Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps

A novel one-dimensional quasi-zero-stiffness (QZS) metamaterial is proposed to acquire very low-frequency band gaps. The representative unit cell (RUC) of the QZS metamaterials is constructed by combining positive-stiffness (PS) elements (two pairs of folded beams) and negative-stiffness (NS) elemen...

Full description

Saved in:
Bibliographic Details
Published inComposite structures Vol. 236; p. 111862
Main Authors Cai, Changqi, Zhou, Jiaxi, Wu, Linchao, Wang, Kai, Xu, Daolin, Ouyang, Huajiang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel one-dimensional quasi-zero-stiffness (QZS) metamaterial is proposed to acquire very low-frequency band gaps. The representative unit cell (RUC) of the QZS metamaterials is constructed by combining positive-stiffness (PS) elements (two pairs of folded beams) and negative-stiffness (NS) elements (two pairs of buckled beams) in parallel. The negative stiffness of the buckled beams under large deformation is predicated theoretically by using the elliptic integral method. A parameter design on both the PS and NS elements is carried out, which indicates that the positive stiffness can be substantially neutralized by the NS elements, leading to a QZS RUC with ultra-low stiffness. Additionally, the one-dimensional QZS metamaterials are modelled as a lumped-mass-spring chain, which is solved theoretically by using the Harmonic Balance method, and then the dispersion relations and the band gaps are revealed. This chain model is also solved numerically and validated by finite element analysis. Both the theoretical and numerical predictions show very low-frequency band gaps (about 20 Hz). Therefore, the proposed QZS metamaterials should be a promising solution for very low-frequency wave filtering or attenuation.
AbstractList A novel one-dimensional quasi-zero-stiffness (QZS) metamaterial is proposed to acquire very low-frequency band gaps. The representative unit cell (RUC) of the QZS metamaterials is constructed by combining positive-stiffness (PS) elements (two pairs of folded beams) and negative-stiffness (NS) elements (two pairs of buckled beams) in parallel. The negative stiffness of the buckled beams under large deformation is predicated theoretically by using the elliptic integral method. A parameter design on both the PS and NS elements is carried out, which indicates that the positive stiffness can be substantially neutralized by the NS elements, leading to a QZS RUC with ultra-low stiffness. Additionally, the one-dimensional QZS metamaterials are modelled as a lumped-mass-spring chain, which is solved theoretically by using the Harmonic Balance method, and then the dispersion relations and the band gaps are revealed. This chain model is also solved numerically and validated by finite element analysis. Both the theoretical and numerical predictions show very low-frequency band gaps (about 20 Hz). Therefore, the proposed QZS metamaterials should be a promising solution for very low-frequency wave filtering or attenuation.
ArticleNumber 111862
Author Zhou, Jiaxi
Cai, Changqi
Wang, Kai
Xu, Daolin
Wu, Linchao
Ouyang, Huajiang
Author_xml – sequence: 1
  givenname: Changqi
  surname: Cai
  fullname: Cai, Changqi
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China
– sequence: 2
  givenname: Jiaxi
  surname: Zhou
  fullname: Zhou, Jiaxi
  email: jxizhou@hnu.edu.cn
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China
– sequence: 3
  givenname: Linchao
  surname: Wu
  fullname: Wu, Linchao
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
– sequence: 4
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China
– sequence: 5
  givenname: Daolin
  surname: Xu
  fullname: Xu, Daolin
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China
– sequence: 6
  givenname: Huajiang
  surname: Ouyang
  fullname: Ouyang, Huajiang
  organization: School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
BookMark eNqNkM1KAzEUhYNUsK2-Q15gapKZyWQ2gtZfENzoOqTJTUmZmbRJWqlPb2oFwY2uLhzO-eB-EzQa_AAIYUpmlFB-uZpp369jCludZoywHFMqODtBYyqatqBE1CM0JoyXhWCsPEOTGFeEEFFROkb2FqJbDlgNBg_bHoLTqsM71TmjkvMD9hZvtiq64gOCL2Jy1g4QI-4hqV6lPFBdxNYHvIOwx51_L2yAzRYGvceLA3ap1vEcndrcg4vvO0Vv93ev88fi-eXhaX79XOiSilQsWiN02TLTQMWIAc7rHHHRtpST2jSiaYxuS9s2tTKlokxXVY5KgIVquGblFIkjVwcfYwAr18H1KuwlJfLgS67kjy958CWPvvL06tdUu_TlIAXluv8Abo4AyA_uHAQZtcsawLgAuWu8-xvyCXe3kyg
CitedBy_id crossref_primary_10_1016_j_jsv_2022_117297
crossref_primary_10_1016_j_physa_2023_128820
crossref_primary_10_1016_j_jmat_2024_100944
crossref_primary_10_1007_s00339_021_04612_8
crossref_primary_10_1115_1_4049953
crossref_primary_10_1002_pssb_202200503
crossref_primary_10_1016_j_euromechsol_2023_104952
crossref_primary_10_1016_j_ijnonlinmec_2022_104194
crossref_primary_10_1016_j_mtcomm_2020_100977
crossref_primary_10_1080_00423114_2021_1874428
crossref_primary_10_1121_10_0025926
crossref_primary_10_1155_2021_5596064
crossref_primary_10_1016_j_eng_2024_12_011
crossref_primary_10_1142_S0217979224504034
crossref_primary_10_1016_j_ijmecsci_2020_105548
crossref_primary_10_1016_j_ijmecsci_2024_109080
crossref_primary_10_1016_j_jsv_2020_115837
crossref_primary_10_1016_j_jsv_2024_118308
crossref_primary_10_1016_j_jsv_2021_116088
crossref_primary_10_1016_j_ymssp_2024_111257
crossref_primary_10_1088_1361_665X_acb747
crossref_primary_10_1016_j_apm_2024_06_031
crossref_primary_10_1007_s00419_021_02074_1
crossref_primary_10_1016_j_ijmecsci_2021_106870
crossref_primary_10_1016_j_nanoen_2024_109367
crossref_primary_10_1016_j_ijmecsci_2023_108670
crossref_primary_10_1007_s11071_023_08943_4
crossref_primary_10_1063_5_0164777
crossref_primary_10_1016_j_mtcomm_2024_110135
crossref_primary_10_1016_j_rineng_2023_101389
crossref_primary_10_1016_j_ijmecsci_2024_109528
crossref_primary_10_1080_15376494_2022_2029985
crossref_primary_10_1177_14613484241300749
crossref_primary_10_1016_j_euromechsol_2022_104666
crossref_primary_10_12677_JAST_2024_121006
crossref_primary_10_1016_j_euromechsol_2024_105515
crossref_primary_10_1007_s00339_024_07689_z
crossref_primary_10_1016_j_mattod_2020_10_006
crossref_primary_10_1080_15376494_2023_2207173
crossref_primary_10_1115_1_4053406
crossref_primary_10_1016_j_ymssp_2024_112215
crossref_primary_10_1016_j_ijmecsci_2024_109251
crossref_primary_10_1038_s41598_024_70126_x
crossref_primary_10_1007_s11071_023_08808_w
crossref_primary_10_1007_s11071_020_05806_0
crossref_primary_10_1016_j_physa_2023_128600
crossref_primary_10_1016_j_oceaneng_2023_116652
crossref_primary_10_3390_machines13020092
crossref_primary_10_1016_j_mtcomm_2023_107700
crossref_primary_10_1016_j_tws_2024_112700
crossref_primary_10_1007_s10409_023_23461_x
crossref_primary_10_3390_app15063024
crossref_primary_10_1016_j_matdes_2024_113570
crossref_primary_10_1007_s11071_024_09922_z
crossref_primary_10_1016_j_compstruct_2022_116584
crossref_primary_10_1007_s42417_020_00275_6
crossref_primary_10_1016_j_ijmecsci_2024_108998
crossref_primary_10_1016_j_ijmecsci_2023_108678
crossref_primary_10_1016_j_ijmecsci_2023_108951
crossref_primary_10_1016_j_matdes_2025_113853
crossref_primary_10_1007_s00161_023_01228_6
crossref_primary_10_1177_10775463221128657
crossref_primary_10_1016_j_ymssp_2024_111154
crossref_primary_10_1088_1361_665X_ad97fe
crossref_primary_10_1016_j_jsv_2024_118750
crossref_primary_10_3390_su14116831
crossref_primary_10_1016_j_apacoust_2021_108571
crossref_primary_10_3390_app14114698
crossref_primary_10_1002_adfm_202101428
crossref_primary_10_1002_pssb_202200257
crossref_primary_10_3390_sym14051030
crossref_primary_10_1177_10775463231223068
crossref_primary_10_1016_j_compstruct_2023_117859
crossref_primary_10_1016_j_engstruct_2023_117308
crossref_primary_10_1007_s11431_020_1804_7
crossref_primary_10_1016_j_ymssp_2022_110017
crossref_primary_10_1080_15376494_2021_1892244
crossref_primary_10_3389_fphy_2022_957594
crossref_primary_10_1016_j_tws_2024_111686
crossref_primary_10_1016_j_jsv_2021_116474
crossref_primary_10_1016_j_engstruct_2022_115580
crossref_primary_10_1016_j_rinp_2021_104024
crossref_primary_10_1088_1361_665X_ad53ad
crossref_primary_10_1007_s10483_021_2684_8
crossref_primary_10_1016_j_ijmecsci_2024_109277
crossref_primary_10_1016_j_matdes_2021_110203
crossref_primary_10_1080_15376494_2024_2383317
crossref_primary_10_1007_s11071_021_06296_4
crossref_primary_10_1002_aisy_202200225
crossref_primary_10_1016_j_compstruct_2024_118626
crossref_primary_10_1007_s11071_023_09082_6
crossref_primary_10_1016_j_engstruct_2022_114978
crossref_primary_10_1016_j_mechmachtheory_2022_105213
crossref_primary_10_1016_j_jsv_2022_117538
crossref_primary_10_1016_j_mtcomm_2022_104455
crossref_primary_10_1088_1361_665X_ace4ab
crossref_primary_10_1016_j_ymssp_2022_109818
crossref_primary_10_1016_j_jsv_2024_118623
crossref_primary_10_1007_s10409_024_24033_x
crossref_primary_10_1016_j_jsv_2020_115870
crossref_primary_10_1177_09574565231154248
crossref_primary_10_1007_s42417_023_01244_5
crossref_primary_10_1177_16878132231222728
crossref_primary_10_1016_j_tws_2024_112360
crossref_primary_10_1016_j_engstruct_2023_117282
crossref_primary_10_1039_D4MH00906A
crossref_primary_10_1016_j_ijmecsci_2023_108593
crossref_primary_10_1016_j_photonics_2023_101120
crossref_primary_10_1080_15376494_2022_2089787
crossref_primary_10_1016_j_engstruct_2024_118037
crossref_primary_10_1007_s11071_025_10962_2
crossref_primary_10_1088_1361_665X_ad811b
crossref_primary_10_3390_machines10090813
crossref_primary_10_1016_j_cnsns_2025_108621
crossref_primary_10_1016_j_mtcomm_2022_104902
crossref_primary_10_1016_j_precisioneng_2022_07_006
crossref_primary_10_1007_s42417_021_00415_6
crossref_primary_10_1016_j_cnsns_2021_106092
crossref_primary_10_1016_j_ijmecsci_2021_106724
crossref_primary_10_1016_j_tws_2024_112237
crossref_primary_10_1016_j_jmrt_2024_09_059
crossref_primary_10_1016_j_cjmeam_2023_100091
crossref_primary_10_1016_j_rinp_2023_106345
crossref_primary_10_1016_j_ijmecsci_2022_107230
crossref_primary_10_1016_j_ijmecsci_2021_106320
crossref_primary_10_1007_s10338_021_00220_4
crossref_primary_10_1016_j_ast_2022_108044
crossref_primary_10_1016_j_tws_2021_108319
crossref_primary_10_1016_j_ijmecsci_2024_109853
crossref_primary_10_1021_acsomega_3c02247
crossref_primary_10_1007_s11071_024_09440_y
crossref_primary_10_1016_j_compstruct_2024_118125
crossref_primary_10_1016_j_tws_2024_111927
crossref_primary_10_1088_1361_665X_ad5bcc
crossref_primary_10_1142_S0217979222500679
crossref_primary_10_1016_j_euromechsol_2023_105143
crossref_primary_10_1088_1361_665X_acee36
crossref_primary_10_1016_j_compstruct_2022_116656
crossref_primary_10_1016_j_compstruct_2024_118405
crossref_primary_10_1115_1_4063443
crossref_primary_10_1016_j_compstruct_2021_114089
crossref_primary_10_1016_j_ijmecsci_2023_108917
crossref_primary_10_1016_j_compstruct_2022_116421
crossref_primary_10_1016_j_ijmecsci_2024_108958
crossref_primary_10_1016_j_ymssp_2022_109119
crossref_primary_10_1016_j_ymssp_2023_110988
crossref_primary_10_1016_j_ijmecsci_2022_107146
crossref_primary_10_3390_machines11050512
crossref_primary_10_1021_acsami_3c18793
crossref_primary_10_1016_j_ijmecsci_2023_108357
crossref_primary_10_3390_agriculture15020131
crossref_primary_10_1016_j_ymssp_2022_110068
crossref_primary_10_1007_s42417_020_00216_3
crossref_primary_10_1016_j_apm_2023_01_039
crossref_primary_10_1016_j_heliyon_2025_e41985
crossref_primary_10_1007_s11071_024_10440_1
crossref_primary_10_1016_j_ymssp_2025_112340
crossref_primary_10_3390_app13169458
crossref_primary_10_1016_j_apm_2025_116112
crossref_primary_10_1016_j_ijmecsci_2020_106093
crossref_primary_10_1016_j_ijmecsci_2024_109227
crossref_primary_10_1016_j_ymssp_2021_107945
crossref_primary_10_1088_1361_665X_ad54a9
crossref_primary_10_1007_s11071_020_05878_y
crossref_primary_10_1007_s11071_024_10592_0
crossref_primary_10_1016_j_compstruct_2024_117964
crossref_primary_10_1016_j_cja_2024_05_043
crossref_primary_10_1140_epjs_s11734_025_01559_2
crossref_primary_10_1016_j_compstruct_2022_115586
crossref_primary_10_1088_1361_6463_ac7480
crossref_primary_10_1007_s11071_024_10206_9
crossref_primary_10_1016_j_matdes_2022_111262
crossref_primary_10_1016_j_ijmecsci_2022_108069
crossref_primary_10_1007_s10999_020_09525_7
crossref_primary_10_1016_j_ijmecsci_2022_107533
crossref_primary_10_1016_j_jsv_2021_116671
crossref_primary_10_1007_s10483_022_2870_9
crossref_primary_10_1007_s40997_020_00370_9
crossref_primary_10_1007_s00340_022_07874_z
crossref_primary_10_1007_s10338_024_00500_9
crossref_primary_10_1016_j_ijmecsci_2022_108068
Cites_doi 10.1177/1099636212468738
10.1016/j.ijsolstr.2017.05.042
10.1063/1.5099425
10.1063/1.2400803
10.1038/378241a0
10.1016/j.jsv.2007.12.025
10.1016/j.ymssp.2019.02.008
10.1016/j.jsv.2018.03.002
10.1126/science.289.5485.1734
10.1016/j.apm.2019.04.033
10.1063/1.5018180
10.1038/srep28314
10.1103/PhysRevE.90.023204
10.1073/pnas.1604838113
10.1002/adma.201604009
10.1115/1.4003922
10.1016/j.compstruct.2019.03.091
10.1063/1.4998438
10.1103/PhysRevLett.116.244501
10.1126/sciadv.1501595
10.1115/1.4026911
10.1103/PhysRevB.99.064305
10.1016/j.jmps.2018.08.017
10.1093/nsr/nwx154
10.1016/j.ijnonlinmec.2007.09.007
10.1063/1.5011400
10.1016/j.ijmecsci.2013.12.013
10.1063/1.4974299
10.1016/j.jsv.2018.10.065
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruct.2020.111862
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1085
ExternalDocumentID 10_1016_j_compstruct_2020_111862
S0263822319331459
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
SMS
SSH
WUQ
ID FETCH-LOGICAL-c318t-b9d8c392d7e420de665b9d68991605d7877dc93f975ad3a12c4477d3eeba76c23
IEDL.DBID .~1
ISSN 0263-8223
IngestDate Tue Jul 01 03:53:32 EDT 2025
Thu Apr 24 23:03:33 EDT 2025
Fri Feb 23 02:49:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quasi-zero stiffness
Metamaterials
Band gaps
Local resonance
Low frequency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-b9d8c392d7e420de665b9d68991605d7877dc93f975ad3a12c4477d3eeba76c23
ParticipantIDs crossref_primary_10_1016_j_compstruct_2020_111862
crossref_citationtrail_10_1016_j_compstruct_2020_111862
elsevier_sciencedirect_doi_10_1016_j_compstruct_2020_111862
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Composite structures
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Sheng, Qin (b0105) 2016; 380
Howell, Spencer (b0180) 2013
Ma, Sheng, Guo, Qin (b0090) 2018; 424
Nadkarni, Arrieta, Chong, Kochmann, Daraio (b0135) 2016; 116
Liu, Zhang, Mao, Zhu, Yang, Chan (b0080) 2000; 289
Wang, Luo, Zhao, Huang (b0050) 2018; 112
Lazarov, Jensen (b0185) 2007; 42
Nadkarni, Daraio, Kochmann (b0025) 2014; 90
Wang, Zhou, Wang, Ouyang, Xu (b0170) 2019; 114
Holst, Teichert, Jensen (b0175) 2011; 133
Matlack, Bauhofer, Krödel, Palermo, Daraio (b0045) 2016; 201600171
Dai, Xia, Yu (b0065) 2017; 122
Raney, Nadkarni, Daraio, Kochmann, Lewis, Bertoldi (b0140) 2016; 113
Ge, Yang, Ma, Lu, Chen, Fang (b0015) 2018; 5
Virgin, Santillan, Plaut (b0095) 2008; 315
Zhou, Wang, Xu, Ouyang (b0165) 2017; 121
Zhou, Wang, Xu, Ouyang (b0075) 2017; 381
Morvaridi, Carta, Brun (b0030) 2018; 121
Xu, Barnhart, Li, Chen, Huang (b0060) 2018; 442
Hussein, Leamy, Ruzzene (b0010) 2014; 66
Qureshi, Li, Tan (b0085) 2016; 6
Pai, Peng, Jiang (b0055) 2014; 79
Ma, Sheng (b0020) 2016; 2
Yu, Liu, Wang, Zhao, Qiu (b0110) 2006; 100
Martínez-Sala, Sancho, Sánchez, Gómez, Llinares, Meseguer (b0005) 1995; 378
Zhang, Wei, Li (b0070) 2018
Wang, Zhang, Zhang, Hu (b0120) 2016; 28
Liu, Rumpler, Feng (b0035) 2018
Lee, Iizuka (b0040) 2019; 99
Goldsberry, Haberman (b0145) 2018; 123
Meaud, Che (b0130) 2017; 122–123
Zhou, Dou, Wang, Xu, Ouyang (b0160) 2019
Wang, Zhou, Xu, Ouyang (b0150) 2019; 124
Wang, Zhou, Cai, Xu, Ouyang (b0155) 2019; 73
Chen, Journal, Structures (b0100) 2013; 15
Zhong, Gu, Bao, Wang, Wu (b0115) 2019; 220
Pai (10.1016/j.compstruct.2020.111862_b0055) 2014; 79
Xu (10.1016/j.compstruct.2020.111862_b0060) 2018; 442
Liu (10.1016/j.compstruct.2020.111862_b0080) 2000; 289
Chen (10.1016/j.compstruct.2020.111862_b0100) 2013; 15
Zhong (10.1016/j.compstruct.2020.111862_b0115) 2019; 220
Holst (10.1016/j.compstruct.2020.111862_b0175) 2011; 133
Wang (10.1016/j.compstruct.2020.111862_b0105) 2016; 380
Goldsberry (10.1016/j.compstruct.2020.111862_b0145) 2018; 123
Meaud (10.1016/j.compstruct.2020.111862_b0130) 2017; 122–123
Ge (10.1016/j.compstruct.2020.111862_b0015) 2018; 5
Ma (10.1016/j.compstruct.2020.111862_b0090) 2018; 424
Virgin (10.1016/j.compstruct.2020.111862_b0095) 2008; 315
Matlack (10.1016/j.compstruct.2020.111862_b0045) 2016; 201600171
Nadkarni (10.1016/j.compstruct.2020.111862_b0025) 2014; 90
Zhang (10.1016/j.compstruct.2020.111862_b0070) 2018
Morvaridi (10.1016/j.compstruct.2020.111862_b0030) 2018; 121
Raney (10.1016/j.compstruct.2020.111862_b0140) 2016; 113
Dai (10.1016/j.compstruct.2020.111862_b0065) 2017; 122
Wang (10.1016/j.compstruct.2020.111862_b0050) 2018; 112
Lee (10.1016/j.compstruct.2020.111862_b0040) 2019; 99
Nadkarni (10.1016/j.compstruct.2020.111862_b0135) 2016; 116
Hussein (10.1016/j.compstruct.2020.111862_b0010) 2014; 66
Yu (10.1016/j.compstruct.2020.111862_b0110) 2006; 100
Zhou (10.1016/j.compstruct.2020.111862_b0075) 2017; 381
Wang (10.1016/j.compstruct.2020.111862_b0150) 2019; 124
Liu (10.1016/j.compstruct.2020.111862_b0035) 2018
Howell (10.1016/j.compstruct.2020.111862_b0180) 2013
Lazarov (10.1016/j.compstruct.2020.111862_b0185) 2007; 42
Zhou (10.1016/j.compstruct.2020.111862_b0165) 2017; 121
Zhou (10.1016/j.compstruct.2020.111862_b0160) 2019
Ma (10.1016/j.compstruct.2020.111862_b0020) 2016; 2
Martínez-Sala (10.1016/j.compstruct.2020.111862_b0005) 1995; 378
Wang (10.1016/j.compstruct.2020.111862_b0120) 2016; 28
Wang (10.1016/j.compstruct.2020.111862_b0155) 2019; 73
Wang (10.1016/j.compstruct.2020.111862_b0170) 2019; 114
Qureshi (10.1016/j.compstruct.2020.111862_b0085) 2016; 6
References_xml – volume: 380
  start-page: 525
  year: 2016
  end-page: 529
  ident: b0105
  article-title: Multi-flexural band gaps in an Euler-Bernoulli beam with lateral local resonators
  publication-title: Phys Lett Sect A Gen At Solid State Phys
– volume: 116
  start-page: 1
  year: 2016
  end-page: 5
  ident: b0135
  article-title: Unidirectional transition waves in bistable lattices
  publication-title: Phys Rev Lett
– year: 2018
  ident: b0035
  article-title: Broadband locally resonant metamaterial sandwich plate for improved noise insulation in the coincidence region
  publication-title: Compos Struct
– volume: 28
  start-page: 9857
  year: 2016
  end-page: 9861
  ident: b0120
  article-title: Tunable digital metamaterial for broadband vibration isolation at low frequency
  publication-title: Adv Mater
– volume: 124
  start-page: 664
  year: 2019
  end-page: 678
  ident: b0150
  article-title: Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity
  publication-title: Mech Syst Signal Process
– volume: 442
  start-page: 237
  year: 2018
  end-page: 248
  ident: b0060
  article-title: Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators
  publication-title: J Sound Vib
– volume: 6
  start-page: 28314
  year: 2016
  ident: b0085
  article-title: Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials
  publication-title: Sci Rep
– year: 2013
  ident: b0180
  article-title: Handbook of Compliant Mechanisms
– volume: 201600171
  year: 2016
  ident: b0045
  article-title: Composite 3D-printed meta-structures for low frequency and broadband vibration absorption
  publication-title: Proc Natl Acad Sci
– volume: 112
  year: 2018
  ident: b0050
  article-title: Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials
  publication-title: Appl Phys Lett
– volume: 122–123
  start-page: 69
  year: 2017
  end-page: 80
  ident: b0130
  article-title: Tuning elastic wave propagation in multistable architected materials
  publication-title: Int J Solids Struct
– volume: 90
  start-page: 1
  year: 2014
  end-page: 13
  ident: b0025
  article-title: Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation
  publication-title: Phys Rev E - Stat Nonlinear, Soft Matter Phys
– volume: 79
  start-page: 195
  year: 2014
  end-page: 205
  ident: b0055
  article-title: Acoustic metamaterial beams based on multi-frequency vibration absorbers
  publication-title: Int J Mech Sci
– volume: 42
  start-page: 1186
  year: 2007
  end-page: 1193
  ident: b0185
  article-title: Low-frequency band gaps in chains with attached non-linear oscillators
  publication-title: Int J Non Linear Mech
– volume: 289
  start-page: 1734
  year: 2000
  end-page: 1736
  ident: b0080
  article-title: Locally resonant sonic materials
  publication-title: Science
– volume: 315
  start-page: 721
  year: 2008
  end-page: 731
  ident: b0095
  article-title: Vibration isolation using extreme geometric nonlinearity
  publication-title: J Sound Vib
– volume: 2
  year: 2016
  ident: b0020
  article-title: Acoustic metamaterials: from local resonances to broad horizons
  publication-title: Sci Adv
– year: 2018
  ident: b0070
  article-title: The elastic wave propagation through the finite and infinite periodic laminated structure of micropolar elasticity
  publication-title: Compos Struct
– volume: 100
  year: 2006
  ident: b0110
  article-title: Flexural vibration band gaps in Timoshenko beams with locally resonant structures
  publication-title: J Appl Phys
– year: 2019
  ident: b0160
  article-title: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams
  publication-title: Nonlinear Dyn
– volume: 122
  year: 2017
  ident: b0065
  article-title: Dirac cones in two-dimensional acoustic metamaterials
  publication-title: J Appl Phys
– volume: 133
  year: 2011
  ident: b0175
  article-title: Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms
  publication-title: J Mech Des
– volume: 5
  start-page: 159
  year: 2018
  end-page: 182
  ident: b0015
  article-title: Breaking the barriers: advances in acoustic functional materials
  publication-title: Natl Sci Rev
– volume: 121
  start-page: 496
  year: 2018
  end-page: 516
  ident: b0030
  article-title: Platonic crystal with low-frequency locally-resonant spiral structures: wave trapping, transmission amplification, shielding and edge waves
  publication-title: J Mech Phys Solids
– volume: 99
  year: 2019
  ident: b0040
  article-title: Bragg scattering based acoustic topological transition controlled by local resonance
  publication-title: Phys Rev B
– volume: 424
  start-page: 94
  year: 2018
  end-page: 111
  ident: b0090
  article-title: Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators
  publication-title: J Sound Vib
– volume: 123
  year: 2018
  ident: b0145
  article-title: Negative stiffness honeycombs as tunable elastic metamaterials
  publication-title: J Appl Phys
– volume: 73
  start-page: 581
  year: 2019
  end-page: 597
  ident: b0155
  article-title: Mathematical modeling and analysis of a meta-plate for very low-frequency band gap
  publication-title: Appl Math Model
– volume: 220
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0115
  article-title: 2D underwater acoustic metamaterials incorporating a combination of particle-filled polyurethane and spiral-based local resonance mechanisms
  publication-title: Compos Struct
– volume: 15
  start-page: 359
  year: 2013
  end-page: 374
  ident: b0100
  article-title: Wave propagation in sandwich structures with resonators and periodic cores
  publication-title: J Sandw Struct Mater
– volume: 114
  year: 2019
  ident: b0170
  article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: design and experimental validation
  publication-title: Appl Phys Lett
– volume: 378
  year: 1995
  ident: b0005
  article-title: Sound attenuation by sculpture
  publication-title: Nature
– volume: 66
  year: 2014
  ident: b0010
  article-title: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook
  publication-title: Appl Mech Rev
– volume: 113
  start-page: 9722
  year: 2016
  end-page: 9727
  ident: b0140
  article-title: Stable propagation of mechanical signals in soft media using stored elastic energy
  publication-title: Proc Natl Acad Sci
– volume: 121
  year: 2017
  ident: b0165
  article-title: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams
  publication-title: J Appl Phys
– volume: 381
  start-page: 3141
  year: 2017
  end-page: 3148
  ident: b0075
  article-title: Multi-low-frequency flexural wave attenuation in Euler-Bernoulli beams using local resonators containing negative-stiffness mechanisms
  publication-title: Phys Lett Sect A Gen At Solid State Phys
– volume: 15
  start-page: 359
  issue: 3
  year: 2013
  ident: 10.1016/j.compstruct.2020.111862_b0100
  article-title: Wave propagation in sandwich structures with resonators and periodic cores
  publication-title: J Sandw Struct Mater
  doi: 10.1177/1099636212468738
– year: 2013
  ident: 10.1016/j.compstruct.2020.111862_b0180
– volume: 122–123
  start-page: 69
  year: 2017
  ident: 10.1016/j.compstruct.2020.111862_b0130
  article-title: Tuning elastic wave propagation in multistable architected materials
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2017.05.042
– volume: 114
  year: 2019
  ident: 10.1016/j.compstruct.2020.111862_b0170
  article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: design and experimental validation
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5099425
– year: 2018
  ident: 10.1016/j.compstruct.2020.111862_b0070
  article-title: The elastic wave propagation through the finite and infinite periodic laminated structure of micropolar elasticity
  publication-title: Compos Struct
– volume: 100
  issue: 12
  year: 2006
  ident: 10.1016/j.compstruct.2020.111862_b0110
  article-title: Flexural vibration band gaps in Timoshenko beams with locally resonant structures
  publication-title: J Appl Phys
  doi: 10.1063/1.2400803
– volume: 378
  issue: 6554
  year: 1995
  ident: 10.1016/j.compstruct.2020.111862_b0005
  article-title: Sound attenuation by sculpture
  publication-title: Nature
  doi: 10.1038/378241a0
– volume: 315
  start-page: 721
  issue: 3
  year: 2008
  ident: 10.1016/j.compstruct.2020.111862_b0095
  article-title: Vibration isolation using extreme geometric nonlinearity
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2007.12.025
– volume: 124
  start-page: 664
  year: 2019
  ident: 10.1016/j.compstruct.2020.111862_b0150
  article-title: Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.02.008
– volume: 424
  start-page: 94
  year: 2018
  ident: 10.1016/j.compstruct.2020.111862_b0090
  article-title: Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.03.002
– volume: 289
  start-page: 1734
  issue: 5485
  year: 2000
  ident: 10.1016/j.compstruct.2020.111862_b0080
  article-title: Locally resonant sonic materials
  publication-title: Science
  doi: 10.1126/science.289.5485.1734
– volume: 73
  start-page: 581
  year: 2019
  ident: 10.1016/j.compstruct.2020.111862_b0155
  article-title: Mathematical modeling and analysis of a meta-plate for very low-frequency band gap
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2019.04.033
– volume: 112
  issue: 2
  year: 2018
  ident: 10.1016/j.compstruct.2020.111862_b0050
  article-title: Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5018180
– volume: 6
  start-page: 28314
  year: 2016
  ident: 10.1016/j.compstruct.2020.111862_b0085
  article-title: Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials
  publication-title: Sci Rep
  doi: 10.1038/srep28314
– volume: 90
  start-page: 1
  issue: 2
  year: 2014
  ident: 10.1016/j.compstruct.2020.111862_b0025
  article-title: Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation
  publication-title: Phys Rev E - Stat Nonlinear, Soft Matter Phys
  doi: 10.1103/PhysRevE.90.023204
– volume: 113
  start-page: 9722
  issue: 35
  year: 2016
  ident: 10.1016/j.compstruct.2020.111862_b0140
  article-title: Stable propagation of mechanical signals in soft media using stored elastic energy
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1604838113
– year: 2019
  ident: 10.1016/j.compstruct.2020.111862_b0160
  article-title: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams
  publication-title: Nonlinear Dyn
– volume: 201600171
  year: 2016
  ident: 10.1016/j.compstruct.2020.111862_b0045
  article-title: Composite 3D-printed meta-structures for low frequency and broadband vibration absorption
  publication-title: Proc Natl Acad Sci
– volume: 380
  start-page: 525
  issue: 4
  year: 2016
  ident: 10.1016/j.compstruct.2020.111862_b0105
  article-title: Multi-flexural band gaps in an Euler-Bernoulli beam with lateral local resonators
  publication-title: Phys Lett Sect A Gen At Solid State Phys
– volume: 28
  start-page: 9857
  issue: 44
  year: 2016
  ident: 10.1016/j.compstruct.2020.111862_b0120
  article-title: Tunable digital metamaterial for broadband vibration isolation at low frequency
  publication-title: Adv Mater
  doi: 10.1002/adma.201604009
– volume: 133
  issue: 5
  year: 2011
  ident: 10.1016/j.compstruct.2020.111862_b0175
  article-title: Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms
  publication-title: J Mech Des
  doi: 10.1115/1.4003922
– volume: 220
  start-page: 1
  year: 2019
  ident: 10.1016/j.compstruct.2020.111862_b0115
  article-title: 2D underwater acoustic metamaterials incorporating a combination of particle-filled polyurethane and spiral-based local resonance mechanisms
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.03.091
– volume: 122
  issue: 6
  year: 2017
  ident: 10.1016/j.compstruct.2020.111862_b0065
  article-title: Dirac cones in two-dimensional acoustic metamaterials
  publication-title: J Appl Phys
  doi: 10.1063/1.4998438
– volume: 116
  start-page: 1
  issue: 24
  year: 2016
  ident: 10.1016/j.compstruct.2020.111862_b0135
  article-title: Unidirectional transition waves in bistable lattices
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.116.244501
– year: 2018
  ident: 10.1016/j.compstruct.2020.111862_b0035
  article-title: Broadband locally resonant metamaterial sandwich plate for improved noise insulation in the coincidence region
  publication-title: Compos Struct
– volume: 2
  issue: 2
  year: 2016
  ident: 10.1016/j.compstruct.2020.111862_b0020
  article-title: Acoustic metamaterials: from local resonances to broad horizons
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1501595
– volume: 66
  issue: 4
  year: 2014
  ident: 10.1016/j.compstruct.2020.111862_b0010
  article-title: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook
  publication-title: Appl Mech Rev
  doi: 10.1115/1.4026911
– volume: 99
  issue: 6
  year: 2019
  ident: 10.1016/j.compstruct.2020.111862_b0040
  article-title: Bragg scattering based acoustic topological transition controlled by local resonance
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.99.064305
– volume: 121
  start-page: 496
  year: 2018
  ident: 10.1016/j.compstruct.2020.111862_b0030
  article-title: Platonic crystal with low-frequency locally-resonant spiral structures: wave trapping, transmission amplification, shielding and edge waves
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2018.08.017
– volume: 5
  start-page: 159
  issue: 2
  year: 2018
  ident: 10.1016/j.compstruct.2020.111862_b0015
  article-title: Breaking the barriers: advances in acoustic functional materials
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwx154
– volume: 381
  start-page: 3141
  issue: 37
  year: 2017
  ident: 10.1016/j.compstruct.2020.111862_b0075
  article-title: Multi-low-frequency flexural wave attenuation in Euler-Bernoulli beams using local resonators containing negative-stiffness mechanisms
  publication-title: Phys Lett Sect A Gen At Solid State Phys
– volume: 42
  start-page: 1186
  issue: 10
  year: 2007
  ident: 10.1016/j.compstruct.2020.111862_b0185
  article-title: Low-frequency band gaps in chains with attached non-linear oscillators
  publication-title: Int J Non Linear Mech
  doi: 10.1016/j.ijnonlinmec.2007.09.007
– volume: 123
  issue: 9
  year: 2018
  ident: 10.1016/j.compstruct.2020.111862_b0145
  article-title: Negative stiffness honeycombs as tunable elastic metamaterials
  publication-title: J Appl Phys
  doi: 10.1063/1.5011400
– volume: 79
  start-page: 195
  issue: 1
  year: 2014
  ident: 10.1016/j.compstruct.2020.111862_b0055
  article-title: Acoustic metamaterial beams based on multi-frequency vibration absorbers
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2013.12.013
– volume: 121
  issue: 4
  year: 2017
  ident: 10.1016/j.compstruct.2020.111862_b0165
  article-title: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams
  publication-title: J Appl Phys
  doi: 10.1063/1.4974299
– volume: 442
  start-page: 237
  year: 2018
  ident: 10.1016/j.compstruct.2020.111862_b0060
  article-title: Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.10.065
SSID ssj0008411
Score 2.6543412
Snippet A novel one-dimensional quasi-zero-stiffness (QZS) metamaterial is proposed to acquire very low-frequency band gaps. The representative unit cell (RUC) of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111862
SubjectTerms Band gaps
Local resonance
Low frequency
Metamaterials
Quasi-zero stiffness
Title Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps
URI https://dx.doi.org/10.1016/j.compstruct.2020.111862
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GDl4jetHmrR4GtMxFXfRwW4lbRKZzHbuA5kH_3ZfmtZNEBQ8NuSV8vLLe7_QX95D6FxRL1FMKaJ1mhLI-IJEArAsA66jiAsuij5k933WG9DbYTCsoU51F8bIKsvYb2N6Ea3LkVbpzdZkNGo9wOnBh_QGGPJ9lwbmEh-l3KD84mMl8whp0YPXTCZmdqnmsRovI9u2dVrhpOgV8SNk3s8pai3tdHfQdskXcdt-0i6qqWwPba1VEdxH-qpQYWCRSZwt7B-YMQYEjWy_JJxr_LoQsxF5V9OcwJ7W2gQ4_KLmAgirxSAG9ooB10s8zt-InlqJ9RIn5rVPYjI7QIPu9WOnR8r2CSSFjTonSSTDFOiP5LAgjlSMBTDEQsMInUDCTuUyjXwd8UBIX7heCu7j0lcqEZylnn-I6lmeqSOEE48B8wAypjmlOvJDRzkSqISpcexGNGkgXnksTsva4qbFxTiuRGTP8crXsfF1bH3dQO6X5cTW1_iDzWW1KPE3rMSQBn61Pv6X9QnaNE9GheYGp6gOE9QZ0JJ50ixw10Qb7Zu7Xv8TInzlaQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BewAOiFWU1QeuVpvEiWNxqljUAu2FVuotcmIbFZW0lCJUvp5xnLJISCBxdTxRNH6eeVaeZwBONfNTHWlNjckyihlfUiERyyrkRgguuSz6kHW6UavPrgfhYAnOF3dhrKyyjP0uphfRuhypl96sT4bD-h2eHgJMb4ihIPBYKJahaqtThRWoNts3re5HQI5Z0YbXzqfWoBT0OJmXVW67Uq14WPSLEBJH_s9Z6kvmudqA9ZIykqb7qk1Y0vkWrH0pJLgN5qIQYhCZK5K_uJ8wI4IgGrqWSWRsyNOLfB7SNz0dU9zWxtgYRx71TCJndTAkSGAJQntORuNXaqZOZT0nqX3tvZw870D_6rJ33qJlBwWa4V6d0VSoOEMGpDiuSUPpKApxKIotKWyECjcrV5kIjOChVIH0_IwxHAq0TiWPMj_YhUo-zvUekNSPkHwgHzOcMSOCuKEbCtmELXPsCZbWgC88lmRleXHb5WKULHRkD8mnrxPr68T5ugbeh-XEldj4g83ZYlGSb3BJMBP8ar3_L-sTWGn1OrfJbbt7cwCr9okVpXnhIVRwsj5CljJLj0sUvgP_4uga
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+numerical+validation+of+quasi-zero-stiffness+metamaterials+for+very+low-frequency+band+gaps&rft.jtitle=Composite+structures&rft.au=Cai%2C+Changqi&rft.au=Zhou%2C+Jiaxi&rft.au=Wu%2C+Linchao&rft.au=Wang%2C+Kai&rft.date=2020-03-15&rft.pub=Elsevier+Ltd&rft.issn=0263-8223&rft.eissn=1879-1085&rft.volume=236&rft_id=info:doi/10.1016%2Fj.compstruct.2020.111862&rft.externalDocID=S0263822319331459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon