Taylor series expansion based repetitive controllers for power converters, subject to fractional delays

Digital repetitive controllers are widely employed to track/reject the periodic signals with zero steady-state error. Their implementation involves the use of single or multiple digital delay elements. Practically, the delay element is implemented by the use of memory locations, where samples are he...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 64; pp. 140 - 147
Main Author Nazir, R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Digital repetitive controllers are widely employed to track/reject the periodic signals with zero steady-state error. Their implementation involves the use of single or multiple digital delay elements. Practically, the delay element is implemented by the use of memory locations, where samples are held and released after a specific number of sampling periods, equivalent to the desired time delay. A problem arises when the desired time delay becomes a non-integer multiple of the sampling time. Such time delays can be accurately realized by employing a fractional delay filter This paper presents a Taylor Series expansion based digital repetitive controller designed to implement any (integer, non-integer) delay in the control of power converters, occurring due to uncontrollable variations in the reference frequency. The T3644aylor Series expansion transforms the fractional delay filter design problem to a differentiator/sub-filter design. Finite impulse response (FIR) and infinite impulse response (IIR) fractional delay (FD) filter concepts can be applied to realize the required fractional delay. This structure provides efficient on-line tuning capabilities i.e. FD can easily generate any required fractional delay without redesigning the filter when the delay parameter varies. An example is demonstrated to show the effectiveness of this approach, for a single-phase power inverter feeding a passive load. •A Taylor Series expansion based Repetitive (advanced) controller is developed to work under variable frequency environment.•Taylor Series expansion based RC of single-phase inverter is implemented.•Advanced repetitive control is compared with the conventional repetitive control and Fractional order repetitive control.•Results indicate that advanced RC control provides frequency adaptability whereas the other techniques fail to do so.
AbstractList Digital repetitive controllers are widely employed to track/reject the periodic signals with zero steady-state error. Their implementation involves the use of single or multiple digital delay elements. Practically, the delay element is implemented by the use of memory locations, where samples are held and released after a specific number of sampling periods, equivalent to the desired time delay. A problem arises when the desired time delay becomes a non-integer multiple of the sampling time. Such time delays can be accurately realized by employing a fractional delay filter This paper presents a Taylor Series expansion based digital repetitive controller designed to implement any (integer, non-integer) delay in the control of power converters, occurring due to uncontrollable variations in the reference frequency. The T3644aylor Series expansion transforms the fractional delay filter design problem to a differentiator/sub-filter design. Finite impulse response (FIR) and infinite impulse response (IIR) fractional delay (FD) filter concepts can be applied to realize the required fractional delay. This structure provides efficient on-line tuning capabilities i.e. FD can easily generate any required fractional delay without redesigning the filter when the delay parameter varies. An example is demonstrated to show the effectiveness of this approach, for a single-phase power inverter feeding a passive load. •A Taylor Series expansion based Repetitive (advanced) controller is developed to work under variable frequency environment.•Taylor Series expansion based RC of single-phase inverter is implemented.•Advanced repetitive control is compared with the conventional repetitive control and Fractional order repetitive control.•Results indicate that advanced RC control provides frequency adaptability whereas the other techniques fail to do so.
Author Nazir, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Nazir
  fullname: Nazir, R.
  email: rabiamalkana@hotmail.com
  organization: Electrical and Computer Engineering Department, University of Canterbury, New Zealand
BookMark eNqNkF1LwzAUhoNMcJv-h_wAW5Ol9uNG0OEXDLyZ1yFNTkZKbcpJnO7fmzJB8EYhEHjJ--ScZ0Fmgx-AEMpZzhkvr7pcp2DYjah0vmK8ypnIGRcnZM7rSmRlI5oZmbOmrDJWlvyMLELoWKo2DZ-T3VYdeo80ADoIFD5HNQTnB9qqAIYijBBddHug6ZuIvu8BA7WpMfoPwCndA8YUXtLw3nagI42e2jRNTBjVUwO9OoRzcmpVH-Di-16S14f77fop27w8Pq9vN5kWvI6ZMUxAZRQ3LJ22NdYqbdvacl1YZfiqtWnwEpROj-pCFCsDwpYtwLUtQAixJPWRq9GHgGDliO5N4UFyJidhspM_wuQkTDIhk7BUvflV1S6qaYuIyvX_AdwdAZAW3DtAGbSDQYNxmLxI493fkC-mhpYK
CitedBy_id crossref_primary_10_1007_s00170_022_09771_3
crossref_primary_10_1177_09544070241272795
crossref_primary_10_1177_1748006X221147441
crossref_primary_10_1016_j_oceaneng_2018_02_027
crossref_primary_10_1007_s00202_023_01792_9
crossref_primary_10_1016_j_ymssp_2020_106832
crossref_primary_10_1115_1_4066531
crossref_primary_10_1016_j_jenvrad_2020_106501
crossref_primary_10_1016_j_isatra_2023_06_007
crossref_primary_10_1109_TCST_2023_3274923
crossref_primary_10_1109_ACCESS_2019_2904141
crossref_primary_10_1007_s42452_020_2034_7
crossref_primary_10_1016_j_conengprac_2020_104374
crossref_primary_10_1109_ACCESS_2021_3073033
crossref_primary_10_3390_en15051705
crossref_primary_10_1016_j_conengprac_2018_05_005
crossref_primary_10_3390_fractalfract7060433
crossref_primary_10_1016_j_ijepes_2019_05_003
crossref_primary_10_1016_j_asoc_2022_109630
Cites_doi 10.1016/S0005-1098(02)00134-6
10.1049/iet-pel.2013.0429
10.1109/CCA.2007.4389352
10.1016/j.sigpro.2012.11.010
10.1109/LSP.2003.815616
10.1109/TCSI.2013.2244272
10.1109/2945.597800
10.1109/LSP.2006.881528
10.1109/ISCAS.2009.5117792
10.1109/TMECH.2002.802730
10.1080/00207179.2010.496871
10.1016/j.epsr.2015.03.005
10.1109/79.482137
10.1109/TIE.2012.2205364
10.1109/ISCAS.1988.15483
10.1109/TPEL.2012.2218833
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2017.03.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
EndPage 147
ExternalDocumentID 10_1016_j_conengprac_2017_03_013
S0967066117300710
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c318t-dd03e7da1d01d0bbdffacfb8f1c4fad12bf1696eac7da84342de3f6bee5f4e333
IEDL.DBID .~1
ISSN 0967-0661
IngestDate Tue Jul 01 00:39:02 EDT 2025
Thu Apr 24 23:07:15 EDT 2025
Fri Feb 23 02:35:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Repetitive controller
Fractional delay filter
Finite impulse response
Taylor Series expansion
Infinite impulse response
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-dd03e7da1d01d0bbdffacfb8f1c4fad12bf1696eac7da84342de3f6bee5f4e333
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_conengprac_2017_03_013
crossref_citationtrail_10_1016_j_conengprac_2017_03_013
elsevier_sciencedirect_doi_10_1016_j_conengprac_2017_03_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2017
2017-07-00
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationTitle Control engineering practice
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References no. 3, pp. 701–706.
pp. 2641–2645.
Wang, Y., Wang, D., Zhang, B., & Zhou, K., (2007). Fractional Delay Based Repetitive Control with Application to PWM DC / AC Converters. In
Costa-Castelló, Olm, Ramos (bib8) 2011
pp. 489–492.
Abbas, Gustafsson, Johansson (bib2) 2013
Babic D., Vesma J., Saramaki T., & Renfors M. (2002). Implementation of the Transposed Farrow Structure, IEEE Int. Symp. Circuits Syst. 4 IV–5 – IV–8.
Eghbali, Johansson, Saramäki (bib10) 2013
Candan (bib5) 2007
Laakso, Valimaki, Karjalinen, Laine (bib12) 1996
Rashed, Klumpner, Asher (bib17) 2013
Diaz-carmona, J., & Dolecek, G. J., (1996). Fractional Delay Digital Filters. In
Yang, Zhou, Wang, Blaabjerg, Wang, Zhang (bib23) 2014
Farrow, C. W., (1988). A Continuously Variable Digital Delay Element. In
2002
Möller, Machiraju, Mueller, Yagel (bib13) 1997
Steinbuch (bib19) 2002
Roy, D., (1995). Maximally Flat FD FIR Filter: Lagrange Interpolation.
no. October, pp. 928–933.
Tseng, Chien-Cheng, (2002). Design of Variable Fractional Delay FIR Filter Using Differentiator Bank.
Cao, Ledwich (bib6) 2002
Vesma, J., Hamila, R., Saramäki, T., & Renfors, M., (1998). Design of Polynomial Interpolation Filters Based on Taylor Series. In
no. 1, pp. 247–272.
Blok, M., (2012). Fractional Delay Filter Design for Sample Rate Conversion. In
.
Vol. 2, pp. 568–571.
Zou, Zhou, Wang, Cheng (bib24) 2014
Nazir, Zhou, Watson, Wood (bib14) 2015
Pei, Tseng (bib15) 2003
Rajalakshmi, Gondi, Kandaswamy (bib16) 2012
Abbas, M., Gustafsson, O., & Johansson, H. k., (2009). Scaling of Fractional Delay Filters Based on the Farrow Structure. In
Chen, Zhang, Qian (bib7) 2013
4 421–424.
Abbas (10.1016/j.conengprac.2017.03.013_bib2) 2013; 60
Steinbuch (10.1016/j.conengprac.2017.03.013_bib19) 2002; 38
Pei (10.1016/j.conengprac.2017.03.013_bib15) 2003; 10
Cao (10.1016/j.conengprac.2017.03.013_bib6) 2002; 7
10.1016/j.conengprac.2017.03.013_bib9
Rajalakshmi (10.1016/j.conengprac.2017.03.013_bib16) 2012; 1
10.1016/j.conengprac.2017.03.013_bib18
Chen (10.1016/j.conengprac.2017.03.013_bib7) 2013; 60
Rashed (10.1016/j.conengprac.2017.03.013_bib17) 2013; 28
Zou (10.1016/j.conengprac.2017.03.013_bib24) 2014; 7
10.1016/j.conengprac.2017.03.013_bib4
Eghbali (10.1016/j.conengprac.2017.03.013_bib10) 2013; 93
10.1016/j.conengprac.2017.03.013_bib3
Yang (10.1016/j.conengprac.2017.03.013_bib23) 2014; 8993
10.1016/j.conengprac.2017.03.013_bib1
Nazir (10.1016/j.conengprac.2017.03.013_bib14) 2015; 124
Costa-Castelló (10.1016/j.conengprac.2017.03.013_bib8) 2011; 84
Laakso (10.1016/j.conengprac.2017.03.013_bib12) 1996; 13
Candan (10.1016/j.conengprac.2017.03.013_bib5) 2007; 14
10.1016/j.conengprac.2017.03.013_bib11
10.1016/j.conengprac.2017.03.013_bib22
10.1016/j.conengprac.2017.03.013_bib21
10.1016/j.conengprac.2017.03.013_bib20
Möller (10.1016/j.conengprac.2017.03.013_bib13) 1997; 3
References_xml – reference: Blok, M., (2012). Fractional Delay Filter Design for Sample Rate Conversion. In
– start-page: 814
  year: 2013
  end-page: 823
  ident: bib7
  article-title: An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability
  publication-title: IEEE Transactions on Industrial Electronics
– reference: Farrow, C. W., (1988). A Continuously Variable Digital Delay Element. In
– start-page: 1209
  year: 2011
  end-page: 1222
  ident: bib8
  article-title: Design and analysis strategies for digital repetitive control systems with time-varying reference/disturbance period
  publication-title: International Journal of Control
– reference: , Vol. 2, pp. 568–571.
– start-page: 926
  year: 2013
  end-page: 937
  ident: bib2
  article-title: On the fixed-point implementation of fractional-delay filters based on the farrow structure
  publication-title: IEEE Transactions on Circuits and Systems—I: Regular Papers
– start-page: 2224
  year: 2013
  end-page: 2234
  ident: bib17
  article-title: Repetitive and resonant control for a single-phase grid-connected hybrid cascaded multilevel converter
  publication-title: IEEE Transactions on Power Electronics
– start-page: 184
  year: 1997
  end-page: 199
  ident: bib13
  article-title: Evaluation and design of filters using a taylor series expansion
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– reference: , pp. 2641–2645.
– start-page: 2103
  year: 2002
  end-page: 2109
  ident: bib19
  article-title: Repetitive control for systems with uncertain period-time
  publication-title: Automatica
– start-page: 17
  year: 2007
  end-page: 19
  ident: bib5
  article-title: An efficient filtering structure for Lagrange interpolation
  publication-title: IEEE Signal Processing Letters
– reference: , no. 1, pp. 247–272.
– start-page: 378
  year: 2002
  end-page: 384
  ident: bib6
  article-title: Periodic signals with fixed sampling rate
  publication-title: IEEE/ASME Transactions on Mechatronics
– reference: , no. October, pp. 928–933.
– start-page: 103
  year: 2012
  end-page: 107
  ident: bib16
  article-title: A fractional delay FIR filter based on Lagrange interpolation of farrow structure
  publication-title: International Journal of Electronics and Electrical Engineering
– start-page: 30
  year: 1996
  end-page: 60
  ident: bib12
  article-title: Splitting the unit delay, tools for fractional delay filter design
  publication-title: IEEE Signal Processing Magazine
– start-page: 1341
  year: 2013
  end-page: 1348
  ident: bib10
  article-title: A method for the design of farrow-structure based variable fractional-delay FIR filters
  publication-title: Signal Processing
– reference: , no. 3, pp. 701–706.
– reference: 4 421–424.
– reference: , pp. 489–492.
– start-page: 431
  year: 2014
  end-page: 438
  ident: bib24
  article-title: Fractional-order repetitive control of programmable ac power sources
  publication-title: IET Power Electron
– reference: Roy, D., (1995). Maximally Flat FD FIR Filter: Lagrange Interpolation.
– start-page: 307
  year: 2003
  end-page: 310
  ident: bib15
  article-title: An efficient design of a variable fractional delay filter using a first-order differentiator
  publication-title: IEEE Signal Processing Letters
– reference: Tseng, Chien-Cheng, (2002). Design of Variable Fractional Delay FIR Filter Using Differentiator Bank.
– reference: Wang, Y., Wang, D., Zhang, B., & Zhou, K., (2007). Fractional Delay Based Repetitive Control with Application to PWM DC / AC Converters. In
– start-page: 1
  year: 2014
  end-page: 12
  ident: bib23
  article-title: Frequency adaptive selective harmonic control for grid-connected inverters
  publication-title: IEEE Transactions on Power Electronics
– reference: .
– reference: Abbas, M., Gustafsson, O., & Johansson, H. k., (2009). Scaling of Fractional Delay Filters Based on the Farrow Structure. In
– reference: 2002
– reference: Vesma, J., Hamila, R., Saramäki, T., & Renfors, M., (1998). Design of Polynomial Interpolation Filters Based on Taylor Series. In
– reference: Diaz-carmona, J., & Dolecek, G. J., (1996). Fractional Delay Digital Filters. In
– reference: Babic D., Vesma J., Saramaki T., & Renfors M. (2002). Implementation of the Transposed Farrow Structure, IEEE Int. Symp. Circuits Syst. 4 IV–5 – IV–8.
– start-page: 110
  year: 2015
  end-page: 119
  ident: bib14
  article-title: Analysis and synthesis of fractional order repetitive control for converrters
  publication-title: Electric Power Systems Research
– volume: 38
  start-page: 2103
  issue: 12
  year: 2002
  ident: 10.1016/j.conengprac.2017.03.013_bib19
  article-title: Repetitive control for systems with uncertain period-time
  publication-title: Automatica
  doi: 10.1016/S0005-1098(02)00134-6
– volume: 7
  start-page: 431
  issue: 2
  year: 2014
  ident: 10.1016/j.conengprac.2017.03.013_bib24
  article-title: Fractional-order repetitive control of programmable ac power sources
  publication-title: IET Power Electron
  doi: 10.1049/iet-pel.2013.0429
– volume: 1
  start-page: 103
  issue: 5
  year: 2012
  ident: 10.1016/j.conengprac.2017.03.013_bib16
  article-title: A fractional delay FIR filter based on Lagrange interpolation of farrow structure
  publication-title: International Journal of Electronics and Electrical Engineering
– ident: 10.1016/j.conengprac.2017.03.013_bib21
– ident: 10.1016/j.conengprac.2017.03.013_bib3
– ident: 10.1016/j.conengprac.2017.03.013_bib22
  doi: 10.1109/CCA.2007.4389352
– volume: 93
  start-page: 1341
  issue: 5
  year: 2013
  ident: 10.1016/j.conengprac.2017.03.013_bib10
  article-title: A method for the design of farrow-structure based variable fractional-delay FIR filters
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2012.11.010
– volume: 10
  start-page: 307
  issue: 10
  year: 2003
  ident: 10.1016/j.conengprac.2017.03.013_bib15
  article-title: An efficient design of a variable fractional delay filter using a first-order differentiator
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2003.815616
– volume: 60
  start-page: 926
  issue: 4
  year: 2013
  ident: 10.1016/j.conengprac.2017.03.013_bib2
  article-title: On the fixed-point implementation of fractional-delay filters based on the farrow structure
  publication-title: IEEE Transactions on Circuits and Systems—I: Regular Papers
  doi: 10.1109/TCSI.2013.2244272
– ident: 10.1016/j.conengprac.2017.03.013_bib4
– volume: 3
  start-page: 184
  issue: 2
  year: 1997
  ident: 10.1016/j.conengprac.2017.03.013_bib13
  article-title: Evaluation and design of filters using a taylor series expansion
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/2945.597800
– volume: 14
  start-page: 17
  issue: 1
  year: 2007
  ident: 10.1016/j.conengprac.2017.03.013_bib5
  article-title: An efficient filtering structure for Lagrange interpolation
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2006.881528
– ident: 10.1016/j.conengprac.2017.03.013_bib1
  doi: 10.1109/ISCAS.2009.5117792
– volume: 7
  start-page: 378
  issue: 3
  year: 2002
  ident: 10.1016/j.conengprac.2017.03.013_bib6
  article-title: Periodic signals with fixed sampling rate
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2002.802730
– volume: 8993
  start-page: 1
  year: 2014
  ident: 10.1016/j.conengprac.2017.03.013_bib23
  article-title: Frequency adaptive selective harmonic control for grid-connected inverters
  publication-title: IEEE Transactions on Power Electronics
– ident: 10.1016/j.conengprac.2017.03.013_bib9
– volume: 84
  start-page: 1209
  issue: 7
  year: 2011
  ident: 10.1016/j.conengprac.2017.03.013_bib8
  article-title: Design and analysis strategies for digital repetitive control systems with time-varying reference/disturbance period
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2010.496871
– volume: 124
  start-page: 110
  year: 2015
  ident: 10.1016/j.conengprac.2017.03.013_bib14
  article-title: Analysis and synthesis of fractional order repetitive control for converrters
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2015.03.005
– ident: 10.1016/j.conengprac.2017.03.013_bib20
– volume: 13
  start-page: 30
  year: 1996
  ident: 10.1016/j.conengprac.2017.03.013_bib12
  article-title: Splitting the unit delay, tools for fractional delay filter design
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/79.482137
– volume: 60
  start-page: 814
  issue: 2
  year: 2013
  ident: 10.1016/j.conengprac.2017.03.013_bib7
  article-title: An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2012.2205364
– ident: 10.1016/j.conengprac.2017.03.013_bib11
  doi: 10.1109/ISCAS.1988.15483
– ident: 10.1016/j.conengprac.2017.03.013_bib18
– volume: 28
  start-page: 2224
  issue: 5
  year: 2013
  ident: 10.1016/j.conengprac.2017.03.013_bib17
  article-title: Repetitive and resonant control for a single-phase grid-connected hybrid cascaded multilevel converter
  publication-title: IEEE Transactions on Power Electronics
  doi: 10.1109/TPEL.2012.2218833
SSID ssj0016991
Score 2.3137212
Snippet Digital repetitive controllers are widely employed to track/reject the periodic signals with zero steady-state error. Their implementation involves the use of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 140
SubjectTerms Finite impulse response
Fractional delay filter
Infinite impulse response
Repetitive controller
Taylor Series expansion
Title Taylor series expansion based repetitive controllers for power converters, subject to fractional delays
URI https://dx.doi.org/10.1016/j.conengprac.2017.03.013
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXvQgPrE-Sg4eXbvZZF94KsVSFXvRQm9hs0lKpdSl3YJe_O3O7KNWEBSEveySsMu3k5kv4ZsZQi5jGyVAM4yjwdU5grmJE4sQnCFLmPVtyP2ia8njMBiMxP3YHzdIr86FQVll5ftLn1546-pJp0Kzk02nnScg3yEETMaw5HpYpFkJEaKVX3-sZR4siMuueTAYs-1ZpeYpNV6w5TTzCeYjocgrLMqdMv5ziNoIO_09slvxRdotP2mfNMz8gOxsVBE8JJNy103RmMySmjdY4HgGRjFCabowGWaSgVejlS59BpSPAlmlGbZIo4XwHJWdyyu6XCk8mKH5K7WLMucB3o6VJN-XR2TUv33uDZyqf4KTwkrNHa1dbkKdMO3CpZS2NkmtiixLhU0085QFeAJwvTAoElx42nAbKGN8Kwzn_Jg054DQCaGeF5kgdaMU6AUKaWKWeIFWacxjJAhRi4Q1ZDKtiotjj4uZrFVkL_ILbIlgS5dLALtF2HpmVhbY-MOcm_qvyG_GIiEO_Dr79F-zz8g23pWK3XPSzBcrcwG8JFftwvDaZKt79zAYfgL1D-cM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF5ED20PpU9qn3voscFsNk96EqlofVyq4G1JsrtiERuMQvvvO2M21kKhhUJOyQ4Jk91vvmy-mSHkPtJhDDRDWRKgznKZHVuRGwAYsphpTwfc23QtGQz9zth9nniTCmmVuTAoqzTYX2D6Bq3NmYbxZiObzRovQL4DCJiMYcn1ANOsalidyquSWrPb6wy3PxP8qGicB-Mx4Z4ZQU8h84KvTrWYYkoS6ryCTcVTxn-OUjuRp31EDg1lpM3iqY5JRS1OyMFOIcFTMi0-vCnOJ5VT9Q5rHLfBKAYpSZcqw2QyADZqpOlzYH0U-CrNsEsa3WjPUdyZP9B8neDeDF29Ub0s0h7g7lhM8iM_I-P206jVsUwLBSuFxbqypLS5CmTMpA1Hkkit41QnoWapq2PJnESDe3xAXxgUutx1pOLaT5TytKs45-ekugAPXRDqOKHyUztMgWGgliZisePLJI14hBwhrJOgdJlITX1xbHMxF6WQ7FV8OVugs4XNBTi7TtjWMitqbPzB5rF8K-LbfBEQCn61vvyX9R3Z64wGfdHvDntXZB-vFALea1JdLdfqBmjKKrk10_AT2MLpvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Taylor+series+expansion+based+repetitive+controllers+for+power+converters%2C+subject+to+fractional+delays&rft.jtitle=Control+engineering+practice&rft.au=Nazir%2C+R.&rft.date=2017-07-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=64&rft.spage=140&rft.epage=147&rft_id=info:doi/10.1016%2Fj.conengprac.2017.03.013&rft.externalDocID=S0967066117300710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon