Robust H ∞ control for a class of uncertain mechanical systems

In this article, the problem of H ∞ control is investigated for a class of mechanical systems with input delay and parameter uncertainties which appear in all the mass, damping and stiffness matrices. Two approaches, norm-bounded and linear fractional transformation (LFT) uncertainty formulations, a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of control Vol. 83; no. 7; pp. 1303 - 1324
Main Authors Yang, Xuebo, Gao, Huijun, Shi, Peng, Duan, Guangren
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis Group 01.07.2010
Taylor & Francis
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, the problem of H ∞ control is investigated for a class of mechanical systems with input delay and parameter uncertainties which appear in all the mass, damping and stiffness matrices. Two approaches, norm-bounded and linear fractional transformation (LFT) uncertainty formulations, are considered. By using a new Lyapunov-Krasovskii functional approach, combined with the advanced techniques for achieving delay dependence, improved robust H ∞ state-feedback controller design methods are developed. The existence condition for admissible controllers is formulated in the form of linear matrix inequalities (LMIs), and the controller design is cast into a convex optimisation problem subject to LMI constraints. If the optimisation problem is solvable, a desired controller can be readily constructed. The result for the norm-bounded uncertainty case improves the existing ones in terms of design conservatism, and that for the LFT uncertainty case represents the first attempt in this direction. An illustrative example is provided to show the effectiveness and advantage of the proposed controller design methodologies.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0020-7179
1366-5820
DOI:10.1080/00207170903267047