Review on deep learning techniques for marine object recognition: Architectures and algorithms
Due to the rapid development of deep learning techniques, numerous frameworks including convolutional neural networks (CNNs), deep belief networks (DBNs) and auto-encoder (AE), etc., have been established. In this context, advances in marine object recognition have been dramatically boosted, especia...
Saved in:
Published in | Control engineering practice Vol. 118; p. 104458 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0967-0661 1873-6939 |
DOI | 10.1016/j.conengprac.2020.104458 |
Cover
Loading…
Abstract | Due to the rapid development of deep learning techniques, numerous frameworks including convolutional neural networks (CNNs), deep belief networks (DBNs) and auto-encoder (AE), etc., have been established. In this context, advances in marine object recognition have been dramatically boosted, especially in the past decade. In this paper, we exclusively focus on an intensive review on deep-learning-based object recognition for both surface and underwater targets. To facilitate a comprehensive review, key concepts and typical architectures are firstly summarized in a unified framework. Accordingly, popular/benchmark datasets for marine object recognition are thoroughly collected and deep learning methodologies are comprehensively analyzed with intensive comparisons. Moreover, experimental results and futuristic trends in marine object recognition are intensively discussed. Finally, conclusions on state-of-the-art marine object recognition using deep learning techniques are drawn. |
---|---|
AbstractList | Due to the rapid development of deep learning techniques, numerous frameworks including convolutional neural networks (CNNs), deep belief networks (DBNs) and auto-encoder (AE), etc., have been established. In this context, advances in marine object recognition have been dramatically boosted, especially in the past decade. In this paper, we exclusively focus on an intensive review on deep-learning-based object recognition for both surface and underwater targets. To facilitate a comprehensive review, key concepts and typical architectures are firstly summarized in a unified framework. Accordingly, popular/benchmark datasets for marine object recognition are thoroughly collected and deep learning methodologies are comprehensively analyzed with intensive comparisons. Moreover, experimental results and futuristic trends in marine object recognition are intensively discussed. Finally, conclusions on state-of-the-art marine object recognition using deep learning techniques are drawn. |
ArticleNumber | 104458 |
Author | Wang, Yuanyuan Wang, Ning Er, Meng Joo |
Author_xml | – sequence: 1 givenname: Ning surname: Wang fullname: Wang, Ning email: n.wang@ieee.org – sequence: 2 givenname: Yuanyuan surname: Wang fullname: Wang, Yuanyuan – sequence: 3 givenname: Meng Joo surname: Er fullname: Er, Meng Joo |
BookMark | eNqNkF9LwzAUxYMouE2_Q75AZ9I2beODMIf_YCCIvhrS5LbL6JKZZIrf3pQJgi_6dOFwzuGe3xQdW2cBIUzJnBJaXWzmKgm233mp5jnJR7ksWXOEJrSpi6ziBT9GE8KrOiNVRU_RNIQNSVHO6QS9PsG7gQ_sLNYAOzyA9NbYHkdQa2ve9hBw5zzeSm8sYNduQEXsQbnemmicvcQLr9Ym2ePeJ7O0Gsuhd97E9TacoZNODgHOv-8MvdzePC_vs9Xj3cNyscpUQZuYKQmcMqbrVleK8Za3eZ6XkuU10FqzDmrWEk15UzXAClJWjSQEGGtlQwoJZTFDzaFXeReCh07svEk_fwpKxMhJbMQPJzFyEgdOKXr1K6pMlOO06KUZ_lNwfSiANDDB9CIoA1aBNolTFNqZv0u-AKBZjzg |
CitedBy_id | crossref_primary_10_3390_make6010024 crossref_primary_10_1002_rob_22378 crossref_primary_10_1016_j_ifacol_2024_09_288 crossref_primary_10_1109_TITS_2023_3322192 crossref_primary_10_1109_TITS_2024_3380812 crossref_primary_10_3389_fmars_2023_1162064 crossref_primary_10_3390_electronics13183615 crossref_primary_10_1007_s13198_021_01152_5 crossref_primary_10_1016_j_engappai_2024_109754 crossref_primary_10_1109_JSTARS_2024_3521036 crossref_primary_10_1177_14750902221096984 crossref_primary_10_1016_j_neucom_2023_01_056 crossref_primary_10_3390_rs16091545 crossref_primary_10_1088_2632_2153_acdb30 crossref_primary_10_1177_14750902221096221 crossref_primary_10_1088_1741_2552_acb295 crossref_primary_10_7717_peerj_cs_666 crossref_primary_10_1016_j_measen_2024_101805 crossref_primary_10_1109_ACCESS_2025_3525952 crossref_primary_10_1109_JSEN_2024_3394703 crossref_primary_10_3390_math12010168 crossref_primary_10_4018_IJSI_315655 crossref_primary_10_1007_s11760_024_03293_z crossref_primary_10_1007_s42979_024_02847_9 crossref_primary_10_1109_TITS_2024_3394573 crossref_primary_10_1109_TITS_2024_3398733 crossref_primary_10_1109_LSP_2024_3417345 crossref_primary_10_2478_amns_2024_2304 crossref_primary_10_3390_app14041489 crossref_primary_10_1016_j_inffus_2024_102429 crossref_primary_10_1109_TAI_2024_3385387 crossref_primary_10_1109_JIOT_2024_3361938 crossref_primary_10_1049_ipr2_13158 crossref_primary_10_1016_j_engappai_2023_106532 crossref_primary_10_1061_JPEODX_PVENG_1503 crossref_primary_10_1109_TITS_2024_3415772 crossref_primary_10_2478_ttj_2022_0005 crossref_primary_10_3390_jmse9040397 crossref_primary_10_1016_j_cosrev_2025_100736 crossref_primary_10_1595_205651324X17125869817025 crossref_primary_10_1109_TITS_2022_3168806 crossref_primary_10_1109_TIE_2021_3070512 crossref_primary_10_54105_ijcgm_C7264_082222 crossref_primary_10_1016_j_inffus_2024_102361 crossref_primary_10_1016_j_dajour_2023_100230 crossref_primary_10_1016_j_engappai_2024_108858 crossref_primary_10_1016_j_conengprac_2020_104650 crossref_primary_10_1109_TITS_2024_3454016 crossref_primary_10_1007_s10489_022_03622_0 crossref_primary_10_1016_j_snb_2022_132489 crossref_primary_10_3390_sym13020262 crossref_primary_10_1049_ipr2_12935 crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_1109_MITS_2022_3198334 crossref_primary_10_3390_jmse11030677 crossref_primary_10_3389_fmars_2022_1070638 crossref_primary_10_1016_j_oceaneng_2025_120917 crossref_primary_10_1109_ACCESS_2025_3534098 crossref_primary_10_3390_jmse9080884 crossref_primary_10_1007_s00530_023_01233_4 crossref_primary_10_1016_j_measen_2024_101025 crossref_primary_10_1109_TCSVT_2024_3486756 crossref_primary_10_3389_fmars_2023_1138013 crossref_primary_10_1007_s00521_024_09660_8 crossref_primary_10_3389_fmars_2023_1174347 crossref_primary_10_1016_j_conengprac_2023_105529 crossref_primary_10_1142_S0218126622400059 crossref_primary_10_1155_2024_5548146 crossref_primary_10_3390_bdcc8100135 crossref_primary_10_3390_rs15245759 crossref_primary_10_3390_electronics13132522 crossref_primary_10_3390_s22239163 crossref_primary_10_1109_TETCI_2024_3518613 crossref_primary_10_3390_s22145383 crossref_primary_10_3389_fevo_2023_1257542 crossref_primary_10_1364_OE_524714 crossref_primary_10_3390_jimaging8070182 crossref_primary_10_1155_2022_5277805 crossref_primary_10_1016_j_oceaneng_2023_115890 crossref_primary_10_1142_S0219691323500078 crossref_primary_10_1016_j_oceaneng_2023_115255 crossref_primary_10_1007_s11227_021_04161_0 crossref_primary_10_3389_fmars_2022_1058401 crossref_primary_10_1016_j_apor_2023_103835 crossref_primary_10_1016_j_conengprac_2023_105627 crossref_primary_10_1007_s40747_022_00683_z crossref_primary_10_1109_JSEN_2023_3259471 crossref_primary_10_3389_fmars_2023_1150593 crossref_primary_10_1109_ACCESS_2024_3417391 crossref_primary_10_1016_j_atech_2024_100497 crossref_primary_10_1016_j_engappai_2025_110132 crossref_primary_10_1016_j_conengprac_2020_104673 crossref_primary_10_3390_s21051807 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_1016_j_neucom_2023_02_018 |
Cites_doi | 10.1109/TCYB.2017.2749239 10.1109/TGRS.2010.2046330 10.1016/j.eswa.2014.03.033 10.1016/j.ijleo.2017.07.039 10.1109/TGRS.2016.2551720 10.1145/1345448.1345465 10.1016/j.neucom.2017.02.016 10.5220/0005979503110318 10.1007/BF00344251 10.1109/TNNLS.2013.2296048 10.1109/TGRS.2017.2776357 10.1016/S0168-1699(00)00181-2 10.1109/TGRS.2016.2572736 10.1162/neco.2006.18.7.1527 10.1109/LGRS.2018.2792683 10.1007/s11263-015-0816-y 10.1016/j.neucom.2018.05.074 10.3788/OPE.20172511.2939 10.1109/LGRS.2017.2780843 10.1162/neco.1989.1.4.541 10.1016/0893-6080(95)00080-1 10.1080/01431161.2010.512310 10.5194/isprs-archives-XLI-B7-423-2016 10.1109/LGRS.2013.2273552 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2015.7298594 10.1109/TPAMI.2008.137 10.1109/ACCESS.2018.2820326 10.1109/LGRS.2013.2272492 10.1016/j.neucom.2014.06.089 10.1109/LGRS.2015.2408355 10.1109/TNNLS.2014.2334366 10.1007/s11042-017-4585-1 10.1016/j.neucom.2019.10.066 10.1109/TITS.2011.2173196 10.1109/JSSC.2013.2280238 10.1109/TCYB.2014.2382679 10.1109/LGRS.2009.2031826 10.1002/aic.14663 10.1109/TITS.2008.922938 10.1109/TGRS.2013.2282355 10.1007/s11370-011-0096-5 10.1007/BF00994018 10.1007/s00521-018-3468-3 10.1109/ICCV.2019.00502 10.1109/TGRS.2014.2335751 10.1016/j.neucom.2017.09.044 10.1016/j.patcog.2010.09.020 10.1016/j.patcog.2018.03.035 10.1108/02602280510585745 10.1109/LGRS.2017.2734889 10.1007/s11042-018-6912-6 10.1109/TSMCB.2011.2168604 10.1038/nature14539 10.3390/rs9050498 10.1109/TII.2018.2809730 10.1109/ICCV.2015.123 10.1109/5.726791 10.1109/LGRS.2017.2717486 10.1016/j.neucom.2009.05.006 10.1016/j.neucom.2016.12.038 10.1109/LGRS.2014.2319082 10.1109/TKDE.2009.191 10.1207/s15516709cog0000_76 10.1109/LGRS.2015.2432135 10.1016/j.neucom.2015.10.122 10.3390/rs11161921 10.1016/j.oceaneng.2019.106341 10.1109/CVPR.2015.7298965 10.1007/s11802-019-3858-x 10.1109/JSTARS.2015.2404578 10.1016/j.arcontrol.2016.04.018 10.1145/1390156.1390294 10.1016/j.neucom.2013.01.062 10.1016/j.neucom.2015.09.036 10.1016/j.conengprac.2004.08.002 10.1145/2833258.2833266 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conengprac.2020.104458 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-6939 |
ExternalDocumentID | 10_1016_j_conengprac_2020_104458 S0967066120300964 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c318t-cae9155d7bd6c59b9b2224a527e17d5fe75b0d19868e530468a00e55ba803ae43 |
IEDL.DBID | .~1 |
ISSN | 0967-0661 |
IngestDate | Tue Jul 01 00:39:05 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Fri Feb 23 02:42:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Marine object recognition Marine vehicles Learning architecture |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-cae9155d7bd6c59b9b2224a527e17d5fe75b0d19868e530468a00e55ba803ae43 |
ParticipantIDs | crossref_primary_10_1016_j_conengprac_2020_104458 crossref_citationtrail_10_1016_j_conengprac_2020_104458 elsevier_sciencedirect_doi_10_1016_j_conengprac_2020_104458 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Control engineering practice |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhu, Hui, Wang, Guo (b128) 2010; 48 Hu, Shen, Albanie, Sun, Wu (b31) 2017 Ioffe, Szegedy (b33) 2015 Lang, Wu (b39) 2017; 14 Chen, Xu (b12) 2017 Zeiler, Taylor, Fergus (b122) 2012 Liu, Zhang, Yu, Yuan (b52) 2016; 41 Liu, Yu, Lv (b50) 2011; 26 Tang, Deng, Huang, Zhao (b90) 2014; 53 Liu, Wen, Yu, Li, Raj, Song (b49) 2017 Wang, Er, Han (b94) 2014; 25 Hinton, Osindero, Welling, Teh (b30) 2006; 30 He, Zhang, Ren, Jian (b27) 2016 Wang, Sun, Liu (b100) 2016; 173 Qi, Ma, Lin, Li, Tian (b71) 2015; 12 Yang, Yu, Liang, Guo, Xia, Zhang (b113) 2018; 31 Zou, Wang, Yang, Zhou, Chen, Song (b130) 2015; 151 Erhan, Berkan, Veysel, Aykut (b19) 2016 Ødegaard, Knapskog, Cochin, Louvigne (b64) 2016 Qin, Chen, Sun (b72) 2019 Wei, Qiu, Karimi (b103) 2018; 1 Xavier, G., Antoine, B., & Yoshua, B. (2011). Deep sparse rectifier neural networks. In Guo, Xia, Wang (b25) 2014; 41 Xu, Sun, Zhang, Fu (b109) 2014; 11 Zou, Shi (b129) 2016; 54 Yang, Li, Ji, Gao, Xu (b112) 2013; 11 Lines, Tillett, Ross, Chan, Hockaday, McFarlane (b46) 2001; 31 Graves, Liwicki, Fernández, Bertolami, Schmidhuber (b22) 2009; 31 Lang, Wu, Xu (b40) 2018; 15 Mian, Bennamoun, Owens (b62) 2005; 25 Qin, Xiu, Jian, Peng, Zhang (b74) 2016; 187 (pp. 1026–1034). Malmgren-Hansen, Kusk, Dall, Nielsen, Engholm, Skriver (b59) 2017; 14 Qin, Chen, Sun, Chen (b73) 2019 Liu, Zhang, Zheng, Sun, Fu, Wang (b53) 2013; 11 Oh, Kim, Nam, Yoo (b65) 2013; 48 Zhang, Wang, Xu, Wang, Xu (b125) 2018; 311 Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Huang, Zhou, Ding, Zhang (b32) 2012; 42 Krizhevsky, Sutskever, Hinton (b37) 2012; 25 Proia, Page (b70) 2010; 7 Waxman, Seibert, Gove, Fay, Bernardon, Lazott (b102) 1995; 8 Guo, Chen (b23) 2017 Lecun, Boser, Denker, Henderson, Howard, Hubbard (b42) 1989; 1 Cortes, Vapnik (b15) 1995; 20 Sherrah (b83) 2016 Yokoya, Iwasaki (b114) 2015; 8 Liu, Shen, Ma, Zhang (b47) 2017; 25 Ma, Wen, Liang (b58) 2013 Corbane, Najman, Pecoul, Demagistri, Petit (b13) 2010; 31 Wang, Er, Han (b95) 2015; 26 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., & Anguelov, D., et al. (2015). Going deeper with convolutions. In Singh, Mittal, Bhatia (b86) 2019; 78 (pp. 1–9). Yang, Dong, Sun, Lima, Mu, Wang (b111) 2017; 15 He, K., Girshick, R., & Dollár, P. (2019). Rethinking imagenet pre-training. In Cao, Gao, Chen, Wang (b10) 2019; 1 Corbane, Pecoul, Demagistri, Petit (b14) 2008 Zeiler, Fergus (b120) 2014 Qiu, Gong, Ma, Sun (b76) 2018 Vilches, Escobar, Vallejo, Taylor (b92) 2006 Ren, He, Girshick, Sun (b78) 2015; 39 Li, Song, Qin, Hao (b45) 2018; 81 Wang, Er, Han (b96) 2015; 45 Rajurkar (b77) 2015; 3 Zhang, Yao, Zhang, Feng, Zhang (b126) 2016; 41 Sharma, Singh, Khurana (b82) 2016 Chen, Wang, Feng, Jin (b11) 2016; 54 Daoduc, C., Xiaohui, H., & Morère, O. (2015). Maritime vessel images classification using deep convolutional neural networks. In Ma, Khatibisepehr, Huang (b57) 2015; 61 Shi, Yu, Jiang, Li (b84) 2014; 52 Liu, Wang, Liu, Zeng, Liu, Alsaadi (b48) 2017; 234 Xu, Zhang, Yang, Niu (b110) 2016 Wang, Ouyang, Li, Zhang (b99) 2019; 18 Anagnostopoulos, Anagnostopoulos, Ioannis, Loumos, Kayafas (b2) 2008; 9 Lecun, Bottou, Bengio, Haffner (b44) 1998; 86 Jin, Hong (b35) 2017 Teutsch, Krüger (b91) 2010 Wang, Han, Dong, Er (b98) 2014; 128 Pöyhönen, Arkkio, Jover, H. (b69) 2005; 13 Lecun, Boser, Denker, Henderson, Jackel (b43) 1997; 2 Liu, Yuan, Weng, Yang (b51) 2017 Bucak, Jin, Jain (b9) 2013; 36 (pp. 3431–3440). Karlik, Olgac (b36) 2011; 1 van den Broek, Bouma, Hollander, Veerman, Benoist, Schwering (b8) 2014 Duo, Wang, Wang (b18) 2019; 11 (pp. 315–323). Borkar, Hayes, Smith (b7) 2012; 13 Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In Fu, Liu, Zhou, Sun, Zhang (b20) 2017; 9 (pp. 276–281). Fukushima (b21) 1980; 36 Lecun, Bengio, Hinton (b41) 2015; 521 Ji, Xing, Chen, Zou, Chen (b34) 2013 Ouadiay, F. Z., Zrira, N., Bouyakhf, E. H., & Himmi, M. M. (2016). 3D object categorization and recognition based on deep belief networks and point clouds. In Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In Ayadi, Kamel, Karray (b3) 2011; 44 (pp. 807–814). Pei, Huang, Huo, Zhang, Yang, Yeo (b68) 2017; 56 Richard, Brody, Bharath, Christopher, Andrew (b79) 2012 Bejiga, Zeggada, Melgani (b5) 2016 Pan, Yang (b67) 2009; 22 Yuan, Huang, Wang, Yang, Gui (b117) 2018; 14 Guo, Xia (b24) 2017; 145 Sommer, Schumann, Muller, Schuchert, Beyerer (b87) 2017 (pp. 4918–4927). Luo, Wan (b56) 2013 Qin, Yu, Zhu, Deng (b75) 2020; 378 Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. In Alberto, Sergio, Sergiu, Victor, Jose (b1) 2017 Ducournau, Fablet (b17) 2016 Xiang, Kim, Chen, Ji, Choy, Su (b107) 2016 Zabidi, Mustapa, Mokji, Marsono, Sha’ameri (b119) 2009 Bell, Koren (b6) 2007; 9 Sun, Shi, Liu, Dong, Plant, Wang (b88) 2017; 275 Zhang, Choi, Daniilidis, Wolf, Kanan (b123) 2015 Wang, Er, Meng (b97) 2009; 72 Kumlu, Jenkins (b38) 2013 Zhao, Wang, Yuan (b127) 2016; 38 Aziz, Bouchara (b4) 2018 Wang, Wang (b101) 2011; 28 Zeiler, Krishnan, Taylor, Fergus (b121) 2010 Yosinski, Clune, Bengio, Lipson (b115) 2014 Zhang, He, Liu (b124) 2017; 239 He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on Imagenet classification. In (pp. 311–318). Wei, Qiu, Shi, Ligang (b104) 2018; 48 Yuh, Marani, Blidberg (b118) 2011; 4 Withagen, Schutte, Vossepoel, Breuers (b105) 1999 (pp. 1096–1103). Hinton, Osindero, Teh (b29) 2006; 18 Xiong, Ding, Deng, Fang, Gong (b108) 2018 Mao, Shen, Yang (b60) 2016 Yu, Guan, Zheng (b116) 2015; 12 (pp. 833–840). Russakovsky, Deng, Su, Krause, Satheesh, Ma (b81) 2015; 115 Simonyan, Zisserman (b85) 2014 Lu, Li, Uemura, Ge, Xu, He (b55) 2018; 77 Meng, Hirayama, Oyanagi (b61) 2018; 6 10.1016/j.conengprac.2020.104458_b54 Zhang (10.1016/j.conengprac.2020.104458_b123) 2015 Xiang (10.1016/j.conengprac.2020.104458_b107) 2016 Sun (10.1016/j.conengprac.2020.104458_b88) 2017; 275 Krizhevsky (10.1016/j.conengprac.2020.104458_b37) 2012; 25 Ren (10.1016/j.conengprac.2020.104458_b78) 2015; 39 Yang (10.1016/j.conengprac.2020.104458_b113) 2018; 31 Liu (10.1016/j.conengprac.2020.104458_b53) 2013; 11 Ducournau (10.1016/j.conengprac.2020.104458_b17) 2016 Huang (10.1016/j.conengprac.2020.104458_b32) 2012; 42 Bejiga (10.1016/j.conengprac.2020.104458_b5) 2016 Anagnostopoulos (10.1016/j.conengprac.2020.104458_b2) 2008; 9 Qi (10.1016/j.conengprac.2020.104458_b71) 2015; 12 Ji (10.1016/j.conengprac.2020.104458_b34) 2013 Graves (10.1016/j.conengprac.2020.104458_b22) 2009; 31 Kumlu (10.1016/j.conengprac.2020.104458_b38) 2013 Sherrah (10.1016/j.conengprac.2020.104458_b83) 2016 Teutsch (10.1016/j.conengprac.2020.104458_b91) 2010 Wang (10.1016/j.conengprac.2020.104458_b94) 2014; 25 Guo (10.1016/j.conengprac.2020.104458_b25) 2014; 41 Corbane (10.1016/j.conengprac.2020.104458_b13) 2010; 31 Meng (10.1016/j.conengprac.2020.104458_b61) 2018; 6 Qin (10.1016/j.conengprac.2020.104458_b75) 2020; 378 Qin (10.1016/j.conengprac.2020.104458_b74) 2016; 187 Cortes (10.1016/j.conengprac.2020.104458_b15) 1995; 20 Chen (10.1016/j.conengprac.2020.104458_b12) 2017 Hinton (10.1016/j.conengprac.2020.104458_b30) 2006; 30 Oh (10.1016/j.conengprac.2020.104458_b65) 2013; 48 Cao (10.1016/j.conengprac.2020.104458_b10) 2019; 1 Zhao (10.1016/j.conengprac.2020.104458_b127) 2016; 38 Shi (10.1016/j.conengprac.2020.104458_b84) 2014; 52 Jin (10.1016/j.conengprac.2020.104458_b35) 2017 Hinton (10.1016/j.conengprac.2020.104458_b29) 2006; 18 Lecun (10.1016/j.conengprac.2020.104458_b43) 1997; 2 Zhang (10.1016/j.conengprac.2020.104458_b124) 2017; 239 Lecun (10.1016/j.conengprac.2020.104458_b44) 1998; 86 Wang (10.1016/j.conengprac.2020.104458_b101) 2011; 28 Wei (10.1016/j.conengprac.2020.104458_b103) 2018; 1 Liu (10.1016/j.conengprac.2020.104458_b51) 2017 van den Broek (10.1016/j.conengprac.2020.104458_b8) 2014 Bucak (10.1016/j.conengprac.2020.104458_b9) 2013; 36 Yokoya (10.1016/j.conengprac.2020.104458_b114) 2015; 8 Zeiler (10.1016/j.conengprac.2020.104458_b121) 2010 Zhang (10.1016/j.conengprac.2020.104458_b125) 2018; 311 Pei (10.1016/j.conengprac.2020.104458_b68) 2017; 56 Richard (10.1016/j.conengprac.2020.104458_b79) 2012 Wang (10.1016/j.conengprac.2020.104458_b95) 2015; 26 Yosinski (10.1016/j.conengprac.2020.104458_b115) 2014 Borkar (10.1016/j.conengprac.2020.104458_b7) 2012; 13 Vilches (10.1016/j.conengprac.2020.104458_b92) 2006 Alberto (10.1016/j.conengprac.2020.104458_b1) 2017 Chen (10.1016/j.conengprac.2020.104458_b11) 2016; 54 Mao (10.1016/j.conengprac.2020.104458_b60) 2016 Russakovsky (10.1016/j.conengprac.2020.104458_b81) 2015; 115 He (10.1016/j.conengprac.2020.104458_b27) 2016 10.1016/j.conengprac.2020.104458_b66 10.1016/j.conengprac.2020.104458_b106 Singh (10.1016/j.conengprac.2020.104458_b86) 2019; 78 Qiu (10.1016/j.conengprac.2020.104458_b76) 2018 Fu (10.1016/j.conengprac.2020.104458_b20) 2017; 9 Liu (10.1016/j.conengprac.2020.104458_b52) 2016; 41 Hu (10.1016/j.conengprac.2020.104458_b31) 2017 10.1016/j.conengprac.2020.104458_b63 Lu (10.1016/j.conengprac.2020.104458_b55) 2018; 77 Malmgren-Hansen (10.1016/j.conengprac.2020.104458_b59) 2017; 14 Luo (10.1016/j.conengprac.2020.104458_b56) 2013 Yang (10.1016/j.conengprac.2020.104458_b111) 2017; 15 Sommer (10.1016/j.conengprac.2020.104458_b87) 2017 Erhan (10.1016/j.conengprac.2020.104458_b19) 2016 Ødegaard (10.1016/j.conengprac.2020.104458_b64) 2016 Zeiler (10.1016/j.conengprac.2020.104458_b120) 2014 Wang (10.1016/j.conengprac.2020.104458_b97) 2009; 72 Aziz (10.1016/j.conengprac.2020.104458_b4) 2018 10.1016/j.conengprac.2020.104458_b16 Yuh (10.1016/j.conengprac.2020.104458_b118) 2011; 4 Ioffe (10.1016/j.conengprac.2020.104458_b33) 2015 10.1016/j.conengprac.2020.104458_b93 Mian (10.1016/j.conengprac.2020.104458_b62) 2005; 25 Xu (10.1016/j.conengprac.2020.104458_b110) 2016 Zhu (10.1016/j.conengprac.2020.104458_b128) 2010; 48 Zabidi (10.1016/j.conengprac.2020.104458_b119) 2009 Wang (10.1016/j.conengprac.2020.104458_b98) 2014; 128 Xiong (10.1016/j.conengprac.2020.104458_b108) 2018 Ayadi (10.1016/j.conengprac.2020.104458_b3) 2011; 44 10.1016/j.conengprac.2020.104458_b89 Yang (10.1016/j.conengprac.2020.104458_b112) 2013; 11 Wei (10.1016/j.conengprac.2020.104458_b104) 2018; 48 10.1016/j.conengprac.2020.104458_b80 Simonyan (10.1016/j.conengprac.2020.104458_b85) 2014 Guo (10.1016/j.conengprac.2020.104458_b23) 2017 Karlik (10.1016/j.conengprac.2020.104458_b36) 2011; 1 Zeiler (10.1016/j.conengprac.2020.104458_b122) 2012 Wang (10.1016/j.conengprac.2020.104458_b100) 2016; 173 Wang (10.1016/j.conengprac.2020.104458_b96) 2015; 45 Liu (10.1016/j.conengprac.2020.104458_b48) 2017; 234 Bell (10.1016/j.conengprac.2020.104458_b6) 2007; 9 Tang (10.1016/j.conengprac.2020.104458_b90) 2014; 53 Lecun (10.1016/j.conengprac.2020.104458_b41) 2015; 521 Li (10.1016/j.conengprac.2020.104458_b45) 2018; 81 Withagen (10.1016/j.conengprac.2020.104458_b105) 1999 Qin (10.1016/j.conengprac.2020.104458_b72) 2019 Ma (10.1016/j.conengprac.2020.104458_b58) 2013 Lang (10.1016/j.conengprac.2020.104458_b39) 2017; 14 Lines (10.1016/j.conengprac.2020.104458_b46) 2001; 31 Zhang (10.1016/j.conengprac.2020.104458_b126) 2016; 41 Qin (10.1016/j.conengprac.2020.104458_b73) 2019 Duo (10.1016/j.conengprac.2020.104458_b18) 2019; 11 Yuan (10.1016/j.conengprac.2020.104458_b117) 2018; 14 Corbane (10.1016/j.conengprac.2020.104458_b14) 2008 Liu (10.1016/j.conengprac.2020.104458_b50) 2011; 26 Zou (10.1016/j.conengprac.2020.104458_b129) 2016; 54 Proia (10.1016/j.conengprac.2020.104458_b70) 2010; 7 Guo (10.1016/j.conengprac.2020.104458_b24) 2017; 145 Rajurkar (10.1016/j.conengprac.2020.104458_b77) 2015; 3 10.1016/j.conengprac.2020.104458_b26 Pöyhönen (10.1016/j.conengprac.2020.104458_b69) 2005; 13 10.1016/j.conengprac.2020.104458_b28 Liu (10.1016/j.conengprac.2020.104458_b47) 2017; 25 Sharma (10.1016/j.conengprac.2020.104458_b82) 2016 Zou (10.1016/j.conengprac.2020.104458_b130) 2015; 151 Lang (10.1016/j.conengprac.2020.104458_b40) 2018; 15 Lecun (10.1016/j.conengprac.2020.104458_b42) 1989; 1 Liu (10.1016/j.conengprac.2020.104458_b49) 2017 Wang (10.1016/j.conengprac.2020.104458_b99) 2019; 18 Fukushima (10.1016/j.conengprac.2020.104458_b21) 1980; 36 Waxman (10.1016/j.conengprac.2020.104458_b102) 1995; 8 Yu (10.1016/j.conengprac.2020.104458_b116) 2015; 12 Xu (10.1016/j.conengprac.2020.104458_b109) 2014; 11 Pan (10.1016/j.conengprac.2020.104458_b67) 2009; 22 Ma (10.1016/j.conengprac.2020.104458_b57) 2015; 61 |
References_xml | – start-page: 2589 year: 2013 end-page: 2592 ident: b34 article-title: Ship classification in TerraSAR-X SAR images based on classifier combination publication-title: 2013 IEEE international geoscience and remote sensing symposium-IGARSS – reference: (pp. 311–318). – volume: 13 start-page: 365 year: 2012 end-page: 374 ident: b7 article-title: A novel lane detection system with efficient ground truth generation publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b81 article-title: Imagenet large scale visual recognition challenge publication-title: International Journal of Computer Vision – start-page: 436 year: 2013 end-page: 444 ident: b58 article-title: Video image clarity algorithm research of USV visual system under the sea fog publication-title: International conference in swarm intelligence – volume: 52 start-page: 4511 year: 2014 end-page: 4523 ident: b84 article-title: Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature publication-title: IEEE Transactions on Geoscience and Remote Sensing – start-page: 160 year: 2016 end-page: 176 ident: b107 article-title: Objectnet3D: A large scale database for 3D object recognition publication-title: European conference on computer vision – reference: (pp. 1096–1103). – volume: 378 start-page: 295 year: 2020 end-page: 303 ident: b75 article-title: An expectation-maximization based single-beacon underwater navigation method with unknown ESV publication-title: Neurocomputing – volume: 9 start-page: 377 year: 2008 end-page: 391 ident: b2 article-title: License plate recognition from still images and video sequences: A survey publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Ouadiay, F. Z., Zrira, N., Bouyakhf, E. H., & Himmi, M. M. (2016). 3D object categorization and recognition based on deep belief networks and point clouds. In – volume: 151 start-page: 603 year: 2015 end-page: 611 ident: b130 article-title: Supervised feature learning via l2-norm regularized logistic regression for 3D object recognition publication-title: Neurocomputing – reference: Daoduc, C., Xiaohui, H., & Morère, O. (2015). Maritime vessel images classification using deep convolutional neural networks. In – volume: 61 start-page: 518 year: 2015 end-page: 529 ident: b57 article-title: A Bayesian framework for real-time identification of locally weighted partial least squares publication-title: AIChE Journal – start-page: 524 year: 2016 end-page: 530 ident: b82 article-title: Analytical review on object segmentation and recognition publication-title: 2016 6th international conference - Cloud system and big data engineering (Confluence) – volume: 72 start-page: 3818 year: 2009 end-page: 3829 ident: b97 article-title: A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks publication-title: Neurocomputing – volume: 14 start-page: 1484 year: 2017 end-page: 1488 ident: b59 article-title: Improving SAR automatic target recognition models with transfer learning from simulated data publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 3 start-page: 28 year: 2015 end-page: 30 ident: b77 article-title: Visual object recognition using image mining approach: A review publication-title: International Journal of Computer and Communication Engineering Research – volume: 311 start-page: 363 year: 2018 end-page: 372 ident: b125 article-title: The augmented complex-valued extreme learning machine publication-title: Neurocomputing – volume: 18 start-page: 376 year: 2019 end-page: 382 ident: b99 article-title: Underwater object recognition based on deep encoding-decoding network publication-title: Journal of Ocean University of China – volume: 234 start-page: 11 year: 2017 end-page: 26 ident: b48 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing – year: 2016 ident: b83 article-title: Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery – start-page: 1019 year: 2013 end-page: 1023 ident: b56 article-title: A novel efficient method for training sparse auto-encoders publication-title: 2013 6th international congress on image and signal processing – reference: Xavier, G., Antoine, B., & Yoshua, B. (2011). Deep sparse rectifier neural networks. In – reference: He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on Imagenet classification. In – volume: 9 start-page: 75 year: 2007 end-page: 79 ident: b6 article-title: Lessons from the netflix prize challenge publication-title: Acm Sigkdd Explorations Newsletter – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b41 article-title: Deep learning publication-title: Nature – volume: 9 start-page: 498 year: 2017 end-page: 519 ident: b20 article-title: Classification for high resolution remote sensing imagery using a fully convolutional network publication-title: Remote Sensing – year: 2018 ident: b108 article-title: Ship detection under complex sea and weather conditions based on deep learning publication-title: Journal of Computer Applications – volume: 8 start-page: 1029 year: 1995 end-page: 1051 ident: b102 article-title: Neural processing of targets in visible, multispectral IR and SAR imagery publication-title: Neural Networks – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: b32 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – volume: 11 start-page: 1921 year: 2019 ident: b18 article-title: Oceanic mesoscale eddy detection method based on deep learning publication-title: Remote Sensing – reference: (pp. 276–281). – reference: Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In – volume: 53 start-page: 1174 year: 2014 end-page: 1185 ident: b90 article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine publication-title: IEEE Transactions on Geoscience and Remote Sensing – reference: Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. In – volume: 1 start-page: 111 year: 2011 end-page: 122 ident: b36 article-title: Performance analysis of various activation functions in generalized MLP architectures of neural network publication-title: International Journal of Artificial Intelligence and Expert System – volume: 187 start-page: 49 year: 2016 end-page: 58 ident: b74 article-title: DeepFish: Accurate underwater live fish recognition with a deep architecture publication-title: Neurocomputing – volume: 41 start-page: 423 year: 2016 end-page: 430 ident: b126 article-title: S-CNN-based ship detection from high-resolution remote sensing images publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – start-page: 235 year: 2018 end-page: 244 ident: b4 article-title: Multimodal deep learning for robust recognizing maritime imagery in the visible and infrared spectrums publication-title: International conference image analysis and recognition – start-page: 165 year: 2016 end-page: 180 ident: b19 article-title: MARVEL: A large-scale image dataset for maritime vessels publication-title: Asian conference on computer vision – start-page: 212 year: 2017 end-page: 220 ident: b49 article-title: SphereFace: Deep hypersphere embedding for face recognition publication-title: The IEEE conference on computer vision and pattern recognition – volume: 48 start-page: 3446 year: 2010 end-page: 3456 ident: b128 article-title: A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b44 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – start-page: 1 year: 2017 end-page: 4 ident: b23 article-title: SAR image target recognition via deep Bayesian generative network publication-title: 2017 international workshop on remote sensing with intelligent processing – volume: 25 start-page: 2939 year: 2017 end-page: 2946 ident: b47 article-title: Ship recognition based on multi-band deep neural network publication-title: Optics and Precision Engineering – volume: 2 start-page: 396 year: 1997 end-page: 404 ident: b43 article-title: Handwritten digit recognition with a back-propagation network publication-title: Advances in Neural Information Processing Systems – volume: 36 start-page: 1354 year: 2013 end-page: 1369 ident: b9 article-title: Multiple kernel learning for visual object recognition: A review publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 26 start-page: 1161 year: 2015 end-page: 1176 ident: b95 article-title: Generalized single-hidden layer feedforward networks for regression problems publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 11 start-page: 617 year: 2013 end-page: 621 ident: b53 article-title: A new method on inshore ship detection in high-resolution satellite images using shape and context information publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 44 start-page: 572 year: 2011 end-page: 587 ident: b3 article-title: Survey on speech emotion recognition: Features, classification schemes, and databases publication-title: Pattern Recognition – start-page: 86610M year: 2013 ident: b38 article-title: Autonomous ship classification using synthetic and real color images publication-title: Image processing: Machine vision applications VI – volume: 41 start-page: 71 year: 2016 end-page: 93 ident: b52 article-title: Unmanned surface vehicles: An overview of developments and challenges publication-title: Annual Reviews in Control – start-page: 180 year: 1999 end-page: 187 ident: b105 article-title: Automatic classification of ships from infrared (FLIR) images publication-title: Signal processing, sensor fusion, and target recognition VIII – reference: Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In – volume: 38 start-page: 119 year: 2016 end-page: 123 ident: b127 article-title: Research on ship recognition method based on deep convolutional neural network publication-title: Ship Science and Technology – volume: 31 start-page: 6469 year: 2018 end-page: 6478 ident: b113 article-title: Deep transfer learning for military object recognition under small training set condition publication-title: Neural Computing and Applications – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: b42 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Computation – start-page: 1 year: 2008 end-page: 13 ident: b14 article-title: Fully automated procedure for ship detection using optical satellite imagery publication-title: Remote sensing of inland, coastal, and oceanic waters 10 – start-page: 1 year: 2017 end-page: 6 ident: b87 article-title: Flying object detection for automatic UAV recognition publication-title: 2017 14th IEEE international conference on advanced video and signal based surveillance – volume: 39 start-page: 1137 year: 2015 end-page: 1149 ident: b78 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 239 start-page: 194 year: 2017 end-page: 203 ident: b124 article-title: Deep object recognition across domains based on adaptive extreme learning machine publication-title: Neurocomputing – volume: 14 start-page: 1765 year: 2017 end-page: 1769 ident: b39 article-title: Ship classification in moderate-resolution SAR image by naive geometric features-combined multiple kernel learning publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 56 start-page: 2196 year: 2017 end-page: 2210 ident: b68 article-title: SAR automatic target recognition based on multiview deep learning framework publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 15 start-page: 207 year: 2017 end-page: 211 ident: b111 article-title: A CFCC-LSTM model for sea surface temperature prediction publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 11 start-page: 641 year: 2013 end-page: 645 ident: b112 article-title: Ship detection from optical satellite images based on sea surface analysis publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 36 start-page: 193 year: 1980 end-page: 202 ident: b21 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biological Cybernetics – reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In – volume: 81 start-page: 294 year: 2018 end-page: 308 ident: b45 article-title: Deep variance network: An iterative, improved CNN framework for unbalanced training datasets publication-title: Pattern Recognition – volume: 1 year: 2019 ident: b10 article-title: Ship recognition method combined with image segmentation and deep learning feature extraction in video surveillance publication-title: Multimedia Tools and Applications – reference: He, K., Girshick, R., & Dollár, P. (2019). Rethinking imagenet pre-training. In – start-page: 7132 year: 2017 end-page: 7141 ident: b31 article-title: Squeeze-and-excitation networks publication-title: IEEE conference on computer vision and pattern recognition – start-page: 448 year: 2015 end-page: 456 ident: b33 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: International conference on machine learning – volume: 22 start-page: 1345 year: 2009 end-page: 1359 ident: b67 article-title: A survey on transfer learning publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 48 start-page: 2723 year: 2018 end-page: 2735 ident: b104 article-title: A piecewise-markovian lyapunov approach to reliable output feedback control for fuzzy-affine systems with time-delays and actuator faults publication-title: IEEE Transactions on Cybernetics – reference: (pp. 833–840). – volume: 28 start-page: 2352 year: 2011 end-page: 2354 ident: b101 article-title: Ship targets recognition algorithm based on features publication-title: Application Research of Computers – start-page: 324 year: 2017 end-page: 331 ident: b51 article-title: A high resolution optical satellite image dataset for ship recognition and some new baselines publication-title: International conference on pattern recognition applications and methods – start-page: 108060Q year: 2018 ident: b76 article-title: Ship target recognition based on multi-spectral infrared images publication-title: Tenth international conference on digital image processing – volume: 128 start-page: 59 year: 2014 end-page: 72 ident: b98 article-title: Constructive multi-output extreme learning machine with application to large tanker motion dynamics identification publication-title: Neurocomputing – start-page: 1 year: 2010 end-page: 7 ident: b91 article-title: Classification of small boats in infrared images for maritime surveillance publication-title: 2010 international waterside security conference – start-page: 2018 year: 2012 end-page: 2025 ident: b122 article-title: Adaptive deconvolutional networks for mid and high level feature learning publication-title: 2011 international conference on computer vision – volume: 41 start-page: 6446 year: 2014 end-page: 6458 ident: b25 article-title: A remote sensing ship recognition method based on dynamic probability generative model publication-title: Expert Systems with Applications – start-page: 400 year: 2006 end-page: 403 ident: b92 article-title: Data mining applied to acoustic bird species recognition publication-title: International conference on pattern recognition – volume: 7 start-page: 226 year: 2010 end-page: 230 ident: b70 article-title: Characterization of a Bayesian ship detection method in optical satellite images publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 45 year: 2015 ident: b96 article-title: Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks publication-title: IEEE Transactions on Cybernetics – volume: 77 start-page: 21847 year: 2018 end-page: 21860 ident: b55 article-title: FDCNet: filtering deep convolutional network for marine organism classification publication-title: Multimedia Tools and Applications – volume: 6 start-page: 17880 year: 2018 end-page: 17886 ident: b61 article-title: Underwater-drone with panoramic camera for automatic fish recognition based on deep learning publication-title: IEEE Access – start-page: 1 year: 2016 end-page: 4 ident: b5 article-title: Convolutional neural networks for near real-time object detection from UAV imagery in avalanche search and rescue operations publication-title: IGARSS 2016 - 2016 IEEE international geoscience and remote sensing symposium – volume: 25 start-page: 148 year: 2005 end-page: 154 ident: b62 article-title: 3D model-based free-form object recognition - A review publication-title: Sensor Review – reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., & Anguelov, D., et al. (2015). Going deeper with convolutions. In – start-page: 818 year: 2014 end-page: 833 ident: b120 article-title: Visualizing and understanding convolutional networks publication-title: European conference on computer vision – year: 2017 ident: b1 article-title: A review on deep learning techniques applied to semantic segmentation – start-page: 730 year: 2014 end-page: 734 ident: b85 article-title: Very deep convolutional networks for large-scale image recognition publication-title: IEEE international conference on learning representations – year: 2012 ident: b79 article-title: Convolutional-recursive deep learning for 3D object classification publication-title: Advances in neural information processing systems 25 – year: 2019 ident: b73 article-title: Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying node systems with error constraints publication-title: Ocean Engineering – volume: 275 start-page: 897 year: 2017 end-page: 908 ident: b88 article-title: Transferring deep knowledge for object recognition in low-quality underwater videos publication-title: Neurocomputing – volume: 4 start-page: 221 year: 2011 end-page: 231 ident: b118 article-title: Applications of marine robotic vehicles publication-title: Intelligent Service Robotics – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b29 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation – volume: 1 year: 2018 ident: b103 article-title: Fuzzy-affine-model-based memory filter design of nonlinear systems with time-varying delay publication-title: IEEE Transactions on Fuzzy Systems – volume: 14 start-page: 3235 year: 2018 end-page: 3243 ident: b117 article-title: Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE publication-title: IEEE Transactions on Industrial Informatics – volume: 54 start-page: 5832 year: 2016 end-page: 5845 ident: b129 article-title: Ship detection in spaceborne optical image with SVD networks publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 11 start-page: 2070 year: 2014 end-page: 2074 ident: b109 article-title: Automatic detection of inshore ships in high-resolution remote sensing images using robust invariant generalized hough transform publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b15 article-title: Support-vector networks publication-title: Machine Learning – volume: 30 start-page: 725 year: 2006 end-page: 731 ident: b30 article-title: Unsupervised discovery of nonlinear structure using contrastive backpropagation publication-title: Cognitive Science – start-page: 2802 year: 2016 end-page: 2810 ident: b60 article-title: Image restoration using very deep fully convolutional encoder-decoder networks with symmetric skip connections publication-title: Advances in neural information processing systems – volume: 25 start-page: 1828 year: 2014 end-page: 1841 ident: b94 article-title: Parsimonious extreme learning machine using recursive orthogonal least squares publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 2528 year: 2010 end-page: 2535 ident: b121 article-title: Deconvolutional networks publication-title: 2010 IEEE computer society conference on computer vision and pattern recognition – volume: 12 start-page: 2183 year: 2015 end-page: 2187 ident: b116 article-title: Rotation-invariant object detection in high-resolution satellite imagery using superpixel-based deep hough forests publication-title: IEEE Geoscience and Remote Sensing Letters – start-page: 1 year: 2016 end-page: 6 ident: b17 article-title: Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data publication-title: 9TH workshop on pattern recognition in remote sensing – reference: (pp. 315–323). – volume: 48 start-page: 2894 year: 2013 end-page: 2907 ident: b65 article-title: A 57 mW 12.5 publication-title: IEEE Journal of Solid-State Circuits – volume: 78 start-page: 15951 year: 2019 end-page: 15995 ident: b86 article-title: 3D convolutional neural network for object recognition: A review publication-title: Multimedia Tools and Applications – volume: 31 start-page: 5837 year: 2010 end-page: 5854 ident: b13 article-title: A complete processing chain for ship detection using optical satellite imagery publication-title: International Journal of Remote Sensing – volume: 54 start-page: 1 year: 2016 end-page: 12 ident: b11 article-title: Target classification using the deep convolutional networks for SAR images publication-title: IEEE Transactions on Geoscience and Remote Sensing – start-page: 1 year: 2009 end-page: 5 ident: b119 article-title: Embedded vision systems for ship recognition publication-title: TENCON 2009-2009 IEEE region 10 conference – volume: 15 start-page: 439 year: 2018 end-page: 443 ident: b40 article-title: Ship classification in SAR images improved by AIS knowledge transfer publication-title: IEEE Geoscience and Remote Sensing Letters – start-page: 10 year: 2015 end-page: 16 ident: b123 article-title: VAIS: A dataset for recognizing maritime imagery in the visible and infrared spectrums publication-title: The IEEE conference on computer vision and pattern recognition – volume: 26 start-page: 687 year: 2011 end-page: 690 ident: b50 article-title: Ship image recognition method based on the affine invariant moments publication-title: Journal of Naval Aeronautical and Astronautical University – reference: (pp. 1–9). – volume: 8 start-page: 2053 year: 2015 end-page: 2062 ident: b114 article-title: Object detection based on sparse representation and hough voting for optical remote sensing imagery publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 12 start-page: 1451 year: 2015 end-page: 1455 ident: b71 article-title: Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images publication-title: IEEE Geoscience and Remote Sensing Letters – start-page: 89 year: 2016 end-page: 93 ident: b110 article-title: Deep learning-based recognition of underwater target publication-title: 2016 IEEE international conference on digital signal processing – start-page: 770 year: 2016 end-page: 778 ident: b27 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE conference on computer vision and pattern recognition – volume: 13 start-page: 759 year: 2005 end-page: 769 ident: b69 article-title: Coupling pairwise support vector machines for fault classification publication-title: Control Engineering Practice – reference: (pp. 807–814). – reference: (pp. 4918–4927). – reference: (pp. 1026–1034). – year: 2019 ident: b72 article-title: Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying nodes publication-title: Journal of the Franklin Institute – volume: 31 start-page: 855 year: 2009 end-page: 868 ident: b22 article-title: A novel connectionist system for unconstrained handwriting recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 145 start-page: 365 year: 2017 end-page: 376 ident: b24 article-title: A ship recognition method of variational inference-based probability generative model using optical remote sensing image publication-title: Optik – start-page: 1 year: 2016 end-page: 6 ident: b64 article-title: Classification of ships using real and simulated data in a convolutional neural network publication-title: 2016 IEEE radar conference (RadarConf) – start-page: 92490N year: 2014 ident: b8 article-title: Ship recognition for improved persistent tracking with descriptor localization and compact representations publication-title: Electro-optical and infrared systems: Technology and applications XI – volume: 31 start-page: 151 year: 2001 end-page: 168 ident: b46 article-title: An automatic image-based system for estimating the mass of free-swimming fish publication-title: Computers and Electronics in Agriculture – start-page: 1 year: 2017 end-page: 4 ident: b35 article-title: Deep learning for underwater image recognition in small sample size situations publication-title: OCEANS 2017 - Aberdeen – reference: (pp. 3431–3440). – start-page: 3320 year: 2014 end-page: 3328 ident: b115 article-title: How transferable are features in deep neural networks? publication-title: Advances in neural information processing systems – volume: 173 start-page: 1640 year: 2016 end-page: 1645 ident: b100 article-title: Direct adaptive self-structuring fuzzy control with interpretable fuzzy rules for a class of nonlinear uncertain systems publication-title: Neurocomputing – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: b37 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – start-page: 1 year: 2017 end-page: 5 ident: b12 article-title: The research of underwater target recognition method based on deep learning publication-title: 2017 IEEE international conference on signal processing, communications and computing (ICSPCC) – volume: 48 start-page: 2723 issue: 9 year: 2018 ident: 10.1016/j.conengprac.2020.104458_b104 article-title: A piecewise-markovian lyapunov approach to reliable output feedback control for fuzzy-affine systems with time-delays and actuator faults publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2017.2749239 – volume: 48 start-page: 3446 issue: 9 year: 2010 ident: 10.1016/j.conengprac.2020.104458_b128 article-title: A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2010.2046330 – volume: 41 start-page: 6446 issue: 14 year: 2014 ident: 10.1016/j.conengprac.2020.104458_b25 article-title: A remote sensing ship recognition method based on dynamic probability generative model publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.03.033 – volume: 145 start-page: 365 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b24 article-title: A ship recognition method of variational inference-based probability generative model using optical remote sensing image publication-title: Optik doi: 10.1016/j.ijleo.2017.07.039 – volume: 54 start-page: 1 issue: 8 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b11 article-title: Target classification using the deep convolutional networks for SAR images publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2016.2551720 – volume: 9 start-page: 75 issue: 2 year: 2007 ident: 10.1016/j.conengprac.2020.104458_b6 article-title: Lessons from the netflix prize challenge publication-title: Acm Sigkdd Explorations Newsletter doi: 10.1145/1345448.1345465 – start-page: 212 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b49 article-title: SphereFace: Deep hypersphere embedding for face recognition – start-page: 160 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b107 article-title: Objectnet3D: A large scale database for 3D object recognition – volume: 239 start-page: 194 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b124 article-title: Deep object recognition across domains based on adaptive extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.016 – ident: 10.1016/j.conengprac.2020.104458_b106 – volume: 36 start-page: 1354 issue: 7 year: 2013 ident: 10.1016/j.conengprac.2020.104458_b9 article-title: Multiple kernel learning for visual object recognition: A review publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: 10.1016/j.conengprac.2020.104458_b66 doi: 10.5220/0005979503110318 – ident: 10.1016/j.conengprac.2020.104458_b63 – volume: 36 start-page: 193 issue: 4 year: 1980 ident: 10.1016/j.conengprac.2020.104458_b21 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biological Cybernetics doi: 10.1007/BF00344251 – start-page: 86610M year: 2013 ident: 10.1016/j.conengprac.2020.104458_b38 article-title: Autonomous ship classification using synthetic and real color images – volume: 25 start-page: 1828 issue: 10 year: 2014 ident: 10.1016/j.conengprac.2020.104458_b94 article-title: Parsimonious extreme learning machine using recursive orthogonal least squares publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2296048 – volume: 56 start-page: 2196 issue: 4 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b68 article-title: SAR automatic target recognition based on multiview deep learning framework publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2017.2776357 – start-page: 180 year: 1999 ident: 10.1016/j.conengprac.2020.104458_b105 article-title: Automatic classification of ships from infrared (FLIR) images – volume: 31 start-page: 151 issue: 2 year: 2001 ident: 10.1016/j.conengprac.2020.104458_b46 article-title: An automatic image-based system for estimating the mass of free-swimming fish publication-title: Computers and Electronics in Agriculture doi: 10.1016/S0168-1699(00)00181-2 – volume: 54 start-page: 5832 issue: 10 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b129 article-title: Ship detection in spaceborne optical image with SVD networks publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2016.2572736 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.conengprac.2020.104458_b29 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – volume: 15 start-page: 439 issue: 3 year: 2018 ident: 10.1016/j.conengprac.2020.104458_b40 article-title: Ship classification in SAR images improved by AIS knowledge transfer publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2018.2792683 – start-page: 165 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b19 article-title: MARVEL: A large-scale image dataset for maritime vessels – start-page: 1 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b23 article-title: SAR image target recognition via deep Bayesian generative network – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b81 article-title: Imagenet large scale visual recognition challenge publication-title: International Journal of Computer Vision doi: 10.1007/s11263-015-0816-y – start-page: 400 year: 2006 ident: 10.1016/j.conengprac.2020.104458_b92 article-title: Data mining applied to acoustic bird species recognition – start-page: 2589 year: 2013 ident: 10.1016/j.conengprac.2020.104458_b34 article-title: Ship classification in TerraSAR-X SAR images based on classifier combination – year: 2018 ident: 10.1016/j.conengprac.2020.104458_b108 article-title: Ship detection under complex sea and weather conditions based on deep learning publication-title: Journal of Computer Applications – volume: 311 start-page: 363 year: 2018 ident: 10.1016/j.conengprac.2020.104458_b125 article-title: The augmented complex-valued extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.074 – volume: 25 start-page: 2939 issue: 11 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b47 article-title: Ship recognition based on multi-band deep neural network publication-title: Optics and Precision Engineering doi: 10.3788/OPE.20172511.2939 – volume: 26 start-page: 687 issue: 6 year: 2011 ident: 10.1016/j.conengprac.2020.104458_b50 article-title: Ship image recognition method based on the affine invariant moments publication-title: Journal of Naval Aeronautical and Astronautical University – volume: 15 start-page: 207 issue: 2 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b111 article-title: A CFCC-LSTM model for sea surface temperature prediction publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2017.2780843 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10.1016/j.conengprac.2020.104458_b42 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Computation doi: 10.1162/neco.1989.1.4.541 – start-page: 1 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b64 article-title: Classification of ships using real and simulated data in a convolutional neural network – volume: 8 start-page: 1029 issue: 7–8 year: 1995 ident: 10.1016/j.conengprac.2020.104458_b102 article-title: Neural processing of targets in visible, multispectral IR and SAR imagery publication-title: Neural Networks doi: 10.1016/0893-6080(95)00080-1 – volume: 31 start-page: 5837 issue: 22 year: 2010 ident: 10.1016/j.conengprac.2020.104458_b13 article-title: A complete processing chain for ship detection using optical satellite imagery publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2010.512310 – year: 2012 ident: 10.1016/j.conengprac.2020.104458_b79 article-title: Convolutional-recursive deep learning for 3D object classification – volume: 41 start-page: 423 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b126 article-title: S-CNN-based ship detection from high-resolution remote sensing images publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences doi: 10.5194/isprs-archives-XLI-B7-423-2016 – volume: 11 start-page: 641 issue: 3 year: 2013 ident: 10.1016/j.conengprac.2020.104458_b112 article-title: Ship detection from optical satellite images based on sea surface analysis publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2013.2273552 – volume: 39 start-page: 1137 issue: 6 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b78 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2577031 – ident: 10.1016/j.conengprac.2020.104458_b89 doi: 10.1109/CVPR.2015.7298594 – volume: 31 start-page: 855 issue: 5 year: 2009 ident: 10.1016/j.conengprac.2020.104458_b22 article-title: A novel connectionist system for unconstrained handwriting recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.137 – volume: 1 year: 2019 ident: 10.1016/j.conengprac.2020.104458_b10 article-title: Ship recognition method combined with image segmentation and deep learning feature extraction in video surveillance publication-title: Multimedia Tools and Applications – volume: 6 start-page: 17880 year: 2018 ident: 10.1016/j.conengprac.2020.104458_b61 article-title: Underwater-drone with panoramic camera for automatic fish recognition based on deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2820326 – start-page: 2528 year: 2010 ident: 10.1016/j.conengprac.2020.104458_b121 article-title: Deconvolutional networks – volume: 11 start-page: 617 issue: 3 year: 2013 ident: 10.1016/j.conengprac.2020.104458_b53 article-title: A new method on inshore ship detection in high-resolution satellite images using shape and context information publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2013.2272492 – volume: 151 start-page: 603 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b130 article-title: Supervised feature learning via l2-norm regularized logistic regression for 3D object recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.089 – start-page: 436 year: 2013 ident: 10.1016/j.conengprac.2020.104458_b58 article-title: Video image clarity algorithm research of USV visual system under the sea fog – start-page: 730 year: 2014 ident: 10.1016/j.conengprac.2020.104458_b85 article-title: Very deep convolutional networks for large-scale image recognition – volume: 12 start-page: 1451 issue: 7 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b71 article-title: Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2015.2408355 – ident: 10.1016/j.conengprac.2020.104458_b80 – volume: 26 start-page: 1161 issue: 6 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b95 article-title: Generalized single-hidden layer feedforward networks for regression problems publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2334366 – volume: 1 start-page: 111 year: 2011 ident: 10.1016/j.conengprac.2020.104458_b36 article-title: Performance analysis of various activation functions in generalized MLP architectures of neural network publication-title: International Journal of Artificial Intelligence and Expert System – volume: 77 start-page: 21847 issue: 17 year: 2018 ident: 10.1016/j.conengprac.2020.104458_b55 article-title: FDCNet: filtering deep convolutional network for marine organism classification publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-4585-1 – start-page: 1 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b35 article-title: Deep learning for underwater image recognition in small sample size situations – volume: 378 start-page: 295 year: 2020 ident: 10.1016/j.conengprac.2020.104458_b75 article-title: An expectation-maximization based single-beacon underwater navigation method with unknown ESV publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.066 – volume: 13 start-page: 365 issue: 1 year: 2012 ident: 10.1016/j.conengprac.2020.104458_b7 article-title: A novel lane detection system with efficient ground truth generation publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2011.2173196 – volume: 48 start-page: 2894 issue: 11 year: 2013 ident: 10.1016/j.conengprac.2020.104458_b65 article-title: A 57 mW 12.5 μJ/Epoch embedded mixed-mode neuro-fuzzy processor for mobile real-time object recognition publication-title: IEEE Journal of Solid-State Circuits doi: 10.1109/JSSC.2013.2280238 – start-page: 1 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b5 article-title: Convolutional neural networks for near real-time object detection from UAV imagery in avalanche search and rescue operations – volume: 45 issue: 12 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b96 article-title: Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2382679 – volume: 7 start-page: 226 issue: 2 year: 2010 ident: 10.1016/j.conengprac.2020.104458_b70 article-title: Characterization of a Bayesian ship detection method in optical satellite images publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2009.2031826 – start-page: 10 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b123 article-title: VAIS: A dataset for recognizing maritime imagery in the visible and infrared spectrums – volume: 61 start-page: 518 issue: 2 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b57 article-title: A Bayesian framework for real-time identification of locally weighted partial least squares publication-title: AIChE Journal doi: 10.1002/aic.14663 – volume: 9 start-page: 377 issue: 3 year: 2008 ident: 10.1016/j.conengprac.2020.104458_b2 article-title: License plate recognition from still images and video sequences: A survey publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2008.922938 – start-page: 108060Q year: 2018 ident: 10.1016/j.conengprac.2020.104458_b76 article-title: Ship target recognition based on multi-spectral infrared images – volume: 1 year: 2018 ident: 10.1016/j.conengprac.2020.104458_b103 article-title: Fuzzy-affine-model-based memory filter design of nonlinear systems with time-varying delay publication-title: IEEE Transactions on Fuzzy Systems – volume: 52 start-page: 4511 issue: 8 year: 2014 ident: 10.1016/j.conengprac.2020.104458_b84 article-title: Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2013.2282355 – volume: 4 start-page: 221 issue: 4 year: 2011 ident: 10.1016/j.conengprac.2020.104458_b118 article-title: Applications of marine robotic vehicles publication-title: Intelligent Service Robotics doi: 10.1007/s11370-011-0096-5 – year: 2016 ident: 10.1016/j.conengprac.2020.104458_b83 – start-page: 1 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b87 article-title: Flying object detection for automatic UAV recognition – start-page: 448 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b33 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.conengprac.2020.104458_b15 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 38 start-page: 119 issue: 8 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b127 article-title: Research on ship recognition method based on deep convolutional neural network publication-title: Ship Science and Technology – volume: 3 start-page: 28 issue: 2 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b77 article-title: Visual object recognition using image mining approach: A review publication-title: International Journal of Computer and Communication Engineering Research – start-page: 1 year: 2008 ident: 10.1016/j.conengprac.2020.104458_b14 article-title: Fully automated procedure for ship detection using optical satellite imagery – volume: 31 start-page: 6469 issue: 10 year: 2018 ident: 10.1016/j.conengprac.2020.104458_b113 article-title: Deep transfer learning for military object recognition under small training set condition publication-title: Neural Computing and Applications doi: 10.1007/s00521-018-3468-3 – start-page: 818 year: 2014 ident: 10.1016/j.conengprac.2020.104458_b120 article-title: Visualizing and understanding convolutional networks – start-page: 1019 year: 2013 ident: 10.1016/j.conengprac.2020.104458_b56 article-title: A novel efficient method for training sparse auto-encoders – start-page: 89 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b110 article-title: Deep learning-based recognition of underwater target – start-page: 1 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b12 article-title: The research of underwater target recognition method based on deep learning – start-page: 92490N year: 2014 ident: 10.1016/j.conengprac.2020.104458_b8 article-title: Ship recognition for improved persistent tracking with descriptor localization and compact representations – volume: 25 start-page: 1097 issue: 2 year: 2012 ident: 10.1016/j.conengprac.2020.104458_b37 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – ident: 10.1016/j.conengprac.2020.104458_b26 doi: 10.1109/ICCV.2019.00502 – start-page: 3320 year: 2014 ident: 10.1016/j.conengprac.2020.104458_b115 article-title: How transferable are features in deep neural networks? – volume: 53 start-page: 1174 issue: 3 year: 2014 ident: 10.1016/j.conengprac.2020.104458_b90 article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2014.2335751 – volume: 275 start-page: 897 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b88 article-title: Transferring deep knowledge for object recognition in low-quality underwater videos publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.044 – volume: 44 start-page: 572 issue: 3 year: 2011 ident: 10.1016/j.conengprac.2020.104458_b3 article-title: Survey on speech emotion recognition: Features, classification schemes, and databases publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.09.020 – volume: 81 start-page: 294 year: 2018 ident: 10.1016/j.conengprac.2020.104458_b45 article-title: Deep variance network: An iterative, improved CNN framework for unbalanced training datasets publication-title: Pattern Recognition doi: 10.1016/j.patcog.2018.03.035 – volume: 25 start-page: 148 issue: 2 year: 2005 ident: 10.1016/j.conengprac.2020.104458_b62 article-title: 3D model-based free-form object recognition - A review publication-title: Sensor Review doi: 10.1108/02602280510585745 – volume: 14 start-page: 1765 issue: 10 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b39 article-title: Ship classification in moderate-resolution SAR image by naive geometric features-combined multiple kernel learning publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2017.2734889 – volume: 78 start-page: 15951 issue: 12 year: 2019 ident: 10.1016/j.conengprac.2020.104458_b86 article-title: 3D convolutional neural network for object recognition: A review publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-6912-6 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1016/j.conengprac.2020.104458_b32 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2011.2168604 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b41 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 9 start-page: 498 issue: 5 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b20 article-title: Classification for high resolution remote sensing imagery using a fully convolutional network publication-title: Remote Sensing doi: 10.3390/rs9050498 – start-page: 1 year: 2009 ident: 10.1016/j.conengprac.2020.104458_b119 article-title: Embedded vision systems for ship recognition – volume: 14 start-page: 3235 issue: 7 year: 2018 ident: 10.1016/j.conengprac.2020.104458_b117 article-title: Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2809730 – ident: 10.1016/j.conengprac.2020.104458_b28 doi: 10.1109/ICCV.2015.123 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.conengprac.2020.104458_b44 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – volume: 14 start-page: 1484 issue: 9 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b59 article-title: Improving SAR automatic target recognition models with transfer learning from simulated data publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2017.2717486 – volume: 72 start-page: 3818 issue: 16–18 year: 2009 ident: 10.1016/j.conengprac.2020.104458_b97 article-title: A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.05.006 – volume: 234 start-page: 11 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b48 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – volume: 11 start-page: 2070 issue: 12 year: 2014 ident: 10.1016/j.conengprac.2020.104458_b109 article-title: Automatic detection of inshore ships in high-resolution remote sensing images using robust invariant generalized hough transform publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2014.2319082 – volume: 22 start-page: 1345 issue: 10 year: 2009 ident: 10.1016/j.conengprac.2020.104458_b67 article-title: A survey on transfer learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2009.191 – volume: 30 start-page: 725 issue: 4 year: 2006 ident: 10.1016/j.conengprac.2020.104458_b30 article-title: Unsupervised discovery of nonlinear structure using contrastive backpropagation publication-title: Cognitive Science doi: 10.1207/s15516709cog0000_76 – start-page: 235 year: 2018 ident: 10.1016/j.conengprac.2020.104458_b4 article-title: Multimodal deep learning for robust recognizing maritime imagery in the visible and infrared spectrums – volume: 12 start-page: 2183 issue: 11 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b116 article-title: Rotation-invariant object detection in high-resolution satellite imagery using superpixel-based deep hough forests publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2015.2432135 – volume: 187 start-page: 49 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b74 article-title: DeepFish: Accurate underwater live fish recognition with a deep architecture publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.122 – volume: 11 start-page: 1921 issue: 16 year: 2019 ident: 10.1016/j.conengprac.2020.104458_b18 article-title: Oceanic mesoscale eddy detection method based on deep learning publication-title: Remote Sensing doi: 10.3390/rs11161921 – year: 2019 ident: 10.1016/j.conengprac.2020.104458_b73 article-title: Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying node systems with error constraints publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2019.106341 – ident: 10.1016/j.conengprac.2020.104458_b54 doi: 10.1109/CVPR.2015.7298965 – start-page: 524 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b82 article-title: Analytical review on object segmentation and recognition – start-page: 2018 year: 2012 ident: 10.1016/j.conengprac.2020.104458_b122 article-title: Adaptive deconvolutional networks for mid and high level feature learning – volume: 18 start-page: 376 issue: 2 year: 2019 ident: 10.1016/j.conengprac.2020.104458_b99 article-title: Underwater object recognition based on deep encoding-decoding network publication-title: Journal of Ocean University of China doi: 10.1007/s11802-019-3858-x – volume: 8 start-page: 2053 issue: 5 year: 2015 ident: 10.1016/j.conengprac.2020.104458_b114 article-title: Object detection based on sparse representation and hough voting for optical remote sensing imagery publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2015.2404578 – volume: 2 start-page: 396 issue: 2 year: 1997 ident: 10.1016/j.conengprac.2020.104458_b43 article-title: Handwritten digit recognition with a back-propagation network publication-title: Advances in Neural Information Processing Systems – volume: 41 start-page: 71 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b52 article-title: Unmanned surface vehicles: An overview of developments and challenges publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2016.04.018 – ident: 10.1016/j.conengprac.2020.104458_b93 doi: 10.1145/1390156.1390294 – volume: 128 start-page: 59 year: 2014 ident: 10.1016/j.conengprac.2020.104458_b98 article-title: Constructive multi-output extreme learning machine with application to large tanker motion dynamics identification publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.062 – volume: 173 start-page: 1640 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b100 article-title: Direct adaptive self-structuring fuzzy control with interpretable fuzzy rules for a class of nonlinear uncertain systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.036 – volume: 13 start-page: 759 issue: 6 year: 2005 ident: 10.1016/j.conengprac.2020.104458_b69 article-title: Coupling pairwise support vector machines for fault classification publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2004.08.002 – start-page: 7132 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b31 article-title: Squeeze-and-excitation networks – year: 2017 ident: 10.1016/j.conengprac.2020.104458_b1 – start-page: 770 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b27 article-title: Deep residual learning for image recognition – volume: 28 start-page: 2352 issue: 6 year: 2011 ident: 10.1016/j.conengprac.2020.104458_b101 article-title: Ship targets recognition algorithm based on features publication-title: Application Research of Computers – year: 2019 ident: 10.1016/j.conengprac.2020.104458_b72 article-title: Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying nodes publication-title: Journal of the Franklin Institute – start-page: 2802 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b60 article-title: Image restoration using very deep fully convolutional encoder-decoder networks with symmetric skip connections – start-page: 1 year: 2010 ident: 10.1016/j.conengprac.2020.104458_b91 article-title: Classification of small boats in infrared images for maritime surveillance – ident: 10.1016/j.conengprac.2020.104458_b16 doi: 10.1145/2833258.2833266 – start-page: 324 year: 2017 ident: 10.1016/j.conengprac.2020.104458_b51 article-title: A high resolution optical satellite image dataset for ship recognition and some new baselines – start-page: 1 year: 2016 ident: 10.1016/j.conengprac.2020.104458_b17 article-title: Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data |
SSID | ssj0016991 |
Score | 2.6256762 |
Snippet | Due to the rapid development of deep learning techniques, numerous frameworks including convolutional neural networks (CNNs), deep belief networks (DBNs) and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104458 |
SubjectTerms | Deep learning Learning architecture Marine object recognition Marine vehicles |
Title | Review on deep learning techniques for marine object recognition: Architectures and algorithms |
URI | https://dx.doi.org/10.1016/j.conengprac.2020.104458 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14jc0m-4qeSrFUxV600JNhN7utlTYpbbz6291NNrGCoOAthAyEL5OZb-cJwCX1tWH5mnp2H6CHQ8U9OUm0Jwg15JYpxbXtHX4c0sEI34_JuAF6VS-MLat0tr-06YW1dnc6Ds3OcjbrPBnyzYzDRIHRU3NtZ4JizKyWX33UZR6IRuXWPPOw7bZHrpqnrPEyR06dTm0_kjkpBkXCE9vl7z-5qA23098Du44vwm75SvugodMDsLMxRfAQvJTxfZilUGm9hG4RxBTW81nX0FBTuBC20w9m0oZeYF05lKXXsLuRTlhDkSoo5tNsNctfF-sjMOrfPvcGnlub4CXmB829RGg79F0xqWhCIhlJwwGwIAHTiCky0YxIX6GIU66JTYxy4fuaECm4HwqNw2PQTA0wJwBGIQ8kx5wmKsATGUUMqQRxn2OskOa0BViFVJy4meJ2tcU8rorH3uIvjGOLcVxi3AKollyWczX-IHNTfYz4m47Exvz_Kn36L-kzsB3Yxoci-HIOmvnqXV8YOpLLdqFvbbDVvXsYDD8BqdHhOA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8RnxuQevDX3sbrd6IkRS5XEREk42u90FMVAI1P_vLl0QExNNvDVNJ2mm05lv5_UB3FFXaZSvqGP4AB0cSOaIYaocTqgGt6GUTJnZ4U6Xxn38PCCDEjTWszCmrdL6_sKnr7y1vVOz2qzNx-PaiwbfoQ6Ynq_tVF_jHaiY7VSkDJX6UyvubooJNCqI8_TzZuDesw09RZuXPnWqbGRGkvRh0V_VPLHhf_8pSm1FnuYhHFjIiOrFWx1BSWXHsL-1SPAEXosUP5plSCo1R5YLYoQ2K1qXSKNTNOVm2A_NhMm-oE3z0Cy7R_WtisIS8UwiPhnNFuP8bbo8hX7zsdeIHcuc4KT6H82dlCuz912GQtKURCISGgZgTvxQeaEkQxUS4UovYpQpYmqjjLuuIkRw5gZc4eAMyplWzDmgKGC-YJjRVPp4KKIo9GTqMZdhLD3FaBXCtaaS1K4VN-wWk2TdP_aefOk4MTpOCh1XwdtIzovVGn-QeVh_jOSbmSQ6AvwqffEv6VvYjXuddtJ-6rYuYc83cxCrXMwVlPPFh7rW6CQXN9b6PgFmP-Pp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+deep+learning+techniques+for+marine+object+recognition%3A+Architectures+and+algorithms&rft.jtitle=Control+engineering+practice&rft.au=Wang%2C+Ning&rft.au=Wang%2C+Yuanyuan&rft.au=Er%2C+Meng+Joo&rft.date=2022-01-01&rft.issn=0967-0661&rft.volume=118&rft.spage=104458&rft_id=info:doi/10.1016%2Fj.conengprac.2020.104458&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2020_104458 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |