Sobolev embeddings and distance functions
On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space into and the summability properties of the distance function. We prove that, in the superconformal case (i.e. when 𝑝 is larger than the dimension), these two facts are equivalen...
Saved in:
Published in | Advances in calculus of variations Vol. 17; no. 4; pp. 1365 - 1398 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.10.2024
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 1864-8258 1864-8266 |
DOI | 10.1515/acv-2023-0011 |
Cover
Loading…
Abstract | On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space
into
and the summability properties of the distance function.
We prove that, in the superconformal case (i.e. when 𝑝 is larger than the dimension), these two facts are equivalent, while in the subconformal and conformal cases (i.e. when 𝑝 is less than or equal to the dimension), we construct counterexamples to this equivalence.
In turn, our analysis permits to study the asymptotic behavior of the positive solution of the Lane–Emden equation for the 𝑝-Laplacian with sub-homogeneous right-hand side, as the exponent 𝑝 diverges to ∞.
The case of first eigenfunctions of the 𝑝-Laplacian is included, as well.
As particular cases of our analysis, we retrieve some well-known convergence results, under optimal assumptions on the open sets.
We also give some new geometric estimates for generalized principal frequencies. |
---|---|
AbstractList | On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space
into
and the summability properties of the distance function.
We prove that, in the superconformal case (i.e. when 𝑝 is larger than the dimension), these two facts are equivalent, while in the subconformal and conformal cases (i.e. when 𝑝 is less than or equal to the dimension), we construct counterexamples to this equivalence.
In turn, our analysis permits to study the asymptotic behavior of the positive solution of the Lane–Emden equation for the 𝑝-Laplacian with sub-homogeneous right-hand side, as the exponent 𝑝 diverges to ∞.
The case of first eigenfunctions of the 𝑝-Laplacian is included, as well.
As particular cases of our analysis, we retrieve some well-known convergence results, under optimal assumptions on the open sets.
We also give some new geometric estimates for generalized principal frequencies. On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space [Image omitted] into [Image omitted] and the summability properties of the distance function. We prove that, in the superconformal case (i.e. when ð' is larger than the dimension), these two facts are equivalent, while in the subconformal and conformal cases (i.e. when ð' is less than or equal to the dimension), we construct counterexamples to this equivalence. In turn, our analysis permits to study the asymptotic behavior of the positive solution of the Lane–Emden equation for the ð'-Laplacian with sub-homogeneous right-hand side, as the exponent ð' diverges to ∞. The case of first eigenfunctions of the ð'-Laplacian is included, as well. As particular cases of our analysis, we retrieve some well-known convergence results, under optimal assumptions on the open sets. We also give some new geometric estimates for generalized principal frequencies. On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space D 0 1 , p \mathcal{D}^{{1,p}}_{0} into L q L^{q} and the summability properties of the distance function. We prove that, in the superconformal case (i.e. when is larger than the dimension), these two facts are equivalent, while in the subconformal and conformal cases (i.e. when is less than or equal to the dimension), we construct counterexamples to this equivalence. In turn, our analysis permits to study the asymptotic behavior of the positive solution of the Lane–Emden equation for the -Laplacian with sub-homogeneous right-hand side, as the exponent diverges to ∞. The case of first eigenfunctions of the -Laplacian is included, as well. As particular cases of our analysis, we retrieve some well-known convergence results, under optimal assumptions on the open sets. We also give some new geometric estimates for generalized principal frequencies. |
Author | Brasco, Lorenzo Prinari, Francesca Zagati, Anna Chiara |
Author_xml | – sequence: 1 givenname: Lorenzo surname: Brasco fullname: Brasco, Lorenzo email: lorenzo.brasco@unife.it organization: Dipartimento di Matematica e Informatica, Università degli Studi di Ferrara, Via Machiavelli 30, 44121 Ferrara, Italy – sequence: 2 givenname: Francesca surname: Prinari fullname: Prinari, Francesca email: francesca.prinari@unipi.it organization: Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy – sequence: 3 givenname: Anna Chiara surname: Zagati fullname: Zagati, Anna Chiara email: annachiara.zagati@unipr.it organization: Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 53/a, Campus, 43124 Parma, Italy |
BookMark | eNp1kEtLw0AUhQepYK1dug-4chGdm3lkAm6k-IKCC7sf5pWSkk7qTFLpv3dCRUH0bu5ZfOc-zjma-M47hC4B3wADdqvMPi9wQXKMAU7QFASnuSg4n3xrJs7QPMYNTkUrYIxP0fVbp7vW7TO31c7axq9jprzNbBN75Y3L6sGbvul8vECntWqjm3_1GVo9PqwWz_ny9ellcb_MDQHR5xUWRNi6pM5YSJqVqmRc2arQBXWKKag5gVJzRxOga4MprYQqbKF1rQWZoavj2F3o3gcXe7nphuDTRkmAV0wQzqpE5UfKhC7G4Gq5C81WhYMELMc8ZMpDjnnIMY_Ek1-8aXo1_tUH1bT_uu6Org_V9i5Ytw7DIYmfk_70QUkhXUk-Ab9MeFM |
CitedBy_id | crossref_primary_10_1007_s12220_024_01742_2 crossref_primary_10_1051_cocv_2025016 crossref_primary_10_1051_cocv_2024066 |
Cites_doi | 10.1090/S0002-9939-1990-1010807-1 10.1007/s00208-018-1775-8 10.1007/s002050050157 10.1090/S0002-9939-1981-0589137-2 10.57262/ade/1355867457 10.57262/die/1367265629 10.1016/S0362-546X(97)00530-0 10.1007/BF02096574 10.1007/s00229-002-0305-9 10.1007/s00526-020-01827-0 10.1007/s11118-011-9246-9 10.1007/s00030-022-00790-3 10.1007/s00526-011-0441-8 10.1007/BF01604498 10.1016/j.anihpc.2016.05.005 10.1016/j.jfa.2017.10.005 10.1090/S0002-9939-1983-0699419-3 10.1007/s00245-020-09727-7 10.1007/s00205-021-01668-x 10.1515/crll.1990.410.1 10.57262/die/1435064548 10.1090/S0002-9939-99-04495-0 10.1090/S0002-9947-1988-0946438-4 10.1016/0022-1236(84)90076-4 10.1002/mana.201500263 10.2140/pjm.1966.19.243 10.1007/978-3-642-88044-5 10.1007/978-3-642-15564-2 10.5802/afst.1653 10.1016/0022-247X(68)90034-6 10.3934/cpaa.2020238 10.1016/j.na.2022.112847 10.1142/S1793525315500211 |
ContentType | Journal Article |
Copyright | 2023 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1515/acv-2023-0011 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1864-8266 |
EndPage | 1398 |
ExternalDocumentID | 10_1515_acv_2023_0011 10_1515_acv_2023_00111741365 |
GroupedDBID | 0R~ 0~D 23M 4.4 5GY AAAEU AADQG AAFPC AAGVJ AAJBH AALGR AAOUV AAPJK AAQCX AARVR AASOL AASQH AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACIWK ACPMA ACUND ACZBO ADEQT ADGQD ADGYE ADJVZ ADOZN AECWL AEGVQ AEICA AEJTT AENEX AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFQUK AFYRI AGBEV AHGBP AHVWV AHXUK AIERV AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM ASYPN BAKPI BBCWN BCIFA CFGNV CS3 EBS HZ~ IY9 J9A KDIRW O9- PQQKQ QD8 RDG SA. SLJYH UK5 WTRAM AAYXX CITATION 7SC 7TB 8FD ADNPR FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c318t-90838df74ecd108357a756ad92b24ea5a1f6317b6e4cd1bfc04498a2d2bbfb83 |
ISSN | 1864-8258 |
IngestDate | Wed Aug 13 04:28:42 EDT 2025 Tue Jul 01 04:13:16 EDT 2025 Thu Apr 24 23:07:44 EDT 2025 Thu Jul 10 10:32:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-90838df74ecd108357a756ad92b24ea5a1f6317b6e4cd1bfc04498a2d2bbfb83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3169583659 |
PQPubID | 2030050 |
PageCount | 34 |
ParticipantIDs | proquest_journals_3169583659 crossref_primary_10_1515_acv_2023_0011 crossref_citationtrail_10_1515_acv_2023_0011 walterdegruyter_journals_10_1515_acv_2023_00111741365 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 20241001 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Advances in calculus of variations |
PublicationYear | 2024 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2024100317525654581_j_acv-2023-0011_ref_002 2024100317525654581_j_acv-2023-0011_ref_024 2024100317525654581_j_acv-2023-0011_ref_001 2024100317525654581_j_acv-2023-0011_ref_023 2024100317525654581_j_acv-2023-0011_ref_004 2024100317525654581_j_acv-2023-0011_ref_026 2024100317525654581_j_acv-2023-0011_ref_003 2024100317525654581_j_acv-2023-0011_ref_025 2024100317525654581_j_acv-2023-0011_ref_006 2024100317525654581_j_acv-2023-0011_ref_028 2024100317525654581_j_acv-2023-0011_ref_005 2024100317525654581_j_acv-2023-0011_ref_027 2024100317525654581_j_acv-2023-0011_ref_008 2024100317525654581_j_acv-2023-0011_ref_007 2024100317525654581_j_acv-2023-0011_ref_029 2024100317525654581_j_acv-2023-0011_ref_009 2024100317525654581_j_acv-2023-0011_ref_040 2024100317525654581_j_acv-2023-0011_ref_020 2024100317525654581_j_acv-2023-0011_ref_041 2024100317525654581_j_acv-2023-0011_ref_022 2024100317525654581_j_acv-2023-0011_ref_021 2024100317525654581_j_acv-2023-0011_ref_013 2024100317525654581_j_acv-2023-0011_ref_035 2024100317525654581_j_acv-2023-0011_ref_012 2024100317525654581_j_acv-2023-0011_ref_034 2024100317525654581_j_acv-2023-0011_ref_015 2024100317525654581_j_acv-2023-0011_ref_037 2024100317525654581_j_acv-2023-0011_ref_014 2024100317525654581_j_acv-2023-0011_ref_036 2024100317525654581_j_acv-2023-0011_ref_017 2024100317525654581_j_acv-2023-0011_ref_039 2024100317525654581_j_acv-2023-0011_ref_016 2024100317525654581_j_acv-2023-0011_ref_038 2024100317525654581_j_acv-2023-0011_ref_019 2024100317525654581_j_acv-2023-0011_ref_018 2024100317525654581_j_acv-2023-0011_ref_031 2024100317525654581_j_acv-2023-0011_ref_030 2024100317525654581_j_acv-2023-0011_ref_011 2024100317525654581_j_acv-2023-0011_ref_033 2024100317525654581_j_acv-2023-0011_ref_010 2024100317525654581_j_acv-2023-0011_ref_032 |
References_xml | – ident: 2024100317525654581_j_acv-2023-0011_ref_041 doi: 10.1090/S0002-9939-1990-1010807-1 – ident: 2024100317525654581_j_acv-2023-0011_ref_025 doi: 10.1007/s00208-018-1775-8 – ident: 2024100317525654581_j_acv-2023-0011_ref_029 doi: 10.1007/s002050050157 – ident: 2024100317525654581_j_acv-2023-0011_ref_038 – ident: 2024100317525654581_j_acv-2023-0011_ref_037 doi: 10.1090/S0002-9939-1981-0589137-2 – ident: 2024100317525654581_j_acv-2023-0011_ref_032 doi: 10.57262/ade/1355867457 – ident: 2024100317525654581_j_acv-2023-0011_ref_034 – ident: 2024100317525654581_j_acv-2023-0011_ref_020 doi: 10.57262/die/1367265629 – ident: 2024100317525654581_j_acv-2023-0011_ref_003 doi: 10.1016/S0362-546X(97)00530-0 – ident: 2024100317525654581_j_acv-2023-0011_ref_005 doi: 10.1007/BF02096574 – ident: 2024100317525654581_j_acv-2023-0011_ref_006 doi: 10.1007/s00229-002-0305-9 – ident: 2024100317525654581_j_acv-2023-0011_ref_002 – ident: 2024100317525654581_j_acv-2023-0011_ref_026 doi: 10.1007/s00526-020-01827-0 – ident: 2024100317525654581_j_acv-2023-0011_ref_004 – ident: 2024100317525654581_j_acv-2023-0011_ref_021 – ident: 2024100317525654581_j_acv-2023-0011_ref_007 doi: 10.1007/s11118-011-9246-9 – ident: 2024100317525654581_j_acv-2023-0011_ref_040 doi: 10.1007/s00030-022-00790-3 – ident: 2024100317525654581_j_acv-2023-0011_ref_015 doi: 10.1007/s00526-011-0441-8 – ident: 2024100317525654581_j_acv-2023-0011_ref_023 doi: 10.1007/BF01604498 – ident: 2024100317525654581_j_acv-2023-0011_ref_012 doi: 10.1016/j.anihpc.2016.05.005 – ident: 2024100317525654581_j_acv-2023-0011_ref_010 doi: 10.1016/j.jfa.2017.10.005 – ident: 2024100317525654581_j_acv-2023-0011_ref_013 doi: 10.1090/S0002-9939-1983-0699419-3 – ident: 2024100317525654581_j_acv-2023-0011_ref_039 – ident: 2024100317525654581_j_acv-2023-0011_ref_014 doi: 10.1007/s00245-020-09727-7 – ident: 2024100317525654581_j_acv-2023-0011_ref_028 doi: 10.1007/s00205-021-01668-x – ident: 2024100317525654581_j_acv-2023-0011_ref_031 doi: 10.1515/crll.1990.410.1 – ident: 2024100317525654581_j_acv-2023-0011_ref_030 doi: 10.57262/die/1435064548 – ident: 2024100317525654581_j_acv-2023-0011_ref_008 – ident: 2024100317525654581_j_acv-2023-0011_ref_016 – ident: 2024100317525654581_j_acv-2023-0011_ref_022 doi: 10.1090/S0002-9939-99-04495-0 – ident: 2024100317525654581_j_acv-2023-0011_ref_033 doi: 10.1090/S0002-9947-1988-0946438-4 – ident: 2024100317525654581_j_acv-2023-0011_ref_018 doi: 10.1016/0022-1236(84)90076-4 – ident: 2024100317525654581_j_acv-2023-0011_ref_019 doi: 10.1002/mana.201500263 – ident: 2024100317525654581_j_acv-2023-0011_ref_017 doi: 10.2140/pjm.1966.19.243 – ident: 2024100317525654581_j_acv-2023-0011_ref_024 doi: 10.1007/978-3-642-88044-5 – ident: 2024100317525654581_j_acv-2023-0011_ref_035 doi: 10.1007/978-3-642-15564-2 – ident: 2024100317525654581_j_acv-2023-0011_ref_009 doi: 10.5802/afst.1653 – ident: 2024100317525654581_j_acv-2023-0011_ref_001 doi: 10.1016/0022-247X(68)90034-6 – ident: 2024100317525654581_j_acv-2023-0011_ref_027 doi: 10.3934/cpaa.2020238 – ident: 2024100317525654581_j_acv-2023-0011_ref_011 doi: 10.1016/j.na.2022.112847 – ident: 2024100317525654581_j_acv-2023-0011_ref_036 doi: 10.1142/S1793525315500211 |
SSID | ssj0000491556 |
Score | 2.3415594 |
Snippet | On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space
into
and the summability properties... On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space D 0 1 , p \mathcal{D}^{{1,p}}_{0}... On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space [Image omitted] into [Image omitted]... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1365 |
SubjectTerms | 35J92 35P30 46E35 Asymptotic properties capacity distance function Eigenvectors Equivalence Euclidean geometry Euclidean space inradius Lane–Emden equation Sobolev embeddings Sobolev space |
Title | Sobolev embeddings and distance functions |
URI | https://www.degruyter.com/doi/10.1515/acv-2023-0011 https://www.proquest.com/docview/3169583659 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEN8ovOgDQdF4gKYPxITg6rXd7XUf0SDEiC-chvjS7FeNCbSkd5yRv56Z3XZbyEmQl6bZ7G7vdmZn5-M3s4TsYA0zm5UptZYJykzMqDCxpOPcZLlOmB67DO_jb9nRd_bllJ_2sCKXXTJX7_XV0rySh1AV2oCumCX7H5QNk0IDvAN94QkUhue9aHxSq_rMLvbsubLGBZFcLMCgTogbFg-t3iHX1Zr1UX-HgwUCofvPwTkWYDUP3Hc-zj7TzpX6tW5sdVUHOdpgFu_vTvGFyXrAz0-JNTs8VrKSCPWQjRz6FhIWUGotQAQYtbn82-GEvYTMM0bBrPRC0w7b_PUpQaxOBuzDBjISgXWD8xZU0HypLOeu7IXUC4pXvFNUXvtDqwvU3zrLAsIQbRuYoIDhBQ532D2wvvDjj8lqAkYFiPHV_cOPBz-CTw6sJVCvXEJa9y_bsqww1Ycbv-SmGtPbJmt_HMrB2F9-4QbKynSdrLVWRrTvWeYZeWSr5-TpcSjRO9sguy3zRD3zRMA8Ucc8UWCeF2T6-WD66Yi292ZQDRJ6TgWo1bkpJ8xqE6OKPZETnkkjEpUwK7mMywzURpVZBh1UCfuRiVwmJlGqVHn6kqxUdWVfkUiC_S-lGCeCY4BVST6WPE7LMi25hulH5F23CoVua8rj1SZnxdL1H5G3ofuFL6byr47b3ZIW7X6bFWmcCZ4D_cSI8FvL3Pe6i_CbDxy3RZ70u2ObrMybS_sadNG5etOy0DXCMYbX |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6V9FA49AUVoQ_2gJAq4WYftmMf26ppoE0vDYjbyq9tJdIsajZF8Os73lfbABc476xlz4w133jGnwHeeQ4zx7OEOEcloTaiRNpIkVBYLkxMTVje8B5d8OFn-ukra7oJZ3VbpXVXt_OfRcWQ2rO5mfuDspZrACNwT5k74h_-Jh7S9K6Lm8kzWBYU_bMDy4enRydf2oMWhMAYM8tbRoJTghmRqLk2fxvoaWx6AJyrP8rSdTuvRxFosAa6mXvVePLtYF7oA_Nrgdbxvxa3Dqs1Pg0OK4fagCU33YQXo5bcdfYS9i9znU_cXeButLNl7SpQUxtYD0XRhwIfK0t3fgXjwcn4eEjqFxeIwb1dEImATNisT52xkQdnfdVnXFkZ65g6xVSUcQQcmjuKAjpDS1IpVGxjrTMtki3oTPOpew2BwsxRKRnGkvnSnFYsVCxKsizJmMHhu_ChUXVqajZy_yjGJPVZCWohRS2kXgtl110X3rfi3ysajr8J7jR2S-vdOEuTiEsmEs5kF9iCLR-k_jgeJmy-EfDNP_73FlaG49F5ev7x4mwbnuNnWnUC7kCnuJ27XUQ0hd6rffYetVfvyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BKiE4FCitCA10D1UlJJxkd23HPgZIWqCpkGir3FZ-ciAkUbtp1f56xrubbenj0p53dmSPx5pv7JnPANuBw8xxnxLnqCTUxpRIGyvSFZYLk1DTLTq8Rwd874h-H7PxtS7-UFZp3e-TxUVeMqR27MwswkFZzTWAEbijzBkJD3-TAGk6c-ufwoqgmN40YKW_-3lwXJ-zIALGkFk0GQlOCSZEoqLavKXn_9B0hTdXz4ub63pY1wLQ8CWo5dDLupM_7UWu2-byBqvjY-b2ClYrdBr1S3d6DU_cdA1ejGpq19M38PHXTM8m7ixyf7Wzxc1VpKY2sgGIogdFIVIWzrwOh8PB4Zc9Ur23QAzu7JxIhGPC-h51xsYBmvVUj3FlZaIT6hRTsecINzR3FAW0x3WkUqjEJlp7LdINaExnU_cWIoV5o1Kym0gWLua0Yl3F4tT71DOD6pvwaWnpzFRc5OFJjEkWchI0QoZGyIIRipq7JuzU4vOShOM-wdZy2bJqL55macwlEylnsgnsxlJeSd2pD9O1UAb47oH_bcGzn1-H2f63gx-b8By_0rIMsAWN_GTh3iOcyfWHymP_Ae9h7nA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sobolev+embeddings+and+distance+functions&rft.jtitle=Advances+in+calculus+of+variations&rft.au=Brasco%2C+Lorenzo&rft.au=Prinari%2C+Francesca&rft.au=Zagati%2C+Anna+Chiara&rft.date=2024-10-01&rft.pub=De+Gruyter&rft.issn=1864-8258&rft.eissn=1864-8266&rft.volume=17&rft.issue=4&rft.spage=1365&rft.epage=1398&rft_id=info:doi/10.1515%2Facv-2023-0011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_acv_2023_00111741365 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-8258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-8258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-8258&client=summon |