Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids: a study using the Hermite wavelet method
A distinguished category of operational fluids, known as hybrid nanofluids, occupies a prominent role among various fluid types owing to its superior heat transfer properties. By employing a dovetail fin profile, this work investigates the thermal reaction of a dynamic fin system to a hybrid nanoflu...
Saved in:
Published in | Applied mathematics and mechanics Vol. 46; no. 2; pp. 357 - 372 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2025
Springer Nature B.V |
Edition | English ed. |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A distinguished category of operational fluids, known as hybrid nanofluids, occupies a prominent role among various fluid types owing to its superior heat transfer properties. By employing a dovetail fin profile, this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties, flowing uniformly at a velocity
U
. The analysis focuses on four distinct types of nanoparticles, i.e., Al
2
O
3
, Ag, carbon nanotube (CNT), and graphene. Specifically, two of these particles exhibit a spherical shape, one possesses a cylindrical form, and the final type adopts a platelet morphology. The investigation delves into the pairing of these nanoparticles. The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid. The fin design, under the specified circumstances, gives rise to the derivation of a differential equation. The given equation is then transformed into a dimensionless form. Notably, the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features. To validate the credibility of this research, the results obtained in this study are systematically compared with the numerical simulations. The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes. |
---|---|
AbstractList | A distinguished category of operational fluids, known as hybrid nanofluids, occupies a prominent role among various fluid types owing to its superior heat transfer properties. By employing a dovetail fin profile, this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties, flowing uniformly at a velocity U. The analysis focuses on four distinct types of nanoparticles, i.e., Al2O3, Ag, carbon nanotube (CNT), and graphene. Specifically, two of these particles exhibit a spherical shape, one possesses a cylindrical form, and the final type adopts a platelet morphology. The investigation delves into the pairing of these nanoparticles. The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid. The fin design, under the specified circumstances, gives rise to the derivation of a differential equation. The given equation is then transformed into a dimensionless form. Notably, the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features. To validate the credibility of this research, the results obtained in this study are systematically compared with the numerical simulations. The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes. A distinguished category of operational fluids, known as hybrid nanofluids, occupies a prominent role among various fluid types owing to its superior heat transfer properties. By employing a dovetail fin profile, this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties, flowing uniformly at a velocity U . The analysis focuses on four distinct types of nanoparticles, i.e., Al 2 O 3 , Ag, carbon nanotube (CNT), and graphene. Specifically, two of these particles exhibit a spherical shape, one possesses a cylindrical form, and the final type adopts a platelet morphology. The investigation delves into the pairing of these nanoparticles. The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid. The fin design, under the specified circumstances, gives rise to the derivation of a differential equation. The given equation is then transformed into a dimensionless form. Notably, the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features. To validate the credibility of this research, the results obtained in this study are systematically compared with the numerical simulations. The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes. |
Author | Pavithra, C. G. Gowtham, K. J. Sushma, S. Gireesha, B. J. |
Author_xml | – sequence: 1 givenname: C. G. surname: Pavithra fullname: Pavithra, C. G. organization: Department of PG Studies and Research in Mathematics, Kuvempu University – sequence: 2 givenname: B. J. surname: Gireesha fullname: Gireesha, B. J. email: bjgireesu@gmail.com organization: Department of PG Studies and Research in Mathematics, Kuvempu University – sequence: 3 givenname: S. surname: Sushma fullname: Sushma, S. organization: Department of PG Studies and Research in Mathematics, Kuvempu University – sequence: 4 givenname: K. J. surname: Gowtham fullname: Gowtham, K. J. organization: Department of PG Studies and Research in Mathematics, Kuvempu University |
BookMark | eNp9kU2LFDEQhoOs4OzqD_BW4Dmar550vC2L7goLXvTcpJPq6Sw9yZikZ5kf4381wwiCoKcqqHrq432vyVVMEQl5y9l7zpj-UDhTvaRMdFQK3lPzgmx4pyUVulNXZNMKkqpe6FfkupQnxpjSSm3Iz9tol1MJBdIELsUjuhqOSLP1wZ4zmNFWqNnGMmGGEMGnI1YbFlhS3IW6-tBGwBRigedQZyizPSD1eMDoMVaYT2MOHqKNaVrW4MtHsFAad4K1hLiDOiM8YN6HivBsj7hghT3WOfnX5OVkl4Jvfscb8v3zp293D_Tx6_2Xu9tH6iTvKx2ZN6iNc1b0204ztFo3FZjsum5SZst65Y10xkhlR5RaCKfG0ciO90pvRydvyLvL3ENOP1YsdXhKa25vlUHyLe-NELJvXfzS5XIqJeM0HHLY23waOBvOLgwXF4Ym9nB2YTCN0X8xLtQmbIpN0rD8lxQXsrQtcYf5z03_hn4BZ1mgtg |
CitedBy_id | crossref_primary_10_1016_j_jrras_2025_101437 |
Cites_doi | 10.1016/j.icheatmasstransfer.2022.106341 10.1016/j.molliq.2023.123582 10.1038/s41598-022-25127-z 10.1016/j.ijheatmasstransfer.2017.08.091 10.1016/j.tsep.2024.102463 10.1016/j.ijft.2021.100066 10.1016/j.applthermaleng.2015.05.084 10.1142/S0218348X23400327 10.1108/HFF-06-2015-0230 10.1080/01430750.2020.1818619 10.1016/j.icheatmasstransfer.2010.12.024 10.1002/htj.20408 10.1016/j.heliyon.2023.e14875 10.1088/1402-4896/ac1e5d 10.1142/S0217984924503330 10.1016/j.icheatmasstransfer.2012.07.007 10.17512/jamcm.2015.4.06 10.1016/j.enconman.2014.09.016 10.1002/htj.22242 10.1115/1.1399680 10.1007/s11242-006-0010-3 10.1016/j.sna.2024.115626 |
ContentType | Journal Article |
Copyright | Shanghai University 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Shanghai University 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10483-025-3218-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-2754 |
Edition | English ed. |
EndPage | 372 |
ExternalDocumentID | 10_1007_s10483_025_3218_9 |
GroupedDBID | -01 -0A -52 -5D -5G -BR -EM -SA -S~ -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 1SB 2.D 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 67Z 6NX 8RM 8TC 8UJ 92E 92I 92M 92Q 93N 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LAK LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P9R PF0 PT4 PT5 Q-- Q-0 QOK QOS R-A R89 R9I REI RHV RNI ROL RPX RSV RT1 RZC RZE RZK S.. S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T8Q TCJ TEORI TGP TSG TSK TSV TUC TUS U1F U1G U2A U5A U5K UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W ZMTXR ZWQNP ~8M ~A9 ~L9 ~LB AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c318t-b0d9e79cca286570ea7732103555f496084d93c9934abe3722c4bb93518476bc3 |
IEDL.DBID | U2A |
ISSN | 0253-4827 |
IngestDate | Fri Jul 25 09:48:19 EDT 2025 Tue Jul 01 02:11:09 EDT 2025 Thu Apr 24 23:04:42 EDT 2025 Fri Feb 21 02:36:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | convection O351.2 76A02 radiation nanoparticle configuration 42C40 Hermite wavelet method dovetail fin |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-b0d9e79cca286570ea7732103555f496084d93c9934abe3722c4bb93518476bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3161892238 |
PQPubID | 2043692 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3161892238 crossref_primary_10_1007_s10483_025_3218_9 crossref_citationtrail_10_1007_s10483_025_3218_9 springer_journals_10_1007_s10483_025_3218_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationSubtitle | English Edition |
PublicationTitle | Applied mathematics and mechanics |
PublicationTitleAbbrev | Appl. Math. Mech.-Engl. Ed |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | A D Kraus (3218_CR1) 2001; 54 R S R Gorla (3218_CR3) 2011; 38 M Torabi (3218_CR6) 2012; 39 D Bhanja (3218_CR10) 2014; 88 N S Akbar (3218_CR9) 2024; 49 M Turkyilmazoglu (3218_CR11) 2018; 116 Amanullah (3218_CR20) 2023; 31 A Aziz (3218_CR4) 2012; 41 N S Akbar (3218_CR13) 2024; 376 S C Shiralashetti (3218_CR18) 2019; 7 C G Pavithra (3218_CR23) 2024; 393 S Kiwan (3218_CR2) 2007; 67 M L Keerthi (3218_CR14) 2022; 138 M T Darvishi (3218_CR7) 2016; 26 M Fallah-Najafabadi (3218_CR12) 2021; 50 H A Hoshyar (3218_CR24) 2015; 14 S A Atouei (3218_CR5) 2015; 89 B J Gireesha (3218_CR8) 2022; 43 S C Shiralashetti (3218_CR19) 2017; 6 M Arif (3218_CR22) 2023; 13 M Ramzan (3218_CR15) 2023; 9 S Kumbinarasaiah (3218_CR17) 2021; 9 B J Gireesha (3218_CR21) 2021; 96 N S Akbar (3218_CR16) 2024; 38 |
References_xml | – volume: 138 start-page: 106341 year: 2022 ident: 3218_CR14 publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2022.106341 – volume: 393 start-page: 123582 year: 2024 ident: 3218_CR23 publication-title: Journal of Molecular Liquids doi: 10.1016/j.molliq.2023.123582 – volume: 13 start-page: 4596 issue: 1 year: 2023 ident: 3218_CR22 publication-title: Scientific Reports doi: 10.1038/s41598-022-25127-z – volume: 116 start-page: 346 year: 2018 ident: 3218_CR11 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.08.091 – volume: 49 start-page: 102463 year: 2024 ident: 3218_CR9 publication-title: Thermal Science and Engineering Progress doi: 10.1016/j.tsep.2024.102463 – volume: 9 start-page: 100066 year: 2021 ident: 3218_CR17 publication-title: International Journal of Thermofluids doi: 10.1016/j.ijft.2021.100066 – volume: 89 start-page: 299 year: 2015 ident: 3218_CR5 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2015.05.084 – volume: 31 start-page: 2340032 issue: 2 year: 2023 ident: 3218_CR20 publication-title: Fractals doi: 10.1142/S0218348X23400327 – volume: 26 start-page: 2419 issue: 8 year: 2016 ident: 3218_CR7 publication-title: International Journal of Numerical Methods for Heat and Fluid Flow doi: 10.1108/HFF-06-2015-0230 – volume: 43 start-page: 3189 issue: 1 year: 2022 ident: 3218_CR8 publication-title: International Journal of Ambient Energy doi: 10.1080/01430750.2020.1818619 – volume: 38 start-page: 638 issue: 5 year: 2011 ident: 3218_CR3 publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.12.024 – volume: 41 start-page: 99 issue: 2 year: 2012 ident: 3218_CR4 publication-title: Heat Transfer-Asian Research doi: 10.1002/htj.20408 – volume: 9 start-page: e14875 issue: 4 year: 2023 ident: 3218_CR15 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e14875 – volume: 96 start-page: 125209 issue: 12 year: 2021 ident: 3218_CR21 publication-title: Physica Scripta doi: 10.1088/1402-4896/ac1e5d – volume: 38 start-page: 2450333 year: 2024 ident: 3218_CR16 publication-title: Modern Physics Letters B doi: 10.1142/S0217984924503330 – volume: 39 start-page: 1018 issue: 8 year: 2012 ident: 3218_CR6 publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2012.07.007 – volume: 14 start-page: 53 issue: 4 year: 2015 ident: 3218_CR24 publication-title: Journal of Applied Mathematics and Computational Mechanics doi: 10.17512/jamcm.2015.4.06 – volume: 88 start-page: 842 year: 2014 ident: 3218_CR10 publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2014.09.016 – volume: 50 start-page: 7553 issue: 8 year: 2021 ident: 3218_CR12 publication-title: Heat Transfer doi: 10.1002/htj.22242 – volume: 7 start-page: 177 issue: 2 year: 2019 ident: 3218_CR18 publication-title: Computational Methods for Differential Equations – volume: 6 start-page: 71 issue: 8 year: 2017 ident: 3218_CR19 publication-title: International Journal of Engineering, Science and Mathematics – volume: 54 start-page: B92 issue: 5 year: 2001 ident: 3218_CR1 publication-title: Applied Mechanics Reviews doi: 10.1115/1.1399680 – volume: 67 start-page: 17 year: 2007 ident: 3218_CR2 publication-title: Transport in Porous Media doi: 10.1007/s11242-006-0010-3 – volume: 376 start-page: 115626 year: 2024 ident: 3218_CR13 publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2024.115626 |
SSID | ssj0004744 |
Score | 2.4329462 |
Snippet | A distinguished category of operational fluids, known as hybrid nanofluids, occupies a prominent role among various fluid types owing to its superior heat... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 357 |
SubjectTerms | Aluminum oxide Applications of Mathematics Carbon nanotubes Classical Mechanics Differential equations Fins Fluid- and Aerodynamics Graphene Heat flux Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nanofluids Nanoparticles Partial Differential Equations Radiative heat transfer Wavelet analysis |
Title | Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids: a study using the Hermite wavelet method |
URI | https://link.springer.com/article/10.1007/s10483-025-3218-9 https://www.proquest.com/docview/3161892238 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swEBZd-rI9jK7tWLq03MOeOgSJJUfW3kJJGja6pwa6JyNb0hoIdomdlv2Y_dfdKXbclm6wN4NlYfxJujvf3fcx9snFVmG0M-IZWlcurfdcq8jwiMizhEusCsTzV9_H84X8ehPfNH3cVVvt3qYkw0n9qNlNJpRzjLlAu8T1K7YfY-hOdVyLaNI1Q6qg4IrjBCeOyzaV-dIUT41R52E-S4oGWzM7YG8bJxEmW1TfsT1XHLI3VzuG1eqI_W7ZRKD0EErHw8HF18Q1QFdApyzUwS91a1gWYMv7UC8Kq5JEijaWBLHAL4sK6G8sVLfmzvFWFbeG21_UzQWFKUq_2ixt9QUMBDpaoGr5n4CvA3MqpqkdPBhSsKhhq0h9zBaz6fXFnDdSCzzHTV0jUlY7pRFO6lRVQ2eUou4e9EZiLzHKSaTVIkdnRprMCRVFucwyLWIMENU4y8V71ivKwn1gQCGITsQoE0Mr0d0wxjhhx3HklZW59302bL95mjc85CSHsUo7BmWCKUWYUoIp1X12vnvkbkvC8a_BgxbItNmPVSpIF0CjK5T02ecW3O72Xyc7-a_RH9nriBZXKOoesF693rhT9Fnq7IztTy5_fJuehbX6B5HJ5fI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiE-xtMAc4AKytLWTdYzEoQKqLe321JV6C05styutkmqTpeqP6Yk_yow36QICJA69RUpijTJjz0xm5j2A1z51mrKdHVGQdxWJC0EYLa2QDJ6lfOZ0BJ6fHI3G0-TLSXqyAd_7WZjY7d6XJONJ_dOwW5JxzTEVivySMF0n5YG_vKA8rfmw_4mU-kbKvc_HH8eioxIQJRltS5I447UhcXkSUw-91ZqnV8jbpiGhKD5LnFElOevEFl5pKcukKIxKKQHSo6JUtO4tuE2xR8ZbZyp318OXOjLGklxKMKZmXzr9k8i_Or91RPtbETb6tr0HcL8LSnF3ZUUPYcNXj-De5BrRtXkMVz16CdYBY6t6PCjFgrEN-Ar5VMc2xsF-gbMKXf0t9qfivGZSpKVjAi4Ms6pB_vuLzZk996Jn4W3x7JKnx7CyVR3my5lr3qPFCH-L3J1_iiQOjrl5p_V4YZkxo8UVA_YTmN6IPp7CZlVX_hkgpzwmUzuFGrqEwhtrrVdulMqgXVKGMIBh_83zssM9Z_qNeb5GbGY15aSmnNWUmwG8vX7lfAX68a-Ht3tF5t3-b3LFPASGQq9sAO965a5v_3Wx5__19Cu4Mz6eHOaH-0cHW3BXsqHFhvJt2GwXS_-C4qW2eBntFeHrTW-QH3iBH3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkRA9VPyqS1uYA1xAVre2s46Reqgoqy2lFQdW6i04sd2utEpWmyxVH4Zn4BWZ8SZdQIDEobdISaxRZuyZycx8H2MvfeI0Zjv7PEfvypULgRstLBcEniV96nQEnj89G4zG6sN5cr7GvnezMLHbvStJLmcaCKWpbPZmLuz9NPimUqo_Jlyij-Km7ao88ddXmLPVB8dHqOBXQgzff3434i2tAC_QgBuUyhmvDYpOU5m6763WNMmCnjcJCiP6VDkjC3TcyuZeaiEKledGJpgM6UFeSFz3DruraPgYN9BYHK4GMXVkj0W5JCd8za6M-ieRf3WEq-j2t4Js9HPDB2yzDVDhcGlRD9maLx-xjdMbdNf6MfvWIZlAFSC2rcdDk88J54CugE54aGJM7OcwKcFVX2OvKkwrIkhaOCLjgjApa6A_wVBf2pnnHSNvA5fXNEkGpS2rMF1MXP0WLEQoXKBO_QtAcWBEjTyNhytL7BkNLNmwn7DxrejjKVsvq9JvMaD0x6RyP5d9pzDUsdZ66QaJCNqpIoQe63ffPCtaDHSi4phmK_RmUlOGaspITZnpsdc3r8yWACD_eninU2TWngV1JomTwGAYlvbYm065q9t_XezZfz39gt37dDTMPh6fnWyz-4LsLPaW77D1Zr7wuxg6NfnzaK7Avtz2_vgBLpojqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+convective-radiative+heat+transfer+in+dovetail+longitudinal+fins+with+shape-dependent+hybrid+nanofluids%3A+a+study+using+the+Hermite+wavelet+method&rft.jtitle=Applied+mathematics+and+mechanics&rft.au=Pavithra%2C+C.+G.&rft.au=Gireesha%2C+B.+J.&rft.au=Sushma%2C+S.&rft.au=Gowtham%2C+K.+J.&rft.date=2025-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0253-4827&rft.eissn=1573-2754&rft.volume=46&rft.issue=2&rft.spage=357&rft.epage=372&rft_id=info:doi/10.1007%2Fs10483-025-3218-9&rft.externalDocID=10_1007_s10483_025_3218_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-4827&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-4827&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-4827&client=summon |