Determining the Number of Clusters in Clinical Response of TMS Treatment using Hyperdimensional Computing
This paper addresses clustering of clinical response of subjects with major depressive disorder (MDD) after they are treated with transcranial magnetic stimulation (TMS). Specifically, we present an approach to determine the number of clusters using hyperdimensional computing (HDC). In the clinic, M...
Saved in:
Published in | Journal of signal processing systems Vol. 96; no. 8; pp. 509 - 523 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper addresses clustering of clinical response of subjects with major depressive disorder (MDD) after they are treated with transcranial magnetic stimulation (TMS). Specifically, we present an approach to determine the number of clusters using hyperdimensional computing (HDC). In the clinic, MDD patients are required to receive weeks of repetitive TMS (rTMS). To achieve response rates from TMS that are comparable to or better than medication, we need to understand the TMS mechanism and its effect on cognitive control. This paper investigates the variability of rTMS treatment across patients, which is essentially a clustering problem. We propose an algorithm based on HDC to estimate the number of clusters for a group of clinical responses. Our algorithm harnesses an existing HDC-based clustering approach–HDCluster. Experimental results show that:
i)
. For
n
=
27
patients, the original clinical trajectories typically exhibit four clusters, while the baseline-corrected trajectories tend to have three clusters. A similar finding is obtained for a larger dataset when
n
=
176
.
ii)
. Though the number of clusters revealed by the proposed HDC algorithm is different from that determined by the traditional latent class mixed modeling (LCMM), both algorithms share a similar clustering pattern. |
---|---|
AbstractList | This paper addresses clustering of clinical response of subjects with major depressive disorder (MDD) after they are treated with transcranial magnetic stimulation (TMS). Specifically, we present an approach to determine the number of clusters using hyperdimensional computing (HDC). In the clinic, MDD patients are required to receive weeks of repetitive TMS (rTMS). To achieve response rates from TMS that are comparable to or better than medication, we need to understand the TMS mechanism and its effect on cognitive control. This paper investigates the variability of rTMS treatment across patients, which is essentially a clustering problem. We propose an algorithm based on HDC to estimate the number of clusters for a group of clinical responses. Our algorithm harnesses an existing HDC-based clustering approach–HDCluster. Experimental results show that: i). For n=27 patients, the original clinical trajectories typically exhibit four clusters, while the baseline-corrected trajectories tend to have three clusters. A similar finding is obtained for a larger dataset when n=176. ii). Though the number of clusters revealed by the proposed HDC algorithm is different from that determined by the traditional latent class mixed modeling (LCMM), both algorithms share a similar clustering pattern. This paper addresses clustering of clinical response of subjects with major depressive disorder (MDD) after they are treated with transcranial magnetic stimulation (TMS). Specifically, we present an approach to determine the number of clusters using hyperdimensional computing (HDC). In the clinic, MDD patients are required to receive weeks of repetitive TMS (rTMS). To achieve response rates from TMS that are comparable to or better than medication, we need to understand the TMS mechanism and its effect on cognitive control. This paper investigates the variability of rTMS treatment across patients, which is essentially a clustering problem. We propose an algorithm based on HDC to estimate the number of clusters for a group of clinical responses. Our algorithm harnesses an existing HDC-based clustering approach–HDCluster. Experimental results show that: i) . For n = 27 patients, the original clinical trajectories typically exhibit four clusters, while the baseline-corrected trajectories tend to have three clusters. A similar finding is obtained for a larger dataset when n = 176 . ii) . Though the number of clusters revealed by the proposed HDC algorithm is different from that determined by the traditional latent class mixed modeling (LCMM), both algorithms share a similar clustering pattern. |
Author | Ge, Lulu Parhi, Keshab K. Widge, Alik S. McInnes, Aaron N. |
Author_xml | – sequence: 1 givenname: Lulu surname: Ge fullname: Ge, Lulu email: ge000567@umn.edu organization: Department of Electrical and Computer Engineering, University of Minnesota – sequence: 2 givenname: Aaron N. surname: McInnes fullname: McInnes, Aaron N. organization: Department of Psychiatry and Behavioral Sciences, University of Minnesota – sequence: 3 givenname: Alik S. surname: Widge fullname: Widge, Alik S. organization: Department of Psychiatry and Behavioral Sciences, University of Minnesota – sequence: 4 givenname: Keshab K. orcidid: 0000-0001-6543-2793 surname: Parhi fullname: Parhi, Keshab K. email: parhi@umn.edu organization: Department of Electrical and Computer Engineering, University of Minnesota |
BookMark | eNp9kMtOwzAQRS1UJErhB1hFYh3w2HUeSxQeRSogQVlbeUyKq8QJtrPI3-MSEBKLrjzynDO6uqdkpjuNhFwAvQJK42sLwCIRUrYMKaQMwvGIzCHlaZgAiNnvTCE5IafW7iiNaCxgTtQtOjSt0kpvA_eBwfPQFmiCrg6yZrB-ZwOl_eyJMm-CV7R9py3ugc3TW7AxmLsWtQsGuz-xGns0lfI_VnXaC1nX9oPzqzNyXOeNxfOfd0He7-822Spcvzw8ZjfrsOSQuhAYr0VZYJTSvBbA4hRpAgXQiMOSRUsuBBVVTdMqKQsaI4qaIeMFZ1ESV3nMF-Ryutub7nNA6-SuG4yPYiUHEcWp4LHwVDJRpemsNVjLUrnc-czO5KqRQOW-WDkVK32x8rtYOXqV_VN7o9rcjIclPknWw3qL5i_VAesLbTWOGQ |
CitedBy_id | crossref_primary_10_1016_j_pmip_2024_100135 crossref_primary_10_1007_s11265_025_01946_x |
Cites_doi | 10.1176/appi.ajp.2018.18091096 10.1002/hbm.26346 10.1093/aje/kwi187 10.1007/978-3-319-52289-0_21 10.1145/3489517.3530395 10.1002/da.21969 10.1145/1055558.1055581 10.23919/DATE.2019.8714821 10.1109/IEEECONF53345.2021.9723179 10.1109/JPROC.2018.2871163 10.1109/TCAD.2019.2954472 10.23919/DATE.2019.8715186 10.1109/ICASSP39728.2021.9414083 10.1109/OJCAS.2022.3163075 10.1109/OJCAS.2024.3381508 10.1145/3538531 10.1109/BIOCAS.2018.8584751 10.1109/ICRC.2017.8123650 10.1109/MCAS.2020.2988388 10.23919/DATE.2019.8715147 10.1093/jigpal/jzu028 10.1145/3558000 10.3389/fnins.2022.757125 10.1109/ASP-DAC52403.2022.9712549 10.1109/DAC18074.2021.9586284 10.1109/IEEECONF56349.2022.10052044 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2024 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2024 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11265-024-01921-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-8115 |
EndPage | 523 |
ExternalDocumentID | 10_1007_s11265_024_01921_y |
GrantInformation_xml | – fundername: China Scholarship Council funderid: http://dx.doi.org/10.13039/501100004543 – fundername: Cisco Systems funderid: http://dx.doi.org/10.13039/100004351 – fundername: University of Minnesota grantid: MnDRIVE Brain Conditions Initiative; Minnesota Medical Discovery Team on Addictions; IEM Fellowship funderid: http://dx.doi.org/10.13039/100007249 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IZIGR I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LAK LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O93 O9G O9J OAM P9P PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7V Z7X Z7Z Z83 Z88 Z8M Z8N Z8P Z8T Z8W Z92 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABQSL ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-123f5cbe690af51279e081b10631426435505df09d8cb07ee5f2e23b32687da73 |
IEDL.DBID | U2A |
ISSN | 1939-8018 |
IngestDate | Fri Jul 25 22:35:51 EDT 2025 Tue Jul 01 00:39:51 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Fri Feb 21 02:37:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Transcranial magnetic stimulation (TMS) Latent class mixed modeling (LCMM) and clustering Hyperdimensional computing (HDC) Vector symbolic architecture (VSA) Major depressive disorder (MDD) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-123f5cbe690af51279e081b10631426435505df09d8cb07ee5f2e23b32687da73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6543-2793 |
PQID | 3156795375 |
PQPubID | 2044217 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3156795375 crossref_citationtrail_10_1007_s11265_024_01921_y crossref_primary_10_1007_s11265_024_01921_y springer_journals_10_1007_s11265_024_01921_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Heidelberg |
PublicationSubtitle | for Signal, Image, and Video Technology (formerly the Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology) |
PublicationTitle | Journal of signal processing systems |
PublicationTitleAbbrev | J Sign Process Syst |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 1921_CR15 1921_CR3 1921_CR6 1921_CR13 1921_CR5 1921_CR19 1921_CR18 1921_CR2 1921_CR17 1921_CR1 1921_CR16 SM McClintock (1921_CR22) 2017; 79 1921_CR11 1921_CR10 1921_CR30 1921_CR8 1921_CR7 1921_CR9 1921_CR26 1921_CR25 1921_CR24 1921_CR29 1921_CR28 1921_CR27 L Ge (1921_CR12) 2024; 5 A Rahimi (1921_CR4) 2018; 107 L Ge (1921_CR14) 2020; 20 D Widdows (1921_CR20) 2015; 23 TS Kaster (1921_CR23) 2019; 176 LL Carpenter (1921_CR21) 2012; 29 |
References_xml | – volume: 176 start-page: 367 issue: 5 year: 2019 ident: 1921_CR23 publication-title: American Journal of Psychiatry doi: 10.1176/appi.ajp.2018.18091096 – ident: 1921_CR29 doi: 10.1002/hbm.26346 – ident: 1921_CR30 doi: 10.1093/aje/kwi187 – ident: 1921_CR6 doi: 10.1007/978-3-319-52289-0_21 – ident: 1921_CR19 doi: 10.1145/3489517.3530395 – volume: 29 start-page: 587 issue: 7 year: 2012 ident: 1921_CR21 publication-title: Depression and anxiety doi: 10.1002/da.21969 – ident: 1921_CR28 doi: 10.1145/1055558.1055581 – ident: 1921_CR9 doi: 10.23919/DATE.2019.8714821 – ident: 1921_CR16 doi: 10.1109/IEEECONF53345.2021.9723179 – volume: 107 start-page: 123 issue: 1 year: 2018 ident: 1921_CR4 publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2018.2871163 – ident: 1921_CR5 – ident: 1921_CR8 doi: 10.1109/TCAD.2019.2954472 – volume: 79 start-page: 3651 issue: 1 year: 2017 ident: 1921_CR22 publication-title: The Journal of clinical psychiatry – ident: 1921_CR1 – ident: 1921_CR2 doi: 10.23919/DATE.2019.8715186 – ident: 1921_CR15 doi: 10.1109/ICASSP39728.2021.9414083 – ident: 1921_CR18 doi: 10.1109/OJCAS.2022.3163075 – volume: 5 start-page: 102 year: 2024 ident: 1921_CR12 publication-title: IEEE Open Journal of Circuits and Systems doi: 10.1109/OJCAS.2024.3381508 – ident: 1921_CR26 doi: 10.1145/3538531 – ident: 1921_CR3 doi: 10.1109/BIOCAS.2018.8584751 – ident: 1921_CR13 doi: 10.1109/ICRC.2017.8123650 – volume: 20 start-page: 30 issue: 2 year: 2020 ident: 1921_CR14 publication-title: IEEE Circuits and Systems Magazine doi: 10.1109/MCAS.2020.2988388 – ident: 1921_CR11 doi: 10.23919/DATE.2019.8715147 – volume: 23 start-page: 141 issue: 2 year: 2015 ident: 1921_CR20 publication-title: Logic Journal of the IGPL doi: 10.1093/jigpal/jzu028 – ident: 1921_CR27 doi: 10.1145/3558000 – ident: 1921_CR25 doi: 10.3389/fnins.2022.757125 – ident: 1921_CR7 doi: 10.1109/ASP-DAC52403.2022.9712549 – ident: 1921_CR10 doi: 10.1109/DAC18074.2021.9586284 – ident: 1921_CR24 – ident: 1921_CR17 doi: 10.1109/IEEECONF56349.2022.10052044 |
SSID | ssj0060751 |
Score | 2.3720396 |
Snippet | This paper addresses clustering of clinical response of subjects with major depressive disorder (MDD) after they are treated with transcranial magnetic... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 509 |
SubjectTerms | Algorithms Circuits and Systems Clustering Computation Computer Imaging Electrical Engineering Engineering Harnesses Image Processing and Computer Vision Pattern Recognition Pattern Recognition and Graphics Signal,Image and Speech Processing Transcranial magnetic stimulation Vision |
Title | Determining the Number of Clusters in Clinical Response of TMS Treatment using Hyperdimensional Computing |
URI | https://link.springer.com/article/10.1007/s11265-024-01921-y https://www.proquest.com/docview/3156795375 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vehBfGK1lj1400Cem-RYamtR2oO2UE8hm91IoaZi2kP_vTPJxqio4DHsJoSZ2Zlv2G9mAC55zF10-9wQlgwM143RD6bSNZwErTlOFBdFLcxozIdT927mzXRRWF6x3asrycJT18Vuls2pmphYE6FtGZttaHqUu6MVT-1u5X85BkGrvEsOyf8GulTm5298DUc1xvx2LVpEm8E-7GmYyLqlXg9gS2WHsPupeeARzG80kwWfGMI4Ni6Ge7BlynqLNfU_yNk8Y7rx54I9lGxYRRsmo0c2qSjmjLjvz2yIGSlaywsx2gmes3LgAy4dw3TQn_SGhh6cYCR4olYGRqPUS4TCzDdOMaL7ocLILzD7cyxCQA6lJTI1QxkkwvSV8lJb2Y5AKBf4MvadE2hky0ydApOuNDkqD5GYdGMzDBS6hNAXBMMUYpEWWJX8okR3FafhFouo7odMMo9Q5lEh82jTgquPd17Lnhp_7m5Xaon0-cojB9NOP_QcH3_gulJVvfz7187-t_0cduzCWohU1obG6m2tLhCFrEQHmt3bp_t-pzC-d-Zc1AQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIAD4ikGA3LgBpX6TNvjNJgKbDtAJ-0WNU2KJpUOse2wf4_TphQQIHGsklaV7diflc82wCVNqItunxrcEoHhugn6wUy4hpOiNSeppLyshRmOaDR27yfeRBeFzWu2e30lWXrqptjNsqmqJlasidC2jNU6bCAYCBSRa2x3a_9LMQha1V1yqPxvoEtlfv7G13DUYMxv16JltOnvwo6GiaRb6XUP1mSxD9ufmgcewPRGM1nwiSCMI6NyuAeZZaSXL1X_gzmZFkQ3_szJY8WGlWpDPHwicU0xJ4r7_kwizEjRWl4Uo13Bc1INfMClQxj3b-NeZOjBCUaKJ2phYDTKvJRLzHyTDCO6H0qM_ByzP8dSCMhRaYnIzFAEKTd9Kb3MlrbDEcoFvkh85whaxayQx0CEK0yKykMkJtzEDAOJLiH0uYJhErFIG6xafizVXcXVcIucNf2QlcwZypyVMmerNlx9vPNa9dT4c3enVgvT52vOHEw7_dBzfPyB61pVzfLvXzv53_YL2Izi4YAN7kYPp7Bll5ajCGYdaC3elvIMEcmCn5cG-A5hTdVj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h68aTDP3eRYWkt9tIi20NuSzW6kUNNi00P_vTN5mCoqeAy7WcLMZOYb9psZQi5ZyFxw-8yQlvIN1w3BD8bKNZwIrDmMNJNZLUyvz7pD937kjVaq-DO2e3klmdc0YJemJL2ZqfimKnyzbIaVxcigCGzLWK6TDXDHFtr10G6WvphBQLTye-UAfbFflM38fMbX0FThzW9XpFnk6eySnQIy0mau4z2yppN9sr3SSPCAjNsFqwWeKEA62s8GfdBpTFuTBfZCmNNxQosmoBP6nDNjNW4Y9F7ooKSbU-TBv9IuZKdgOW_IbkeoTvPhD7B0SIad20GraxRDFIwIxJEaEJliL5IasuAwhujOAw0oQEIm6FiIhhxMUVRsBsqPpMm19mJb244EWOdzFXLniNSSaaKPCVWuMhkoElCZckMz8DW4h4BLhGQacEmdWKX8RFR0GMdBFxNR9UZGmQuQuchkLpZ1cvX5zizvr_Hn7kapFlH8a3PhQArKA8_h8AHXpaqq5d9PO_nf9guy-dTuiMe7_sMp2bIzw0GuWYPU0veFPgNwksrzzP4-AOdX2Z8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+the+Number+of+Clusters+in+Clinical+Response+of+TMS+Treatment+using+Hyperdimensional+Computing&rft.jtitle=Journal+of+signal+processing+systems&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1939-8018&rft.eissn=1939-8115&rft.volume=96&rft.issue=8&rft.spage=509&rft.epage=523&rft_id=info:doi/10.1007%2Fs11265-024-01921-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-8018&client=summon |