Review on deep learning techniques for marine object recognition: Architectures and algorithms

Due to the rapid development of deep learning techniques, numerous frameworks including convolutional neural networks (CNNs), deep belief networks (DBNs) and auto-encoder (AE), etc., have been established. In this context, advances in marine object recognition have been dramatically boosted, especia...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 118; p. 104458
Main Authors Wang, Ning, Wang, Yuanyuan, Er, Meng Joo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2022
Subjects
Online AccessGet full text
ISSN0967-0661
1873-6939
DOI10.1016/j.conengprac.2020.104458

Cover

Loading…
Abstract Due to the rapid development of deep learning techniques, numerous frameworks including convolutional neural networks (CNNs), deep belief networks (DBNs) and auto-encoder (AE), etc., have been established. In this context, advances in marine object recognition have been dramatically boosted, especially in the past decade. In this paper, we exclusively focus on an intensive review on deep-learning-based object recognition for both surface and underwater targets. To facilitate a comprehensive review, key concepts and typical architectures are firstly summarized in a unified framework. Accordingly, popular/benchmark datasets for marine object recognition are thoroughly collected and deep learning methodologies are comprehensively analyzed with intensive comparisons. Moreover, experimental results and futuristic trends in marine object recognition are intensively discussed. Finally, conclusions on state-of-the-art marine object recognition using deep learning techniques are drawn.
AbstractList Due to the rapid development of deep learning techniques, numerous frameworks including convolutional neural networks (CNNs), deep belief networks (DBNs) and auto-encoder (AE), etc., have been established. In this context, advances in marine object recognition have been dramatically boosted, especially in the past decade. In this paper, we exclusively focus on an intensive review on deep-learning-based object recognition for both surface and underwater targets. To facilitate a comprehensive review, key concepts and typical architectures are firstly summarized in a unified framework. Accordingly, popular/benchmark datasets for marine object recognition are thoroughly collected and deep learning methodologies are comprehensively analyzed with intensive comparisons. Moreover, experimental results and futuristic trends in marine object recognition are intensively discussed. Finally, conclusions on state-of-the-art marine object recognition using deep learning techniques are drawn.
ArticleNumber 104458
Author Wang, Yuanyuan
Wang, Ning
Er, Meng Joo
Author_xml – sequence: 1
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
  email: n.wang@ieee.org
– sequence: 2
  givenname: Yuanyuan
  surname: Wang
  fullname: Wang, Yuanyuan
– sequence: 3
  givenname: Meng Joo
  surname: Er
  fullname: Er, Meng Joo
BookMark eNqNkF9LwzAUxYMouE2_Q75AZ9I2beODMIf_YCCIvhrS5LbL6JKZZIrf3pQJgi_6dOFwzuGe3xQdW2cBIUzJnBJaXWzmKgm233mp5jnJR7ksWXOEJrSpi6ziBT9GE8KrOiNVRU_RNIQNSVHO6QS9PsG7gQ_sLNYAOzyA9NbYHkdQa2ve9hBw5zzeSm8sYNduQEXsQbnemmicvcQLr9Ym2ePeJ7O0Gsuhd97E9TacoZNODgHOv-8MvdzePC_vs9Xj3cNyscpUQZuYKQmcMqbrVleK8Za3eZ6XkuU10FqzDmrWEk15UzXAClJWjSQEGGtlQwoJZTFDzaFXeReCh07svEk_fwpKxMhJbMQPJzFyEgdOKXr1K6pMlOO06KUZ_lNwfSiANDDB9CIoA1aBNolTFNqZv0u-AKBZjzg
CitedBy_id crossref_primary_10_3390_make6010024
crossref_primary_10_1002_rob_22378
crossref_primary_10_1016_j_ifacol_2024_09_288
crossref_primary_10_1109_TITS_2023_3322192
crossref_primary_10_1109_TITS_2024_3380812
crossref_primary_10_3389_fmars_2023_1162064
crossref_primary_10_3390_electronics13183615
crossref_primary_10_1007_s13198_021_01152_5
crossref_primary_10_1016_j_engappai_2024_109754
crossref_primary_10_1109_JSTARS_2024_3521036
crossref_primary_10_1177_14750902221096984
crossref_primary_10_1016_j_neucom_2023_01_056
crossref_primary_10_3390_rs16091545
crossref_primary_10_1088_2632_2153_acdb30
crossref_primary_10_1177_14750902221096221
crossref_primary_10_1088_1741_2552_acb295
crossref_primary_10_7717_peerj_cs_666
crossref_primary_10_1016_j_measen_2024_101805
crossref_primary_10_1109_ACCESS_2025_3525952
crossref_primary_10_1109_JSEN_2024_3394703
crossref_primary_10_3390_math12010168
crossref_primary_10_4018_IJSI_315655
crossref_primary_10_1007_s11760_024_03293_z
crossref_primary_10_1007_s42979_024_02847_9
crossref_primary_10_1109_TITS_2024_3394573
crossref_primary_10_1109_TITS_2024_3398733
crossref_primary_10_1109_LSP_2024_3417345
crossref_primary_10_2478_amns_2024_2304
crossref_primary_10_3390_app14041489
crossref_primary_10_1016_j_inffus_2024_102429
crossref_primary_10_1109_TAI_2024_3385387
crossref_primary_10_1109_JIOT_2024_3361938
crossref_primary_10_1049_ipr2_13158
crossref_primary_10_1016_j_engappai_2023_106532
crossref_primary_10_1061_JPEODX_PVENG_1503
crossref_primary_10_1109_TITS_2024_3415772
crossref_primary_10_2478_ttj_2022_0005
crossref_primary_10_3390_jmse9040397
crossref_primary_10_1016_j_cosrev_2025_100736
crossref_primary_10_1595_205651324X17125869817025
crossref_primary_10_1109_TITS_2022_3168806
crossref_primary_10_1109_TIE_2021_3070512
crossref_primary_10_54105_ijcgm_C7264_082222
crossref_primary_10_1016_j_inffus_2024_102361
crossref_primary_10_1016_j_dajour_2023_100230
crossref_primary_10_1016_j_engappai_2024_108858
crossref_primary_10_1016_j_conengprac_2020_104650
crossref_primary_10_1109_TITS_2024_3454016
crossref_primary_10_1007_s10489_022_03622_0
crossref_primary_10_1016_j_snb_2022_132489
crossref_primary_10_3390_sym13020262
crossref_primary_10_1049_ipr2_12935
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_1109_MITS_2022_3198334
crossref_primary_10_3390_jmse11030677
crossref_primary_10_3389_fmars_2022_1070638
crossref_primary_10_1016_j_oceaneng_2025_120917
crossref_primary_10_1109_ACCESS_2025_3534098
crossref_primary_10_3390_jmse9080884
crossref_primary_10_1007_s00530_023_01233_4
crossref_primary_10_1016_j_measen_2024_101025
crossref_primary_10_1109_TCSVT_2024_3486756
crossref_primary_10_3389_fmars_2023_1138013
crossref_primary_10_1007_s00521_024_09660_8
crossref_primary_10_3389_fmars_2023_1174347
crossref_primary_10_1016_j_conengprac_2023_105529
crossref_primary_10_1142_S0218126622400059
crossref_primary_10_1155_2024_5548146
crossref_primary_10_3390_bdcc8100135
crossref_primary_10_3390_rs15245759
crossref_primary_10_3390_electronics13132522
crossref_primary_10_3390_s22239163
crossref_primary_10_1109_TETCI_2024_3518613
crossref_primary_10_3390_s22145383
crossref_primary_10_3389_fevo_2023_1257542
crossref_primary_10_1364_OE_524714
crossref_primary_10_3390_jimaging8070182
crossref_primary_10_1155_2022_5277805
crossref_primary_10_1016_j_oceaneng_2023_115890
crossref_primary_10_1142_S0219691323500078
crossref_primary_10_1016_j_oceaneng_2023_115255
crossref_primary_10_1007_s11227_021_04161_0
crossref_primary_10_3389_fmars_2022_1058401
crossref_primary_10_1016_j_apor_2023_103835
crossref_primary_10_1016_j_conengprac_2023_105627
crossref_primary_10_1007_s40747_022_00683_z
crossref_primary_10_1109_JSEN_2023_3259471
crossref_primary_10_3389_fmars_2023_1150593
crossref_primary_10_1109_ACCESS_2024_3417391
crossref_primary_10_1016_j_atech_2024_100497
crossref_primary_10_1016_j_engappai_2025_110132
crossref_primary_10_1016_j_conengprac_2020_104673
crossref_primary_10_3390_s21051807
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1016_j_neucom_2023_02_018
Cites_doi 10.1109/TCYB.2017.2749239
10.1109/TGRS.2010.2046330
10.1016/j.eswa.2014.03.033
10.1016/j.ijleo.2017.07.039
10.1109/TGRS.2016.2551720
10.1145/1345448.1345465
10.1016/j.neucom.2017.02.016
10.5220/0005979503110318
10.1007/BF00344251
10.1109/TNNLS.2013.2296048
10.1109/TGRS.2017.2776357
10.1016/S0168-1699(00)00181-2
10.1109/TGRS.2016.2572736
10.1162/neco.2006.18.7.1527
10.1109/LGRS.2018.2792683
10.1007/s11263-015-0816-y
10.1016/j.neucom.2018.05.074
10.3788/OPE.20172511.2939
10.1109/LGRS.2017.2780843
10.1162/neco.1989.1.4.541
10.1016/0893-6080(95)00080-1
10.1080/01431161.2010.512310
10.5194/isprs-archives-XLI-B7-423-2016
10.1109/LGRS.2013.2273552
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2015.7298594
10.1109/TPAMI.2008.137
10.1109/ACCESS.2018.2820326
10.1109/LGRS.2013.2272492
10.1016/j.neucom.2014.06.089
10.1109/LGRS.2015.2408355
10.1109/TNNLS.2014.2334366
10.1007/s11042-017-4585-1
10.1016/j.neucom.2019.10.066
10.1109/TITS.2011.2173196
10.1109/JSSC.2013.2280238
10.1109/TCYB.2014.2382679
10.1109/LGRS.2009.2031826
10.1002/aic.14663
10.1109/TITS.2008.922938
10.1109/TGRS.2013.2282355
10.1007/s11370-011-0096-5
10.1007/BF00994018
10.1007/s00521-018-3468-3
10.1109/ICCV.2019.00502
10.1109/TGRS.2014.2335751
10.1016/j.neucom.2017.09.044
10.1016/j.patcog.2010.09.020
10.1016/j.patcog.2018.03.035
10.1108/02602280510585745
10.1109/LGRS.2017.2734889
10.1007/s11042-018-6912-6
10.1109/TSMCB.2011.2168604
10.1038/nature14539
10.3390/rs9050498
10.1109/TII.2018.2809730
10.1109/ICCV.2015.123
10.1109/5.726791
10.1109/LGRS.2017.2717486
10.1016/j.neucom.2009.05.006
10.1016/j.neucom.2016.12.038
10.1109/LGRS.2014.2319082
10.1109/TKDE.2009.191
10.1207/s15516709cog0000_76
10.1109/LGRS.2015.2432135
10.1016/j.neucom.2015.10.122
10.3390/rs11161921
10.1016/j.oceaneng.2019.106341
10.1109/CVPR.2015.7298965
10.1007/s11802-019-3858-x
10.1109/JSTARS.2015.2404578
10.1016/j.arcontrol.2016.04.018
10.1145/1390156.1390294
10.1016/j.neucom.2013.01.062
10.1016/j.neucom.2015.09.036
10.1016/j.conengprac.2004.08.002
10.1145/2833258.2833266
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2020.104458
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
ExternalDocumentID 10_1016_j_conengprac_2020_104458
S0967066120300964
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c318t-cae9155d7bd6c59b9b2224a527e17d5fe75b0d19868e530468a00e55ba803ae43
IEDL.DBID .~1
ISSN 0967-0661
IngestDate Tue Jul 01 00:39:05 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Fri Feb 23 02:42:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Marine object recognition
Marine vehicles
Learning architecture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-cae9155d7bd6c59b9b2224a527e17d5fe75b0d19868e530468a00e55ba803ae43
ParticipantIDs crossref_primary_10_1016_j_conengprac_2020_104458
crossref_citationtrail_10_1016_j_conengprac_2020_104458
elsevier_sciencedirect_doi_10_1016_j_conengprac_2020_104458
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Control engineering practice
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhu, Hui, Wang, Guo (b128) 2010; 48
Hu, Shen, Albanie, Sun, Wu (b31) 2017
Ioffe, Szegedy (b33) 2015
Lang, Wu (b39) 2017; 14
Chen, Xu (b12) 2017
Zeiler, Taylor, Fergus (b122) 2012
Liu, Zhang, Yu, Yuan (b52) 2016; 41
Liu, Yu, Lv (b50) 2011; 26
Tang, Deng, Huang, Zhao (b90) 2014; 53
Liu, Wen, Yu, Li, Raj, Song (b49) 2017
Wang, Er, Han (b94) 2014; 25
Hinton, Osindero, Welling, Teh (b30) 2006; 30
He, Zhang, Ren, Jian (b27) 2016
Wang, Sun, Liu (b100) 2016; 173
Qi, Ma, Lin, Li, Tian (b71) 2015; 12
Yang, Yu, Liang, Guo, Xia, Zhang (b113) 2018; 31
Zou, Wang, Yang, Zhou, Chen, Song (b130) 2015; 151
Erhan, Berkan, Veysel, Aykut (b19) 2016
Ødegaard, Knapskog, Cochin, Louvigne (b64) 2016
Qin, Chen, Sun (b72) 2019
Wei, Qiu, Karimi (b103) 2018; 1
Xavier, G., Antoine, B., & Yoshua, B. (2011). Deep sparse rectifier neural networks. In
Guo, Xia, Wang (b25) 2014; 41
Xu, Sun, Zhang, Fu (b109) 2014; 11
Zou, Shi (b129) 2016; 54
Yang, Li, Ji, Gao, Xu (b112) 2013; 11
Lines, Tillett, Ross, Chan, Hockaday, McFarlane (b46) 2001; 31
Graves, Liwicki, Fernández, Bertolami, Schmidhuber (b22) 2009; 31
Lang, Wu, Xu (b40) 2018; 15
Mian, Bennamoun, Owens (b62) 2005; 25
Qin, Xiu, Jian, Peng, Zhang (b74) 2016; 187
(pp. 1026–1034).
Malmgren-Hansen, Kusk, Dall, Nielsen, Engholm, Skriver (b59) 2017; 14
Qin, Chen, Sun, Chen (b73) 2019
Liu, Zhang, Zheng, Sun, Fu, Wang (b53) 2013; 11
Oh, Kim, Nam, Yoo (b65) 2013; 48
Zhang, Wang, Xu, Wang, Xu (b125) 2018; 311
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
Huang, Zhou, Ding, Zhang (b32) 2012; 42
Krizhevsky, Sutskever, Hinton (b37) 2012; 25
Proia, Page (b70) 2010; 7
Waxman, Seibert, Gove, Fay, Bernardon, Lazott (b102) 1995; 8
Guo, Chen (b23) 2017
Lecun, Boser, Denker, Henderson, Howard, Hubbard (b42) 1989; 1
Cortes, Vapnik (b15) 1995; 20
Sherrah (b83) 2016
Yokoya, Iwasaki (b114) 2015; 8
Liu, Shen, Ma, Zhang (b47) 2017; 25
Ma, Wen, Liang (b58) 2013
Corbane, Najman, Pecoul, Demagistri, Petit (b13) 2010; 31
Wang, Er, Han (b95) 2015; 26
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., & Anguelov, D., et al. (2015). Going deeper with convolutions. In
Singh, Mittal, Bhatia (b86) 2019; 78
(pp. 1–9).
Yang, Dong, Sun, Lima, Mu, Wang (b111) 2017; 15
He, K., Girshick, R., & Dollár, P. (2019). Rethinking imagenet pre-training. In
Cao, Gao, Chen, Wang (b10) 2019; 1
Corbane, Pecoul, Demagistri, Petit (b14) 2008
Zeiler, Fergus (b120) 2014
Qiu, Gong, Ma, Sun (b76) 2018
Vilches, Escobar, Vallejo, Taylor (b92) 2006
Ren, He, Girshick, Sun (b78) 2015; 39
Li, Song, Qin, Hao (b45) 2018; 81
Wang, Er, Han (b96) 2015; 45
Rajurkar (b77) 2015; 3
Zhang, Yao, Zhang, Feng, Zhang (b126) 2016; 41
Sharma, Singh, Khurana (b82) 2016
Chen, Wang, Feng, Jin (b11) 2016; 54
Daoduc, C., Xiaohui, H., & Morère, O. (2015). Maritime vessel images classification using deep convolutional neural networks. In
Ma, Khatibisepehr, Huang (b57) 2015; 61
Shi, Yu, Jiang, Li (b84) 2014; 52
Liu, Wang, Liu, Zeng, Liu, Alsaadi (b48) 2017; 234
Xu, Zhang, Yang, Niu (b110) 2016
Wang, Ouyang, Li, Zhang (b99) 2019; 18
Anagnostopoulos, Anagnostopoulos, Ioannis, Loumos, Kayafas (b2) 2008; 9
Lecun, Bottou, Bengio, Haffner (b44) 1998; 86
Jin, Hong (b35) 2017
Teutsch, Krüger (b91) 2010
Wang, Han, Dong, Er (b98) 2014; 128
Pöyhönen, Arkkio, Jover, H. (b69) 2005; 13
Lecun, Boser, Denker, Henderson, Jackel (b43) 1997; 2
Liu, Yuan, Weng, Yang (b51) 2017
Bucak, Jin, Jain (b9) 2013; 36
(pp. 3431–3440).
Karlik, Olgac (b36) 2011; 1
van den Broek, Bouma, Hollander, Veerman, Benoist, Schwering (b8) 2014
Duo, Wang, Wang (b18) 2019; 11
(pp. 315–323).
Borkar, Hayes, Smith (b7) 2012; 13
Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In
Fu, Liu, Zhou, Sun, Zhang (b20) 2017; 9
(pp. 276–281).
Fukushima (b21) 1980; 36
Lecun, Bengio, Hinton (b41) 2015; 521
Ji, Xing, Chen, Zou, Chen (b34) 2013
Ouadiay, F. Z., Zrira, N., Bouyakhf, E. H., & Himmi, M. M. (2016). 3D object categorization and recognition based on deep belief networks and point clouds. In
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In
Ayadi, Kamel, Karray (b3) 2011; 44
(pp. 807–814).
Pei, Huang, Huo, Zhang, Yang, Yeo (b68) 2017; 56
Richard, Brody, Bharath, Christopher, Andrew (b79) 2012
Bejiga, Zeggada, Melgani (b5) 2016
Pan, Yang (b67) 2009; 22
Yuan, Huang, Wang, Yang, Gui (b117) 2018; 14
Guo, Xia (b24) 2017; 145
Sommer, Schumann, Muller, Schuchert, Beyerer (b87) 2017
(pp. 4918–4927).
Luo, Wan (b56) 2013
Qin, Yu, Zhu, Deng (b75) 2020; 378
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. In
Alberto, Sergio, Sergiu, Victor, Jose (b1) 2017
Ducournau, Fablet (b17) 2016
Xiang, Kim, Chen, Ji, Choy, Su (b107) 2016
Zabidi, Mustapa, Mokji, Marsono, Sha’ameri (b119) 2009
Bell, Koren (b6) 2007; 9
Sun, Shi, Liu, Dong, Plant, Wang (b88) 2017; 275
Zhang, Choi, Daniilidis, Wolf, Kanan (b123) 2015
Wang, Er, Meng (b97) 2009; 72
Kumlu, Jenkins (b38) 2013
Zhao, Wang, Yuan (b127) 2016; 38
Aziz, Bouchara (b4) 2018
Wang, Wang (b101) 2011; 28
Zeiler, Krishnan, Taylor, Fergus (b121) 2010
Yosinski, Clune, Bengio, Lipson (b115) 2014
Zhang, He, Liu (b124) 2017; 239
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on Imagenet classification. In
(pp. 311–318).
Wei, Qiu, Shi, Ligang (b104) 2018; 48
Yuh, Marani, Blidberg (b118) 2011; 4
Withagen, Schutte, Vossepoel, Breuers (b105) 1999
(pp. 1096–1103).
Hinton, Osindero, Teh (b29) 2006; 18
Xiong, Ding, Deng, Fang, Gong (b108) 2018
Mao, Shen, Yang (b60) 2016
Yu, Guan, Zheng (b116) 2015; 12
(pp. 833–840).
Russakovsky, Deng, Su, Krause, Satheesh, Ma (b81) 2015; 115
Simonyan, Zisserman (b85) 2014
Lu, Li, Uemura, Ge, Xu, He (b55) 2018; 77
Meng, Hirayama, Oyanagi (b61) 2018; 6
10.1016/j.conengprac.2020.104458_b54
Zhang (10.1016/j.conengprac.2020.104458_b123) 2015
Xiang (10.1016/j.conengprac.2020.104458_b107) 2016
Sun (10.1016/j.conengprac.2020.104458_b88) 2017; 275
Krizhevsky (10.1016/j.conengprac.2020.104458_b37) 2012; 25
Ren (10.1016/j.conengprac.2020.104458_b78) 2015; 39
Yang (10.1016/j.conengprac.2020.104458_b113) 2018; 31
Liu (10.1016/j.conengprac.2020.104458_b53) 2013; 11
Ducournau (10.1016/j.conengprac.2020.104458_b17) 2016
Huang (10.1016/j.conengprac.2020.104458_b32) 2012; 42
Bejiga (10.1016/j.conengprac.2020.104458_b5) 2016
Anagnostopoulos (10.1016/j.conengprac.2020.104458_b2) 2008; 9
Qi (10.1016/j.conengprac.2020.104458_b71) 2015; 12
Ji (10.1016/j.conengprac.2020.104458_b34) 2013
Graves (10.1016/j.conengprac.2020.104458_b22) 2009; 31
Kumlu (10.1016/j.conengprac.2020.104458_b38) 2013
Sherrah (10.1016/j.conengprac.2020.104458_b83) 2016
Teutsch (10.1016/j.conengprac.2020.104458_b91) 2010
Wang (10.1016/j.conengprac.2020.104458_b94) 2014; 25
Guo (10.1016/j.conengprac.2020.104458_b25) 2014; 41
Corbane (10.1016/j.conengprac.2020.104458_b13) 2010; 31
Meng (10.1016/j.conengprac.2020.104458_b61) 2018; 6
Qin (10.1016/j.conengprac.2020.104458_b75) 2020; 378
Qin (10.1016/j.conengprac.2020.104458_b74) 2016; 187
Cortes (10.1016/j.conengprac.2020.104458_b15) 1995; 20
Chen (10.1016/j.conengprac.2020.104458_b12) 2017
Hinton (10.1016/j.conengprac.2020.104458_b30) 2006; 30
Oh (10.1016/j.conengprac.2020.104458_b65) 2013; 48
Cao (10.1016/j.conengprac.2020.104458_b10) 2019; 1
Zhao (10.1016/j.conengprac.2020.104458_b127) 2016; 38
Shi (10.1016/j.conengprac.2020.104458_b84) 2014; 52
Jin (10.1016/j.conengprac.2020.104458_b35) 2017
Hinton (10.1016/j.conengprac.2020.104458_b29) 2006; 18
Lecun (10.1016/j.conengprac.2020.104458_b43) 1997; 2
Zhang (10.1016/j.conengprac.2020.104458_b124) 2017; 239
Lecun (10.1016/j.conengprac.2020.104458_b44) 1998; 86
Wang (10.1016/j.conengprac.2020.104458_b101) 2011; 28
Wei (10.1016/j.conengprac.2020.104458_b103) 2018; 1
Liu (10.1016/j.conengprac.2020.104458_b51) 2017
van den Broek (10.1016/j.conengprac.2020.104458_b8) 2014
Bucak (10.1016/j.conengprac.2020.104458_b9) 2013; 36
Yokoya (10.1016/j.conengprac.2020.104458_b114) 2015; 8
Zeiler (10.1016/j.conengprac.2020.104458_b121) 2010
Zhang (10.1016/j.conengprac.2020.104458_b125) 2018; 311
Pei (10.1016/j.conengprac.2020.104458_b68) 2017; 56
Richard (10.1016/j.conengprac.2020.104458_b79) 2012
Wang (10.1016/j.conengprac.2020.104458_b95) 2015; 26
Yosinski (10.1016/j.conengprac.2020.104458_b115) 2014
Borkar (10.1016/j.conengprac.2020.104458_b7) 2012; 13
Vilches (10.1016/j.conengprac.2020.104458_b92) 2006
Alberto (10.1016/j.conengprac.2020.104458_b1) 2017
Chen (10.1016/j.conengprac.2020.104458_b11) 2016; 54
Mao (10.1016/j.conengprac.2020.104458_b60) 2016
Russakovsky (10.1016/j.conengprac.2020.104458_b81) 2015; 115
He (10.1016/j.conengprac.2020.104458_b27) 2016
10.1016/j.conengprac.2020.104458_b66
10.1016/j.conengprac.2020.104458_b106
Singh (10.1016/j.conengprac.2020.104458_b86) 2019; 78
Qiu (10.1016/j.conengprac.2020.104458_b76) 2018
Fu (10.1016/j.conengprac.2020.104458_b20) 2017; 9
Liu (10.1016/j.conengprac.2020.104458_b52) 2016; 41
Hu (10.1016/j.conengprac.2020.104458_b31) 2017
10.1016/j.conengprac.2020.104458_b63
Lu (10.1016/j.conengprac.2020.104458_b55) 2018; 77
Malmgren-Hansen (10.1016/j.conengprac.2020.104458_b59) 2017; 14
Luo (10.1016/j.conengprac.2020.104458_b56) 2013
Yang (10.1016/j.conengprac.2020.104458_b111) 2017; 15
Sommer (10.1016/j.conengprac.2020.104458_b87) 2017
Erhan (10.1016/j.conengprac.2020.104458_b19) 2016
Ødegaard (10.1016/j.conengprac.2020.104458_b64) 2016
Zeiler (10.1016/j.conengprac.2020.104458_b120) 2014
Wang (10.1016/j.conengprac.2020.104458_b97) 2009; 72
Aziz (10.1016/j.conengprac.2020.104458_b4) 2018
10.1016/j.conengprac.2020.104458_b16
Yuh (10.1016/j.conengprac.2020.104458_b118) 2011; 4
Ioffe (10.1016/j.conengprac.2020.104458_b33) 2015
10.1016/j.conengprac.2020.104458_b93
Mian (10.1016/j.conengprac.2020.104458_b62) 2005; 25
Xu (10.1016/j.conengprac.2020.104458_b110) 2016
Zhu (10.1016/j.conengprac.2020.104458_b128) 2010; 48
Zabidi (10.1016/j.conengprac.2020.104458_b119) 2009
Wang (10.1016/j.conengprac.2020.104458_b98) 2014; 128
Xiong (10.1016/j.conengprac.2020.104458_b108) 2018
Ayadi (10.1016/j.conengprac.2020.104458_b3) 2011; 44
10.1016/j.conengprac.2020.104458_b89
Yang (10.1016/j.conengprac.2020.104458_b112) 2013; 11
Wei (10.1016/j.conengprac.2020.104458_b104) 2018; 48
10.1016/j.conengprac.2020.104458_b80
Simonyan (10.1016/j.conengprac.2020.104458_b85) 2014
Guo (10.1016/j.conengprac.2020.104458_b23) 2017
Karlik (10.1016/j.conengprac.2020.104458_b36) 2011; 1
Zeiler (10.1016/j.conengprac.2020.104458_b122) 2012
Wang (10.1016/j.conengprac.2020.104458_b100) 2016; 173
Wang (10.1016/j.conengprac.2020.104458_b96) 2015; 45
Liu (10.1016/j.conengprac.2020.104458_b48) 2017; 234
Bell (10.1016/j.conengprac.2020.104458_b6) 2007; 9
Tang (10.1016/j.conengprac.2020.104458_b90) 2014; 53
Lecun (10.1016/j.conengprac.2020.104458_b41) 2015; 521
Li (10.1016/j.conengprac.2020.104458_b45) 2018; 81
Withagen (10.1016/j.conengprac.2020.104458_b105) 1999
Qin (10.1016/j.conengprac.2020.104458_b72) 2019
Ma (10.1016/j.conengprac.2020.104458_b58) 2013
Lang (10.1016/j.conengprac.2020.104458_b39) 2017; 14
Lines (10.1016/j.conengprac.2020.104458_b46) 2001; 31
Zhang (10.1016/j.conengprac.2020.104458_b126) 2016; 41
Qin (10.1016/j.conengprac.2020.104458_b73) 2019
Duo (10.1016/j.conengprac.2020.104458_b18) 2019; 11
Yuan (10.1016/j.conengprac.2020.104458_b117) 2018; 14
Corbane (10.1016/j.conengprac.2020.104458_b14) 2008
Liu (10.1016/j.conengprac.2020.104458_b50) 2011; 26
Zou (10.1016/j.conengprac.2020.104458_b129) 2016; 54
Proia (10.1016/j.conengprac.2020.104458_b70) 2010; 7
Guo (10.1016/j.conengprac.2020.104458_b24) 2017; 145
Rajurkar (10.1016/j.conengprac.2020.104458_b77) 2015; 3
10.1016/j.conengprac.2020.104458_b26
Pöyhönen (10.1016/j.conengprac.2020.104458_b69) 2005; 13
10.1016/j.conengprac.2020.104458_b28
Liu (10.1016/j.conengprac.2020.104458_b47) 2017; 25
Sharma (10.1016/j.conengprac.2020.104458_b82) 2016
Zou (10.1016/j.conengprac.2020.104458_b130) 2015; 151
Lang (10.1016/j.conengprac.2020.104458_b40) 2018; 15
Lecun (10.1016/j.conengprac.2020.104458_b42) 1989; 1
Liu (10.1016/j.conengprac.2020.104458_b49) 2017
Wang (10.1016/j.conengprac.2020.104458_b99) 2019; 18
Fukushima (10.1016/j.conengprac.2020.104458_b21) 1980; 36
Waxman (10.1016/j.conengprac.2020.104458_b102) 1995; 8
Yu (10.1016/j.conengprac.2020.104458_b116) 2015; 12
Xu (10.1016/j.conengprac.2020.104458_b109) 2014; 11
Pan (10.1016/j.conengprac.2020.104458_b67) 2009; 22
Ma (10.1016/j.conengprac.2020.104458_b57) 2015; 61
References_xml – start-page: 2589
  year: 2013
  end-page: 2592
  ident: b34
  article-title: Ship classification in TerraSAR-X SAR images based on classifier combination
  publication-title: 2013 IEEE international geoscience and remote sensing symposium-IGARSS
– reference: (pp. 311–318).
– volume: 13
  start-page: 365
  year: 2012
  end-page: 374
  ident: b7
  article-title: A novel lane detection system with efficient ground truth generation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b81
  article-title: Imagenet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
– start-page: 436
  year: 2013
  end-page: 444
  ident: b58
  article-title: Video image clarity algorithm research of USV visual system under the sea fog
  publication-title: International conference in swarm intelligence
– volume: 52
  start-page: 4511
  year: 2014
  end-page: 4523
  ident: b84
  article-title: Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 160
  year: 2016
  end-page: 176
  ident: b107
  article-title: Objectnet3D: A large scale database for 3D object recognition
  publication-title: European conference on computer vision
– reference: (pp. 1096–1103).
– volume: 378
  start-page: 295
  year: 2020
  end-page: 303
  ident: b75
  article-title: An expectation-maximization based single-beacon underwater navigation method with unknown ESV
  publication-title: Neurocomputing
– volume: 9
  start-page: 377
  year: 2008
  end-page: 391
  ident: b2
  article-title: License plate recognition from still images and video sequences: A survey
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Ouadiay, F. Z., Zrira, N., Bouyakhf, E. H., & Himmi, M. M. (2016). 3D object categorization and recognition based on deep belief networks and point clouds. In
– volume: 151
  start-page: 603
  year: 2015
  end-page: 611
  ident: b130
  article-title: Supervised feature learning via l2-norm regularized logistic regression for 3D object recognition
  publication-title: Neurocomputing
– reference: Daoduc, C., Xiaohui, H., & Morère, O. (2015). Maritime vessel images classification using deep convolutional neural networks. In
– volume: 61
  start-page: 518
  year: 2015
  end-page: 529
  ident: b57
  article-title: A Bayesian framework for real-time identification of locally weighted partial least squares
  publication-title: AIChE Journal
– start-page: 524
  year: 2016
  end-page: 530
  ident: b82
  article-title: Analytical review on object segmentation and recognition
  publication-title: 2016 6th international conference - Cloud system and big data engineering (Confluence)
– volume: 72
  start-page: 3818
  year: 2009
  end-page: 3829
  ident: b97
  article-title: A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks
  publication-title: Neurocomputing
– volume: 14
  start-page: 1484
  year: 2017
  end-page: 1488
  ident: b59
  article-title: Improving SAR automatic target recognition models with transfer learning from simulated data
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 3
  start-page: 28
  year: 2015
  end-page: 30
  ident: b77
  article-title: Visual object recognition using image mining approach: A review
  publication-title: International Journal of Computer and Communication Engineering Research
– volume: 311
  start-page: 363
  year: 2018
  end-page: 372
  ident: b125
  article-title: The augmented complex-valued extreme learning machine
  publication-title: Neurocomputing
– volume: 18
  start-page: 376
  year: 2019
  end-page: 382
  ident: b99
  article-title: Underwater object recognition based on deep encoding-decoding network
  publication-title: Journal of Ocean University of China
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: b48
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– year: 2016
  ident: b83
  article-title: Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery
– start-page: 1019
  year: 2013
  end-page: 1023
  ident: b56
  article-title: A novel efficient method for training sparse auto-encoders
  publication-title: 2013 6th international congress on image and signal processing
– reference: Xavier, G., Antoine, B., & Yoshua, B. (2011). Deep sparse rectifier neural networks. In
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on Imagenet classification. In
– volume: 9
  start-page: 75
  year: 2007
  end-page: 79
  ident: b6
  article-title: Lessons from the netflix prize challenge
  publication-title: Acm Sigkdd Explorations Newsletter
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b41
  article-title: Deep learning
  publication-title: Nature
– volume: 9
  start-page: 498
  year: 2017
  end-page: 519
  ident: b20
  article-title: Classification for high resolution remote sensing imagery using a fully convolutional network
  publication-title: Remote Sensing
– year: 2018
  ident: b108
  article-title: Ship detection under complex sea and weather conditions based on deep learning
  publication-title: Journal of Computer Applications
– volume: 8
  start-page: 1029
  year: 1995
  end-page: 1051
  ident: b102
  article-title: Neural processing of targets in visible, multispectral IR and SAR imagery
  publication-title: Neural Networks
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: b32
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– volume: 11
  start-page: 1921
  year: 2019
  ident: b18
  article-title: Oceanic mesoscale eddy detection method based on deep learning
  publication-title: Remote Sensing
– reference: (pp. 276–281).
– reference: Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In
– volume: 53
  start-page: 1174
  year: 2014
  end-page: 1185
  ident: b90
  article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. In
– volume: 1
  start-page: 111
  year: 2011
  end-page: 122
  ident: b36
  article-title: Performance analysis of various activation functions in generalized MLP architectures of neural network
  publication-title: International Journal of Artificial Intelligence and Expert System
– volume: 187
  start-page: 49
  year: 2016
  end-page: 58
  ident: b74
  article-title: DeepFish: Accurate underwater live fish recognition with a deep architecture
  publication-title: Neurocomputing
– volume: 41
  start-page: 423
  year: 2016
  end-page: 430
  ident: b126
  article-title: S-CNN-based ship detection from high-resolution remote sensing images
  publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– start-page: 235
  year: 2018
  end-page: 244
  ident: b4
  article-title: Multimodal deep learning for robust recognizing maritime imagery in the visible and infrared spectrums
  publication-title: International conference image analysis and recognition
– start-page: 165
  year: 2016
  end-page: 180
  ident: b19
  article-title: MARVEL: A large-scale image dataset for maritime vessels
  publication-title: Asian conference on computer vision
– start-page: 212
  year: 2017
  end-page: 220
  ident: b49
  article-title: SphereFace: Deep hypersphere embedding for face recognition
  publication-title: The IEEE conference on computer vision and pattern recognition
– volume: 48
  start-page: 3446
  year: 2010
  end-page: 3456
  ident: b128
  article-title: A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b44
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– start-page: 1
  year: 2017
  end-page: 4
  ident: b23
  article-title: SAR image target recognition via deep Bayesian generative network
  publication-title: 2017 international workshop on remote sensing with intelligent processing
– volume: 25
  start-page: 2939
  year: 2017
  end-page: 2946
  ident: b47
  article-title: Ship recognition based on multi-band deep neural network
  publication-title: Optics and Precision Engineering
– volume: 2
  start-page: 396
  year: 1997
  end-page: 404
  ident: b43
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Advances in Neural Information Processing Systems
– volume: 36
  start-page: 1354
  year: 2013
  end-page: 1369
  ident: b9
  article-title: Multiple kernel learning for visual object recognition: A review
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 26
  start-page: 1161
  year: 2015
  end-page: 1176
  ident: b95
  article-title: Generalized single-hidden layer feedforward networks for regression problems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 11
  start-page: 617
  year: 2013
  end-page: 621
  ident: b53
  article-title: A new method on inshore ship detection in high-resolution satellite images using shape and context information
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 44
  start-page: 572
  year: 2011
  end-page: 587
  ident: b3
  article-title: Survey on speech emotion recognition: Features, classification schemes, and databases
  publication-title: Pattern Recognition
– start-page: 86610M
  year: 2013
  ident: b38
  article-title: Autonomous ship classification using synthetic and real color images
  publication-title: Image processing: Machine vision applications VI
– volume: 41
  start-page: 71
  year: 2016
  end-page: 93
  ident: b52
  article-title: Unmanned surface vehicles: An overview of developments and challenges
  publication-title: Annual Reviews in Control
– start-page: 180
  year: 1999
  end-page: 187
  ident: b105
  article-title: Automatic classification of ships from infrared (FLIR) images
  publication-title: Signal processing, sensor fusion, and target recognition VIII
– reference: Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In
– volume: 38
  start-page: 119
  year: 2016
  end-page: 123
  ident: b127
  article-title: Research on ship recognition method based on deep convolutional neural network
  publication-title: Ship Science and Technology
– volume: 31
  start-page: 6469
  year: 2018
  end-page: 6478
  ident: b113
  article-title: Deep transfer learning for military object recognition under small training set condition
  publication-title: Neural Computing and Applications
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: b42
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Computation
– start-page: 1
  year: 2008
  end-page: 13
  ident: b14
  article-title: Fully automated procedure for ship detection using optical satellite imagery
  publication-title: Remote sensing of inland, coastal, and oceanic waters 10
– start-page: 1
  year: 2017
  end-page: 6
  ident: b87
  article-title: Flying object detection for automatic UAV recognition
  publication-title: 2017 14th IEEE international conference on advanced video and signal based surveillance
– volume: 39
  start-page: 1137
  year: 2015
  end-page: 1149
  ident: b78
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 239
  start-page: 194
  year: 2017
  end-page: 203
  ident: b124
  article-title: Deep object recognition across domains based on adaptive extreme learning machine
  publication-title: Neurocomputing
– volume: 14
  start-page: 1765
  year: 2017
  end-page: 1769
  ident: b39
  article-title: Ship classification in moderate-resolution SAR image by naive geometric features-combined multiple kernel learning
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 56
  start-page: 2196
  year: 2017
  end-page: 2210
  ident: b68
  article-title: SAR automatic target recognition based on multiview deep learning framework
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 15
  start-page: 207
  year: 2017
  end-page: 211
  ident: b111
  article-title: A CFCC-LSTM model for sea surface temperature prediction
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 11
  start-page: 641
  year: 2013
  end-page: 645
  ident: b112
  article-title: Ship detection from optical satellite images based on sea surface analysis
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 36
  start-page: 193
  year: 1980
  end-page: 202
  ident: b21
  article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biological Cybernetics
– reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
– volume: 81
  start-page: 294
  year: 2018
  end-page: 308
  ident: b45
  article-title: Deep variance network: An iterative, improved CNN framework for unbalanced training datasets
  publication-title: Pattern Recognition
– volume: 1
  year: 2019
  ident: b10
  article-title: Ship recognition method combined with image segmentation and deep learning feature extraction in video surveillance
  publication-title: Multimedia Tools and Applications
– reference: He, K., Girshick, R., & Dollár, P. (2019). Rethinking imagenet pre-training. In
– start-page: 7132
  year: 2017
  end-page: 7141
  ident: b31
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE conference on computer vision and pattern recognition
– start-page: 448
  year: 2015
  end-page: 456
  ident: b33
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International conference on machine learning
– volume: 22
  start-page: 1345
  year: 2009
  end-page: 1359
  ident: b67
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 48
  start-page: 2723
  year: 2018
  end-page: 2735
  ident: b104
  article-title: A piecewise-markovian lyapunov approach to reliable output feedback control for fuzzy-affine systems with time-delays and actuator faults
  publication-title: IEEE Transactions on Cybernetics
– reference: (pp. 833–840).
– volume: 28
  start-page: 2352
  year: 2011
  end-page: 2354
  ident: b101
  article-title: Ship targets recognition algorithm based on features
  publication-title: Application Research of Computers
– start-page: 324
  year: 2017
  end-page: 331
  ident: b51
  article-title: A high resolution optical satellite image dataset for ship recognition and some new baselines
  publication-title: International conference on pattern recognition applications and methods
– start-page: 108060Q
  year: 2018
  ident: b76
  article-title: Ship target recognition based on multi-spectral infrared images
  publication-title: Tenth international conference on digital image processing
– volume: 128
  start-page: 59
  year: 2014
  end-page: 72
  ident: b98
  article-title: Constructive multi-output extreme learning machine with application to large tanker motion dynamics identification
  publication-title: Neurocomputing
– start-page: 1
  year: 2010
  end-page: 7
  ident: b91
  article-title: Classification of small boats in infrared images for maritime surveillance
  publication-title: 2010 international waterside security conference
– start-page: 2018
  year: 2012
  end-page: 2025
  ident: b122
  article-title: Adaptive deconvolutional networks for mid and high level feature learning
  publication-title: 2011 international conference on computer vision
– volume: 41
  start-page: 6446
  year: 2014
  end-page: 6458
  ident: b25
  article-title: A remote sensing ship recognition method based on dynamic probability generative model
  publication-title: Expert Systems with Applications
– start-page: 400
  year: 2006
  end-page: 403
  ident: b92
  article-title: Data mining applied to acoustic bird species recognition
  publication-title: International conference on pattern recognition
– volume: 7
  start-page: 226
  year: 2010
  end-page: 230
  ident: b70
  article-title: Characterization of a Bayesian ship detection method in optical satellite images
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 45
  year: 2015
  ident: b96
  article-title: Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks
  publication-title: IEEE Transactions on Cybernetics
– volume: 77
  start-page: 21847
  year: 2018
  end-page: 21860
  ident: b55
  article-title: FDCNet: filtering deep convolutional network for marine organism classification
  publication-title: Multimedia Tools and Applications
– volume: 6
  start-page: 17880
  year: 2018
  end-page: 17886
  ident: b61
  article-title: Underwater-drone with panoramic camera for automatic fish recognition based on deep learning
  publication-title: IEEE Access
– start-page: 1
  year: 2016
  end-page: 4
  ident: b5
  article-title: Convolutional neural networks for near real-time object detection from UAV imagery in avalanche search and rescue operations
  publication-title: IGARSS 2016 - 2016 IEEE international geoscience and remote sensing symposium
– volume: 25
  start-page: 148
  year: 2005
  end-page: 154
  ident: b62
  article-title: 3D model-based free-form object recognition - A review
  publication-title: Sensor Review
– reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., & Anguelov, D., et al. (2015). Going deeper with convolutions. In
– start-page: 818
  year: 2014
  end-page: 833
  ident: b120
  article-title: Visualizing and understanding convolutional networks
  publication-title: European conference on computer vision
– year: 2017
  ident: b1
  article-title: A review on deep learning techniques applied to semantic segmentation
– start-page: 730
  year: 2014
  end-page: 734
  ident: b85
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: IEEE international conference on learning representations
– year: 2012
  ident: b79
  article-title: Convolutional-recursive deep learning for 3D object classification
  publication-title: Advances in neural information processing systems 25
– year: 2019
  ident: b73
  article-title: Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying node systems with error constraints
  publication-title: Ocean Engineering
– volume: 275
  start-page: 897
  year: 2017
  end-page: 908
  ident: b88
  article-title: Transferring deep knowledge for object recognition in low-quality underwater videos
  publication-title: Neurocomputing
– volume: 4
  start-page: 221
  year: 2011
  end-page: 231
  ident: b118
  article-title: Applications of marine robotic vehicles
  publication-title: Intelligent Service Robotics
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b29
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– volume: 1
  year: 2018
  ident: b103
  article-title: Fuzzy-affine-model-based memory filter design of nonlinear systems with time-varying delay
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 14
  start-page: 3235
  year: 2018
  end-page: 3243
  ident: b117
  article-title: Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 54
  start-page: 5832
  year: 2016
  end-page: 5845
  ident: b129
  article-title: Ship detection in spaceborne optical image with SVD networks
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 11
  start-page: 2070
  year: 2014
  end-page: 2074
  ident: b109
  article-title: Automatic detection of inshore ships in high-resolution remote sensing images using robust invariant generalized hough transform
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b15
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 30
  start-page: 725
  year: 2006
  end-page: 731
  ident: b30
  article-title: Unsupervised discovery of nonlinear structure using contrastive backpropagation
  publication-title: Cognitive Science
– start-page: 2802
  year: 2016
  end-page: 2810
  ident: b60
  article-title: Image restoration using very deep fully convolutional encoder-decoder networks with symmetric skip connections
  publication-title: Advances in neural information processing systems
– volume: 25
  start-page: 1828
  year: 2014
  end-page: 1841
  ident: b94
  article-title: Parsimonious extreme learning machine using recursive orthogonal least squares
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 2528
  year: 2010
  end-page: 2535
  ident: b121
  article-title: Deconvolutional networks
  publication-title: 2010 IEEE computer society conference on computer vision and pattern recognition
– volume: 12
  start-page: 2183
  year: 2015
  end-page: 2187
  ident: b116
  article-title: Rotation-invariant object detection in high-resolution satellite imagery using superpixel-based deep hough forests
  publication-title: IEEE Geoscience and Remote Sensing Letters
– start-page: 1
  year: 2016
  end-page: 6
  ident: b17
  article-title: Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data
  publication-title: 9TH workshop on pattern recognition in remote sensing
– reference: (pp. 315–323).
– volume: 48
  start-page: 2894
  year: 2013
  end-page: 2907
  ident: b65
  article-title: A 57 mW 12.5
  publication-title: IEEE Journal of Solid-State Circuits
– volume: 78
  start-page: 15951
  year: 2019
  end-page: 15995
  ident: b86
  article-title: 3D convolutional neural network for object recognition: A review
  publication-title: Multimedia Tools and Applications
– volume: 31
  start-page: 5837
  year: 2010
  end-page: 5854
  ident: b13
  article-title: A complete processing chain for ship detection using optical satellite imagery
  publication-title: International Journal of Remote Sensing
– volume: 54
  start-page: 1
  year: 2016
  end-page: 12
  ident: b11
  article-title: Target classification using the deep convolutional networks for SAR images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 1
  year: 2009
  end-page: 5
  ident: b119
  article-title: Embedded vision systems for ship recognition
  publication-title: TENCON 2009-2009 IEEE region 10 conference
– volume: 15
  start-page: 439
  year: 2018
  end-page: 443
  ident: b40
  article-title: Ship classification in SAR images improved by AIS knowledge transfer
  publication-title: IEEE Geoscience and Remote Sensing Letters
– start-page: 10
  year: 2015
  end-page: 16
  ident: b123
  article-title: VAIS: A dataset for recognizing maritime imagery in the visible and infrared spectrums
  publication-title: The IEEE conference on computer vision and pattern recognition
– volume: 26
  start-page: 687
  year: 2011
  end-page: 690
  ident: b50
  article-title: Ship image recognition method based on the affine invariant moments
  publication-title: Journal of Naval Aeronautical and Astronautical University
– reference: (pp. 1–9).
– volume: 8
  start-page: 2053
  year: 2015
  end-page: 2062
  ident: b114
  article-title: Object detection based on sparse representation and hough voting for optical remote sensing imagery
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 12
  start-page: 1451
  year: 2015
  end-page: 1455
  ident: b71
  article-title: Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images
  publication-title: IEEE Geoscience and Remote Sensing Letters
– start-page: 89
  year: 2016
  end-page: 93
  ident: b110
  article-title: Deep learning-based recognition of underwater target
  publication-title: 2016 IEEE international conference on digital signal processing
– start-page: 770
  year: 2016
  end-page: 778
  ident: b27
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE conference on computer vision and pattern recognition
– volume: 13
  start-page: 759
  year: 2005
  end-page: 769
  ident: b69
  article-title: Coupling pairwise support vector machines for fault classification
  publication-title: Control Engineering Practice
– reference: (pp. 807–814).
– reference: (pp. 4918–4927).
– reference: (pp. 1026–1034).
– year: 2019
  ident: b72
  article-title: Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying nodes
  publication-title: Journal of the Franklin Institute
– volume: 31
  start-page: 855
  year: 2009
  end-page: 868
  ident: b22
  article-title: A novel connectionist system for unconstrained handwriting recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 145
  start-page: 365
  year: 2017
  end-page: 376
  ident: b24
  article-title: A ship recognition method of variational inference-based probability generative model using optical remote sensing image
  publication-title: Optik
– start-page: 1
  year: 2016
  end-page: 6
  ident: b64
  article-title: Classification of ships using real and simulated data in a convolutional neural network
  publication-title: 2016 IEEE radar conference (RadarConf)
– start-page: 92490N
  year: 2014
  ident: b8
  article-title: Ship recognition for improved persistent tracking with descriptor localization and compact representations
  publication-title: Electro-optical and infrared systems: Technology and applications XI
– volume: 31
  start-page: 151
  year: 2001
  end-page: 168
  ident: b46
  article-title: An automatic image-based system for estimating the mass of free-swimming fish
  publication-title: Computers and Electronics in Agriculture
– start-page: 1
  year: 2017
  end-page: 4
  ident: b35
  article-title: Deep learning for underwater image recognition in small sample size situations
  publication-title: OCEANS 2017 - Aberdeen
– reference: (pp. 3431–3440).
– start-page: 3320
  year: 2014
  end-page: 3328
  ident: b115
  article-title: How transferable are features in deep neural networks?
  publication-title: Advances in neural information processing systems
– volume: 173
  start-page: 1640
  year: 2016
  end-page: 1645
  ident: b100
  article-title: Direct adaptive self-structuring fuzzy control with interpretable fuzzy rules for a class of nonlinear uncertain systems
  publication-title: Neurocomputing
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: b37
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2017
  end-page: 5
  ident: b12
  article-title: The research of underwater target recognition method based on deep learning
  publication-title: 2017 IEEE international conference on signal processing, communications and computing (ICSPCC)
– volume: 48
  start-page: 2723
  issue: 9
  year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b104
  article-title: A piecewise-markovian lyapunov approach to reliable output feedback control for fuzzy-affine systems with time-delays and actuator faults
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2749239
– volume: 48
  start-page: 3446
  issue: 9
  year: 2010
  ident: 10.1016/j.conengprac.2020.104458_b128
  article-title: A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2010.2046330
– volume: 41
  start-page: 6446
  issue: 14
  year: 2014
  ident: 10.1016/j.conengprac.2020.104458_b25
  article-title: A remote sensing ship recognition method based on dynamic probability generative model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.03.033
– volume: 145
  start-page: 365
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b24
  article-title: A ship recognition method of variational inference-based probability generative model using optical remote sensing image
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.07.039
– volume: 54
  start-page: 1
  issue: 8
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b11
  article-title: Target classification using the deep convolutional networks for SAR images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2016.2551720
– volume: 9
  start-page: 75
  issue: 2
  year: 2007
  ident: 10.1016/j.conengprac.2020.104458_b6
  article-title: Lessons from the netflix prize challenge
  publication-title: Acm Sigkdd Explorations Newsletter
  doi: 10.1145/1345448.1345465
– start-page: 212
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b49
  article-title: SphereFace: Deep hypersphere embedding for face recognition
– start-page: 160
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b107
  article-title: Objectnet3D: A large scale database for 3D object recognition
– volume: 239
  start-page: 194
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b124
  article-title: Deep object recognition across domains based on adaptive extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.016
– ident: 10.1016/j.conengprac.2020.104458_b106
– volume: 36
  start-page: 1354
  issue: 7
  year: 2013
  ident: 10.1016/j.conengprac.2020.104458_b9
  article-title: Multiple kernel learning for visual object recognition: A review
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: 10.1016/j.conengprac.2020.104458_b66
  doi: 10.5220/0005979503110318
– ident: 10.1016/j.conengprac.2020.104458_b63
– volume: 36
  start-page: 193
  issue: 4
  year: 1980
  ident: 10.1016/j.conengprac.2020.104458_b21
  article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00344251
– start-page: 86610M
  year: 2013
  ident: 10.1016/j.conengprac.2020.104458_b38
  article-title: Autonomous ship classification using synthetic and real color images
– volume: 25
  start-page: 1828
  issue: 10
  year: 2014
  ident: 10.1016/j.conengprac.2020.104458_b94
  article-title: Parsimonious extreme learning machine using recursive orthogonal least squares
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2296048
– volume: 56
  start-page: 2196
  issue: 4
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b68
  article-title: SAR automatic target recognition based on multiview deep learning framework
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2017.2776357
– start-page: 180
  year: 1999
  ident: 10.1016/j.conengprac.2020.104458_b105
  article-title: Automatic classification of ships from infrared (FLIR) images
– volume: 31
  start-page: 151
  issue: 2
  year: 2001
  ident: 10.1016/j.conengprac.2020.104458_b46
  article-title: An automatic image-based system for estimating the mass of free-swimming fish
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/S0168-1699(00)00181-2
– volume: 54
  start-page: 5832
  issue: 10
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b129
  article-title: Ship detection in spaceborne optical image with SVD networks
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2016.2572736
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.conengprac.2020.104458_b29
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 15
  start-page: 439
  issue: 3
  year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b40
  article-title: Ship classification in SAR images improved by AIS knowledge transfer
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2018.2792683
– start-page: 165
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b19
  article-title: MARVEL: A large-scale image dataset for maritime vessels
– start-page: 1
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b23
  article-title: SAR image target recognition via deep Bayesian generative network
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b81
  article-title: Imagenet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-015-0816-y
– start-page: 400
  year: 2006
  ident: 10.1016/j.conengprac.2020.104458_b92
  article-title: Data mining applied to acoustic bird species recognition
– start-page: 2589
  year: 2013
  ident: 10.1016/j.conengprac.2020.104458_b34
  article-title: Ship classification in TerraSAR-X SAR images based on classifier combination
– year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b108
  article-title: Ship detection under complex sea and weather conditions based on deep learning
  publication-title: Journal of Computer Applications
– volume: 311
  start-page: 363
  year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b125
  article-title: The augmented complex-valued extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.074
– volume: 25
  start-page: 2939
  issue: 11
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b47
  article-title: Ship recognition based on multi-band deep neural network
  publication-title: Optics and Precision Engineering
  doi: 10.3788/OPE.20172511.2939
– volume: 26
  start-page: 687
  issue: 6
  year: 2011
  ident: 10.1016/j.conengprac.2020.104458_b50
  article-title: Ship image recognition method based on the affine invariant moments
  publication-title: Journal of Naval Aeronautical and Astronautical University
– volume: 15
  start-page: 207
  issue: 2
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b111
  article-title: A CFCC-LSTM model for sea surface temperature prediction
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2017.2780843
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.conengprac.2020.104458_b42
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.4.541
– start-page: 1
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b64
  article-title: Classification of ships using real and simulated data in a convolutional neural network
– volume: 8
  start-page: 1029
  issue: 7–8
  year: 1995
  ident: 10.1016/j.conengprac.2020.104458_b102
  article-title: Neural processing of targets in visible, multispectral IR and SAR imagery
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(95)00080-1
– volume: 31
  start-page: 5837
  issue: 22
  year: 2010
  ident: 10.1016/j.conengprac.2020.104458_b13
  article-title: A complete processing chain for ship detection using optical satellite imagery
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2010.512310
– year: 2012
  ident: 10.1016/j.conengprac.2020.104458_b79
  article-title: Convolutional-recursive deep learning for 3D object classification
– volume: 41
  start-page: 423
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b126
  article-title: S-CNN-based ship detection from high-resolution remote sensing images
  publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  doi: 10.5194/isprs-archives-XLI-B7-423-2016
– volume: 11
  start-page: 641
  issue: 3
  year: 2013
  ident: 10.1016/j.conengprac.2020.104458_b112
  article-title: Ship detection from optical satellite images based on sea surface analysis
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2013.2273552
– volume: 39
  start-page: 1137
  issue: 6
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b78
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2577031
– ident: 10.1016/j.conengprac.2020.104458_b89
  doi: 10.1109/CVPR.2015.7298594
– volume: 31
  start-page: 855
  issue: 5
  year: 2009
  ident: 10.1016/j.conengprac.2020.104458_b22
  article-title: A novel connectionist system for unconstrained handwriting recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.137
– volume: 1
  year: 2019
  ident: 10.1016/j.conengprac.2020.104458_b10
  article-title: Ship recognition method combined with image segmentation and deep learning feature extraction in video surveillance
  publication-title: Multimedia Tools and Applications
– volume: 6
  start-page: 17880
  year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b61
  article-title: Underwater-drone with panoramic camera for automatic fish recognition based on deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2820326
– start-page: 2528
  year: 2010
  ident: 10.1016/j.conengprac.2020.104458_b121
  article-title: Deconvolutional networks
– volume: 11
  start-page: 617
  issue: 3
  year: 2013
  ident: 10.1016/j.conengprac.2020.104458_b53
  article-title: A new method on inshore ship detection in high-resolution satellite images using shape and context information
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2013.2272492
– volume: 151
  start-page: 603
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b130
  article-title: Supervised feature learning via l2-norm regularized logistic regression for 3D object recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.089
– start-page: 436
  year: 2013
  ident: 10.1016/j.conengprac.2020.104458_b58
  article-title: Video image clarity algorithm research of USV visual system under the sea fog
– start-page: 730
  year: 2014
  ident: 10.1016/j.conengprac.2020.104458_b85
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 12
  start-page: 1451
  issue: 7
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b71
  article-title: Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2015.2408355
– ident: 10.1016/j.conengprac.2020.104458_b80
– volume: 26
  start-page: 1161
  issue: 6
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b95
  article-title: Generalized single-hidden layer feedforward networks for regression problems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2334366
– volume: 1
  start-page: 111
  year: 2011
  ident: 10.1016/j.conengprac.2020.104458_b36
  article-title: Performance analysis of various activation functions in generalized MLP architectures of neural network
  publication-title: International Journal of Artificial Intelligence and Expert System
– volume: 77
  start-page: 21847
  issue: 17
  year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b55
  article-title: FDCNet: filtering deep convolutional network for marine organism classification
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-4585-1
– start-page: 1
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b35
  article-title: Deep learning for underwater image recognition in small sample size situations
– volume: 378
  start-page: 295
  year: 2020
  ident: 10.1016/j.conengprac.2020.104458_b75
  article-title: An expectation-maximization based single-beacon underwater navigation method with unknown ESV
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.066
– volume: 13
  start-page: 365
  issue: 1
  year: 2012
  ident: 10.1016/j.conengprac.2020.104458_b7
  article-title: A novel lane detection system with efficient ground truth generation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2011.2173196
– volume: 48
  start-page: 2894
  issue: 11
  year: 2013
  ident: 10.1016/j.conengprac.2020.104458_b65
  article-title: A 57 mW 12.5 μJ/Epoch embedded mixed-mode neuro-fuzzy processor for mobile real-time object recognition
  publication-title: IEEE Journal of Solid-State Circuits
  doi: 10.1109/JSSC.2013.2280238
– start-page: 1
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b5
  article-title: Convolutional neural networks for near real-time object detection from UAV imagery in avalanche search and rescue operations
– volume: 45
  issue: 12
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b96
  article-title: Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2382679
– volume: 7
  start-page: 226
  issue: 2
  year: 2010
  ident: 10.1016/j.conengprac.2020.104458_b70
  article-title: Characterization of a Bayesian ship detection method in optical satellite images
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2009.2031826
– start-page: 10
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b123
  article-title: VAIS: A dataset for recognizing maritime imagery in the visible and infrared spectrums
– volume: 61
  start-page: 518
  issue: 2
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b57
  article-title: A Bayesian framework for real-time identification of locally weighted partial least squares
  publication-title: AIChE Journal
  doi: 10.1002/aic.14663
– volume: 9
  start-page: 377
  issue: 3
  year: 2008
  ident: 10.1016/j.conengprac.2020.104458_b2
  article-title: License plate recognition from still images and video sequences: A survey
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2008.922938
– start-page: 108060Q
  year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b76
  article-title: Ship target recognition based on multi-spectral infrared images
– volume: 1
  year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b103
  article-title: Fuzzy-affine-model-based memory filter design of nonlinear systems with time-varying delay
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 52
  start-page: 4511
  issue: 8
  year: 2014
  ident: 10.1016/j.conengprac.2020.104458_b84
  article-title: Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2013.2282355
– volume: 4
  start-page: 221
  issue: 4
  year: 2011
  ident: 10.1016/j.conengprac.2020.104458_b118
  article-title: Applications of marine robotic vehicles
  publication-title: Intelligent Service Robotics
  doi: 10.1007/s11370-011-0096-5
– year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b83
– start-page: 1
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b87
  article-title: Flying object detection for automatic UAV recognition
– start-page: 448
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b33
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.conengprac.2020.104458_b15
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 38
  start-page: 119
  issue: 8
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b127
  article-title: Research on ship recognition method based on deep convolutional neural network
  publication-title: Ship Science and Technology
– volume: 3
  start-page: 28
  issue: 2
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b77
  article-title: Visual object recognition using image mining approach: A review
  publication-title: International Journal of Computer and Communication Engineering Research
– start-page: 1
  year: 2008
  ident: 10.1016/j.conengprac.2020.104458_b14
  article-title: Fully automated procedure for ship detection using optical satellite imagery
– volume: 31
  start-page: 6469
  issue: 10
  year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b113
  article-title: Deep transfer learning for military object recognition under small training set condition
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-3468-3
– start-page: 818
  year: 2014
  ident: 10.1016/j.conengprac.2020.104458_b120
  article-title: Visualizing and understanding convolutional networks
– start-page: 1019
  year: 2013
  ident: 10.1016/j.conengprac.2020.104458_b56
  article-title: A novel efficient method for training sparse auto-encoders
– start-page: 89
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b110
  article-title: Deep learning-based recognition of underwater target
– start-page: 1
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b12
  article-title: The research of underwater target recognition method based on deep learning
– start-page: 92490N
  year: 2014
  ident: 10.1016/j.conengprac.2020.104458_b8
  article-title: Ship recognition for improved persistent tracking with descriptor localization and compact representations
– volume: 25
  start-page: 1097
  issue: 2
  year: 2012
  ident: 10.1016/j.conengprac.2020.104458_b37
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.conengprac.2020.104458_b26
  doi: 10.1109/ICCV.2019.00502
– start-page: 3320
  year: 2014
  ident: 10.1016/j.conengprac.2020.104458_b115
  article-title: How transferable are features in deep neural networks?
– volume: 53
  start-page: 1174
  issue: 3
  year: 2014
  ident: 10.1016/j.conengprac.2020.104458_b90
  article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2014.2335751
– volume: 275
  start-page: 897
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b88
  article-title: Transferring deep knowledge for object recognition in low-quality underwater videos
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.044
– volume: 44
  start-page: 572
  issue: 3
  year: 2011
  ident: 10.1016/j.conengprac.2020.104458_b3
  article-title: Survey on speech emotion recognition: Features, classification schemes, and databases
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.09.020
– volume: 81
  start-page: 294
  year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b45
  article-title: Deep variance network: An iterative, improved CNN framework for unbalanced training datasets
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.03.035
– volume: 25
  start-page: 148
  issue: 2
  year: 2005
  ident: 10.1016/j.conengprac.2020.104458_b62
  article-title: 3D model-based free-form object recognition - A review
  publication-title: Sensor Review
  doi: 10.1108/02602280510585745
– volume: 14
  start-page: 1765
  issue: 10
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b39
  article-title: Ship classification in moderate-resolution SAR image by naive geometric features-combined multiple kernel learning
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2017.2734889
– volume: 78
  start-page: 15951
  issue: 12
  year: 2019
  ident: 10.1016/j.conengprac.2020.104458_b86
  article-title: 3D convolutional neural network for object recognition: A review
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-6912-6
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.conengprac.2020.104458_b32
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2011.2168604
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b41
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 9
  start-page: 498
  issue: 5
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b20
  article-title: Classification for high resolution remote sensing imagery using a fully convolutional network
  publication-title: Remote Sensing
  doi: 10.3390/rs9050498
– start-page: 1
  year: 2009
  ident: 10.1016/j.conengprac.2020.104458_b119
  article-title: Embedded vision systems for ship recognition
– volume: 14
  start-page: 3235
  issue: 7
  year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b117
  article-title: Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2809730
– ident: 10.1016/j.conengprac.2020.104458_b28
  doi: 10.1109/ICCV.2015.123
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.conengprac.2020.104458_b44
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– volume: 14
  start-page: 1484
  issue: 9
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b59
  article-title: Improving SAR automatic target recognition models with transfer learning from simulated data
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2017.2717486
– volume: 72
  start-page: 3818
  issue: 16–18
  year: 2009
  ident: 10.1016/j.conengprac.2020.104458_b97
  article-title: A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.05.006
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b48
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 11
  start-page: 2070
  issue: 12
  year: 2014
  ident: 10.1016/j.conengprac.2020.104458_b109
  article-title: Automatic detection of inshore ships in high-resolution remote sensing images using robust invariant generalized hough transform
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2014.2319082
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 10.1016/j.conengprac.2020.104458_b67
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2009.191
– volume: 30
  start-page: 725
  issue: 4
  year: 2006
  ident: 10.1016/j.conengprac.2020.104458_b30
  article-title: Unsupervised discovery of nonlinear structure using contrastive backpropagation
  publication-title: Cognitive Science
  doi: 10.1207/s15516709cog0000_76
– start-page: 235
  year: 2018
  ident: 10.1016/j.conengprac.2020.104458_b4
  article-title: Multimodal deep learning for robust recognizing maritime imagery in the visible and infrared spectrums
– volume: 12
  start-page: 2183
  issue: 11
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b116
  article-title: Rotation-invariant object detection in high-resolution satellite imagery using superpixel-based deep hough forests
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2015.2432135
– volume: 187
  start-page: 49
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b74
  article-title: DeepFish: Accurate underwater live fish recognition with a deep architecture
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.122
– volume: 11
  start-page: 1921
  issue: 16
  year: 2019
  ident: 10.1016/j.conengprac.2020.104458_b18
  article-title: Oceanic mesoscale eddy detection method based on deep learning
  publication-title: Remote Sensing
  doi: 10.3390/rs11161921
– year: 2019
  ident: 10.1016/j.conengprac.2020.104458_b73
  article-title: Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying node systems with error constraints
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2019.106341
– ident: 10.1016/j.conengprac.2020.104458_b54
  doi: 10.1109/CVPR.2015.7298965
– start-page: 524
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b82
  article-title: Analytical review on object segmentation and recognition
– start-page: 2018
  year: 2012
  ident: 10.1016/j.conengprac.2020.104458_b122
  article-title: Adaptive deconvolutional networks for mid and high level feature learning
– volume: 18
  start-page: 376
  issue: 2
  year: 2019
  ident: 10.1016/j.conengprac.2020.104458_b99
  article-title: Underwater object recognition based on deep encoding-decoding network
  publication-title: Journal of Ocean University of China
  doi: 10.1007/s11802-019-3858-x
– volume: 8
  start-page: 2053
  issue: 5
  year: 2015
  ident: 10.1016/j.conengprac.2020.104458_b114
  article-title: Object detection based on sparse representation and hough voting for optical remote sensing imagery
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2015.2404578
– volume: 2
  start-page: 396
  issue: 2
  year: 1997
  ident: 10.1016/j.conengprac.2020.104458_b43
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Advances in Neural Information Processing Systems
– volume: 41
  start-page: 71
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b52
  article-title: Unmanned surface vehicles: An overview of developments and challenges
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2016.04.018
– ident: 10.1016/j.conengprac.2020.104458_b93
  doi: 10.1145/1390156.1390294
– volume: 128
  start-page: 59
  year: 2014
  ident: 10.1016/j.conengprac.2020.104458_b98
  article-title: Constructive multi-output extreme learning machine with application to large tanker motion dynamics identification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.062
– volume: 173
  start-page: 1640
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b100
  article-title: Direct adaptive self-structuring fuzzy control with interpretable fuzzy rules for a class of nonlinear uncertain systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.036
– volume: 13
  start-page: 759
  issue: 6
  year: 2005
  ident: 10.1016/j.conengprac.2020.104458_b69
  article-title: Coupling pairwise support vector machines for fault classification
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2004.08.002
– start-page: 7132
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b31
  article-title: Squeeze-and-excitation networks
– year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b1
– start-page: 770
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b27
  article-title: Deep residual learning for image recognition
– volume: 28
  start-page: 2352
  issue: 6
  year: 2011
  ident: 10.1016/j.conengprac.2020.104458_b101
  article-title: Ship targets recognition algorithm based on features
  publication-title: Application Research of Computers
– year: 2019
  ident: 10.1016/j.conengprac.2020.104458_b72
  article-title: Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying nodes
  publication-title: Journal of the Franklin Institute
– start-page: 2802
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b60
  article-title: Image restoration using very deep fully convolutional encoder-decoder networks with symmetric skip connections
– start-page: 1
  year: 2010
  ident: 10.1016/j.conengprac.2020.104458_b91
  article-title: Classification of small boats in infrared images for maritime surveillance
– ident: 10.1016/j.conengprac.2020.104458_b16
  doi: 10.1145/2833258.2833266
– start-page: 324
  year: 2017
  ident: 10.1016/j.conengprac.2020.104458_b51
  article-title: A high resolution optical satellite image dataset for ship recognition and some new baselines
– start-page: 1
  year: 2016
  ident: 10.1016/j.conengprac.2020.104458_b17
  article-title: Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data
SSID ssj0016991
Score 2.6256762
Snippet Due to the rapid development of deep learning techniques, numerous frameworks including convolutional neural networks (CNNs), deep belief networks (DBNs) and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104458
SubjectTerms Deep learning
Learning architecture
Marine object recognition
Marine vehicles
Title Review on deep learning techniques for marine object recognition: Architectures and algorithms
URI https://dx.doi.org/10.1016/j.conengprac.2020.104458
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14jc0m-4qeSrFUxV600JNhN7utlTYpbbz6291NNrGCoOAthAyEL5OZb-cJwCX1tWH5mnp2H6CHQ8U9OUm0Jwg15JYpxbXtHX4c0sEI34_JuAF6VS-MLat0tr-06YW1dnc6Ds3OcjbrPBnyzYzDRIHRU3NtZ4JizKyWX33UZR6IRuXWPPOw7bZHrpqnrPEyR06dTm0_kjkpBkXCE9vl7z-5qA23098Du44vwm75SvugodMDsLMxRfAQvJTxfZilUGm9hG4RxBTW81nX0FBTuBC20w9m0oZeYF05lKXXsLuRTlhDkSoo5tNsNctfF-sjMOrfPvcGnlub4CXmB829RGg79F0xqWhCIhlJwwGwIAHTiCky0YxIX6GIU66JTYxy4fuaECm4HwqNw2PQTA0wJwBGIQ8kx5wmKsATGUUMqQRxn2OskOa0BViFVJy4meJ2tcU8rorH3uIvjGOLcVxi3AKollyWczX-IHNTfYz4m47Exvz_Kn36L-kzsB3Yxoci-HIOmvnqXV8YOpLLdqFvbbDVvXsYDD8BqdHhOA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8RnxuQevDX3sbrd6IkRS5XEREk42u90FMVAI1P_vLl0QExNNvDVNJ2mm05lv5_UB3FFXaZSvqGP4AB0cSOaIYaocTqgGt6GUTJnZ4U6Xxn38PCCDEjTWszCmrdL6_sKnr7y1vVOz2qzNx-PaiwbfoQ6Ynq_tVF_jHaiY7VSkDJX6UyvubooJNCqI8_TzZuDesw09RZuXPnWqbGRGkvRh0V_VPLHhf_8pSm1FnuYhHFjIiOrFWx1BSWXHsL-1SPAEXosUP5plSCo1R5YLYoQ2K1qXSKNTNOVm2A_NhMm-oE3z0Cy7R_WtisIS8UwiPhnNFuP8bbo8hX7zsdeIHcuc4KT6H82dlCuz912GQtKURCISGgZgTvxQeaEkQxUS4UovYpQpYmqjjLuuIkRw5gZc4eAMyplWzDmgKGC-YJjRVPp4KKIo9GTqMZdhLD3FaBXCtaaS1K4VN-wWk2TdP_aefOk4MTpOCh1XwdtIzovVGn-QeVh_jOSbmSQ6AvwqffEv6VvYjXuddtJ-6rYuYc83cxCrXMwVlPPFh7rW6CQXN9b6PgFmP-Pp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+deep+learning+techniques+for+marine+object+recognition%3A+Architectures+and+algorithms&rft.jtitle=Control+engineering+practice&rft.au=Wang%2C+Ning&rft.au=Wang%2C+Yuanyuan&rft.au=Er%2C+Meng+Joo&rft.date=2022-01-01&rft.issn=0967-0661&rft.volume=118&rft.spage=104458&rft_id=info:doi/10.1016%2Fj.conengprac.2020.104458&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2020_104458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon