Sobolev embeddings and distance functions

On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space into and the summability properties of the distance function. We prove that, in the superconformal case (i.e. when 𝑝 is larger than the dimension), these two facts are equivalen...

Full description

Saved in:
Bibliographic Details
Published inAdvances in calculus of variations Vol. 17; no. 4; pp. 1365 - 1398
Main Authors Brasco, Lorenzo, Prinari, Francesca, Zagati, Anna Chiara
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.10.2024
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN1864-8258
1864-8266
DOI10.1515/acv-2023-0011

Cover

Loading…
Abstract On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space into and the summability properties of the distance function. We prove that, in the superconformal case (i.e. when 𝑝 is larger than the dimension), these two facts are equivalent, while in the subconformal and conformal cases (i.e. when 𝑝 is less than or equal to the dimension), we construct counterexamples to this equivalence. In turn, our analysis permits to study the asymptotic behavior of the positive solution of the Lane–Emden equation for the 𝑝-Laplacian with sub-homogeneous right-hand side, as the exponent 𝑝 diverges to ∞. The case of first eigenfunctions of the 𝑝-Laplacian is included, as well. As particular cases of our analysis, we retrieve some well-known convergence results, under optimal assumptions on the open sets. We also give some new geometric estimates for generalized principal frequencies.
AbstractList On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space into and the summability properties of the distance function. We prove that, in the superconformal case (i.e. when 𝑝 is larger than the dimension), these two facts are equivalent, while in the subconformal and conformal cases (i.e. when 𝑝 is less than or equal to the dimension), we construct counterexamples to this equivalence. In turn, our analysis permits to study the asymptotic behavior of the positive solution of the Lane–Emden equation for the 𝑝-Laplacian with sub-homogeneous right-hand side, as the exponent 𝑝 diverges to ∞. The case of first eigenfunctions of the 𝑝-Laplacian is included, as well. As particular cases of our analysis, we retrieve some well-known convergence results, under optimal assumptions on the open sets. We also give some new geometric estimates for generalized principal frequencies.
On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space [Image omitted] into [Image omitted] and the summability properties of the distance function. We prove that, in the superconformal case (i.e. when ð' is larger than the dimension), these two facts are equivalent, while in the subconformal and conformal cases (i.e. when ð' is less than or equal to the dimension), we construct counterexamples to this equivalence. In turn, our analysis permits to study the asymptotic behavior of the positive solution of the Lane–Emden equation for the ð'-Laplacian with sub-homogeneous right-hand side, as the exponent ð' diverges to ∞. The case of first eigenfunctions of the ð'-Laplacian is included, as well. As particular cases of our analysis, we retrieve some well-known convergence results, under optimal assumptions on the open sets. We also give some new geometric estimates for generalized principal frequencies.
On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space D 0 1 , p \mathcal{D}^{{1,p}}_{0} into L q L^{q} and the summability properties of the distance function. We prove that, in the superconformal case (i.e. when is larger than the dimension), these two facts are equivalent, while in the subconformal and conformal cases (i.e. when is less than or equal to the dimension), we construct counterexamples to this equivalence. In turn, our analysis permits to study the asymptotic behavior of the positive solution of the Lane–Emden equation for the -Laplacian with sub-homogeneous right-hand side, as the exponent diverges to ∞. The case of first eigenfunctions of the -Laplacian is included, as well. As particular cases of our analysis, we retrieve some well-known convergence results, under optimal assumptions on the open sets. We also give some new geometric estimates for generalized principal frequencies.
Author Brasco, Lorenzo
Prinari, Francesca
Zagati, Anna Chiara
Author_xml – sequence: 1
  givenname: Lorenzo
  surname: Brasco
  fullname: Brasco, Lorenzo
  email: lorenzo.brasco@unife.it
  organization: Dipartimento di Matematica e Informatica, Università degli Studi di Ferrara, Via Machiavelli 30, 44121 Ferrara, Italy
– sequence: 2
  givenname: Francesca
  surname: Prinari
  fullname: Prinari, Francesca
  email: francesca.prinari@unipi.it
  organization: Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy
– sequence: 3
  givenname: Anna Chiara
  surname: Zagati
  fullname: Zagati, Anna Chiara
  email: annachiara.zagati@unipr.it
  organization: Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 53/a, Campus, 43124 Parma, Italy
BookMark eNp1kEtLw0AUhQepYK1dug-4chGdm3lkAm6k-IKCC7sf5pWSkk7qTFLpv3dCRUH0bu5ZfOc-zjma-M47hC4B3wADdqvMPi9wQXKMAU7QFASnuSg4n3xrJs7QPMYNTkUrYIxP0fVbp7vW7TO31c7axq9jprzNbBN75Y3L6sGbvul8vECntWqjm3_1GVo9PqwWz_ny9ellcb_MDQHR5xUWRNi6pM5YSJqVqmRc2arQBXWKKag5gVJzRxOga4MprYQqbKF1rQWZoavj2F3o3gcXe7nphuDTRkmAV0wQzqpE5UfKhC7G4Gq5C81WhYMELMc8ZMpDjnnIMY_Ek1-8aXo1_tUH1bT_uu6Org_V9i5Ytw7DIYmfk_70QUkhXUk-Ab9MeFM
CitedBy_id crossref_primary_10_1007_s12220_024_01742_2
crossref_primary_10_1051_cocv_2025016
crossref_primary_10_1051_cocv_2024066
Cites_doi 10.1090/S0002-9939-1990-1010807-1
10.1007/s00208-018-1775-8
10.1007/s002050050157
10.1090/S0002-9939-1981-0589137-2
10.57262/ade/1355867457
10.57262/die/1367265629
10.1016/S0362-546X(97)00530-0
10.1007/BF02096574
10.1007/s00229-002-0305-9
10.1007/s00526-020-01827-0
10.1007/s11118-011-9246-9
10.1007/s00030-022-00790-3
10.1007/s00526-011-0441-8
10.1007/BF01604498
10.1016/j.anihpc.2016.05.005
10.1016/j.jfa.2017.10.005
10.1090/S0002-9939-1983-0699419-3
10.1007/s00245-020-09727-7
10.1007/s00205-021-01668-x
10.1515/crll.1990.410.1
10.57262/die/1435064548
10.1090/S0002-9939-99-04495-0
10.1090/S0002-9947-1988-0946438-4
10.1016/0022-1236(84)90076-4
10.1002/mana.201500263
10.2140/pjm.1966.19.243
10.1007/978-3-642-88044-5
10.1007/978-3-642-15564-2
10.5802/afst.1653
10.1016/0022-247X(68)90034-6
10.3934/cpaa.2020238
10.1016/j.na.2022.112847
10.1142/S1793525315500211
ContentType Journal Article
Copyright 2023 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/acv-2023-0011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1864-8266
EndPage 1398
ExternalDocumentID 10_1515_acv_2023_0011
10_1515_acv_2023_00111741365
GroupedDBID 0R~
0~D
23M
4.4
5GY
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACPMA
ACUND
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AECWL
AEGVQ
AEICA
AEJTT
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFQUK
AFYRI
AGBEV
AHGBP
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CS3
EBS
HZ~
IY9
J9A
KDIRW
O9-
PQQKQ
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAYXX
CITATION
7SC
7TB
8FD
ADNPR
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c318t-90838df74ecd108357a756ad92b24ea5a1f6317b6e4cd1bfc04498a2d2bbfb83
ISSN 1864-8258
IngestDate Wed Aug 13 04:28:42 EDT 2025
Tue Jul 01 04:13:16 EDT 2025
Thu Apr 24 23:07:44 EDT 2025
Thu Jul 10 10:32:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-90838df74ecd108357a756ad92b24ea5a1f6317b6e4cd1bfc04498a2d2bbfb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3169583659
PQPubID 2030050
PageCount 34
ParticipantIDs proquest_journals_3169583659
crossref_primary_10_1515_acv_2023_0011
crossref_citationtrail_10_1515_acv_2023_0011
walterdegruyter_journals_10_1515_acv_2023_00111741365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Advances in calculus of variations
PublicationYear 2024
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2024100317525654581_j_acv-2023-0011_ref_002
2024100317525654581_j_acv-2023-0011_ref_024
2024100317525654581_j_acv-2023-0011_ref_001
2024100317525654581_j_acv-2023-0011_ref_023
2024100317525654581_j_acv-2023-0011_ref_004
2024100317525654581_j_acv-2023-0011_ref_026
2024100317525654581_j_acv-2023-0011_ref_003
2024100317525654581_j_acv-2023-0011_ref_025
2024100317525654581_j_acv-2023-0011_ref_006
2024100317525654581_j_acv-2023-0011_ref_028
2024100317525654581_j_acv-2023-0011_ref_005
2024100317525654581_j_acv-2023-0011_ref_027
2024100317525654581_j_acv-2023-0011_ref_008
2024100317525654581_j_acv-2023-0011_ref_007
2024100317525654581_j_acv-2023-0011_ref_029
2024100317525654581_j_acv-2023-0011_ref_009
2024100317525654581_j_acv-2023-0011_ref_040
2024100317525654581_j_acv-2023-0011_ref_020
2024100317525654581_j_acv-2023-0011_ref_041
2024100317525654581_j_acv-2023-0011_ref_022
2024100317525654581_j_acv-2023-0011_ref_021
2024100317525654581_j_acv-2023-0011_ref_013
2024100317525654581_j_acv-2023-0011_ref_035
2024100317525654581_j_acv-2023-0011_ref_012
2024100317525654581_j_acv-2023-0011_ref_034
2024100317525654581_j_acv-2023-0011_ref_015
2024100317525654581_j_acv-2023-0011_ref_037
2024100317525654581_j_acv-2023-0011_ref_014
2024100317525654581_j_acv-2023-0011_ref_036
2024100317525654581_j_acv-2023-0011_ref_017
2024100317525654581_j_acv-2023-0011_ref_039
2024100317525654581_j_acv-2023-0011_ref_016
2024100317525654581_j_acv-2023-0011_ref_038
2024100317525654581_j_acv-2023-0011_ref_019
2024100317525654581_j_acv-2023-0011_ref_018
2024100317525654581_j_acv-2023-0011_ref_031
2024100317525654581_j_acv-2023-0011_ref_030
2024100317525654581_j_acv-2023-0011_ref_011
2024100317525654581_j_acv-2023-0011_ref_033
2024100317525654581_j_acv-2023-0011_ref_010
2024100317525654581_j_acv-2023-0011_ref_032
References_xml – ident: 2024100317525654581_j_acv-2023-0011_ref_041
  doi: 10.1090/S0002-9939-1990-1010807-1
– ident: 2024100317525654581_j_acv-2023-0011_ref_025
  doi: 10.1007/s00208-018-1775-8
– ident: 2024100317525654581_j_acv-2023-0011_ref_029
  doi: 10.1007/s002050050157
– ident: 2024100317525654581_j_acv-2023-0011_ref_038
– ident: 2024100317525654581_j_acv-2023-0011_ref_037
  doi: 10.1090/S0002-9939-1981-0589137-2
– ident: 2024100317525654581_j_acv-2023-0011_ref_032
  doi: 10.57262/ade/1355867457
– ident: 2024100317525654581_j_acv-2023-0011_ref_034
– ident: 2024100317525654581_j_acv-2023-0011_ref_020
  doi: 10.57262/die/1367265629
– ident: 2024100317525654581_j_acv-2023-0011_ref_003
  doi: 10.1016/S0362-546X(97)00530-0
– ident: 2024100317525654581_j_acv-2023-0011_ref_005
  doi: 10.1007/BF02096574
– ident: 2024100317525654581_j_acv-2023-0011_ref_006
  doi: 10.1007/s00229-002-0305-9
– ident: 2024100317525654581_j_acv-2023-0011_ref_002
– ident: 2024100317525654581_j_acv-2023-0011_ref_026
  doi: 10.1007/s00526-020-01827-0
– ident: 2024100317525654581_j_acv-2023-0011_ref_004
– ident: 2024100317525654581_j_acv-2023-0011_ref_021
– ident: 2024100317525654581_j_acv-2023-0011_ref_007
  doi: 10.1007/s11118-011-9246-9
– ident: 2024100317525654581_j_acv-2023-0011_ref_040
  doi: 10.1007/s00030-022-00790-3
– ident: 2024100317525654581_j_acv-2023-0011_ref_015
  doi: 10.1007/s00526-011-0441-8
– ident: 2024100317525654581_j_acv-2023-0011_ref_023
  doi: 10.1007/BF01604498
– ident: 2024100317525654581_j_acv-2023-0011_ref_012
  doi: 10.1016/j.anihpc.2016.05.005
– ident: 2024100317525654581_j_acv-2023-0011_ref_010
  doi: 10.1016/j.jfa.2017.10.005
– ident: 2024100317525654581_j_acv-2023-0011_ref_013
  doi: 10.1090/S0002-9939-1983-0699419-3
– ident: 2024100317525654581_j_acv-2023-0011_ref_039
– ident: 2024100317525654581_j_acv-2023-0011_ref_014
  doi: 10.1007/s00245-020-09727-7
– ident: 2024100317525654581_j_acv-2023-0011_ref_028
  doi: 10.1007/s00205-021-01668-x
– ident: 2024100317525654581_j_acv-2023-0011_ref_031
  doi: 10.1515/crll.1990.410.1
– ident: 2024100317525654581_j_acv-2023-0011_ref_030
  doi: 10.57262/die/1435064548
– ident: 2024100317525654581_j_acv-2023-0011_ref_008
– ident: 2024100317525654581_j_acv-2023-0011_ref_016
– ident: 2024100317525654581_j_acv-2023-0011_ref_022
  doi: 10.1090/S0002-9939-99-04495-0
– ident: 2024100317525654581_j_acv-2023-0011_ref_033
  doi: 10.1090/S0002-9947-1988-0946438-4
– ident: 2024100317525654581_j_acv-2023-0011_ref_018
  doi: 10.1016/0022-1236(84)90076-4
– ident: 2024100317525654581_j_acv-2023-0011_ref_019
  doi: 10.1002/mana.201500263
– ident: 2024100317525654581_j_acv-2023-0011_ref_017
  doi: 10.2140/pjm.1966.19.243
– ident: 2024100317525654581_j_acv-2023-0011_ref_024
  doi: 10.1007/978-3-642-88044-5
– ident: 2024100317525654581_j_acv-2023-0011_ref_035
  doi: 10.1007/978-3-642-15564-2
– ident: 2024100317525654581_j_acv-2023-0011_ref_009
  doi: 10.5802/afst.1653
– ident: 2024100317525654581_j_acv-2023-0011_ref_001
  doi: 10.1016/0022-247X(68)90034-6
– ident: 2024100317525654581_j_acv-2023-0011_ref_027
  doi: 10.3934/cpaa.2020238
– ident: 2024100317525654581_j_acv-2023-0011_ref_011
  doi: 10.1016/j.na.2022.112847
– ident: 2024100317525654581_j_acv-2023-0011_ref_036
  doi: 10.1142/S1793525315500211
SSID ssj0000491556
Score 2.3415594
Snippet On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space into and the summability properties...
On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space D 0 1 , p \mathcal{D}^{{1,p}}_{0}...
On a general open set of the euclidean space, we study the relation between the embedding of the homogeneous Sobolev space [Image omitted] into [Image omitted]...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1365
SubjectTerms 35J92
35P30
46E35
Asymptotic properties
capacity
distance function
Eigenvectors
Equivalence
Euclidean geometry
Euclidean space
inradius
Lane–Emden equation
Sobolev embeddings
Sobolev space
Title Sobolev embeddings and distance functions
URI https://www.degruyter.com/doi/10.1515/acv-2023-0011
https://www.proquest.com/docview/3169583659
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEN8ovOgDQdF4gKYPxITg6rXd7XUf0SDEiC-chvjS7FeNCbSkd5yRv56Z3XZbyEmQl6bZ7G7vdmZn5-M3s4TsYA0zm5UptZYJykzMqDCxpOPcZLlOmB67DO_jb9nRd_bllJ_2sCKXXTJX7_XV0rySh1AV2oCumCX7H5QNk0IDvAN94QkUhue9aHxSq_rMLvbsubLGBZFcLMCgTogbFg-t3iHX1Zr1UX-HgwUCofvPwTkWYDUP3Hc-zj7TzpX6tW5sdVUHOdpgFu_vTvGFyXrAz0-JNTs8VrKSCPWQjRz6FhIWUGotQAQYtbn82-GEvYTMM0bBrPRC0w7b_PUpQaxOBuzDBjISgXWD8xZU0HypLOeu7IXUC4pXvFNUXvtDqwvU3zrLAsIQbRuYoIDhBQ532D2wvvDjj8lqAkYFiPHV_cOPBz-CTw6sJVCvXEJa9y_bsqww1Ycbv-SmGtPbJmt_HMrB2F9-4QbKynSdrLVWRrTvWeYZeWSr5-TpcSjRO9sguy3zRD3zRMA8Ucc8UWCeF2T6-WD66Yi292ZQDRJ6TgWo1bkpJ8xqE6OKPZETnkkjEpUwK7mMywzURpVZBh1UCfuRiVwmJlGqVHn6kqxUdWVfkUiC_S-lGCeCY4BVST6WPE7LMi25hulH5F23CoVua8rj1SZnxdL1H5G3ofuFL6byr47b3ZIW7X6bFWmcCZ4D_cSI8FvL3Pe6i_CbDxy3RZ70u2ObrMybS_sadNG5etOy0DXCMYbX
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6V9FA49AUVoQ_2gJAq4WYftmMf26ppoE0vDYjbyq9tJdIsajZF8Os73lfbABc476xlz4w133jGnwHeeQ4zx7OEOEcloTaiRNpIkVBYLkxMTVje8B5d8OFn-ukra7oJZ3VbpXVXt_OfRcWQ2rO5mfuDspZrACNwT5k74h_-Jh7S9K6Lm8kzWBYU_bMDy4enRydf2oMWhMAYM8tbRoJTghmRqLk2fxvoaWx6AJyrP8rSdTuvRxFosAa6mXvVePLtYF7oA_Nrgdbxvxa3Dqs1Pg0OK4fagCU33YQXo5bcdfYS9i9znU_cXeButLNl7SpQUxtYD0XRhwIfK0t3fgXjwcn4eEjqFxeIwb1dEImATNisT52xkQdnfdVnXFkZ65g6xVSUcQQcmjuKAjpDS1IpVGxjrTMtki3oTPOpew2BwsxRKRnGkvnSnFYsVCxKsizJmMHhu_ChUXVqajZy_yjGJPVZCWohRS2kXgtl110X3rfi3ysajr8J7jR2S-vdOEuTiEsmEs5kF9iCLR-k_jgeJmy-EfDNP_73FlaG49F5ev7x4mwbnuNnWnUC7kCnuJ27XUQ0hd6rffYetVfvyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BKiE4FCitCA10D1UlJJxkd23HPgZIWqCpkGir3FZ-ciAkUbtp1f56xrubbenj0p53dmSPx5pv7JnPANuBw8xxnxLnqCTUxpRIGyvSFZYLk1DTLTq8Rwd874h-H7PxtS7-UFZp3e-TxUVeMqR27MwswkFZzTWAEbijzBkJD3-TAGk6c-ufwoqgmN40YKW_-3lwXJ-zIALGkFk0GQlOCSZEoqLavKXn_9B0hTdXz4ub63pY1wLQ8CWo5dDLupM_7UWu2-byBqvjY-b2ClYrdBr1S3d6DU_cdA1ejGpq19M38PHXTM8m7ixyf7Wzxc1VpKY2sgGIogdFIVIWzrwOh8PB4Zc9Ur23QAzu7JxIhGPC-h51xsYBmvVUj3FlZaIT6hRTsecINzR3FAW0x3WkUqjEJlp7LdINaExnU_cWIoV5o1Kym0gWLua0Yl3F4tT71DOD6pvwaWnpzFRc5OFJjEkWchI0QoZGyIIRipq7JuzU4vOShOM-wdZy2bJqL55macwlEylnsgnsxlJeSd2pD9O1UAb47oH_bcGzn1-H2f63gx-b8By_0rIMsAWN_GTh3iOcyfWHymP_Ae9h7nA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sobolev+embeddings+and+distance+functions&rft.jtitle=Advances+in+calculus+of+variations&rft.au=Brasco%2C+Lorenzo&rft.au=Prinari%2C+Francesca&rft.au=Zagati%2C+Anna+Chiara&rft.date=2024-10-01&rft.pub=De+Gruyter&rft.issn=1864-8258&rft.eissn=1864-8266&rft.volume=17&rft.issue=4&rft.spage=1365&rft.epage=1398&rft_id=info:doi/10.1515%2Facv-2023-0011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_acv_2023_00111741365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-8258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-8258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-8258&client=summon