Hb7VYl9GHH0pHfIMaYs47sN_iP3v979U2_m_4LixeHfXLi9PL8034zII1-hy2LZhvxhOz7UhPU-0Eu34Bu7L7YQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reinforcement+learning-based+evolutionary+algorithm+for+the+unmanned+aerial+vehicles+maritime+search+and+rescue+path+planning+problem+considering+multiple+rescue+centers&rft.jtitle=Memetic+computing&rft.au=Zhan%2C+Haowen&rft.au=Zhang%2C+Yue&rft.au=Huang%2C+Jingbo&rft.au=Song%2C+Yanjie&rft.date=2024-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1865-9284&rft.eissn=1865-9292&rft.volume=16&rft.issue=3&rft.spage=373&rft.epage=386&rft_id=info:doi/10.1007%2Fs12293-024-00420-8&rft.externalDocID=10_1007_s12293_024_00420_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-9284&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-9284&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-9284&client=summon |