Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps
A novel one-dimensional quasi-zero-stiffness (QZS) metamaterial is proposed to acquire very low-frequency band gaps. The representative unit cell (RUC) of the QZS metamaterials is constructed by combining positive-stiffness (PS) elements (two pairs of folded beams) and negative-stiffness (NS) elemen...
Saved in:
Published in | Composite structures Vol. 236; p. 111862 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel one-dimensional quasi-zero-stiffness (QZS) metamaterial is proposed to acquire very low-frequency band gaps. The representative unit cell (RUC) of the QZS metamaterials is constructed by combining positive-stiffness (PS) elements (two pairs of folded beams) and negative-stiffness (NS) elements (two pairs of buckled beams) in parallel. The negative stiffness of the buckled beams under large deformation is predicated theoretically by using the elliptic integral method. A parameter design on both the PS and NS elements is carried out, which indicates that the positive stiffness can be substantially neutralized by the NS elements, leading to a QZS RUC with ultra-low stiffness. Additionally, the one-dimensional QZS metamaterials are modelled as a lumped-mass-spring chain, which is solved theoretically by using the Harmonic Balance method, and then the dispersion relations and the band gaps are revealed. This chain model is also solved numerically and validated by finite element analysis. Both the theoretical and numerical predictions show very low-frequency band gaps (about 20 Hz). Therefore, the proposed QZS metamaterials should be a promising solution for very low-frequency wave filtering or attenuation. |
---|---|
AbstractList | A novel one-dimensional quasi-zero-stiffness (QZS) metamaterial is proposed to acquire very low-frequency band gaps. The representative unit cell (RUC) of the QZS metamaterials is constructed by combining positive-stiffness (PS) elements (two pairs of folded beams) and negative-stiffness (NS) elements (two pairs of buckled beams) in parallel. The negative stiffness of the buckled beams under large deformation is predicated theoretically by using the elliptic integral method. A parameter design on both the PS and NS elements is carried out, which indicates that the positive stiffness can be substantially neutralized by the NS elements, leading to a QZS RUC with ultra-low stiffness. Additionally, the one-dimensional QZS metamaterials are modelled as a lumped-mass-spring chain, which is solved theoretically by using the Harmonic Balance method, and then the dispersion relations and the band gaps are revealed. This chain model is also solved numerically and validated by finite element analysis. Both the theoretical and numerical predictions show very low-frequency band gaps (about 20 Hz). Therefore, the proposed QZS metamaterials should be a promising solution for very low-frequency wave filtering or attenuation. |
ArticleNumber | 111862 |
Author | Zhou, Jiaxi Cai, Changqi Wang, Kai Xu, Daolin Wu, Linchao Ouyang, Huajiang |
Author_xml | – sequence: 1 givenname: Changqi surname: Cai fullname: Cai, Changqi organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China – sequence: 2 givenname: Jiaxi surname: Zhou fullname: Zhou, Jiaxi email: jxizhou@hnu.edu.cn organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China – sequence: 3 givenname: Linchao surname: Wu fullname: Wu, Linchao organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China – sequence: 4 givenname: Kai surname: Wang fullname: Wang, Kai organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China – sequence: 5 givenname: Daolin surname: Xu fullname: Xu, Daolin organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China – sequence: 6 givenname: Huajiang surname: Ouyang fullname: Ouyang, Huajiang organization: School of Engineering, University of Liverpool, Liverpool L69 3GH, UK |
BookMark | eNqNkM1KAzEUhYNUsK2-Q15gapKZyWQ2gtZfENzoOqTJTUmZmbRJWqlPb2oFwY2uLhzO-eB-EzQa_AAIYUpmlFB-uZpp369jCludZoywHFMqODtBYyqatqBE1CM0JoyXhWCsPEOTGFeEEFFROkb2FqJbDlgNBg_bHoLTqsM71TmjkvMD9hZvtiq64gOCL2Jy1g4QI-4hqV6lPFBdxNYHvIOwx51_L2yAzRYGvceLA3ap1vEcndrcg4vvO0Vv93ev88fi-eXhaX79XOiSilQsWiN02TLTQMWIAc7rHHHRtpST2jSiaYxuS9s2tTKlokxXVY5KgIVquGblFIkjVwcfYwAr18H1KuwlJfLgS67kjy958CWPvvL06tdUu_TlIAXluv8Abo4AyA_uHAQZtcsawLgAuWu8-xvyCXe3kyg |
CitedBy_id | crossref_primary_10_1016_j_jsv_2022_117297 crossref_primary_10_1016_j_physa_2023_128820 crossref_primary_10_1016_j_jmat_2024_100944 crossref_primary_10_1007_s00339_021_04612_8 crossref_primary_10_1115_1_4049953 crossref_primary_10_1002_pssb_202200503 crossref_primary_10_1016_j_euromechsol_2023_104952 crossref_primary_10_1016_j_ijnonlinmec_2022_104194 crossref_primary_10_1016_j_mtcomm_2020_100977 crossref_primary_10_1080_00423114_2021_1874428 crossref_primary_10_1121_10_0025926 crossref_primary_10_1155_2021_5596064 crossref_primary_10_1016_j_eng_2024_12_011 crossref_primary_10_1142_S0217979224504034 crossref_primary_10_1016_j_ijmecsci_2020_105548 crossref_primary_10_1016_j_ijmecsci_2024_109080 crossref_primary_10_1016_j_jsv_2020_115837 crossref_primary_10_1016_j_jsv_2024_118308 crossref_primary_10_1016_j_jsv_2021_116088 crossref_primary_10_1016_j_ymssp_2024_111257 crossref_primary_10_1088_1361_665X_acb747 crossref_primary_10_1016_j_apm_2024_06_031 crossref_primary_10_1007_s00419_021_02074_1 crossref_primary_10_1016_j_ijmecsci_2021_106870 crossref_primary_10_1016_j_nanoen_2024_109367 crossref_primary_10_1016_j_ijmecsci_2023_108670 crossref_primary_10_1007_s11071_023_08943_4 crossref_primary_10_1063_5_0164777 crossref_primary_10_1016_j_mtcomm_2024_110135 crossref_primary_10_1016_j_rineng_2023_101389 crossref_primary_10_1016_j_ijmecsci_2024_109528 crossref_primary_10_1080_15376494_2022_2029985 crossref_primary_10_1177_14613484241300749 crossref_primary_10_1016_j_euromechsol_2022_104666 crossref_primary_10_12677_JAST_2024_121006 crossref_primary_10_1016_j_euromechsol_2024_105515 crossref_primary_10_1007_s00339_024_07689_z crossref_primary_10_1016_j_mattod_2020_10_006 crossref_primary_10_1080_15376494_2023_2207173 crossref_primary_10_1115_1_4053406 crossref_primary_10_1016_j_ymssp_2024_112215 crossref_primary_10_1016_j_ijmecsci_2024_109251 crossref_primary_10_1038_s41598_024_70126_x crossref_primary_10_1007_s11071_023_08808_w crossref_primary_10_1007_s11071_020_05806_0 crossref_primary_10_1016_j_physa_2023_128600 crossref_primary_10_1016_j_oceaneng_2023_116652 crossref_primary_10_3390_machines13020092 crossref_primary_10_1016_j_mtcomm_2023_107700 crossref_primary_10_1016_j_tws_2024_112700 crossref_primary_10_1007_s10409_023_23461_x crossref_primary_10_3390_app15063024 crossref_primary_10_1016_j_matdes_2024_113570 crossref_primary_10_1007_s11071_024_09922_z crossref_primary_10_1016_j_compstruct_2022_116584 crossref_primary_10_1007_s42417_020_00275_6 crossref_primary_10_1016_j_ijmecsci_2024_108998 crossref_primary_10_1016_j_ijmecsci_2023_108678 crossref_primary_10_1016_j_ijmecsci_2023_108951 crossref_primary_10_1016_j_matdes_2025_113853 crossref_primary_10_1007_s00161_023_01228_6 crossref_primary_10_1177_10775463221128657 crossref_primary_10_1016_j_ymssp_2024_111154 crossref_primary_10_1088_1361_665X_ad97fe crossref_primary_10_1016_j_jsv_2024_118750 crossref_primary_10_3390_su14116831 crossref_primary_10_1016_j_apacoust_2021_108571 crossref_primary_10_3390_app14114698 crossref_primary_10_1002_adfm_202101428 crossref_primary_10_1002_pssb_202200257 crossref_primary_10_3390_sym14051030 crossref_primary_10_1177_10775463231223068 crossref_primary_10_1016_j_compstruct_2023_117859 crossref_primary_10_1016_j_engstruct_2023_117308 crossref_primary_10_1007_s11431_020_1804_7 crossref_primary_10_1016_j_ymssp_2022_110017 crossref_primary_10_1080_15376494_2021_1892244 crossref_primary_10_3389_fphy_2022_957594 crossref_primary_10_1016_j_tws_2024_111686 crossref_primary_10_1016_j_jsv_2021_116474 crossref_primary_10_1016_j_engstruct_2022_115580 crossref_primary_10_1016_j_rinp_2021_104024 crossref_primary_10_1088_1361_665X_ad53ad crossref_primary_10_1007_s10483_021_2684_8 crossref_primary_10_1016_j_ijmecsci_2024_109277 crossref_primary_10_1016_j_matdes_2021_110203 crossref_primary_10_1080_15376494_2024_2383317 crossref_primary_10_1007_s11071_021_06296_4 crossref_primary_10_1002_aisy_202200225 crossref_primary_10_1016_j_compstruct_2024_118626 crossref_primary_10_1007_s11071_023_09082_6 crossref_primary_10_1016_j_engstruct_2022_114978 crossref_primary_10_1016_j_mechmachtheory_2022_105213 crossref_primary_10_1016_j_jsv_2022_117538 crossref_primary_10_1016_j_mtcomm_2022_104455 crossref_primary_10_1088_1361_665X_ace4ab crossref_primary_10_1016_j_ymssp_2022_109818 crossref_primary_10_1016_j_jsv_2024_118623 crossref_primary_10_1007_s10409_024_24033_x crossref_primary_10_1016_j_jsv_2020_115870 crossref_primary_10_1177_09574565231154248 crossref_primary_10_1007_s42417_023_01244_5 crossref_primary_10_1177_16878132231222728 crossref_primary_10_1016_j_tws_2024_112360 crossref_primary_10_1016_j_engstruct_2023_117282 crossref_primary_10_1039_D4MH00906A crossref_primary_10_1016_j_ijmecsci_2023_108593 crossref_primary_10_1016_j_photonics_2023_101120 crossref_primary_10_1080_15376494_2022_2089787 crossref_primary_10_1016_j_engstruct_2024_118037 crossref_primary_10_1007_s11071_025_10962_2 crossref_primary_10_1088_1361_665X_ad811b crossref_primary_10_3390_machines10090813 crossref_primary_10_1016_j_cnsns_2025_108621 crossref_primary_10_1016_j_mtcomm_2022_104902 crossref_primary_10_1016_j_precisioneng_2022_07_006 crossref_primary_10_1007_s42417_021_00415_6 crossref_primary_10_1016_j_cnsns_2021_106092 crossref_primary_10_1016_j_ijmecsci_2021_106724 crossref_primary_10_1016_j_tws_2024_112237 crossref_primary_10_1016_j_jmrt_2024_09_059 crossref_primary_10_1016_j_cjmeam_2023_100091 crossref_primary_10_1016_j_rinp_2023_106345 crossref_primary_10_1016_j_ijmecsci_2022_107230 crossref_primary_10_1016_j_ijmecsci_2021_106320 crossref_primary_10_1007_s10338_021_00220_4 crossref_primary_10_1016_j_ast_2022_108044 crossref_primary_10_1016_j_tws_2021_108319 crossref_primary_10_1016_j_ijmecsci_2024_109853 crossref_primary_10_1021_acsomega_3c02247 crossref_primary_10_1007_s11071_024_09440_y crossref_primary_10_1016_j_compstruct_2024_118125 crossref_primary_10_1016_j_tws_2024_111927 crossref_primary_10_1088_1361_665X_ad5bcc crossref_primary_10_1142_S0217979222500679 crossref_primary_10_1016_j_euromechsol_2023_105143 crossref_primary_10_1088_1361_665X_acee36 crossref_primary_10_1016_j_compstruct_2022_116656 crossref_primary_10_1016_j_compstruct_2024_118405 crossref_primary_10_1115_1_4063443 crossref_primary_10_1016_j_compstruct_2021_114089 crossref_primary_10_1016_j_ijmecsci_2023_108917 crossref_primary_10_1016_j_compstruct_2022_116421 crossref_primary_10_1016_j_ijmecsci_2024_108958 crossref_primary_10_1016_j_ymssp_2022_109119 crossref_primary_10_1016_j_ymssp_2023_110988 crossref_primary_10_1016_j_ijmecsci_2022_107146 crossref_primary_10_3390_machines11050512 crossref_primary_10_1021_acsami_3c18793 crossref_primary_10_1016_j_ijmecsci_2023_108357 crossref_primary_10_3390_agriculture15020131 crossref_primary_10_1016_j_ymssp_2022_110068 crossref_primary_10_1007_s42417_020_00216_3 crossref_primary_10_1016_j_apm_2023_01_039 crossref_primary_10_1016_j_heliyon_2025_e41985 crossref_primary_10_1007_s11071_024_10440_1 crossref_primary_10_1016_j_ymssp_2025_112340 crossref_primary_10_3390_app13169458 crossref_primary_10_1016_j_apm_2025_116112 crossref_primary_10_1016_j_ijmecsci_2020_106093 crossref_primary_10_1016_j_ijmecsci_2024_109227 crossref_primary_10_1016_j_ymssp_2021_107945 crossref_primary_10_1088_1361_665X_ad54a9 crossref_primary_10_1007_s11071_020_05878_y crossref_primary_10_1007_s11071_024_10592_0 crossref_primary_10_1016_j_compstruct_2024_117964 crossref_primary_10_1016_j_cja_2024_05_043 crossref_primary_10_1140_epjs_s11734_025_01559_2 crossref_primary_10_1016_j_compstruct_2022_115586 crossref_primary_10_1088_1361_6463_ac7480 crossref_primary_10_1007_s11071_024_10206_9 crossref_primary_10_1016_j_matdes_2022_111262 crossref_primary_10_1016_j_ijmecsci_2022_108069 crossref_primary_10_1007_s10999_020_09525_7 crossref_primary_10_1016_j_ijmecsci_2022_107533 crossref_primary_10_1016_j_jsv_2021_116671 crossref_primary_10_1007_s10483_022_2870_9 crossref_primary_10_1007_s40997_020_00370_9 crossref_primary_10_1007_s00340_022_07874_z crossref_primary_10_1007_s10338_024_00500_9 crossref_primary_10_1016_j_ijmecsci_2022_108068 |
Cites_doi | 10.1177/1099636212468738 10.1016/j.ijsolstr.2017.05.042 10.1063/1.5099425 10.1063/1.2400803 10.1038/378241a0 10.1016/j.jsv.2007.12.025 10.1016/j.ymssp.2019.02.008 10.1016/j.jsv.2018.03.002 10.1126/science.289.5485.1734 10.1016/j.apm.2019.04.033 10.1063/1.5018180 10.1038/srep28314 10.1103/PhysRevE.90.023204 10.1073/pnas.1604838113 10.1002/adma.201604009 10.1115/1.4003922 10.1016/j.compstruct.2019.03.091 10.1063/1.4998438 10.1103/PhysRevLett.116.244501 10.1126/sciadv.1501595 10.1115/1.4026911 10.1103/PhysRevB.99.064305 10.1016/j.jmps.2018.08.017 10.1093/nsr/nwx154 10.1016/j.ijnonlinmec.2007.09.007 10.1063/1.5011400 10.1016/j.ijmecsci.2013.12.013 10.1063/1.4974299 10.1016/j.jsv.2018.10.065 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compstruct.2020.111862 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1085 |
ExternalDocumentID | 10_1016_j_compstruct_2020_111862 S0263822319331459 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW SMS SSH WUQ |
ID | FETCH-LOGICAL-c318t-b9d8c392d7e420de665b9d68991605d7877dc93f975ad3a12c4477d3eeba76c23 |
IEDL.DBID | .~1 |
ISSN | 0263-8223 |
IngestDate | Tue Jul 01 03:53:32 EDT 2025 Thu Apr 24 23:03:33 EDT 2025 Fri Feb 23 02:49:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Quasi-zero stiffness Metamaterials Band gaps Local resonance Low frequency |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-b9d8c392d7e420de665b9d68991605d7877dc93f975ad3a12c4477d3eeba76c23 |
ParticipantIDs | crossref_primary_10_1016_j_compstruct_2020_111862 crossref_citationtrail_10_1016_j_compstruct_2020_111862 elsevier_sciencedirect_doi_10_1016_j_compstruct_2020_111862 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-15 |
PublicationDateYYYYMMDD | 2020-03-15 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Composite structures |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Sheng, Qin (b0105) 2016; 380 Howell, Spencer (b0180) 2013 Ma, Sheng, Guo, Qin (b0090) 2018; 424 Nadkarni, Arrieta, Chong, Kochmann, Daraio (b0135) 2016; 116 Liu, Zhang, Mao, Zhu, Yang, Chan (b0080) 2000; 289 Wang, Luo, Zhao, Huang (b0050) 2018; 112 Lazarov, Jensen (b0185) 2007; 42 Nadkarni, Daraio, Kochmann (b0025) 2014; 90 Wang, Zhou, Wang, Ouyang, Xu (b0170) 2019; 114 Holst, Teichert, Jensen (b0175) 2011; 133 Matlack, Bauhofer, Krödel, Palermo, Daraio (b0045) 2016; 201600171 Dai, Xia, Yu (b0065) 2017; 122 Raney, Nadkarni, Daraio, Kochmann, Lewis, Bertoldi (b0140) 2016; 113 Ge, Yang, Ma, Lu, Chen, Fang (b0015) 2018; 5 Virgin, Santillan, Plaut (b0095) 2008; 315 Zhou, Wang, Xu, Ouyang (b0165) 2017; 121 Zhou, Wang, Xu, Ouyang (b0075) 2017; 381 Morvaridi, Carta, Brun (b0030) 2018; 121 Xu, Barnhart, Li, Chen, Huang (b0060) 2018; 442 Hussein, Leamy, Ruzzene (b0010) 2014; 66 Qureshi, Li, Tan (b0085) 2016; 6 Pai, Peng, Jiang (b0055) 2014; 79 Ma, Sheng (b0020) 2016; 2 Yu, Liu, Wang, Zhao, Qiu (b0110) 2006; 100 Martínez-Sala, Sancho, Sánchez, Gómez, Llinares, Meseguer (b0005) 1995; 378 Zhang, Wei, Li (b0070) 2018 Wang, Zhang, Zhang, Hu (b0120) 2016; 28 Liu, Rumpler, Feng (b0035) 2018 Lee, Iizuka (b0040) 2019; 99 Goldsberry, Haberman (b0145) 2018; 123 Meaud, Che (b0130) 2017; 122–123 Zhou, Dou, Wang, Xu, Ouyang (b0160) 2019 Wang, Zhou, Xu, Ouyang (b0150) 2019; 124 Wang, Zhou, Cai, Xu, Ouyang (b0155) 2019; 73 Chen, Journal, Structures (b0100) 2013; 15 Zhong, Gu, Bao, Wang, Wu (b0115) 2019; 220 Pai (10.1016/j.compstruct.2020.111862_b0055) 2014; 79 Xu (10.1016/j.compstruct.2020.111862_b0060) 2018; 442 Liu (10.1016/j.compstruct.2020.111862_b0080) 2000; 289 Chen (10.1016/j.compstruct.2020.111862_b0100) 2013; 15 Zhong (10.1016/j.compstruct.2020.111862_b0115) 2019; 220 Holst (10.1016/j.compstruct.2020.111862_b0175) 2011; 133 Wang (10.1016/j.compstruct.2020.111862_b0105) 2016; 380 Goldsberry (10.1016/j.compstruct.2020.111862_b0145) 2018; 123 Meaud (10.1016/j.compstruct.2020.111862_b0130) 2017; 122–123 Ge (10.1016/j.compstruct.2020.111862_b0015) 2018; 5 Ma (10.1016/j.compstruct.2020.111862_b0090) 2018; 424 Virgin (10.1016/j.compstruct.2020.111862_b0095) 2008; 315 Matlack (10.1016/j.compstruct.2020.111862_b0045) 2016; 201600171 Nadkarni (10.1016/j.compstruct.2020.111862_b0025) 2014; 90 Zhang (10.1016/j.compstruct.2020.111862_b0070) 2018 Morvaridi (10.1016/j.compstruct.2020.111862_b0030) 2018; 121 Raney (10.1016/j.compstruct.2020.111862_b0140) 2016; 113 Dai (10.1016/j.compstruct.2020.111862_b0065) 2017; 122 Wang (10.1016/j.compstruct.2020.111862_b0050) 2018; 112 Lee (10.1016/j.compstruct.2020.111862_b0040) 2019; 99 Nadkarni (10.1016/j.compstruct.2020.111862_b0135) 2016; 116 Hussein (10.1016/j.compstruct.2020.111862_b0010) 2014; 66 Yu (10.1016/j.compstruct.2020.111862_b0110) 2006; 100 Zhou (10.1016/j.compstruct.2020.111862_b0075) 2017; 381 Wang (10.1016/j.compstruct.2020.111862_b0150) 2019; 124 Liu (10.1016/j.compstruct.2020.111862_b0035) 2018 Howell (10.1016/j.compstruct.2020.111862_b0180) 2013 Lazarov (10.1016/j.compstruct.2020.111862_b0185) 2007; 42 Zhou (10.1016/j.compstruct.2020.111862_b0165) 2017; 121 Zhou (10.1016/j.compstruct.2020.111862_b0160) 2019 Ma (10.1016/j.compstruct.2020.111862_b0020) 2016; 2 Martínez-Sala (10.1016/j.compstruct.2020.111862_b0005) 1995; 378 Wang (10.1016/j.compstruct.2020.111862_b0120) 2016; 28 Wang (10.1016/j.compstruct.2020.111862_b0155) 2019; 73 Wang (10.1016/j.compstruct.2020.111862_b0170) 2019; 114 Qureshi (10.1016/j.compstruct.2020.111862_b0085) 2016; 6 |
References_xml | – volume: 380 start-page: 525 year: 2016 end-page: 529 ident: b0105 article-title: Multi-flexural band gaps in an Euler-Bernoulli beam with lateral local resonators publication-title: Phys Lett Sect A Gen At Solid State Phys – volume: 116 start-page: 1 year: 2016 end-page: 5 ident: b0135 article-title: Unidirectional transition waves in bistable lattices publication-title: Phys Rev Lett – year: 2018 ident: b0035 article-title: Broadband locally resonant metamaterial sandwich plate for improved noise insulation in the coincidence region publication-title: Compos Struct – volume: 28 start-page: 9857 year: 2016 end-page: 9861 ident: b0120 article-title: Tunable digital metamaterial for broadband vibration isolation at low frequency publication-title: Adv Mater – volume: 124 start-page: 664 year: 2019 end-page: 678 ident: b0150 article-title: Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity publication-title: Mech Syst Signal Process – volume: 442 start-page: 237 year: 2018 end-page: 248 ident: b0060 article-title: Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators publication-title: J Sound Vib – volume: 6 start-page: 28314 year: 2016 ident: b0085 article-title: Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials publication-title: Sci Rep – year: 2013 ident: b0180 article-title: Handbook of Compliant Mechanisms – volume: 201600171 year: 2016 ident: b0045 article-title: Composite 3D-printed meta-structures for low frequency and broadband vibration absorption publication-title: Proc Natl Acad Sci – volume: 112 year: 2018 ident: b0050 article-title: Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials publication-title: Appl Phys Lett – volume: 122–123 start-page: 69 year: 2017 end-page: 80 ident: b0130 article-title: Tuning elastic wave propagation in multistable architected materials publication-title: Int J Solids Struct – volume: 90 start-page: 1 year: 2014 end-page: 13 ident: b0025 article-title: Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation publication-title: Phys Rev E - Stat Nonlinear, Soft Matter Phys – volume: 79 start-page: 195 year: 2014 end-page: 205 ident: b0055 article-title: Acoustic metamaterial beams based on multi-frequency vibration absorbers publication-title: Int J Mech Sci – volume: 42 start-page: 1186 year: 2007 end-page: 1193 ident: b0185 article-title: Low-frequency band gaps in chains with attached non-linear oscillators publication-title: Int J Non Linear Mech – volume: 289 start-page: 1734 year: 2000 end-page: 1736 ident: b0080 article-title: Locally resonant sonic materials publication-title: Science – volume: 315 start-page: 721 year: 2008 end-page: 731 ident: b0095 article-title: Vibration isolation using extreme geometric nonlinearity publication-title: J Sound Vib – volume: 2 year: 2016 ident: b0020 article-title: Acoustic metamaterials: from local resonances to broad horizons publication-title: Sci Adv – year: 2018 ident: b0070 article-title: The elastic wave propagation through the finite and infinite periodic laminated structure of micropolar elasticity publication-title: Compos Struct – volume: 100 year: 2006 ident: b0110 article-title: Flexural vibration band gaps in Timoshenko beams with locally resonant structures publication-title: J Appl Phys – year: 2019 ident: b0160 article-title: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams publication-title: Nonlinear Dyn – volume: 122 year: 2017 ident: b0065 article-title: Dirac cones in two-dimensional acoustic metamaterials publication-title: J Appl Phys – volume: 133 year: 2011 ident: b0175 article-title: Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms publication-title: J Mech Des – volume: 5 start-page: 159 year: 2018 end-page: 182 ident: b0015 article-title: Breaking the barriers: advances in acoustic functional materials publication-title: Natl Sci Rev – volume: 121 start-page: 496 year: 2018 end-page: 516 ident: b0030 article-title: Platonic crystal with low-frequency locally-resonant spiral structures: wave trapping, transmission amplification, shielding and edge waves publication-title: J Mech Phys Solids – volume: 99 year: 2019 ident: b0040 article-title: Bragg scattering based acoustic topological transition controlled by local resonance publication-title: Phys Rev B – volume: 424 start-page: 94 year: 2018 end-page: 111 ident: b0090 article-title: Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators publication-title: J Sound Vib – volume: 123 year: 2018 ident: b0145 article-title: Negative stiffness honeycombs as tunable elastic metamaterials publication-title: J Appl Phys – volume: 73 start-page: 581 year: 2019 end-page: 597 ident: b0155 article-title: Mathematical modeling and analysis of a meta-plate for very low-frequency band gap publication-title: Appl Math Model – volume: 220 start-page: 1 year: 2019 end-page: 10 ident: b0115 article-title: 2D underwater acoustic metamaterials incorporating a combination of particle-filled polyurethane and spiral-based local resonance mechanisms publication-title: Compos Struct – volume: 15 start-page: 359 year: 2013 end-page: 374 ident: b0100 article-title: Wave propagation in sandwich structures with resonators and periodic cores publication-title: J Sandw Struct Mater – volume: 114 year: 2019 ident: b0170 article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: design and experimental validation publication-title: Appl Phys Lett – volume: 378 year: 1995 ident: b0005 article-title: Sound attenuation by sculpture publication-title: Nature – volume: 66 year: 2014 ident: b0010 article-title: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook publication-title: Appl Mech Rev – volume: 113 start-page: 9722 year: 2016 end-page: 9727 ident: b0140 article-title: Stable propagation of mechanical signals in soft media using stored elastic energy publication-title: Proc Natl Acad Sci – volume: 121 year: 2017 ident: b0165 article-title: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams publication-title: J Appl Phys – volume: 381 start-page: 3141 year: 2017 end-page: 3148 ident: b0075 article-title: Multi-low-frequency flexural wave attenuation in Euler-Bernoulli beams using local resonators containing negative-stiffness mechanisms publication-title: Phys Lett Sect A Gen At Solid State Phys – volume: 15 start-page: 359 issue: 3 year: 2013 ident: 10.1016/j.compstruct.2020.111862_b0100 article-title: Wave propagation in sandwich structures with resonators and periodic cores publication-title: J Sandw Struct Mater doi: 10.1177/1099636212468738 – year: 2013 ident: 10.1016/j.compstruct.2020.111862_b0180 – volume: 122–123 start-page: 69 year: 2017 ident: 10.1016/j.compstruct.2020.111862_b0130 article-title: Tuning elastic wave propagation in multistable architected materials publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2017.05.042 – volume: 114 year: 2019 ident: 10.1016/j.compstruct.2020.111862_b0170 article-title: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: design and experimental validation publication-title: Appl Phys Lett doi: 10.1063/1.5099425 – year: 2018 ident: 10.1016/j.compstruct.2020.111862_b0070 article-title: The elastic wave propagation through the finite and infinite periodic laminated structure of micropolar elasticity publication-title: Compos Struct – volume: 100 issue: 12 year: 2006 ident: 10.1016/j.compstruct.2020.111862_b0110 article-title: Flexural vibration band gaps in Timoshenko beams with locally resonant structures publication-title: J Appl Phys doi: 10.1063/1.2400803 – volume: 378 issue: 6554 year: 1995 ident: 10.1016/j.compstruct.2020.111862_b0005 article-title: Sound attenuation by sculpture publication-title: Nature doi: 10.1038/378241a0 – volume: 315 start-page: 721 issue: 3 year: 2008 ident: 10.1016/j.compstruct.2020.111862_b0095 article-title: Vibration isolation using extreme geometric nonlinearity publication-title: J Sound Vib doi: 10.1016/j.jsv.2007.12.025 – volume: 124 start-page: 664 year: 2019 ident: 10.1016/j.compstruct.2020.111862_b0150 article-title: Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.02.008 – volume: 424 start-page: 94 year: 2018 ident: 10.1016/j.compstruct.2020.111862_b0090 article-title: Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.03.002 – volume: 289 start-page: 1734 issue: 5485 year: 2000 ident: 10.1016/j.compstruct.2020.111862_b0080 article-title: Locally resonant sonic materials publication-title: Science doi: 10.1126/science.289.5485.1734 – volume: 73 start-page: 581 year: 2019 ident: 10.1016/j.compstruct.2020.111862_b0155 article-title: Mathematical modeling and analysis of a meta-plate for very low-frequency band gap publication-title: Appl Math Model doi: 10.1016/j.apm.2019.04.033 – volume: 112 issue: 2 year: 2018 ident: 10.1016/j.compstruct.2020.111862_b0050 article-title: Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials publication-title: Appl Phys Lett doi: 10.1063/1.5018180 – volume: 6 start-page: 28314 year: 2016 ident: 10.1016/j.compstruct.2020.111862_b0085 article-title: Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials publication-title: Sci Rep doi: 10.1038/srep28314 – volume: 90 start-page: 1 issue: 2 year: 2014 ident: 10.1016/j.compstruct.2020.111862_b0025 article-title: Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation publication-title: Phys Rev E - Stat Nonlinear, Soft Matter Phys doi: 10.1103/PhysRevE.90.023204 – volume: 113 start-page: 9722 issue: 35 year: 2016 ident: 10.1016/j.compstruct.2020.111862_b0140 article-title: Stable propagation of mechanical signals in soft media using stored elastic energy publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1604838113 – year: 2019 ident: 10.1016/j.compstruct.2020.111862_b0160 article-title: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams publication-title: Nonlinear Dyn – volume: 201600171 year: 2016 ident: 10.1016/j.compstruct.2020.111862_b0045 article-title: Composite 3D-printed meta-structures for low frequency and broadband vibration absorption publication-title: Proc Natl Acad Sci – volume: 380 start-page: 525 issue: 4 year: 2016 ident: 10.1016/j.compstruct.2020.111862_b0105 article-title: Multi-flexural band gaps in an Euler-Bernoulli beam with lateral local resonators publication-title: Phys Lett Sect A Gen At Solid State Phys – volume: 28 start-page: 9857 issue: 44 year: 2016 ident: 10.1016/j.compstruct.2020.111862_b0120 article-title: Tunable digital metamaterial for broadband vibration isolation at low frequency publication-title: Adv Mater doi: 10.1002/adma.201604009 – volume: 133 issue: 5 year: 2011 ident: 10.1016/j.compstruct.2020.111862_b0175 article-title: Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms publication-title: J Mech Des doi: 10.1115/1.4003922 – volume: 220 start-page: 1 year: 2019 ident: 10.1016/j.compstruct.2020.111862_b0115 article-title: 2D underwater acoustic metamaterials incorporating a combination of particle-filled polyurethane and spiral-based local resonance mechanisms publication-title: Compos Struct doi: 10.1016/j.compstruct.2019.03.091 – volume: 122 issue: 6 year: 2017 ident: 10.1016/j.compstruct.2020.111862_b0065 article-title: Dirac cones in two-dimensional acoustic metamaterials publication-title: J Appl Phys doi: 10.1063/1.4998438 – volume: 116 start-page: 1 issue: 24 year: 2016 ident: 10.1016/j.compstruct.2020.111862_b0135 article-title: Unidirectional transition waves in bistable lattices publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.116.244501 – year: 2018 ident: 10.1016/j.compstruct.2020.111862_b0035 article-title: Broadband locally resonant metamaterial sandwich plate for improved noise insulation in the coincidence region publication-title: Compos Struct – volume: 2 issue: 2 year: 2016 ident: 10.1016/j.compstruct.2020.111862_b0020 article-title: Acoustic metamaterials: from local resonances to broad horizons publication-title: Sci Adv doi: 10.1126/sciadv.1501595 – volume: 66 issue: 4 year: 2014 ident: 10.1016/j.compstruct.2020.111862_b0010 article-title: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook publication-title: Appl Mech Rev doi: 10.1115/1.4026911 – volume: 99 issue: 6 year: 2019 ident: 10.1016/j.compstruct.2020.111862_b0040 article-title: Bragg scattering based acoustic topological transition controlled by local resonance publication-title: Phys Rev B doi: 10.1103/PhysRevB.99.064305 – volume: 121 start-page: 496 year: 2018 ident: 10.1016/j.compstruct.2020.111862_b0030 article-title: Platonic crystal with low-frequency locally-resonant spiral structures: wave trapping, transmission amplification, shielding and edge waves publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2018.08.017 – volume: 5 start-page: 159 issue: 2 year: 2018 ident: 10.1016/j.compstruct.2020.111862_b0015 article-title: Breaking the barriers: advances in acoustic functional materials publication-title: Natl Sci Rev doi: 10.1093/nsr/nwx154 – volume: 381 start-page: 3141 issue: 37 year: 2017 ident: 10.1016/j.compstruct.2020.111862_b0075 article-title: Multi-low-frequency flexural wave attenuation in Euler-Bernoulli beams using local resonators containing negative-stiffness mechanisms publication-title: Phys Lett Sect A Gen At Solid State Phys – volume: 42 start-page: 1186 issue: 10 year: 2007 ident: 10.1016/j.compstruct.2020.111862_b0185 article-title: Low-frequency band gaps in chains with attached non-linear oscillators publication-title: Int J Non Linear Mech doi: 10.1016/j.ijnonlinmec.2007.09.007 – volume: 123 issue: 9 year: 2018 ident: 10.1016/j.compstruct.2020.111862_b0145 article-title: Negative stiffness honeycombs as tunable elastic metamaterials publication-title: J Appl Phys doi: 10.1063/1.5011400 – volume: 79 start-page: 195 issue: 1 year: 2014 ident: 10.1016/j.compstruct.2020.111862_b0055 article-title: Acoustic metamaterial beams based on multi-frequency vibration absorbers publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2013.12.013 – volume: 121 issue: 4 year: 2017 ident: 10.1016/j.compstruct.2020.111862_b0165 article-title: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams publication-title: J Appl Phys doi: 10.1063/1.4974299 – volume: 442 start-page: 237 year: 2018 ident: 10.1016/j.compstruct.2020.111862_b0060 article-title: Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.10.065 |
SSID | ssj0008411 |
Score | 2.6543412 |
Snippet | A novel one-dimensional quasi-zero-stiffness (QZS) metamaterial is proposed to acquire very low-frequency band gaps. The representative unit cell (RUC) of the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111862 |
SubjectTerms | Band gaps Local resonance Low frequency Metamaterials Quasi-zero stiffness |
Title | Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps |
URI | https://dx.doi.org/10.1016/j.compstruct.2020.111862 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GDl4jetHmrR4GtMxFXfRwW4lbRKZzHbuA5kH_3ZfmtZNEBQ8NuSV8vLLe7_QX95D6FxRL1FMKaJ1mhLI-IJEArAsA66jiAsuij5k933WG9DbYTCsoU51F8bIKsvYb2N6Ea3LkVbpzdZkNGo9wOnBh_QGGPJ9lwbmEh-l3KD84mMl8whp0YPXTCZmdqnmsRovI9u2dVrhpOgV8SNk3s8pai3tdHfQdskXcdt-0i6qqWwPba1VEdxH-qpQYWCRSZwt7B-YMQYEjWy_JJxr_LoQsxF5V9OcwJ7W2gQ4_KLmAgirxSAG9ooB10s8zt-InlqJ9RIn5rVPYjI7QIPu9WOnR8r2CSSFjTonSSTDFOiP5LAgjlSMBTDEQsMInUDCTuUyjXwd8UBIX7heCu7j0lcqEZylnn-I6lmeqSOEE48B8wAypjmlOvJDRzkSqISpcexGNGkgXnksTsva4qbFxTiuRGTP8crXsfF1bH3dQO6X5cTW1_iDzWW1KPE3rMSQBn61Pv6X9QnaNE9GheYGp6gOE9QZ0JJ50ixw10Qb7Zu7Xv8TInzlaQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BewAOiFWU1QeuVpvEiWNxqljUAu2FVuotcmIbFZW0lCJUvp5xnLJISCBxdTxRNH6eeVaeZwBONfNTHWlNjckyihlfUiERyyrkRgguuSz6kHW6UavPrgfhYAnOF3dhrKyyjP0uphfRuhypl96sT4bD-h2eHgJMb4ihIPBYKJahaqtThRWoNts3re5HQI5Z0YbXzqfWoBT0OJmXVW67Uq14WPSLEBJH_s9Z6kvmudqA9ZIykqb7qk1Y0vkWrH0pJLgN5qIQYhCZK5K_uJ8wI4IgGrqWSWRsyNOLfB7SNz0dU9zWxtgYRx71TCJndTAkSGAJQntORuNXaqZOZT0nqX3tvZw870D_6rJ33qJlBwWa4V6d0VSoOEMGpDiuSUPpKApxKIotKWyECjcrV5kIjOChVIH0_IwxHAq0TiWPMj_YhUo-zvUekNSPkHwgHzOcMSOCuKEbCtmELXPsCZbWgC88lmRleXHb5WKULHRkD8mnrxPr68T5ugbeh-XEldj4g83ZYlGSb3BJMBP8ar3_L-sTWGn1OrfJbbt7cwCr9okVpXnhIVRwsj5CljJLj0sUvgP_4uga |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+numerical+validation+of+quasi-zero-stiffness+metamaterials+for+very+low-frequency+band+gaps&rft.jtitle=Composite+structures&rft.au=Cai%2C+Changqi&rft.au=Zhou%2C+Jiaxi&rft.au=Wu%2C+Linchao&rft.au=Wang%2C+Kai&rft.date=2020-03-15&rft.pub=Elsevier+Ltd&rft.issn=0263-8223&rft.eissn=1879-1085&rft.volume=236&rft_id=info:doi/10.1016%2Fj.compstruct.2020.111862&rft.externalDocID=S0263822319331459 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon |