A Comparative Study of Recent Multi-objective Metaheuristics for Solving Constrained Truss Optimisation Problems

Multi-objective truss optimisation is a research topic that has been less investigated in the literature compared to the single-objective cases. This paper investigates the comparative performance of fourteen new and established multi-objective metaheuristics when solving truss optimisation problems...

Full description

Saved in:
Bibliographic Details
Published inArchives of computational methods in engineering Vol. 28; no. 5; pp. 4031 - 4047
Main Authors Panagant, Natee, Pholdee, Nantiwat, Bureerat, Sujin, Yildiz, Ali Riza, Mirjalili, Seyedali
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-objective truss optimisation is a research topic that has been less investigated in the literature compared to the single-objective cases. This paper investigates the comparative performance of fourteen new and established multi-objective metaheuristics when solving truss optimisation problems. The optimisers include multi-objective ant lion optimiser, multi-objective dragonfly algorithm, multi-objective grasshopper optimisation algorithm, multi-objective grey wolf optimiser, multi-objective multi-verse optimisation, multi-objective water cycle algorithm, multi-objective Salp swarm algorithm, success history-based adaptive multi-objective differential evolution, success history–based adaptive multi-objective differential evolution with whale optimisation, non-dominated sorting genetic algorithm II, hybridisation of real-code population-based incremental learning and differential evolution, differential evolution for multi-objective optimisation, multi-objective evolutionary algorithm based on decomposition, and unrestricted population size evolutionary multi-objective optimisation algorithm. The design problem is assigned to minimise structural mass and compliance subject to stress constraints. Eight classical trusses found in the literature are used for setting up the design test problems. Various optimisers are then implemented to tackle the problems. A comprehensive comparative study is given to critically analyse the performance of all algorithms in this problem area. The results provide new insights to the pros and cons of evolutionary multi-objective optimisation algorithms when addressing multiple, often conflicting objective in truss optimisation. The results and findings of this work assist with not only solving truss optimisation problem better but also designing customised algorithms for such problems.
AbstractList Multi-objective truss optimisation is a research topic that has been less investigated in the literature compared to the single-objective cases. This paper investigates the comparative performance of fourteen new and established multi-objective metaheuristics when solving truss optimisation problems. The optimisers include multi-objective ant lion optimiser, multi-objective dragonfly algorithm, multi-objective grasshopper optimisation algorithm, multi-objective grey wolf optimiser, multi-objective multi-verse optimisation, multi-objective water cycle algorithm, multi-objective Salp swarm algorithm, success history-based adaptive multi-objective differential evolution, success history–based adaptive multi-objective differential evolution with whale optimisation, non-dominated sorting genetic algorithm II, hybridisation of real-code population-based incremental learning and differential evolution, differential evolution for multi-objective optimisation, multi-objective evolutionary algorithm based on decomposition, and unrestricted population size evolutionary multi-objective optimisation algorithm. The design problem is assigned to minimise structural mass and compliance subject to stress constraints. Eight classical trusses found in the literature are used for setting up the design test problems. Various optimisers are then implemented to tackle the problems. A comprehensive comparative study is given to critically analyse the performance of all algorithms in this problem area. The results provide new insights to the pros and cons of evolutionary multi-objective optimisation algorithms when addressing multiple, often conflicting objective in truss optimisation. The results and findings of this work assist with not only solving truss optimisation problem better but also designing customised algorithms for such problems.
Multi-objective truss optimisation is a research topic that has been less investigated in the literature compared to the single-objective cases. This paper investigates the comparative performance of fourteen new and established multi-objective metaheuristics when solving truss optimisation problems. The optimisers include multi-objective ant lion optimiser, multi-objective dragonfly algorithm, multi-objective grasshopper optimisation algorithm, multi-objective grey wolf optimiser, multi-objective multi-verse optimisation, multi-objective water cycle algorithm, multi-objective Salp swarm algorithm, success history-based adaptive multi-objective differential evolution, success history–based adaptive multi-objective differential evolution with whale optimisation, non-dominated sorting genetic algorithm II, hybridisation of real-code population-based incremental learning and differential evolution, differential evolution for multi-objective optimisation, multi-objective evolutionary algorithm based on decomposition, and unrestricted population size evolutionary multi-objective optimisation algorithm. The design problem is assigned to minimise structural mass and compliance subject to stress constraints. Eight classical trusses found in the literature are used for setting up the design test problems. Various optimisers are then implemented to tackle the problems. A comprehensive comparative study is given to critically analyse the performance of all algorithms in this problem area. The results provide new insights to the pros and cons of evolutionary multi-objective optimisation algorithms when addressing multiple, often conflicting objective in truss optimisation. The results and findings of this work assist with not only solving truss optimisation problem better but also designing customised algorithms for such problems.
Author Yildiz, Ali Riza
Bureerat, Sujin
Pholdee, Nantiwat
Panagant, Natee
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Natee
  surname: Panagant
  fullname: Panagant, Natee
  organization: Sustainable Infrastructure Research and Development Centre, Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University
– sequence: 2
  givenname: Nantiwat
  surname: Pholdee
  fullname: Pholdee, Nantiwat
  organization: Sustainable Infrastructure Research and Development Centre, Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University
– sequence: 3
  givenname: Sujin
  surname: Bureerat
  fullname: Bureerat, Sujin
  email: sujbur@kku.ac.th
  organization: Sustainable Infrastructure Research and Development Centre, Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University
– sequence: 4
  givenname: Ali Riza
  surname: Yildiz
  fullname: Yildiz, Ali Riza
  organization: Department of Automotive Engineering, Bursa Uludağ University
– sequence: 5
  givenname: Seyedali
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, YFL (Yonsei Frontier Lab), Yonsei University
BookMark eNp9kFtLAzEQhYNUsK3-AZ8CPq8mm71kH0vxBi2Krc9hL5Oask3WJFvovzftCoIPfRhmYM53MjkTNNJGA0K3lNxTQvIHRylnNCJxqCINE79AY8p5FtGcJ6MwU5ZEjGTkCk2c2xKSJkURj1E3w3Oz60pberUHvPJ9c8BG4g-oQXu87FuvIlNtoT7tl-DLL-itcl7VDktj8cq0e6U3wUY7b0ulocFr2zuH3zqvdsoFZ6PxuzVVCzt3jS5l2Tq4-e1T9Pn0uJ6_RIu359f5bBHVjBY-olQ2TQYlpQRqJpucQ0ryrOKQhVUOaSGrirA44ZI1GcuqJKnSHAoeVzJpSMGm6G7w7az57sF5sTW91eFJEacppyTP4ySo-KCqrXHOghS18qeDj19pBSXimK8Y8hUhX3HKV_CAxv_QzqpdaQ_nITZALoj1BuzfVWeoHzZqkUQ
CitedBy_id crossref_primary_10_1007_s10489_022_03545_w
crossref_primary_10_1016_j_autcon_2023_105220
crossref_primary_10_1109_ACCESS_2024_3379149
crossref_primary_10_1007_s10489_023_05105_2
crossref_primary_10_1007_s00158_023_03568_y
crossref_primary_10_1111_exsy_13331
crossref_primary_10_1016_j_asoc_2024_111372
crossref_primary_10_1371_journal_pone_0308474
crossref_primary_10_1007_s13369_022_06880_9
crossref_primary_10_1080_0305215X_2025_2463976
crossref_primary_10_1007_s00607_023_01157_x
crossref_primary_10_3390_en16020983
crossref_primary_10_1016_j_petrol_2021_109316
crossref_primary_10_1007_s11227_024_06385_2
crossref_primary_10_1177_09544070241283509
crossref_primary_10_1111_exsy_12918
crossref_primary_10_1016_j_compstruc_2025_107647
crossref_primary_10_1061_JBENF2_BEENG_6073
crossref_primary_10_1109_JSEN_2023_3267459
crossref_primary_10_1515_mt_2024_0005
crossref_primary_10_3390_sym15071319
crossref_primary_10_1016_j_eswa_2021_115939
crossref_primary_10_1007_s11831_021_09663_x
crossref_primary_10_1038_s41598_022_22242_9
crossref_primary_10_1007_s00158_022_03475_8
crossref_primary_10_1007_s00158_021_03056_1
crossref_primary_10_1142_S0219455425500099
crossref_primary_10_1007_s12008_024_01737_x
crossref_primary_10_1016_j_autcon_2023_105134
crossref_primary_10_1515_mt_2023_0206
crossref_primary_10_1177_09544062221078199
crossref_primary_10_1016_j_eswa_2022_119303
crossref_primary_10_1016_j_eswa_2023_120757
crossref_primary_10_1155_2022_8398768
crossref_primary_10_1515_mt_2023_0201
crossref_primary_10_1515_mt_2023_0245
crossref_primary_10_1515_mt_2023_0364
crossref_primary_10_1016_j_compstruc_2024_107496
crossref_primary_10_1007_s00158_023_03639_0
crossref_primary_10_1016_j_advengsoft_2024_103857
crossref_primary_10_1016_j_eswa_2023_121563
crossref_primary_10_1109_ACCESS_2023_3329836
crossref_primary_10_1515_mt_2022_0308
crossref_primary_10_1515_mt_2024_0216
crossref_primary_10_3390_buildings13040868
crossref_primary_10_1007_s00170_024_14600_w
crossref_primary_10_32604_cmc_2024_058810
crossref_primary_10_1002_cpe_6556
crossref_primary_10_1142_S021962202250095X
crossref_primary_10_1007_s42235_022_00307_9
crossref_primary_10_1515_cppm_2024_0045
crossref_primary_10_1063_5_0257717
crossref_primary_10_1080_15325008_2024_2329329
crossref_primary_10_1109_JSEN_2023_3276318
crossref_primary_10_1515_mt_2024_0190
crossref_primary_10_1016_j_rineng_2025_103933
crossref_primary_10_1016_j_eswa_2024_124929
crossref_primary_10_3390_s24113418
crossref_primary_10_3846_jcem_2022_16387
crossref_primary_10_1016_j_istruc_2024_106226
crossref_primary_10_1038_s41598_022_13516_3
crossref_primary_10_1080_19475705_2023_2165973
crossref_primary_10_1515_mt_2023_0332
crossref_primary_10_1515_mt_2024_0187
crossref_primary_10_1016_j_asoc_2023_110016
crossref_primary_10_1016_j_asoc_2024_112637
crossref_primary_10_1515_mt_2024_0186
crossref_primary_10_1002_tal_1982
crossref_primary_10_1016_j_asoc_2024_111827
crossref_primary_10_1515_mt_2024_0100
crossref_primary_10_1515_mt_2024_0188
crossref_primary_10_1155_2021_5551094
crossref_primary_10_1016_j_advengsoft_2024_103752
crossref_primary_10_1016_j_measurement_2024_115008
crossref_primary_10_1016_j_engappai_2021_104372
crossref_primary_10_1016_j_strusafe_2024_102450
crossref_primary_10_1016_j_asoc_2023_111085
crossref_primary_10_1007_s12597_023_00676_7
crossref_primary_10_1111_exsy_13088
crossref_primary_10_1016_j_knosys_2022_108422
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_1515_mt_2023_0226
crossref_primary_10_1007_s40684_024_00669_x
crossref_primary_10_1007_s12539_023_00597_5
crossref_primary_10_1515_mt_2024_0151
crossref_primary_10_3389_fbioe_2022_900655
crossref_primary_10_1515_mt_2023_0384
crossref_primary_10_1515_mt_2024_0233
crossref_primary_10_1007_s40430_022_03496_w
Cites_doi 10.1080/0305215X.2013.823194
10.12989/sem.2014.50.3.365
10.1007/s12205-019-2119-2
10.1162/106365600568158
10.1007/s00366-018-0629-z
10.1016/j.eswa.2015.10.039
10.1007/s00366-020-01010-1
10.1007/s11831-020-09429-x
10.1007/s00158-019-02302-x
10.1007/s11831-016-9203-2
10.1007/s00158-003-0316-5
10.1016/j.knosys.2018.08.005
10.1016/j.eswa.2019.01.068
10.1016/j.ins.2012.10.008
10.1007/s10489-016-0825-8
10.1016/j.asoc.2014.10.042
10.1016/j.knosys.2017.07.018
10.1016/j.compstruc.2011.08.010
10.1007/978-3-540-31880-4_35
10.1007/s00707-018-2149-8
10.1016/0020-7683(94)00306-H
10.1007/s11831-020-09420-6
10.1016/j.advengsoft.2017.07.002
10.1007/978-3-540-31880-4_36
10.1016/j.compstruc.2012.12.010
10.1007/978-3-319-59072-1_18
10.2514/3.10739
10.1016/j.asoc.2010.09.003
10.1016/j.compstruc.2012.04.015
10.1007/s11831-019-09343-x
10.1007/s00366-018-0612-8
10.1080/10556780903548265
10.1007/s11831-019-09318-y
10.1007/s00158-010-0507-9
10.1007/s00521-015-1920-1
10.1007/s10489-017-1019-8
10.1109/4235.996017
10.1007/s11831-016-9187-y
10.1109/TEVC.2007.892759
10.1007/s12205-017-0095-y
10.1007/s00158-011-0709-9
10.1016/j.compstruc.2017.06.016
10.1007/s11831-019-09336-w
10.1504/IJBIC.2013.057191
10.1016/0045-7949(94)00617-C
ContentType Journal Article
Copyright CIMNE, Barcelona, Spain 2021
CIMNE, Barcelona, Spain 2021.
Copyright_xml – notice: CIMNE, Barcelona, Spain 2021
– notice: CIMNE, Barcelona, Spain 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11831-021-09531-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 4047
ExternalDocumentID 10_1007_s11831_021_09531_8
GrantInformation_xml – fundername: Thailand Research Fund
  grantid: RTA6180010
  funderid: http://dx.doi.org/10.13039/501100004396
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
ABRTQ
JQ2
ID FETCH-LOGICAL-c319t-11fdd6ea110ec3fd78e5076b8e611f7e59fbb03248f3d636b44b57e982bf4d093
IEDL.DBID U2A
ISSN 1134-3060
IngestDate Wed Aug 13 08:21:02 EDT 2025
Tue Jul 01 04:16:04 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Fri Feb 21 02:47:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-11fdd6ea110ec3fd78e5076b8e611f7e59fbb03248f3d636b44b57e982bf4d093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2558107724
PQPubID 1486352
PageCount 17
ParticipantIDs proquest_journals_2558107724
crossref_citationtrail_10_1007_s11831_021_09531_8
crossref_primary_10_1007_s11831_021_09531_8
springer_journals_10_1007_s11831_021_09531_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References GandomiAHTalatahariSTadbiriFAlaviAHKrill herd algorithm for optimum design of truss structuresInt J Bio-Inspired Comput20135528128810.1504/IJBIC.2013.057191
NoilublaoNBureeratSSimultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithmsComput Struct201189232531253810.1016/j.compstruc.2011.08.010
PholdeeNBureeratSHybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trussesInf Sci2013223136152299855710.1016/j.ins.2012.10.008
TejaniGGSavsaniVJPatelVKBureeratSTopology, shape, and size optimization of truss structures using modified teaching-learning based optimizationAdv Comput Des201724313331
WuC-YTsengK-YTruss structure optimization using adaptive multi-population differential evolutionStruct Multidisc Optim201042457559010.1007/s00158-010-0507-9
TejaniGGPholdeeNBureeratSPrayogoDMultiobjective adaptive symbiotic organisms search for truss optimization problemsKnowl-Based Syst201816139841410.1016/j.knosys.2018.08.005
KavehADadrasAMontazeranAHChaotic enhanced colliding bodies algorithms for size optimization of truss structuresActa Mech2018229728832907381653410.1007/s00707-018-2149-81397.70021
PholdeeNBureeratSPerformance enhancement of multiobjective evolutionary optimisers for truss design using an approximate gradientComput Struct2012106–10711512410.1016/j.compstruc.2012.04.015
MirjaliliSJangirPMirjaliliSZSaremiSTrivediINOptimization of problems with multiple objectives using the multi-verse optimization algorithmKnowl-Based Syst2017134507110.1016/j.knosys.2017.07.018
MirjaliliSJangirPSaremiSMulti-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problemsAppl Intell2017461799510.1007/s10489-016-0825-8
PatelVKRajaBDComparative performance of recent advanced optimization algorithms for minimum energy requirement solutions in water pump switching networkArch Comput Methods Eng202010.1007/s11831-020-09429-x
Robič T, Filipič B (2005) DEMO: differential evolution for multiobjective optimization. In: Evolutionary multi-criterion optimization, pp 520–533
AittokoskiTMiettinenKEfficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOAOptim Methods Softw2010256841858272417110.1080/10556780903548265
KumarSTejaniGGPholdeeNBureeratSMulti-objective modified heat transfer search for truss optimizationEng Comput202010.1007/s00366-020-01010-1
ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput200711671273110.1109/TEVC.2007.892759
SchutteJFGroenwoldAASizing design of truss structures using particle swarmsStruct Multidisc Optim200325426126910.1007/s00158-003-0316-5
PanagantNBureeratSTaiKA novel self-adaptive hybrid multi-objective meta-heuristic for reliability design of trusses with simultaneous topology, shape and sizing optimisation design variablesStruct Multidisc Optim201960519371955403476110.1007/s00158-019-02302-x
Kaveh A, Ahmadi B (2014) Sizing, geometry and topology optimization of trusses using force method and supervised charged system search. Struct Eng Mech 50(3): 365–382
XiaLXiaQHuangXXieYMBi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive reviewArch Comput Methods Eng2018252437478377647710.1007/s11831-016-9203-21392.74074
PholdeeNBureeratSA comparative study of eighteen self-adaptive metaheuristic algorithms for truss sizing optimisationKSCE J Civ Eng20182282982299310.1007/s12205-017-0095-y
TechasenTWansasuebKPanagantNPholdeeNBureeratSSimultaneous topology, shape, and size optimization of trusses, taking account of uncertainties using multi-objective evolutionary algorithmsEng Compu201935272174010.1007/s00366-018-0629-z
AbualigahLShehabMAlshinwanMMirjaliliSElazizMAAnt lion optimizer: a comprehensive survey of its variants and applicationsArch Comput Methods Eng202010.1007/s11831-020-09420-6
RaoRVSarojAOclońPTalerJDesign optimization of heat exchangers with advanced optimization techniques: a reviewArch Comput Methods Eng202027251754810.1007/s11831-019-09318-y
LieuQXDoDTTLeeJAn adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraintsComput Struct20181959911210.1016/j.compstruc.2017.06.016
TejaniGGPholdeeNBureeratSPrayogoDGandomiAHStructural optimization using multi-objective modified adaptive symbiotic organisms searchExpert Syst Appl201912542544110.1016/j.eswa.2019.01.068
HajelaPLeeEGenetic algorithms in truss topological optimizationInt J Solids Struct1995322233413357134995210.1016/0020-7683(94)00306-H0919.73113
GreinerDHajelaPTruss topology optimization for mass and reliability considerations—co-evolutionary multiobjective formulationsStruct Multidisc Optim2012454589613290911710.1007/s00158-011-0709-91274.74228
ChenG-SBrunoRJSalamaMOptimal placement of active/passive members in truss structures using simulated annealingAIAA J19912981327133410.2514/3.10739
MirjaliliSDragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Comput Appl201627410531073413844710.1007/s00521-015-1920-1
YildizARAbderazekHMirjaliliSA comparative study of recent non-traditional methods for mechanical design optimizationArch Computat Methods Eng201910.1007/s11831-019-09343-x
VeldhuizenDAVLamontGBMultiobjective evolutionary algorithms: analyzing the state-of-the-artEvol Comput20008212514710.1162/106365600568158
KavehAKhayatazadMRay optimization for size and shape optimization of truss structuresComput Struct2013117829410.1016/j.compstruc.2012.12.010
YancangLZhenYApplication of improved bat algorithm in truss optimizationKSCE J Civ Eng20192362636264310.1007/s12205-019-2119-2
TangZHuXPériauxJMulti-level hybridized optimization methods coupling local search deterministic and global search evolutionary algorithmsArch Comput Methods Eng201910.1007/s11831-019-09336-w
PholdeeNBureeratSHybrid real-code population-based incremental learning and approximate gradients for multi-objective truss designEng Optim201446810321051319704410.1080/0305215X.2013.823194
SadollahAEskandarHKimJHWater cycle algorithm for solving constrained multi-objective optimization problemsAppl Soft Comput20152727929810.1016/j.asoc.2014.10.042
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
Sierra MR, Coello Coello CA (2005) Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In: Evolutionary multi-criterion optimization, Berlin, pp 505–519. https://doi.org/10.1007/978-3-540-31880-4_35
MirjaliliSSaremiSMirjaliliSMdos CoelhoLSMulti-objective grey wolf optimizer: a novel algorithm for multi-criterion optimizationExpert Syst Appl20164710611910.1016/j.eswa.2015.10.039
GreinerDPeriauxJEmperadorJMGalvánBWinterGGame theory based evolutionary algorithms: a review with Nash applications in structural engineering optimization problemsArch Comput Methods Eng2017244703750371245110.1007/s11831-016-9187-y1394.90566
OhsakiMGenetic algorithm for topology optimization of trussesComput Struct1995572219225134333610.1016/0045-7949(94)00617-C0900.73501
Pholdee N, Bureerat S, Jaroenapibal P, Radpukdee T (2017) Many-objective optimisation of trusses through meta-heuristics. In: Advances in neural networks—ISNN 2017, Cham, pp 143–152. https://doi.org/10.1007/978-3-319-59072-1_18
TejaniGGSavsaniVJBureeratSPatelVKSavsaniPTopology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithmsEng Comput201935249951710.1007/s00366-018-0612-8
MirjaliliSZMirjaliliSSaremiSFarisHAljarahIGrasshopper optimization algorithm for multi-objective optimization problemsAppl Intell201848480582010.1007/s10489-017-1019-8
MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp Swarm Algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002
SonmezMArtificial Bee Colony algorithm for optimization of truss structuresApplied Soft Computing20111122406241810.1016/j.asoc.2010.09.003
L Xia (9531_CR3) 2018; 25
QX Lieu (9531_CR18) 2018; 195
P Hajela (9531_CR11) 1995; 32
S Mirjalili (9531_CR35) 2016; 27
Q Zhang (9531_CR43) 2007; 11
M Sonmez (9531_CR16) 2011; 11
9531_CR17
GG Tejani (9531_CR32) 2018; 161
N Panagant (9531_CR28) 2019; 60
S Mirjalili (9531_CR38) 2017; 134
T Techasen (9531_CR27) 2019; 35
GG Tejani (9531_CR15) 2017; 2
DAV Veldhuizen (9531_CR45) 2000; 8
AR Yildiz (9531_CR2) 2019
VK Patel (9531_CR4) 2020
D Greiner (9531_CR6) 2017; 24
S Mirjalili (9531_CR34) 2017; 46
G-S Chen (9531_CR12) 1991; 29
N Pholdee (9531_CR30) 2013; 223
N Pholdee (9531_CR29) 2012; 106–107
N Noilublao (9531_CR9) 2011; 89
Z Tang (9531_CR7) 2019
9531_CR42
GG Tejani (9531_CR23) 2019; 125
K Deb (9531_CR41) 2002; 6
SZ Mirjalili (9531_CR36) 2018; 48
9531_CR46
N Pholdee (9531_CR25) 2018; 22
JF Schutte (9531_CR13) 2003; 25
L Yancang (9531_CR20) 2019; 23
S Mirjalili (9531_CR40) 2017; 114
A Kaveh (9531_CR22) 2013; 117
T Aittokoski (9531_CR44) 2010; 25
9531_CR1
AH Gandomi (9531_CR21) 2013; 5
A Kaveh (9531_CR19) 2018; 229
S Mirjalili (9531_CR37) 2016; 47
RV Rao (9531_CR5) 2020; 27
GG Tejani (9531_CR24) 2019; 35
S Kumar (9531_CR33) 2020
N Pholdee (9531_CR31) 2014; 46
A Sadollah (9531_CR39) 2015; 27
L Abualigah (9531_CR8) 2020
M Ohsaki (9531_CR10) 1995; 57
D Greiner (9531_CR26) 2012; 45
C-Y Wu (9531_CR14) 2010; 42
References_xml – reference: PholdeeNBureeratSPerformance enhancement of multiobjective evolutionary optimisers for truss design using an approximate gradientComput Struct2012106–10711512410.1016/j.compstruc.2012.04.015
– reference: XiaLXiaQHuangXXieYMBi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive reviewArch Comput Methods Eng2018252437478377647710.1007/s11831-016-9203-21392.74074
– reference: YancangLZhenYApplication of improved bat algorithm in truss optimizationKSCE J Civ Eng20192362636264310.1007/s12205-019-2119-2
– reference: PholdeeNBureeratSHybrid real-code population-based incremental learning and approximate gradients for multi-objective truss designEng Optim201446810321051319704410.1080/0305215X.2013.823194
– reference: KavehADadrasAMontazeranAHChaotic enhanced colliding bodies algorithms for size optimization of truss structuresActa Mech2018229728832907381653410.1007/s00707-018-2149-81397.70021
– reference: MirjaliliSZMirjaliliSSaremiSFarisHAljarahIGrasshopper optimization algorithm for multi-objective optimization problemsAppl Intell201848480582010.1007/s10489-017-1019-8
– reference: PanagantNBureeratSTaiKA novel self-adaptive hybrid multi-objective meta-heuristic for reliability design of trusses with simultaneous topology, shape and sizing optimisation design variablesStruct Multidisc Optim201960519371955403476110.1007/s00158-019-02302-x
– reference: YildizARAbderazekHMirjaliliSA comparative study of recent non-traditional methods for mechanical design optimizationArch Computat Methods Eng201910.1007/s11831-019-09343-x
– reference: TejaniGGSavsaniVJBureeratSPatelVKSavsaniPTopology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithmsEng Comput201935249951710.1007/s00366-018-0612-8
– reference: MirjaliliSDragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Comput Appl201627410531073413844710.1007/s00521-015-1920-1
– reference: Sierra MR, Coello Coello CA (2005) Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In: Evolutionary multi-criterion optimization, Berlin, pp 505–519. https://doi.org/10.1007/978-3-540-31880-4_35
– reference: Kaveh A, Ahmadi B (2014) Sizing, geometry and topology optimization of trusses using force method and supervised charged system search. Struct Eng Mech 50(3): 365–382
– reference: GreinerDHajelaPTruss topology optimization for mass and reliability considerations—co-evolutionary multiobjective formulationsStruct Multidisc Optim2012454589613290911710.1007/s00158-011-0709-91274.74228
– reference: WuC-YTsengK-YTruss structure optimization using adaptive multi-population differential evolutionStruct Multidisc Optim201042457559010.1007/s00158-010-0507-9
– reference: TejaniGGPholdeeNBureeratSPrayogoDGandomiAHStructural optimization using multi-objective modified adaptive symbiotic organisms searchExpert Syst Appl201912542544110.1016/j.eswa.2019.01.068
– reference: HajelaPLeeEGenetic algorithms in truss topological optimizationInt J Solids Struct1995322233413357134995210.1016/0020-7683(94)00306-H0919.73113
– reference: PholdeeNBureeratSHybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trussesInf Sci2013223136152299855710.1016/j.ins.2012.10.008
– reference: SchutteJFGroenwoldAASizing design of truss structures using particle swarmsStruct Multidisc Optim200325426126910.1007/s00158-003-0316-5
– reference: KavehAKhayatazadMRay optimization for size and shape optimization of truss structuresComput Struct2013117829410.1016/j.compstruc.2012.12.010
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
– reference: GreinerDPeriauxJEmperadorJMGalvánBWinterGGame theory based evolutionary algorithms: a review with Nash applications in structural engineering optimization problemsArch Comput Methods Eng2017244703750371245110.1007/s11831-016-9187-y1394.90566
– reference: AittokoskiTMiettinenKEfficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOAOptim Methods Softw2010256841858272417110.1080/10556780903548265
– reference: AbualigahLShehabMAlshinwanMMirjaliliSElazizMAAnt lion optimizer: a comprehensive survey of its variants and applicationsArch Comput Methods Eng202010.1007/s11831-020-09420-6
– reference: MirjaliliSSaremiSMirjaliliSMdos CoelhoLSMulti-objective grey wolf optimizer: a novel algorithm for multi-criterion optimizationExpert Syst Appl20164710611910.1016/j.eswa.2015.10.039
– reference: TechasenTWansasuebKPanagantNPholdeeNBureeratSSimultaneous topology, shape, and size optimization of trusses, taking account of uncertainties using multi-objective evolutionary algorithmsEng Compu201935272174010.1007/s00366-018-0629-z
– reference: GandomiAHTalatahariSTadbiriFAlaviAHKrill herd algorithm for optimum design of truss structuresInt J Bio-Inspired Comput20135528128810.1504/IJBIC.2013.057191
– reference: SadollahAEskandarHKimJHWater cycle algorithm for solving constrained multi-objective optimization problemsAppl Soft Comput20152727929810.1016/j.asoc.2014.10.042
– reference: ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput200711671273110.1109/TEVC.2007.892759
– reference: PholdeeNBureeratSA comparative study of eighteen self-adaptive metaheuristic algorithms for truss sizing optimisationKSCE J Civ Eng20182282982299310.1007/s12205-017-0095-y
– reference: TangZHuXPériauxJMulti-level hybridized optimization methods coupling local search deterministic and global search evolutionary algorithmsArch Comput Methods Eng201910.1007/s11831-019-09336-w
– reference: LieuQXDoDTTLeeJAn adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraintsComput Struct20181959911210.1016/j.compstruc.2017.06.016
– reference: ChenG-SBrunoRJSalamaMOptimal placement of active/passive members in truss structures using simulated annealingAIAA J19912981327133410.2514/3.10739
– reference: RaoRVSarojAOclońPTalerJDesign optimization of heat exchangers with advanced optimization techniques: a reviewArch Comput Methods Eng202027251754810.1007/s11831-019-09318-y
– reference: MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp Swarm Algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002
– reference: Robič T, Filipič B (2005) DEMO: differential evolution for multiobjective optimization. In: Evolutionary multi-criterion optimization, pp 520–533
– reference: VeldhuizenDAVLamontGBMultiobjective evolutionary algorithms: analyzing the state-of-the-artEvol Comput20008212514710.1162/106365600568158
– reference: PatelVKRajaBDComparative performance of recent advanced optimization algorithms for minimum energy requirement solutions in water pump switching networkArch Comput Methods Eng202010.1007/s11831-020-09429-x
– reference: TejaniGGSavsaniVJPatelVKBureeratSTopology, shape, and size optimization of truss structures using modified teaching-learning based optimizationAdv Comput Des201724313331
– reference: MirjaliliSJangirPSaremiSMulti-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problemsAppl Intell2017461799510.1007/s10489-016-0825-8
– reference: NoilublaoNBureeratSSimultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithmsComput Struct201189232531253810.1016/j.compstruc.2011.08.010
– reference: KumarSTejaniGGPholdeeNBureeratSMulti-objective modified heat transfer search for truss optimizationEng Comput202010.1007/s00366-020-01010-1
– reference: SonmezMArtificial Bee Colony algorithm for optimization of truss structuresApplied Soft Computing20111122406241810.1016/j.asoc.2010.09.003
– reference: MirjaliliSJangirPMirjaliliSZSaremiSTrivediINOptimization of problems with multiple objectives using the multi-verse optimization algorithmKnowl-Based Syst2017134507110.1016/j.knosys.2017.07.018
– reference: Pholdee N, Bureerat S, Jaroenapibal P, Radpukdee T (2017) Many-objective optimisation of trusses through meta-heuristics. In: Advances in neural networks—ISNN 2017, Cham, pp 143–152. https://doi.org/10.1007/978-3-319-59072-1_18
– reference: TejaniGGPholdeeNBureeratSPrayogoDMultiobjective adaptive symbiotic organisms search for truss optimization problemsKnowl-Based Syst201816139841410.1016/j.knosys.2018.08.005
– reference: OhsakiMGenetic algorithm for topology optimization of trussesComput Struct1995572219225134333610.1016/0045-7949(94)00617-C0900.73501
– volume: 46
  start-page: 1032
  issue: 8
  year: 2014
  ident: 9531_CR31
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2013.823194
– ident: 9531_CR17
  doi: 10.12989/sem.2014.50.3.365
– volume: 23
  start-page: 2636
  issue: 6
  year: 2019
  ident: 9531_CR20
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-019-2119-2
– volume: 8
  start-page: 125
  issue: 2
  year: 2000
  ident: 9531_CR45
  publication-title: Evol Comput
  doi: 10.1162/106365600568158
– volume: 35
  start-page: 721
  issue: 2
  year: 2019
  ident: 9531_CR27
  publication-title: Eng Compu
  doi: 10.1007/s00366-018-0629-z
– volume: 47
  start-page: 106
  year: 2016
  ident: 9531_CR37
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.10.039
– year: 2020
  ident: 9531_CR33
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01010-1
– year: 2020
  ident: 9531_CR4
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-020-09429-x
– volume: 60
  start-page: 1937
  issue: 5
  year: 2019
  ident: 9531_CR28
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-019-02302-x
– volume: 25
  start-page: 437
  issue: 2
  year: 2018
  ident: 9531_CR3
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-016-9203-2
– volume: 25
  start-page: 261
  issue: 4
  year: 2003
  ident: 9531_CR13
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-003-0316-5
– volume: 161
  start-page: 398
  year: 2018
  ident: 9531_CR32
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.08.005
– volume: 125
  start-page: 425
  year: 2019
  ident: 9531_CR23
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.01.068
– volume: 223
  start-page: 136
  year: 2013
  ident: 9531_CR30
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.10.008
– volume: 46
  start-page: 79
  issue: 1
  year: 2017
  ident: 9531_CR34
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0825-8
– volume: 27
  start-page: 279
  year: 2015
  ident: 9531_CR39
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.10.042
– volume: 2
  start-page: 313
  issue: 4
  year: 2017
  ident: 9531_CR15
  publication-title: Adv Comput Des
– volume: 134
  start-page: 50
  year: 2017
  ident: 9531_CR38
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.07.018
– volume: 89
  start-page: 2531
  issue: 23
  year: 2011
  ident: 9531_CR9
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2011.08.010
– ident: 9531_CR46
  doi: 10.1007/978-3-540-31880-4_35
– volume: 229
  start-page: 2883
  issue: 7
  year: 2018
  ident: 9531_CR19
  publication-title: Acta Mech
  doi: 10.1007/s00707-018-2149-8
– volume: 32
  start-page: 3341
  issue: 22
  year: 1995
  ident: 9531_CR11
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(94)00306-H
– year: 2020
  ident: 9531_CR8
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-020-09420-6
– volume: 114
  start-page: 163
  year: 2017
  ident: 9531_CR40
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: 9531_CR42
  doi: 10.1007/978-3-540-31880-4_36
– volume: 117
  start-page: 82
  year: 2013
  ident: 9531_CR22
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.12.010
– ident: 9531_CR1
  doi: 10.1007/978-3-319-59072-1_18
– volume: 29
  start-page: 1327
  issue: 8
  year: 1991
  ident: 9531_CR12
  publication-title: AIAA J
  doi: 10.2514/3.10739
– volume: 11
  start-page: 2406
  issue: 2
  year: 2011
  ident: 9531_CR16
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.09.003
– volume: 106–107
  start-page: 115
  year: 2012
  ident: 9531_CR29
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.04.015
– year: 2019
  ident: 9531_CR2
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-019-09343-x
– volume: 35
  start-page: 499
  issue: 2
  year: 2019
  ident: 9531_CR24
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0612-8
– volume: 25
  start-page: 841
  issue: 6
  year: 2010
  ident: 9531_CR44
  publication-title: Optim Methods Softw
  doi: 10.1080/10556780903548265
– volume: 27
  start-page: 517
  issue: 2
  year: 2020
  ident: 9531_CR5
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-019-09318-y
– volume: 42
  start-page: 575
  issue: 4
  year: 2010
  ident: 9531_CR14
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-010-0507-9
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 9531_CR35
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– volume: 48
  start-page: 805
  issue: 4
  year: 2018
  ident: 9531_CR36
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1019-8
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 9531_CR41
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 24
  start-page: 703
  issue: 4
  year: 2017
  ident: 9531_CR6
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-016-9187-y
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 9531_CR43
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– volume: 22
  start-page: 2982
  issue: 8
  year: 2018
  ident: 9531_CR25
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-017-0095-y
– volume: 45
  start-page: 589
  issue: 4
  year: 2012
  ident: 9531_CR26
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-011-0709-9
– volume: 195
  start-page: 99
  year: 2018
  ident: 9531_CR18
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.06.016
– year: 2019
  ident: 9531_CR7
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-019-09336-w
– volume: 5
  start-page: 281
  issue: 5
  year: 2013
  ident: 9531_CR21
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2013.057191
– volume: 57
  start-page: 219
  issue: 2
  year: 1995
  ident: 9531_CR10
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(94)00617-C
SSID ssj0054992
Score 2.569687
Snippet Multi-objective truss optimisation is a research topic that has been less investigated in the literature compared to the single-objective cases. This...
Multi-objective truss optimisation is a research topic that has been less investigated in the literature compared to the single-objective cases. This paper...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4031
SubjectTerms Adaptive algorithms
Comparative studies
Constraints
Design optimization
Engineering
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Heuristic methods
Machine learning
Mathematical and Computational Engineering
Multiple objective analysis
Original Paper
Sorting algorithms
Trusses
Title A Comparative Study of Recent Multi-objective Metaheuristics for Solving Constrained Truss Optimisation Problems
URI https://link.springer.com/article/10.1007/s11831-021-09531-8
https://www.proquest.com/docview/2558107724
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOjBD9SIIunBmzZh3ei644IgUVETIMHTsm5djEEgbBz8730dnVOjJh6WHdp1y97re7_X9wVwrlDgRZFE60RImzqRI2mIeo62IqaUJbnrMZ2NPLjn_bFzM2lPTFJYWkS7Fy7JXFKXyW7IfWj6Mrw85BwqNqHa1rY7cvGY-YX81QZP7uO0bH3mz1smVebnNb6qoxJjfnOL5tqmtwc7BiYSf03XfdhQsxrsGshIzIZMa7D9qZ7gASx80imreRMdI_hG5glBbIi6heTJtnQuX9ZCjgxUFj6rlanVTBC-kuF8qk8YiO7jmXePwLeNlqs0JQ8oW15N7A95XLehSQ9h3OuOOn1qWirQCPdaRi0riWOuQlT6KrKT2BUKASGXQnEcclXbS6RsIcgSiR1zm0vHkW1XeYLpgL6WZx9BZTafqWMgrpSayjFLwsRhMVrSIaIhR3hK-xq5XQer-LNBZOqN6w-fBmWlZE2NAKkR5NQIRB0uPp5ZrKtt_Dm7URAsMDsvDdBEEmjSusypw2VBxHL499VO_jf9FLZYzkc6FrABlWy5UmeITzLZhKp_Nbgb6vv10223mbPnOwdZ31c
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRKOCBDSw1Tuo4Y1VRFWgLEq3ULYoTRwiVpmrSgX_POXEIIEBiyGTHiXznu-98L4BLhQIvDCVaJ0La1AkdSQPUc7QVMqUsyV2P6Wzk4Yj3J87dtD01SWFpGe1euiRzSV0luyH3oenL8PGQc6hYhw0EA0IHck1Yp5S_2uDJfZyWre_8ecukyvy8xld1VGHMb27RXNv09mDHwETSKei6D2tqXoddAxmJOZBpHbY_1RM8gEWHdKtq3kTHCL6RJCaIDVG3kDzZlibypRByZKiy4FmtTK1mgvCVPCUzfcNAdB_PvHsEfm28XKUpeUDZ8mpif8hj0YYmPYRJ72bc7VPTUoGGeNYyallxFHEVoNJXoR1HrlAICLkUiuOQq9peLGULQZaI7YjbXDqObLvKE0wH9LU8-whq82SujoG4UmoqRywOYodFaEkHiIYc4Snta-R2A6xyZ_3Q1BvXPz7zq0rJmho-UsPPqeGLBlx9vLMoqm38ObtZEsw3Jy_10UQSaNK6zGnAdUnEavj31U7-N_0CNvvj4cAf3I7uT2GL5Tyl4wKbUMuWK3WGWCWT5zlrvgO0a98i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RTIwe_ECNKGoP3nSBdaPrjgQl-AGSCAm3Zd26GIOMsHHwv_d16xwaNfGwU7tu7Xt9_b2-L4BLiQIvCARqJ1xYhh3YwvDxnDOaAZXSFMxxqYpG7g9Yb2zfT1qTlSj-zNu9MEnmMQ0qS9MsbczDqFEGviEnohpM8XGRiwy-Dhsojk3F12PaLmSxUn4ye6dpqft_1tRhMz-P8fVoKvHmNxNpdvJ092BHQ0bSzmm8D2tyVoVdDR-J3pxJFbZXcgsewLxNOmVmb6L8Bd9JHBHEiThPkgXeGrF4zQUe6cvUf5FLnbeZIJQlz_FU3TYQVdMzqySBXxstlklCnlDOvGk_IDLMS9IkhzDu3o46PUOXVzACXKjUMM0oDJn0EQDIwIpCh0sEh0xwybDJkS03EqKJgItHVsgsJmxbtBzpcqqc-5qudQSVWTyTx0AcIRTFQxr5kU1D1Kp9REY2d6WyOzKrBmaxsl6gc4-rH596ZdZkRQ0PqeFl1PB4Da4-35nnmTf-7F0vCObpXZh4qC5xVG8datfguiBi2fz7aCf_634Bm8Obrvd4N3g4hS2asZRyEaxDJV0s5RnCllScZ5z5Aavx414
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Recent+Multi-objective+Metaheuristics+for+Solving+Constrained+Truss+Optimisation+Problems&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Panagant%2C+Natee&rft.au=Pholdee%2C+Nantiwat&rft.au=Bureerat%2C+Sujin&rft.au=Yildiz%2C+Ali+Riza&rft.date=2021-08-01&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=28&rft.issue=5&rft.spage=4031&rft.epage=4047&rft_id=info:doi/10.1007%2Fs11831-021-09531-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11831_021_09531_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon