Highly improved water tolerance of hydrogel fibers with a carbon nanotube sheath for rotational, contractile and elongational actuation
Hydrogel fibers drawn from a bulk gel showed high mechanical strength and can be used for artificial spider silk, while their supercontraction in response to water restricts their applications. Moreover, in the field of artificial muscles, although contraction and extension have been realized by dif...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 16; pp. 124 - 125 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogel fibers drawn from a bulk gel showed high mechanical strength and can be used for artificial spider silk, while their supercontraction in response to water restricts their applications. Moreover, in the field of artificial muscles, although contraction and extension have been realized by different techniques, the selective realization of contraction and extension has not been achieved for a straight, non-coiled fiber by controlling the fiber internal structure. In this paper, the water tolerance of hydrogel fibers was highly improved by coating a carbon nanotube sheath, and hygromorph torsional, contractile, and elongational actuations were realized for twisted, non-coiled hydrogel fibers coated with aligned carbon nanotubes. The wrapping angle between the carbon nanotube and the hydrogel fiber determines the contraction or elongation. The fiber actuator showed hygromorph contractile actuation if the carbon nanotube alignment direction is parallel to the hydrogel fiber direction, and the actuator showed elongational actuation if the wrapping angle is non-zero. The actuation originated from synergistic volume expansion of the hydrogel fiber and anisotropic restriction of aligned carbon nanotubes. This paper provides a new design for improving the mechanical properties of hydrogel fibers and exploring actuation modes using a sheath-core structure with different wrapping angles of a sheath material.
Coating a carbon nanotube sheath improved the water tolerance of hydrogel fibers, and inserting a twist produces large-stroke torsional, contractile, and elongational fiber actuators. |
---|---|
AbstractList | Hydrogel fibers drawn from a bulk gel showed high mechanical strength and can be used for artificial spider silk, while their supercontraction in response to water restricts their applications. Moreover, in the field of artificial muscles, although contraction and extension have been realized by different techniques, the selective realization of contraction and extension has not been achieved for a straight, non-coiled fiber by controlling the fiber internal structure. In this paper, the water tolerance of hydrogel fibers was highly improved by coating a carbon nanotube sheath, and hygromorph torsional, contractile, and elongational actuations were realized for twisted, non-coiled hydrogel fibers coated with aligned carbon nanotubes. The wrapping angle between the carbon nanotube and the hydrogel fiber determines the contraction or elongation. The fiber actuator showed hygromorph contractile actuation if the carbon nanotube alignment direction is parallel to the hydrogel fiber direction, and the actuator showed elongational actuation if the wrapping angle is non-zero. The actuation originated from synergistic volume expansion of the hydrogel fiber and anisotropic restriction of aligned carbon nanotubes. This paper provides a new design for improving the mechanical properties of hydrogel fibers and exploring actuation modes using a sheath-core structure with different wrapping angles of a sheath material.
Coating a carbon nanotube sheath improved the water tolerance of hydrogel fibers, and inserting a twist produces large-stroke torsional, contractile, and elongational fiber actuators. Hydrogel fibers drawn from a bulk gel showed high mechanical strength and can be used for artificial spider silk, while their supercontraction in response to water restricts their applications. Moreover, in the field of artificial muscles, although contraction and extension have been realized by different techniques, the selective realization of contraction and extension has not been achieved for a straight, non-coiled fiber by controlling the fiber internal structure. In this paper, the water tolerance of hydrogel fibers was highly improved by coating a carbon nanotube sheath, and hygromorph torsional, contractile, and elongational actuations were realized for twisted, non-coiled hydrogel fibers coated with aligned carbon nanotubes. The wrapping angle between the carbon nanotube and the hydrogel fiber determines the contraction or elongation. The fiber actuator showed hygromorph contractile actuation if the carbon nanotube alignment direction is parallel to the hydrogel fiber direction, and the actuator showed elongational actuation if the wrapping angle is non-zero. The actuation originated from synergistic volume expansion of the hydrogel fiber and anisotropic restriction of aligned carbon nanotubes. This paper provides a new design for improving the mechanical properties of hydrogel fibers and exploring actuation modes using a sheath–core structure with different wrapping angles of a sheath material. |
Author | You, Chengwei Huang, Jiayi Wen, Kai Yin, Shougen Ii, Jiatian Liu, Zunfeng Zhou, Xiang Yan, Zhe He, Wenqian Ren, Zhixin Qin, Wenjing Chang, Wang |
AuthorAffiliation | Key Laboratory of Functional Polymer Materials School of Materials Science and Engineering Nankai University College of Chemistry Tianjin University of Technology China Pharmaceutical University A School of Chemical Engineering State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Display Materials and Photoelectric Devices University of Science and Technology Liaoning Department of Science |
AuthorAffiliation_xml | – name: A School of Chemical Engineering – name: Department of Science – name: Tianjin University of Technology – name: School of Materials Science and Engineering – name: China Pharmaceutical University – name: Key Laboratory of Functional Polymer Materials – name: University of Science and Technology Liaoning – name: Key Laboratory of Display Materials and Photoelectric Devices – name: College of Chemistry – name: State Key Laboratory of Medicinal Chemical Biology – name: Nankai University |
Author_xml | – sequence: 1 givenname: Chengwei surname: You fullname: You, Chengwei – sequence: 2 givenname: Wenjing surname: Qin fullname: Qin, Wenjing – sequence: 3 givenname: Zhe surname: Yan fullname: Yan, Zhe – sequence: 4 givenname: Zhixin surname: Ren fullname: Ren, Zhixin – sequence: 5 givenname: Jiayi surname: Huang fullname: Huang, Jiayi – sequence: 6 givenname: Jiatian surname: Ii fullname: Ii, Jiatian – sequence: 7 givenname: Wang surname: Chang fullname: Chang, Wang – sequence: 8 givenname: Wenqian surname: He fullname: He, Wenqian – sequence: 9 givenname: Kai surname: Wen fullname: Wen, Kai – sequence: 10 givenname: Shougen surname: Yin fullname: Yin, Shougen – sequence: 11 givenname: Xiang surname: Zhou fullname: Zhou, Xiang – sequence: 12 givenname: Zunfeng surname: Liu fullname: Liu, Zunfeng |
BookMark | eNpFkU1PwzAMhiMEEmPswh0pEjdEIWmbND1O42NIk7iMc5WmztqpS0aSMe0X8LcJ2zR8seX3kWW_vkLnxhpA6IaSR0qy8qkhQVIqylSdoUFKGEmKvOTnp1qISzTyfkliCEJ4WQ7Qz7RbtP0Od6u1s9_Q4K0M4HCwPThpFGCrcbtrnF1Aj3VXg_N424UWS6ykq63BRhobNjVg34KMgrYOOxtk6KyR_QNW1gQnVeh6wNI0GHprFkcVx_5mX1-jCy17D6NjHqLP15f5ZJrMPt7eJ-NZojIqQlJDxqAoeJOSXNQ1VbzkjeYANdWioSnRrGFprTJNFNNClIJJxnNecJlyxdNsiO4Oc-O5XxvwoVrajYur-Cpl0bs8zs0jdX-glLPeO9DV2nUr6XYVJdWf19UzmY_3Xk8ifHuAnVcn7v8X2S9qZn-k |
CitedBy_id | crossref_primary_10_1007_s42765_022_00243_7 crossref_primary_10_1002_mame_202200332 crossref_primary_10_1007_s42765_024_00459_9 crossref_primary_10_1016_j_isci_2023_106796 crossref_primary_10_1016_j_matt_2022_02_018 crossref_primary_10_1002_adfm_202213485 crossref_primary_10_1021_acsnano_3c12362 crossref_primary_10_1007_s42765_022_00185_0 crossref_primary_10_1039_D2CS00489E crossref_primary_10_1002_cjoc_202300328 crossref_primary_10_1021_acsnano_1c10680 crossref_primary_10_1039_D2TC02524H crossref_primary_10_1007_s42765_022_00254_4 crossref_primary_10_1016_j_cej_2023_146047 crossref_primary_10_1007_s40843_024_2886_5 crossref_primary_10_1021_acs_accounts_1c00112 crossref_primary_10_1002_advs_202105764 crossref_primary_10_1016_j_cclet_2021_10_013 crossref_primary_10_1002_advs_202402196 crossref_primary_10_1021_acsnano_3c09307 crossref_primary_10_1002_admt_202201442 crossref_primary_10_1016_j_mtphys_2023_101281 crossref_primary_10_1002_sus2_205 crossref_primary_10_1016_j_cej_2022_134826 crossref_primary_10_3390_polym14245454 |
Cites_doi | 10.1126/sciadv.1600327 10.1002/adma.201700870 10.1002/1099-0488(20010115)39:2<236::AID-POLB60>3.0.CO;2-2 10.1002/adfm.201808241 10.1016/S0379-6779(00)00195-8 10.1002/adfm.201910387 10.1126/science.1226762 10.1002/ange.201507108 10.1007/s00339-010-6066-5 10.1016/S0379-6779(00)00190-9 10.1038/419801a 10.1039/D0TA02902E 10.1002/advs.201903802 10.1021/acsami.0c03120 10.1088/1674-1056/ab7745 10.1038/srep23016 10.1126/science.1246906 10.1093/nsr/nwz077 10.1039/c2sm07263g 10.1038/s41467-019-12044-5 10.1002/adma.201603160 10.1002/ange.201810052 10.1126/science.1104276 10.1242/jeb.028282 10.1002/adma.200502366 10.1177/004051759506500906 10.1002/adfm.201908556 10.1038/s41467-019-13257-4 10.1002/adma.200802205 10.1002/adfm.201703174 10.1002/adma.201306137 10.1002/smll.201503509 10.1039/C6NR06185K 10.1038/nnano.2015.198 10.1126/science.274.5293.1701 10.1021/acs.chemmater.8b03579 10.1002/adma.201906994 10.1039/C5NR07195J 10.1021/acs.chemmater.9b02812 10.1021/acsnano.6b04125 10.1002/adma.201305708 10.1039/C5RA16404D 10.1002/adma.201904752 10.1126/science.1211220 10.1002/adfm.201603448 10.1002/anie.201908437 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d0ta11892c |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 125 |
ExternalDocumentID | 10_1039_D0TA11892C d0ta11892c |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ -JG 0R~ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AGEGJ AHGCF APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c318t-be35e776d2048bb1c696df6eeb1f8d120f5d52bc3f0c5f88985a564676a26c623 |
ISSN | 2050-7488 |
IngestDate | Thu Oct 10 19:16:28 EDT 2024 Fri Aug 23 01:29:38 EDT 2024 Fri Apr 15 11:43:17 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-be35e776d2048bb1c696df6eeb1f8d120f5d52bc3f0c5f88985a564676a26c623 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0ta11892c |
ORCID | 0000-0002-9336-7164 0000-0001-7337-2479 0000-0002-7366-0275 |
PQID | 2518940484 |
PQPubID | 2047523 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1039_D0TA11892C rsc_primary_d0ta11892c proquest_journals_2518940484 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-28 |
PublicationDateYYYYMMDD | 2021-04-28 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Foroughi (D0TA11892C-(cit24)/*[position()=1]) 2011; 334 Jia (D0TA11892C-(cit32)/*[position()=1]) 2019; 29 Yang (D0TA11892C-(cit2)/*[position()=1]) 2017; 27 Zhang (D0TA11892C-(cit44)/*[position()=1]) 2004; 306 Lee (D0TA11892C-(cit35)/*[position()=1]) 2017; 29 He (D0TA11892C-(cit26)/*[position()=1]) 2015; 127 Guo (D0TA11892C-(cit13)/*[position()=1]) 2016; 28 Dou (D0TA11892C-(cit18)/*[position()=1]) 2019; 10 Haines (D0TA11892C-(cit29)/*[position()=1]) 2014; 343 Kofod (D0TA11892C-(cit31)/*[position()=1]) 2010; 102 Ma (D0TA11892C-(cit1)/*[position()=1]) 2016; 26 Li (D0TA11892C-(cit20)/*[position()=1]) 2018; 30 Hutchison (D0TA11892C-(cit39)/*[position()=1]) 2000; 113 Wu (D0TA11892C-(cit46)/*[position()=1]) 1995; 65 Sim (D0TA11892C-(cit22)/*[position()=1]) 2020; 12 Lee (D0TA11892C-(cit23)/*[position()=1]) 2016; 8 Shin (D0TA11892C-(cit10)/*[position()=1]) 2009; 21 Konwar (D0TA11892C-(cit17)/*[position()=1]) 2015; 5 Maziz (D0TA11892C-(cit38)/*[position()=1]) 2017; 3 Zhang (D0TA11892C-(cit7)/*[position()=1]) 2020; 7 Sun (D0TA11892C-(cit21)/*[position()=1]) 2001; 39 Dong (D0TA11892C-(cit3)/*[position()=1]) 2019; 10 Ju (D0TA11892C-(cit12)/*[position()=1]) 2020; 30 Lei (D0TA11892C-(cit6)/*[position()=1]) 2019; 31 Zhang (D0TA11892C-(cit19)/*[position()=1]) 2020; 32 Foroughi (D0TA11892C-(cit30)/*[position()=1]) 2016; 10 Huang (D0TA11892C-(cit8)/*[position()=1]) 2020; 8 Sun (D0TA11892C-(cit4)/*[position()=1]) 2018; 130 Li (D0TA11892C-(cit42)/*[position()=1]) 1996; 274 Yu (D0TA11892C-(cit14)/*[position()=1]) 2019; 30 Kim (D0TA11892C-(cit36)/*[position()=1]) 2016; 6 Jiang (D0TA11892C-(cit43)/*[position()=1]) 2002; 419 Lee (D0TA11892C-(cit9)/*[position()=1]) 2014; 26 Gu (D0TA11892C-(cit27)/*[position()=1]) 2016; 8 Li (D0TA11892C-(cit33)/*[position()=1]) 2020; 29 Agnarsson (D0TA11892C-(cit37)/*[position()=1]) 2009; 212 Yamada (D0TA11892C-(cit16)/*[position()=1]) 2012; 8 Wei (D0TA11892C-(cit5)/*[position()=1]) 2019; 58 Gao (D0TA11892C-(cit15)/*[position()=1]) 2020; 7 Madden (D0TA11892C-(cit40)/*[position()=1]) 2000; 113 Spinks (D0TA11892C-(cit41)/*[position()=1]) 2006; 18 Lima (D0TA11892C-(cit25)/*[position()=1]) 2012; 338 Song (D0TA11892C-(cit11)/*[position()=1]) 2020; 32 Cheng (D0TA11892C-(cit45)/*[position()=1]) 2014; 26 Lee (D0TA11892C-(cit28)/*[position()=1]) 2016; 12 Chen (D0TA11892C-(cit34)/*[position()=1]) 2015; 10 |
References_xml | – volume: 3 start-page: 1600327 year: 2017 ident: D0TA11892C-(cit38)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1600327 contributor: fullname: Maziz – volume: 29 start-page: 1700870 year: 2017 ident: D0TA11892C-(cit35)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700870 contributor: fullname: Lee – volume: 39 start-page: 236 year: 2001 ident: D0TA11892C-(cit21)/*[position()=1] publication-title: J. Polym. Sci., Polym. Phys. Ed. doi: 10.1002/1099-0488(20010115)39:2<236::AID-POLB60>3.0.CO;2-2 contributor: fullname: Sun – volume: 29 start-page: 1808241 year: 2019 ident: D0TA11892C-(cit32)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808241 contributor: fullname: Jia – volume: 113 start-page: 185 year: 2000 ident: D0TA11892C-(cit40)/*[position()=1] publication-title: Synth. Met. doi: 10.1016/S0379-6779(00)00195-8 contributor: fullname: Madden – volume: 30 start-page: 1910387 year: 2020 ident: D0TA11892C-(cit12)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910387 contributor: fullname: Ju – volume: 338 start-page: 928 year: 2012 ident: D0TA11892C-(cit25)/*[position()=1] publication-title: Science doi: 10.1126/science.1226762 contributor: fullname: Lima – volume: 127 start-page: 15093 year: 2015 ident: D0TA11892C-(cit26)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201507108 contributor: fullname: He – volume: 102 start-page: 577 year: 2010 ident: D0TA11892C-(cit31)/*[position()=1] publication-title: Appl. Phys. A doi: 10.1007/s00339-010-6066-5 contributor: fullname: Kofod – volume: 113 start-page: 121 year: 2000 ident: D0TA11892C-(cit39)/*[position()=1] publication-title: Synth. Met. doi: 10.1016/S0379-6779(00)00190-9 contributor: fullname: Hutchison – volume: 419 start-page: 801 year: 2002 ident: D0TA11892C-(cit43)/*[position()=1] publication-title: Nature doi: 10.1038/419801a contributor: fullname: Jiang – volume: 8 start-page: 10291 year: 2020 ident: D0TA11892C-(cit8)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02902E contributor: fullname: Huang – volume: 7 start-page: 1903802 year: 2020 ident: D0TA11892C-(cit7)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201903802 contributor: fullname: Zhang – volume: 12 start-page: 20228 year: 2020 ident: D0TA11892C-(cit22)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03120 contributor: fullname: Sim – volume: 29 start-page: 048103 year: 2020 ident: D0TA11892C-(cit33)/*[position()=1] publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab7745 contributor: fullname: Li – volume: 6 start-page: 23016 year: 2016 ident: D0TA11892C-(cit36)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep23016 contributor: fullname: Kim – volume: 343 start-page: 868 year: 2014 ident: D0TA11892C-(cit29)/*[position()=1] publication-title: Science doi: 10.1126/science.1246906 contributor: fullname: Haines – volume: 7 start-page: 73 year: 2020 ident: D0TA11892C-(cit15)/*[position()=1] publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwz077 contributor: fullname: Gao – volume: 8 start-page: 3122 year: 2012 ident: D0TA11892C-(cit16)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c2sm07263g contributor: fullname: Yamada – volume: 10 start-page: 4087 year: 2019 ident: D0TA11892C-(cit3)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-12044-5 contributor: fullname: Dong – volume: 28 start-page: 10244 year: 2016 ident: D0TA11892C-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603160 contributor: fullname: Guo – volume: 130 start-page: 15998 year: 2018 ident: D0TA11892C-(cit4)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201810052 contributor: fullname: Sun – volume: 306 start-page: 1358 year: 2004 ident: D0TA11892C-(cit44)/*[position()=1] publication-title: Science doi: 10.1126/science.1104276 contributor: fullname: Zhang – volume: 212 start-page: 1990 year: 2009 ident: D0TA11892C-(cit37)/*[position()=1] publication-title: J. Exp. Biol. doi: 10.1242/jeb.028282 contributor: fullname: Agnarsson – volume: 18 start-page: 637 year: 2006 ident: D0TA11892C-(cit41)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200502366 contributor: fullname: Spinks – volume: 65 start-page: 522 year: 1995 ident: D0TA11892C-(cit46)/*[position()=1] publication-title: Text. Res. J. doi: 10.1177/004051759506500906 contributor: fullname: Wu – volume: 30 start-page: 1908556 year: 2019 ident: D0TA11892C-(cit14)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908556 contributor: fullname: Yu – volume: 10 start-page: 5293 year: 2019 ident: D0TA11892C-(cit18)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-13257-4 contributor: fullname: Dou – volume: 21 start-page: 1712 year: 2009 ident: D0TA11892C-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200802205 contributor: fullname: Shin – volume: 27 start-page: 1703174 year: 2017 ident: D0TA11892C-(cit2)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703174 contributor: fullname: Yang – volume: 26 start-page: 3415 year: 2014 ident: D0TA11892C-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201306137 contributor: fullname: Lee – volume: 12 start-page: 2085 year: 2016 ident: D0TA11892C-(cit28)/*[position()=1] publication-title: Small doi: 10.1002/smll.201503509 contributor: fullname: Lee – volume: 8 start-page: 17881 year: 2016 ident: D0TA11892C-(cit27)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR06185K contributor: fullname: Gu – volume: 10 start-page: 1077 year: 2015 ident: D0TA11892C-(cit34)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.198 contributor: fullname: Chen – volume: 274 start-page: 1701 year: 1996 ident: D0TA11892C-(cit42)/*[position()=1] publication-title: Science doi: 10.1126/science.274.5293.1701 contributor: fullname: Li – volume: 30 start-page: 8822 year: 2018 ident: D0TA11892C-(cit20)/*[position()=1] publication-title: Chem. Mater doi: 10.1021/acs.chemmater.8b03579 contributor: fullname: Li – volume: 32 start-page: 1906994 year: 2020 ident: D0TA11892C-(cit11)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201906994 contributor: fullname: Song – volume: 8 start-page: 3248 year: 2016 ident: D0TA11892C-(cit23)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR07195J contributor: fullname: Lee – volume: 31 start-page: 10032 year: 2019 ident: D0TA11892C-(cit6)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02812 contributor: fullname: Lei – volume: 10 start-page: 9129 year: 2016 ident: D0TA11892C-(cit30)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b04125 contributor: fullname: Foroughi – volume: 26 start-page: 2909 year: 2014 ident: D0TA11892C-(cit45)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201305708 contributor: fullname: Cheng – volume: 5 start-page: 81573 year: 2015 ident: D0TA11892C-(cit17)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA16404D contributor: fullname: Konwar – volume: 32 start-page: 1904752 year: 2020 ident: D0TA11892C-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201904752 contributor: fullname: Zhang – volume: 334 start-page: 494 year: 2011 ident: D0TA11892C-(cit24)/*[position()=1] publication-title: Science doi: 10.1126/science.1211220 contributor: fullname: Foroughi – volume: 26 start-page: 8670 year: 2016 ident: D0TA11892C-(cit1)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603448 contributor: fullname: Ma – volume: 58 start-page: 16243 year: 2019 ident: D0TA11892C-(cit5)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908437 contributor: fullname: Wei |
SSID | ssj0000800699 |
Score | 2.4939723 |
Snippet | Hydrogel fibers drawn from a bulk gel showed high mechanical strength and can be used for artificial spider silk, while their supercontraction in response to... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 124 |
SubjectTerms | Actuation Actuators Artificial muscles Carbon Carbon nanotubes Contractility Contraction Elongation Fibers Hydrogels Mechanical properties Muscle contraction Muscles Nanotechnology Nanotubes Sheaths Silk |
Title | Highly improved water tolerance of hydrogel fibers with a carbon nanotube sheath for rotational, contractile and elongational actuation |
URI | https://www.proquest.com/docview/2518940484 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW27QUOiK-KhYIswW1JyZe9yXFVtipoKRLKiopL5MTOttWSoDQLLH-An8lfYcaOkyAqBFyilbOJLM_TeDx584aQZxH3eBZMAyeEvccJRYRtXjzf4bEUngg8JjV5_M0pP1mGr8_Y2Wj0Y8Ba2jTZYf7t2rqS_7EqjIFdsUr2HyzbvRQG4DfYF65gYbj-lY2RpLHeYqVjXX1GHrlAycOmWqtaVwJgILiVdbVS60mB1BBby4aC1BnYvRRl1WwyNblCn3yuOYd11bQJQlx-TWXH4oe1-c6g1lW5sglEgdUnnWV_D3E_4nxwGSa57St3OJmZEiF7R0uOmwJEncO3BV3I2d0OfJLhBqhy9UVddNlaI4DwXpWXdgfGP5uc7ofzDrPvVDty8bUVGm_zHL6Hn2zaunFDkMJsiqWyaqpKO_HeY_ouc1Ec1TylhmOmba51-fEQ2UP_7aHk2yAY8DBEvHancQMUapVuI-CIFvt5v59aDsHp2_R4uVikyfws2SF7PnhCcMF7s3nyatGlATFg57rLaTd5K6IbxC_61_8aNvVnoZ3aNqrRAVFym9xqzUxnBpZ3yEiVd8nNgb7lPfLdAJRagFINUNoBlFYFtQClBqAUAUoFNQClFqDUAJQCWmgP0Od0AE8K8KFDeNIOnvfJ8nieHJ04becPJ4c9pnEyFTA1nXKJstJZ5uU85rLgCgKLIpKe7xZMMj_Lg8LNWRFFccQE47Dnc-HzHCL6fbJbVqV6QCh6IhHyXPqFCBkcJQs3kiKXkhW-YEE-Jk_twqafjMBLqokZQZy-dJOZXv6jMTmwa562DuAqhaNBFIcww3BM9sEO3fO92R7--blH5EYP9QOy29Qb9RiC3CZ70gLlJx58sdo |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+improved+water+tolerance+of+hydrogel+fibers+with+a+carbon+nanotube+sheath+for+rotational%2C+contractile+and+elongational+actuation&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=You%2C+Chengwei&rft.au=Qin%2C+Wenjing&rft.au=Yan%2C+Zhe&rft.au=Ren%2C+Zhixin&rft.date=2021-04-28&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=16&rft.spage=10240&rft.epage=10250&rft_id=info:doi/10.1039%2Fd0ta11892c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |