Determining the Number of Clusters in Clinical Response of TMS Treatment using Hyperdimensional Computing

This paper addresses clustering of clinical response of subjects with major depressive disorder (MDD) after they are treated with transcranial magnetic stimulation (TMS). Specifically, we present an approach to determine the number of clusters using hyperdimensional computing (HDC). In the clinic, M...

Full description

Saved in:
Bibliographic Details
Published inJournal of signal processing systems Vol. 96; no. 8; pp. 509 - 523
Main Authors Ge, Lulu, McInnes, Aaron N., Widge, Alik S., Parhi, Keshab K.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper addresses clustering of clinical response of subjects with major depressive disorder (MDD) after they are treated with transcranial magnetic stimulation (TMS). Specifically, we present an approach to determine the number of clusters using hyperdimensional computing (HDC). In the clinic, MDD patients are required to receive weeks of repetitive TMS (rTMS). To achieve response rates from TMS that are comparable to or better than medication, we need to understand the TMS mechanism and its effect on cognitive control. This paper investigates the variability of rTMS treatment across patients, which is essentially a clustering problem. We propose an algorithm based on HDC to estimate the number of clusters for a group of clinical responses. Our algorithm harnesses an existing HDC-based clustering approach–HDCluster. Experimental results show that: i) . For n = 27 patients, the original clinical trajectories typically exhibit four clusters, while the baseline-corrected trajectories tend to have three clusters. A similar finding is obtained for a larger dataset when n = 176 . ii) . Though the number of clusters revealed by the proposed HDC algorithm is different from that determined by the traditional latent class mixed modeling (LCMM), both algorithms share a similar clustering pattern.
AbstractList This paper addresses clustering of clinical response of subjects with major depressive disorder (MDD) after they are treated with transcranial magnetic stimulation (TMS). Specifically, we present an approach to determine the number of clusters using hyperdimensional computing (HDC). In the clinic, MDD patients are required to receive weeks of repetitive TMS (rTMS). To achieve response rates from TMS that are comparable to or better than medication, we need to understand the TMS mechanism and its effect on cognitive control. This paper investigates the variability of rTMS treatment across patients, which is essentially a clustering problem. We propose an algorithm based on HDC to estimate the number of clusters for a group of clinical responses. Our algorithm harnesses an existing HDC-based clustering approach–HDCluster. Experimental results show that: i). For n=27 patients, the original clinical trajectories typically exhibit four clusters, while the baseline-corrected trajectories tend to have three clusters. A similar finding is obtained for a larger dataset when n=176. ii). Though the number of clusters revealed by the proposed HDC algorithm is different from that determined by the traditional latent class mixed modeling (LCMM), both algorithms share a similar clustering pattern.
This paper addresses clustering of clinical response of subjects with major depressive disorder (MDD) after they are treated with transcranial magnetic stimulation (TMS). Specifically, we present an approach to determine the number of clusters using hyperdimensional computing (HDC). In the clinic, MDD patients are required to receive weeks of repetitive TMS (rTMS). To achieve response rates from TMS that are comparable to or better than medication, we need to understand the TMS mechanism and its effect on cognitive control. This paper investigates the variability of rTMS treatment across patients, which is essentially a clustering problem. We propose an algorithm based on HDC to estimate the number of clusters for a group of clinical responses. Our algorithm harnesses an existing HDC-based clustering approach–HDCluster. Experimental results show that: i) . For n = 27 patients, the original clinical trajectories typically exhibit four clusters, while the baseline-corrected trajectories tend to have three clusters. A similar finding is obtained for a larger dataset when n = 176 . ii) . Though the number of clusters revealed by the proposed HDC algorithm is different from that determined by the traditional latent class mixed modeling (LCMM), both algorithms share a similar clustering pattern.
Author Ge, Lulu
Parhi, Keshab K.
Widge, Alik S.
McInnes, Aaron N.
Author_xml – sequence: 1
  givenname: Lulu
  surname: Ge
  fullname: Ge, Lulu
  email: ge000567@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota
– sequence: 2
  givenname: Aaron N.
  surname: McInnes
  fullname: McInnes, Aaron N.
  organization: Department of Psychiatry and Behavioral Sciences, University of Minnesota
– sequence: 3
  givenname: Alik S.
  surname: Widge
  fullname: Widge, Alik S.
  organization: Department of Psychiatry and Behavioral Sciences, University of Minnesota
– sequence: 4
  givenname: Keshab K.
  orcidid: 0000-0001-6543-2793
  surname: Parhi
  fullname: Parhi, Keshab K.
  email: parhi@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota
BookMark eNp9kMtOwzAQRS1UJErhB1hFYh3w2HUeSxQeRSogQVlbeUyKq8QJtrPI3-MSEBKLrjzynDO6uqdkpjuNhFwAvQJK42sLwCIRUrYMKaQMwvGIzCHlaZgAiNnvTCE5IafW7iiNaCxgTtQtOjSt0kpvA_eBwfPQFmiCrg6yZrB-ZwOl_eyJMm-CV7R9py3ugc3TW7AxmLsWtQsGuz-xGns0lfI_VnXaC1nX9oPzqzNyXOeNxfOfd0He7-822Spcvzw8ZjfrsOSQuhAYr0VZYJTSvBbA4hRpAgXQiMOSRUsuBBVVTdMqKQsaI4qaIeMFZ1ESV3nMF-Ryutub7nNA6-SuG4yPYiUHEcWp4LHwVDJRpemsNVjLUrnc-czO5KqRQOW-WDkVK32x8rtYOXqV_VN7o9rcjIclPknWw3qL5i_VAesLbTWOGQ
CitedBy_id crossref_primary_10_1016_j_pmip_2024_100135
crossref_primary_10_1007_s11265_025_01946_x
Cites_doi 10.1176/appi.ajp.2018.18091096
10.1002/hbm.26346
10.1093/aje/kwi187
10.1007/978-3-319-52289-0_21
10.1145/3489517.3530395
10.1002/da.21969
10.1145/1055558.1055581
10.23919/DATE.2019.8714821
10.1109/IEEECONF53345.2021.9723179
10.1109/JPROC.2018.2871163
10.1109/TCAD.2019.2954472
10.23919/DATE.2019.8715186
10.1109/ICASSP39728.2021.9414083
10.1109/OJCAS.2022.3163075
10.1109/OJCAS.2024.3381508
10.1145/3538531
10.1109/BIOCAS.2018.8584751
10.1109/ICRC.2017.8123650
10.1109/MCAS.2020.2988388
10.23919/DATE.2019.8715147
10.1093/jigpal/jzu028
10.1145/3558000
10.3389/fnins.2022.757125
10.1109/ASP-DAC52403.2022.9712549
10.1109/DAC18074.2021.9586284
10.1109/IEEECONF56349.2022.10052044
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2024
DBID AAYXX
CITATION
DOI 10.1007/s11265-024-01921-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-8115
EndPage 523
ExternalDocumentID 10_1007_s11265_024_01921_y
GrantInformation_xml – fundername: China Scholarship Council
  funderid: http://dx.doi.org/10.13039/501100004543
– fundername: Cisco Systems
  funderid: http://dx.doi.org/10.13039/100004351
– fundername: University of Minnesota
  grantid: MnDRIVE Brain Conditions Initiative; Minnesota Medical Discovery Team on Addictions; IEM Fellowship
  funderid: http://dx.doi.org/10.13039/100007249
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LAK
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OAM
P9P
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8P
Z8T
Z8W
Z92
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-123f5cbe690af51279e081b10631426435505df09d8cb07ee5f2e23b32687da73
IEDL.DBID U2A
ISSN 1939-8018
IngestDate Fri Jul 25 22:35:51 EDT 2025
Tue Jul 01 00:39:51 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Fri Feb 21 02:37:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Transcranial magnetic stimulation (TMS)
Latent class mixed modeling (LCMM) and clustering
Hyperdimensional computing (HDC)
Vector symbolic architecture (VSA)
Major depressive disorder (MDD)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-123f5cbe690af51279e081b10631426435505df09d8cb07ee5f2e23b32687da73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6543-2793
PQID 3156795375
PQPubID 2044217
PageCount 15
ParticipantIDs proquest_journals_3156795375
crossref_citationtrail_10_1007_s11265_024_01921_y
crossref_primary_10_1007_s11265_024_01921_y
springer_journals_10_1007_s11265_024_01921_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
PublicationSubtitle for Signal, Image, and Video Technology (formerly the Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology)
PublicationTitle Journal of signal processing systems
PublicationTitleAbbrev J Sign Process Syst
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 1921_CR15
1921_CR3
1921_CR6
1921_CR13
1921_CR5
1921_CR19
1921_CR18
1921_CR2
1921_CR17
1921_CR1
1921_CR16
SM McClintock (1921_CR22) 2017; 79
1921_CR11
1921_CR10
1921_CR30
1921_CR8
1921_CR7
1921_CR9
1921_CR26
1921_CR25
1921_CR24
1921_CR29
1921_CR28
1921_CR27
L Ge (1921_CR12) 2024; 5
A Rahimi (1921_CR4) 2018; 107
L Ge (1921_CR14) 2020; 20
D Widdows (1921_CR20) 2015; 23
TS Kaster (1921_CR23) 2019; 176
LL Carpenter (1921_CR21) 2012; 29
References_xml – volume: 176
  start-page: 367
  issue: 5
  year: 2019
  ident: 1921_CR23
  publication-title: American Journal of Psychiatry
  doi: 10.1176/appi.ajp.2018.18091096
– ident: 1921_CR29
  doi: 10.1002/hbm.26346
– ident: 1921_CR30
  doi: 10.1093/aje/kwi187
– ident: 1921_CR6
  doi: 10.1007/978-3-319-52289-0_21
– ident: 1921_CR19
  doi: 10.1145/3489517.3530395
– volume: 29
  start-page: 587
  issue: 7
  year: 2012
  ident: 1921_CR21
  publication-title: Depression and anxiety
  doi: 10.1002/da.21969
– ident: 1921_CR28
  doi: 10.1145/1055558.1055581
– ident: 1921_CR9
  doi: 10.23919/DATE.2019.8714821
– ident: 1921_CR16
  doi: 10.1109/IEEECONF53345.2021.9723179
– volume: 107
  start-page: 123
  issue: 1
  year: 2018
  ident: 1921_CR4
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2018.2871163
– ident: 1921_CR5
– ident: 1921_CR8
  doi: 10.1109/TCAD.2019.2954472
– volume: 79
  start-page: 3651
  issue: 1
  year: 2017
  ident: 1921_CR22
  publication-title: The Journal of clinical psychiatry
– ident: 1921_CR1
– ident: 1921_CR2
  doi: 10.23919/DATE.2019.8715186
– ident: 1921_CR15
  doi: 10.1109/ICASSP39728.2021.9414083
– ident: 1921_CR18
  doi: 10.1109/OJCAS.2022.3163075
– volume: 5
  start-page: 102
  year: 2024
  ident: 1921_CR12
  publication-title: IEEE Open Journal of Circuits and Systems
  doi: 10.1109/OJCAS.2024.3381508
– ident: 1921_CR26
  doi: 10.1145/3538531
– ident: 1921_CR3
  doi: 10.1109/BIOCAS.2018.8584751
– ident: 1921_CR13
  doi: 10.1109/ICRC.2017.8123650
– volume: 20
  start-page: 30
  issue: 2
  year: 2020
  ident: 1921_CR14
  publication-title: IEEE Circuits and Systems Magazine
  doi: 10.1109/MCAS.2020.2988388
– ident: 1921_CR11
  doi: 10.23919/DATE.2019.8715147
– volume: 23
  start-page: 141
  issue: 2
  year: 2015
  ident: 1921_CR20
  publication-title: Logic Journal of the IGPL
  doi: 10.1093/jigpal/jzu028
– ident: 1921_CR27
  doi: 10.1145/3558000
– ident: 1921_CR25
  doi: 10.3389/fnins.2022.757125
– ident: 1921_CR7
  doi: 10.1109/ASP-DAC52403.2022.9712549
– ident: 1921_CR10
  doi: 10.1109/DAC18074.2021.9586284
– ident: 1921_CR24
– ident: 1921_CR17
  doi: 10.1109/IEEECONF56349.2022.10052044
SSID ssj0060751
Score 2.3720396
Snippet This paper addresses clustering of clinical response of subjects with major depressive disorder (MDD) after they are treated with transcranial magnetic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 509
SubjectTerms Algorithms
Circuits and Systems
Clustering
Computation
Computer Imaging
Electrical Engineering
Engineering
Harnesses
Image Processing and Computer Vision
Pattern Recognition
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Transcranial magnetic stimulation
Vision
Title Determining the Number of Clusters in Clinical Response of TMS Treatment using Hyperdimensional Computing
URI https://link.springer.com/article/10.1007/s11265-024-01921-y
https://www.proquest.com/docview/3156795375
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vehBfGK1lj1400Cem-RYamtR2oO2UE8hm91IoaZi2kP_vTPJxqio4DHsJoSZ2Zlv2G9mAC55zF10-9wQlgwM143RD6bSNZwErTlOFBdFLcxozIdT927mzXRRWF6x3asrycJT18Vuls2pmphYE6FtGZttaHqUu6MVT-1u5X85BkGrvEsOyf8GulTm5298DUc1xvx2LVpEm8E-7GmYyLqlXg9gS2WHsPupeeARzG80kwWfGMI4Ni6Ge7BlynqLNfU_yNk8Y7rx54I9lGxYRRsmo0c2qSjmjLjvz2yIGSlaywsx2gmes3LgAy4dw3TQn_SGhh6cYCR4olYGRqPUS4TCzDdOMaL7ocLILzD7cyxCQA6lJTI1QxkkwvSV8lJb2Y5AKBf4MvadE2hky0ydApOuNDkqD5GYdGMzDBS6hNAXBMMUYpEWWJX8okR3FafhFouo7odMMo9Q5lEh82jTgquPd17Lnhp_7m5Xaon0-cojB9NOP_QcH3_gulJVvfz7187-t_0cduzCWohU1obG6m2tLhCFrEQHmt3bp_t-pzC-d-Zc1AQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIAD4ikGA3LgBpX6TNvjNJgKbDtAJ-0WNU2KJpUOse2wf4_TphQQIHGsklaV7diflc82wCVNqItunxrcEoHhugn6wUy4hpOiNSeppLyshRmOaDR27yfeRBeFzWu2e30lWXrqptjNsqmqJlasidC2jNU6bCAYCBSRa2x3a_9LMQha1V1yqPxvoEtlfv7G13DUYMxv16JltOnvwo6GiaRb6XUP1mSxD9ufmgcewPRGM1nwiSCMI6NyuAeZZaSXL1X_gzmZFkQ3_szJY8WGlWpDPHwicU0xJ4r7_kwizEjRWl4Uo13Bc1INfMClQxj3b-NeZOjBCUaKJ2phYDTKvJRLzHyTDCO6H0qM_ByzP8dSCMhRaYnIzFAEKTd9Kb3MlrbDEcoFvkh85whaxayQx0CEK0yKykMkJtzEDAOJLiH0uYJhErFIG6xafizVXcXVcIucNf2QlcwZypyVMmerNlx9vPNa9dT4c3enVgvT52vOHEw7_dBzfPyB61pVzfLvXzv53_YL2Izi4YAN7kYPp7Bll5ajCGYdaC3elvIMEcmCn5cG-A5hTdVj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h68aTDP3eRYWkt9tIi20NuSzW6kUNNi00P_vTN5mCoqeAy7WcLMZOYb9psZQi5ZyFxw-8yQlvIN1w3BD8bKNZwIrDmMNJNZLUyvz7pD937kjVaq-DO2e3klmdc0YJemJL2ZqfimKnyzbIaVxcigCGzLWK6TDXDHFtr10G6WvphBQLTye-UAfbFflM38fMbX0FThzW9XpFnk6eySnQIy0mau4z2yppN9sr3SSPCAjNsFqwWeKEA62s8GfdBpTFuTBfZCmNNxQosmoBP6nDNjNW4Y9F7ooKSbU-TBv9IuZKdgOW_IbkeoTvPhD7B0SIad20GraxRDFIwIxJEaEJliL5IasuAwhujOAw0oQEIm6FiIhhxMUVRsBsqPpMm19mJb244EWOdzFXLniNSSaaKPCVWuMhkoElCZckMz8DW4h4BLhGQacEmdWKX8RFR0GMdBFxNR9UZGmQuQuchkLpZ1cvX5zizvr_Hn7kapFlH8a3PhQArKA8_h8AHXpaqq5d9PO_nf9guy-dTuiMe7_sMp2bIzw0GuWYPU0veFPgNwksrzzP4-AOdX2Z8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+the+Number+of+Clusters+in+Clinical+Response+of+TMS+Treatment+using+Hyperdimensional+Computing&rft.jtitle=Journal+of+signal+processing+systems&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1939-8018&rft.eissn=1939-8115&rft.volume=96&rft.issue=8&rft.spage=509&rft.epage=523&rft_id=info:doi/10.1007%2Fs11265-024-01921-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-8018&client=summon