Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints
In this brief, we develop a novel iterative learning control (ILC) algorithm to deal with trajectory tracking problems for a class of unicycle-type mobile robots with two actuated wheels that are subject to actuator faults. Unlike most of the ILC literature that requires identical reference trajecto...
Saved in:
Published in | Automatica (Oxford) Vol. 94; pp. 63 - 71 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this brief, we develop a novel iterative learning control (ILC) algorithm to deal with trajectory tracking problems for a class of unicycle-type mobile robots with two actuated wheels that are subject to actuator faults. Unlike most of the ILC literature that requires identical reference trajectories over the iteration domain, the desired trajectories in this work can be iteration dependent, and the initial position of the robot in each iteration can also be random. The mass and inertia property of the robot and wheels can be unknown and iteration dependent. Barrier Lyapunov functions are used in the analysis to guarantee satisfaction of constraint requirements, feasibility of the controller, and prescribed tracking performance. We show that under the proposed algorithm, the distance and angle tracking errors can uniformly converge to an arbitrarily small positive constant and zero, respectively, over the iteration domain, beyond a small initial time interval in each iteration. A numerical simulation is presented in the end to demonstrate the efficacy of the proposed algorithm. |
---|---|
AbstractList | In this brief, we develop a novel iterative learning control (ILC) algorithm to deal with trajectory tracking problems for a class of unicycle-type mobile robots with two actuated wheels that are subject to actuator faults. Unlike most of the ILC literature that requires identical reference trajectories over the iteration domain, the desired trajectories in this work can be iteration dependent, and the initial position of the robot in each iteration can also be random. The mass and inertia property of the robot and wheels can be unknown and iteration dependent. Barrier Lyapunov functions are used in the analysis to guarantee satisfaction of constraint requirements, feasibility of the controller, and prescribed tracking performance. We show that under the proposed algorithm, the distance and angle tracking errors can uniformly converge to an arbitrarily small positive constant and zero, respectively, over the iteration domain, beyond a small initial time interval in each iteration. A numerical simulation is presented in the end to demonstrate the efficacy of the proposed algorithm. |
Author | Jin, Xu |
Author_xml | – sequence: 1 givenname: Xu surname: Jin fullname: Jin, Xu email: xu.jin@gatech.edu organization: The Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Drive, Atlanta, GA, 30332-0150, United States |
BookMark | eNqNkF1LwzAUhoNMcFP_Q_5Aa5J-pTeCDqfCwBu9Dml6qqldM5Kzyf69qRMEb_Tq5HB4H_I-CzIb3QiEUM5Sznh51ad6h26j0RqdCsZlyvKUcX5C5lxWWSJkVs7InDFWJJzV8owsQujjmnMp5mS_0rsBE3QDeD0itRgn2j3QAbQf7fhKjRvRu4F2ztONa-wA1LvGYaDxK4mHLaD9SqDXPRh0_jA9zfsU_rD4Rt0OtzucQCEe7Ijhgpx2eghw-T3Pycvq7nn5kKyf7h-XN-vEZFxiUndtnlVQlF1eSSFYxfMqN0XOeFPyVsqCCyir1pRtK6DRwjS1rnVbGRm3TEJ2Tq6PXONdCB46ZSzGflMlbQfFmZosql79WFSTRcVyFS1GgPwF2Hq70f7wn-jtMQqx4N6CV8FYGA201kdNqnX2b8gnsmWadg |
CitedBy_id | crossref_primary_10_1016_j_neucom_2020_03_021 crossref_primary_10_1016_j_automatica_2023_111304 crossref_primary_10_1109_TSMC_2019_2911269 crossref_primary_10_1109_TII_2019_2945004 crossref_primary_10_1155_2021_3351074 crossref_primary_10_1016_j_ast_2021_107055 crossref_primary_10_1109_TASE_2024_3374242 crossref_primary_10_1109_TCYB_2020_2966625 crossref_primary_10_1155_2020_4048507 crossref_primary_10_1109_TASE_2023_3314315 crossref_primary_10_1109_ACCESS_2020_3025575 crossref_primary_10_1109_TCST_2019_2928505 crossref_primary_10_1002_rnc_7281 crossref_primary_10_1155_2021_4281006 crossref_primary_10_1016_j_mechatronics_2019_02_005 crossref_primary_10_1109_TCYB_2021_3086091 crossref_primary_10_1016_j_apm_2021_03_049 crossref_primary_10_1016_j_ifacol_2021_08_449 crossref_primary_10_1080_00207721_2024_2435589 crossref_primary_10_1109_TITS_2024_3484395 crossref_primary_10_1016_j_jai_2024_12_002 crossref_primary_10_1016_j_isatra_2021_03_006 crossref_primary_10_1049_iet_cta_2020_0557 crossref_primary_10_1038_s41598_024_54488_w crossref_primary_10_1007_s00521_021_06021_7 crossref_primary_10_1177_0142331221996507 crossref_primary_10_1080_00207721_2023_2272218 crossref_primary_10_59277_PRA_SER_A_25_3_08 crossref_primary_10_1109_TCYB_2021_3063481 crossref_primary_10_1109_TSMC_2018_2883383 crossref_primary_10_1109_TMECH_2023_3251998 crossref_primary_10_1016_j_ifacol_2020_12_1704 crossref_primary_10_1016_j_ast_2018_07_032 crossref_primary_10_1109_ACCESS_2019_2949746 crossref_primary_10_1177_0959651820938531 crossref_primary_10_1002_asjc_3276 crossref_primary_10_1109_ACCESS_2021_3085843 crossref_primary_10_1016_j_automatica_2020_109040 crossref_primary_10_1109_TFUZZ_2024_3401691 crossref_primary_10_1109_TSMC_2024_3490553 crossref_primary_10_1002_oca_3198 crossref_primary_10_1016_j_automatica_2023_111047 crossref_primary_10_1109_TNNLS_2020_3016057 crossref_primary_10_1177_09596518221126584 crossref_primary_10_1109_TSMC_2020_3017289 crossref_primary_10_1016_j_jfranklin_2019_04_034 crossref_primary_10_3389_fmars_2024_1320361 crossref_primary_10_1016_j_conengprac_2023_105655 crossref_primary_10_1002_acs_3421 crossref_primary_10_1016_j_robot_2021_103903 crossref_primary_10_1016_j_neucom_2024_128201 crossref_primary_10_1016_j_neunet_2023_06_032 crossref_primary_10_1109_JAS_2021_1003973 crossref_primary_10_1016_j_cja_2020_05_008 crossref_primary_10_1109_TNNLS_2022_3185080 crossref_primary_10_1016_j_conengprac_2019_104260 crossref_primary_10_1016_j_sysconle_2024_105865 crossref_primary_10_1002_asjc_2987 crossref_primary_10_61383_ejam_20231127 crossref_primary_10_1109_TIV_2023_3295354 crossref_primary_10_1016_j_ast_2024_109368 crossref_primary_10_1016_j_amc_2022_127286 crossref_primary_10_1109_JAS_2023_123573 crossref_primary_10_1002_acs_3396 crossref_primary_10_3390_app112210665 crossref_primary_10_1016_j_cnsns_2023_107648 crossref_primary_10_1109_ACCESS_2024_3482319 crossref_primary_10_1109_TAC_2023_3335243 crossref_primary_10_1080_00207179_2024_2411599 crossref_primary_10_1109_TSMC_2018_2866876 crossref_primary_10_1177_01423312241233822 crossref_primary_10_1109_TITS_2023_3277452 crossref_primary_10_1155_2019_9858504 crossref_primary_10_1177_00202940221126177 crossref_primary_10_1016_j_jfranklin_2024_107455 crossref_primary_10_1016_j_mechatronics_2022_102832 crossref_primary_10_1109_TAC_2018_2874877 crossref_primary_10_1109_ACCESS_2019_2919684 crossref_primary_10_1109_TSMC_2022_3225381 crossref_primary_10_1016_j_arcontrol_2020_02_001 crossref_primary_10_1002_rnc_6305 crossref_primary_10_1109_TCYB_2020_2967995 crossref_primary_10_1007_s11071_022_07713_y crossref_primary_10_1109_TITS_2022_3176970 crossref_primary_10_3390_wevj15090396 crossref_primary_10_1109_TNNLS_2020_3041364 crossref_primary_10_1016_j_asr_2021_09_015 crossref_primary_10_1109_TSMC_2020_3022101 crossref_primary_10_1155_2021_6858023 crossref_primary_10_1002_rnc_4878 crossref_primary_10_1049_iet_cta_2018_5492 crossref_primary_10_1109_TSMC_2021_3131989 crossref_primary_10_1109_TFUZZ_2020_2969909 crossref_primary_10_1002_rnc_6415 crossref_primary_10_1007_s11071_025_11016_3 crossref_primary_10_1109_TCNS_2023_3256265 crossref_primary_10_1016_j_engappai_2019_06_021 crossref_primary_10_1016_j_ifacol_2019_12_670 crossref_primary_10_1049_csy2_12091 crossref_primary_10_1080_00207721_2024_2328065 crossref_primary_10_3233_JCM_226507 crossref_primary_10_1109_TCST_2021_3062223 crossref_primary_10_1109_TIE_2020_3007091 crossref_primary_10_1016_j_oceaneng_2021_109712 crossref_primary_10_1016_j_automatica_2020_108843 crossref_primary_10_1016_j_oceaneng_2022_110755 crossref_primary_10_1016_j_ifacol_2021_11_146 crossref_primary_10_1177_10775463221075911 crossref_primary_10_1109_ACCESS_2019_2962743 crossref_primary_10_1109_TII_2019_2939263 crossref_primary_10_1049_cth2_12272 crossref_primary_10_1109_TAC_2024_3365726 crossref_primary_10_1109_TNNLS_2018_2876685 crossref_primary_10_1109_TVT_2022_3167038 crossref_primary_10_1016_j_automatica_2019_108581 crossref_primary_10_1007_s11071_024_09675_9 crossref_primary_10_1109_TVT_2023_3274672 crossref_primary_10_1016_j_jfranklin_2019_12_042 crossref_primary_10_1007_s11071_018_4685_0 crossref_primary_10_3390_agriculture13071422 crossref_primary_10_1016_j_automatica_2023_111259 crossref_primary_10_1007_s12541_023_00869_6 crossref_primary_10_1080_00207179_2024_2325459 crossref_primary_10_1109_TNNLS_2023_3265930 crossref_primary_10_1080_00207179_2023_2206496 crossref_primary_10_1109_TIE_2019_2931242 crossref_primary_10_1016_j_isatra_2022_09_027 crossref_primary_10_1080_00051144_2023_2190866 |
Cites_doi | 10.1002/acs.2732 10.1016/j.automatica.2016.01.064 10.1016/j.fss.2013.11.006 10.1016/j.arcontrol.2013.03.004 10.1080/00207179.2011.574236 10.1109/JOE.2017.2651242 10.1109/TASE.2014.2371816 10.1109/TCST.2002.804117 10.1109/MCS.2006.1636313 10.1002/rnc.3899 10.1016/j.automatica.2016.10.011 10.1109/TCYB.2015.2411285 10.1109/JOE.2013.2280822 10.1016/j.automatica.2004.01.021 10.1109/TFUZZ.2013.2241770 10.1109/TCST.2007.908214 10.1109/TAC.2005.854613 10.1109/TAC.2017.2705033 10.1002/acs.2734 10.1109/TAC.2012.2223353 10.1109/TIE.2013.2282594 10.1109/TFUZZ.2014.2327987 10.1109/TCST.2009.2034639 10.1109/TSMC.2017.2755377 10.1080/00207179.2017.1312019 10.1016/j.automatica.2008.11.017 10.1016/j.automatica.2017.02.005 10.1016/j.automatica.2013.04.039 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.automatica.2018.04.011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2836 |
EndPage | 71 |
ExternalDocumentID | 10_1016_j_automatica_2018_04_011 S0005109818301961 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c318t-9fd437e56f47822071474c5401b61d88512e67dc6dd2eba2cb9a9ad7c8eba38e3 |
IEDL.DBID | .~1 |
ISSN | 0005-1098 |
IngestDate | Tue Jul 01 00:43:59 EDT 2025 Thu Apr 24 23:00:34 EDT 2025 Fri Feb 23 02:23:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Barrier Lyapunov functions Mobile robots Non-repetitive trajectory tracking Actuator faults Iterative learning control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-9fd437e56f47822071474c5401b61d88512e67dc6dd2eba2cb9a9ad7c8eba38e3 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_automatica_2018_04_011 crossref_primary_10_1016_j_automatica_2018_04_011 elsevier_sciencedirect_doi_10_1016_j_automatica_2018_04_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationTitle | Automatica (Oxford) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Tong (b17) 2017; 76 Xu (b24) 2011; 84 Wang, Huang, Wen (b23) 2017; 31 Bristow, Tharayil, Alleyne (b2) 2006; 26 Do, Jiang, Pan (b5) 2004; 40 He, Chen, Yin (b6) 2016; 46 Tee, Ge, Tay (b20) 2009; 45 Tong, Sui, Li (b22) 2015; 23 Liu, Lu, Li, Tong (b16) 2017 Chan, Stol, Halkyard (b3) 2013; 37 Zhang, Huang, Xie, Zhu (b30) 2017 Zhang, Zhang (b28) 2014; 39 Jin (b10) 2017; 31 Xu, Jin (b26) 2013; 58 Xu, Yan (b27) 2005; 50 Park, Yoo, Park, Choi (b19) 2010; 18 Do (b4) 2008; 16 Jin, Xu (b12) 2013; 49 Li, Tong, Li (b14) 2014; 248 Zhang, Yang (b29) 2017; 62 Mezghani, Roux, Cabassud, Lann, Dahhou, Casamatta (b18) 2002; 10 Jin (b9) 2016; 68 Li, Ren, Xu (b13) 2016; 63 Li, Tong, Liu, Feng (b15) 2017; 80 Tong, Huo, Li (b21) 2014; 22 Ji, Hou, Zhang (b8) 2016; 13 Xu, Guo, Lee (b25) 2014; 61 Arabi, Yucelen (b1) 2018 Hu, Du, Sun (b7) 2017 Jin (b11) 2018; 28 Xu (10.1016/j.automatica.2018.04.011_b24) 2011; 84 Hu (10.1016/j.automatica.2018.04.011_b7) 2017 Mezghani (10.1016/j.automatica.2018.04.011_b18) 2002; 10 Jin (10.1016/j.automatica.2018.04.011_b11) 2018; 28 Liu (10.1016/j.automatica.2018.04.011_b17) 2017; 76 Li (10.1016/j.automatica.2018.04.011_b15) 2017; 80 Zhang (10.1016/j.automatica.2018.04.011_b28) 2014; 39 Jin (10.1016/j.automatica.2018.04.011_b9) 2016; 68 Bristow (10.1016/j.automatica.2018.04.011_b2) 2006; 26 Tong (10.1016/j.automatica.2018.04.011_b21) 2014; 22 Zhang (10.1016/j.automatica.2018.04.011_b29) 2017; 62 Xu (10.1016/j.automatica.2018.04.011_b27) 2005; 50 Li (10.1016/j.automatica.2018.04.011_b14) 2014; 248 Park (10.1016/j.automatica.2018.04.011_b19) 2010; 18 He (10.1016/j.automatica.2018.04.011_b6) 2016; 46 Li (10.1016/j.automatica.2018.04.011_b13) 2016; 63 Liu (10.1016/j.automatica.2018.04.011_b16) 2017 Tong (10.1016/j.automatica.2018.04.011_b22) 2015; 23 Wang (10.1016/j.automatica.2018.04.011_b23) 2017; 31 Do (10.1016/j.automatica.2018.04.011_b4) 2008; 16 Chan (10.1016/j.automatica.2018.04.011_b3) 2013; 37 Tee (10.1016/j.automatica.2018.04.011_b20) 2009; 45 Arabi (10.1016/j.automatica.2018.04.011_b1) 2018 Do (10.1016/j.automatica.2018.04.011_b5) 2004; 40 Zhang (10.1016/j.automatica.2018.04.011_b30) 2017 Jin (10.1016/j.automatica.2018.04.011_b10) 2017; 31 Ji (10.1016/j.automatica.2018.04.011_b8) 2016; 13 Xu (10.1016/j.automatica.2018.04.011_b26) 2013; 58 Jin (10.1016/j.automatica.2018.04.011_b12) 2013; 49 Xu (10.1016/j.automatica.2018.04.011_b25) 2014; 61 |
References_xml | – volume: 37 start-page: 89 year: 2013 end-page: 103 ident: b3 article-title: Review of modelling and control of two-wheeled robots publication-title: Annual Reviews in Control – year: 2017 ident: b7 article-title: Robust adaptive control for dynamic positioning of ships publication-title: IEEE Journal of Oceanic Engineering – volume: 76 start-page: 143 year: 2017 end-page: 152 ident: b17 article-title: Barrier lyapunov functions for nussbaum gain adaptive control of full state constrained nonlinear systems publication-title: Automatica – volume: 31 start-page: 805 year: 2017 end-page: 822 ident: b23 article-title: Prescribed performance bound-based adaptive path-following control of uncertain nonholonomic mobile robots publication-title: International Journal of Adaptive Control and Signal Processing – volume: 58 start-page: 1322 year: 2013 end-page: 1327 ident: b26 article-title: State-constrained iterative learning control for a class of mimo systems publication-title: IEEE Transactions on Automatic Control – volume: 68 start-page: 228 year: 2016 end-page: 236 ident: b9 article-title: Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with los range and angle constraints publication-title: Automatica – volume: 22 start-page: 1 year: 2014 end-page: 15 ident: b21 article-title: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures publication-title: IEEE Transactions on Fuzzy Systems – volume: 62 start-page: 6529 year: 2017 end-page: 6535 ident: b29 article-title: Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions publication-title: IEEE Transactions on Automatic Control – year: 2017 ident: b30 article-title: Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output publication-title: IEEE Transactions on Control Systems Technology – volume: 10 start-page: 822 year: 2002 end-page: 834 ident: b18 article-title: Application of iterative learning control to an exothermic semibatch chemical reactor publication-title: IEEE Transactions on Control Systems Technology – volume: 45 start-page: 918 year: 2009 end-page: 927 ident: b20 article-title: Barrier lyapunov functions for the control of output-constrained nonlinear systems publication-title: Automatica – volume: 50 start-page: 1349 year: 2005 end-page: 1354 ident: b27 article-title: On initial conditions in iterative learning control publication-title: IEEE Transactions on Automatic Control – volume: 40 start-page: 929 year: 2004 end-page: 944 ident: b5 article-title: Robust adaptive path following of underactuated ships publication-title: Automatica – volume: 46 start-page: 620 year: 2016 end-page: 629 ident: b6 article-title: Adaptive neural network control of an uncertain robot with full-state constraints publication-title: IEEE Transactions on Cybernetics – volume: 31 start-page: 859 year: 2017 end-page: 875 ident: b10 article-title: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults publication-title: International Journal of Adaptive Control and Signal Processing – volume: 13 start-page: 260 year: 2016 end-page: 273 ident: b8 article-title: Adaptive iterative learning control for high-speed trains with unknown speed delays and input saturations publication-title: IEEE Transactions on Automation Science and Engineering – volume: 61 start-page: 3671 year: 2014 end-page: 3681 ident: b25 article-title: Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot publication-title: IEEE Transactions on Industrial Electronics – volume: 28 start-page: 729 year: 2018 end-page: 741 ident: b11 article-title: Iterative learning control for output constrained nonlinear systems with input quantization and actuator faults publication-title: International Journal of Robust and Nonlinear Control – volume: 84 start-page: 1275 year: 2011 end-page: 1294 ident: b24 article-title: A survey on iterative learning control for nonlinear systems publication-title: International Journal of Control – volume: 18 start-page: 1199 year: 2010 end-page: 1206 ident: b19 article-title: A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots publication-title: IEEE Transactions on Control Systems Technology – volume: 39 start-page: 685 year: 2014 end-page: 694 ident: b28 article-title: Concise robust adaptive path-following control of underactuated ships using dsc and mlp publication-title: IEEE Journal of Oceanic Engineering – year: 2018 ident: b1 article-title: Set-theoretic model reference adaptive control with time-varying performance bounds publication-title: International Journal of Control – volume: 26 start-page: 96 year: 2006 end-page: 114 ident: b2 article-title: A survey of iterative learning control publication-title: IEEE Control Systems – volume: 49 start-page: 2508 year: 2013 end-page: 2516 ident: b12 article-title: Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties publication-title: Automatica – volume: 23 start-page: 729 year: 2015 end-page: 742 ident: b22 article-title: Fuzzy adaptive output feedback control of mimo nonlinear systems with partial tracking errors constrained publication-title: IEEE Transactions on Fuzzy Systems – volume: 16 start-page: 527 year: 2008 end-page: 538 ident: b4 article-title: Formation tracking control of unicycle-type mobile robots with limited sensing ranges publication-title: IEEE Transactions on Control Systems Technology – volume: 63 start-page: 2221 year: 2016 end-page: 2228 ident: b13 article-title: Precise speed tracking control of a robotic fish via iterative learning control publication-title: IEEE Transactions on Industrial Electronics – volume: 248 start-page: 138 year: 2014 end-page: 155 ident: b14 article-title: Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation publication-title: Fuzzy Sets and Systems – volume: 80 start-page: 225 year: 2017 end-page: 231 ident: b15 article-title: Adaptive output-feedback control design with prescribed performance for switched nonlinear systems publication-title: Automatica – year: 2017 ident: b16 article-title: Adaptive controller design-based ablf for a class of nonlinear time-varying state constraint systems publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 31 start-page: 805 year: 2017 ident: 10.1016/j.automatica.2018.04.011_b23 article-title: Prescribed performance bound-based adaptive path-following control of uncertain nonholonomic mobile robots publication-title: International Journal of Adaptive Control and Signal Processing doi: 10.1002/acs.2732 – volume: 68 start-page: 228 year: 2016 ident: 10.1016/j.automatica.2018.04.011_b9 article-title: Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with los range and angle constraints publication-title: Automatica doi: 10.1016/j.automatica.2016.01.064 – volume: 248 start-page: 138 year: 2014 ident: 10.1016/j.automatica.2018.04.011_b14 article-title: Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2013.11.006 – volume: 37 start-page: 89 year: 2013 ident: 10.1016/j.automatica.2018.04.011_b3 article-title: Review of modelling and control of two-wheeled robots publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2013.03.004 – volume: 84 start-page: 1275 year: 2011 ident: 10.1016/j.automatica.2018.04.011_b24 article-title: A survey on iterative learning control for nonlinear systems publication-title: International Journal of Control doi: 10.1080/00207179.2011.574236 – year: 2017 ident: 10.1016/j.automatica.2018.04.011_b7 article-title: Robust adaptive control for dynamic positioning of ships publication-title: IEEE Journal of Oceanic Engineering doi: 10.1109/JOE.2017.2651242 – volume: 13 start-page: 260 year: 2016 ident: 10.1016/j.automatica.2018.04.011_b8 article-title: Adaptive iterative learning control for high-speed trains with unknown speed delays and input saturations publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2014.2371816 – volume: 10 start-page: 822 year: 2002 ident: 10.1016/j.automatica.2018.04.011_b18 article-title: Application of iterative learning control to an exothermic semibatch chemical reactor publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2002.804117 – volume: 26 start-page: 96 year: 2006 ident: 10.1016/j.automatica.2018.04.011_b2 article-title: A survey of iterative learning control publication-title: IEEE Control Systems doi: 10.1109/MCS.2006.1636313 – volume: 28 start-page: 729 year: 2018 ident: 10.1016/j.automatica.2018.04.011_b11 article-title: Iterative learning control for output constrained nonlinear systems with input quantization and actuator faults publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.3899 – volume: 76 start-page: 143 year: 2017 ident: 10.1016/j.automatica.2018.04.011_b17 article-title: Barrier lyapunov functions for nussbaum gain adaptive control of full state constrained nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2016.10.011 – volume: 46 start-page: 620 year: 2016 ident: 10.1016/j.automatica.2018.04.011_b6 article-title: Adaptive neural network control of an uncertain robot with full-state constraints publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2411285 – volume: 39 start-page: 685 year: 2014 ident: 10.1016/j.automatica.2018.04.011_b28 article-title: Concise robust adaptive path-following control of underactuated ships using dsc and mlp publication-title: IEEE Journal of Oceanic Engineering doi: 10.1109/JOE.2013.2280822 – volume: 40 start-page: 929 year: 2004 ident: 10.1016/j.automatica.2018.04.011_b5 article-title: Robust adaptive path following of underactuated ships publication-title: Automatica doi: 10.1016/j.automatica.2004.01.021 – volume: 22 start-page: 1 year: 2014 ident: 10.1016/j.automatica.2018.04.011_b21 article-title: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2013.2241770 – volume: 16 start-page: 527 year: 2008 ident: 10.1016/j.automatica.2018.04.011_b4 article-title: Formation tracking control of unicycle-type mobile robots with limited sensing ranges publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2007.908214 – volume: 50 start-page: 1349 year: 2005 ident: 10.1016/j.automatica.2018.04.011_b27 article-title: On initial conditions in iterative learning control publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2005.854613 – volume: 62 start-page: 6529 year: 2017 ident: 10.1016/j.automatica.2018.04.011_b29 article-title: Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2017.2705033 – volume: 31 start-page: 859 year: 2017 ident: 10.1016/j.automatica.2018.04.011_b10 article-title: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults publication-title: International Journal of Adaptive Control and Signal Processing doi: 10.1002/acs.2734 – volume: 58 start-page: 1322 year: 2013 ident: 10.1016/j.automatica.2018.04.011_b26 article-title: State-constrained iterative learning control for a class of mimo systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2012.2223353 – volume: 61 start-page: 3671 year: 2014 ident: 10.1016/j.automatica.2018.04.011_b25 article-title: Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2013.2282594 – volume: 23 start-page: 729 year: 2015 ident: 10.1016/j.automatica.2018.04.011_b22 article-title: Fuzzy adaptive output feedback control of mimo nonlinear systems with partial tracking errors constrained publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2014.2327987 – volume: 18 start-page: 1199 year: 2010 ident: 10.1016/j.automatica.2018.04.011_b19 article-title: A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2009.2034639 – year: 2017 ident: 10.1016/j.automatica.2018.04.011_b16 article-title: Adaptive controller design-based ablf for a class of nonlinear time-varying state constraint systems publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2017.2755377 – year: 2018 ident: 10.1016/j.automatica.2018.04.011_b1 article-title: Set-theoretic model reference adaptive control with time-varying performance bounds publication-title: International Journal of Control doi: 10.1080/00207179.2017.1312019 – volume: 63 start-page: 2221 year: 2016 ident: 10.1016/j.automatica.2018.04.011_b13 article-title: Precise speed tracking control of a robotic fish via iterative learning control publication-title: IEEE Transactions on Industrial Electronics – year: 2017 ident: 10.1016/j.automatica.2018.04.011_b30 article-title: Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output publication-title: IEEE Transactions on Control Systems Technology – volume: 45 start-page: 918 year: 2009 ident: 10.1016/j.automatica.2018.04.011_b20 article-title: Barrier lyapunov functions for the control of output-constrained nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2008.11.017 – volume: 80 start-page: 225 year: 2017 ident: 10.1016/j.automatica.2018.04.011_b15 article-title: Adaptive output-feedback control design with prescribed performance for switched nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2017.02.005 – volume: 49 start-page: 2508 year: 2013 ident: 10.1016/j.automatica.2018.04.011_b12 article-title: Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties publication-title: Automatica doi: 10.1016/j.automatica.2013.04.039 |
SSID | ssj0004182 |
Score | 2.6012297 |
Snippet | In this brief, we develop a novel iterative learning control (ILC) algorithm to deal with trajectory tracking problems for a class of unicycle-type mobile... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 63 |
SubjectTerms | Actuator faults Barrier Lyapunov functions Iterative learning control Mobile robots Non-repetitive trajectory tracking |
Title | Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints |
URI | https://dx.doi.org/10.1016/j.automatica.2018.04.011 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEA2lXvQgfmL9KDl4jW266SaLp1IsVaEnC70tSTYrLdUtbVbw4m93kk1tBUHB22ZhljCZzLwNb14Quo4BxeeMSxKrOCFMJJqoXBvCcmPauWlHQnqC7CgejtnDpDupof66F8bRKkPur3K6z9bhTSt4s7WYTl2PrwuoBCpO5ERefAc74y7Kbz42NA9GRaUY7hU3ExHYPBXHS5a28MqoToGICi96SunPJWqr7AwO0H7Ai7hXTekQ1czrEdrbUhE8Rm8DWc4tscXcQOGxuBJKhiyGw5UQzzgQ0jEgVPxSKMgEeFmowq4w_P2TpVm4XjNnYZdy5s_x392jdufo2B3V4qK0i9K6D638rRJ2dYLGg7un_pCE6xSIho1rSZJnLOKmG8PaACxwnUucaUBsVMU0EwC9OibmmY6zrGOU7GiVyERmXAsYRcJEp6gOkzJnCLNIZKIjc6pExBTNJONGi66QXa40U7qB-NqDqQ5a425y83RNKpulG9-nzvdpm6Xg-waiX5aLSm_jDza360VKv8VOCmXhV-vzf1lfoF03qiiBl6hul6W5AphiVdPHYRPt9O4fh6NPj1juAA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-yHdSD-InzMwevYcuatimeRBydHzsp7BaSNJXJXMuWCv73vrSZThAUvLUNr4SX9L1fH7_3C0IXEaD4nMWSRCpKCOOJJirXhrDcmF5uegGXNUF2FKVP7HYcjtfQ9bIXxtEqfexvYnodrf2Trvdmt5xMXI-v21AJZJzAibzAL1DbqVOFLdS-Gt6lo6_2SMob0fBadDPhntDT0LxkZYtaHNWJEFFe655S-nOWWsk8g2205SEjvmpmtYPWzGwXba4ICe6ht4GsppbYYmog91jcaCVDIMP-VIhn7DnpGEAqfi0UBAM8L1RhF3hWzMjclK7dzFnYuXypS_nv7lK7Ujp21VpcVLasrHvRoj5Ywi720dPg5vE6Jf5EBaLh27UkyTMWxCaMYHkAGbjmpZhpAG1URTTjgL76JoozHWVZ3yjZ1yqRicxizeEu4CY4QC2YlDlEmAU8432ZU8UDpmgmWWw0D7kMY6WZ0h0ULz0otJcbd5ObiiWv7EV8-V4434seE-D7DqKflmUjufEHm8vlIolv20dAZvjV-uhf1udoPX18uBf3w9HdMdpwIw1D8AS17Lwyp4BarDrzu_IDq67wsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault-tolerant+iterative+learning+control+for+mobile+robots+non-repetitive+trajectory+tracking+with+output+constraints&rft.jtitle=Automatica+%28Oxford%29&rft.au=Jin%2C+Xu&rft.date=2018-08-01&rft.issn=0005-1098&rft.volume=94&rft.spage=63&rft.epage=71&rft_id=info:doi/10.1016%2Fj.automatica.2018.04.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2018_04_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |