Tunable acoustic composite metasurface based porous material for broadband sound absorption

This work designs a tunable acoustic composite metasurface, with porous material and a modified microperforated panel (MPP) system. The broadband sound absorption performance of the composite metasurface is evaluated by the analytical theory, numerical simulation, and experiment in the frequency ran...

Full description

Saved in:
Bibliographic Details
Published inComposite structures Vol. 298; p. 116014
Main Authors Yuan, Tianyue, Song, Xiang, Xu, Jingjian, Pan, Baorui, Sui, Dan, Xiao, Heye, Zhou, Jie
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.10.2022
Subjects
Online AccessGet full text
ISSN0263-8223
1879-1085
DOI10.1016/j.compstruct.2022.116014

Cover

Loading…
Abstract This work designs a tunable acoustic composite metasurface, with porous material and a modified microperforated panel (MPP) system. The broadband sound absorption performance of the composite metasurface is evaluated by the analytical theory, numerical simulation, and experiment in the frequency range between 200 Hz and 3500 Hz. The designed composite metasurface has a significant advantage in sound absorption performance compared with a uniform porous material, especially in the low-frequency range. The excellent sound absorption performance is achieved not only by the wavefront controlling with the phase gradient adjustment but also by the resonance dissipation of the modified MPP system. The high-order reflected waves have been converted into surface waves by the wave controlling ability of the designed metasurface for excellent sound absorption at the high frequency of interest. The modified MPP system is formed by a microperforated panel and a coiling-up space cavity to achieve excellent sound absorption in the low-frequency range. By adjusting the length of the coiling silt in the modified microperforated panel system, the absorption peak can move to the frequency of interest. The compact composite metasurface with 3 cm height has remarkably improved the sound absorption of porous material alone from low to high frequency, which could easily replace porous material for better sound absorption in industry.
AbstractList This work designs a tunable acoustic composite metasurface, with porous material and a modified microperforated panel (MPP) system. The broadband sound absorption performance of the composite metasurface is evaluated by the analytical theory, numerical simulation, and experiment in the frequency range between 200 Hz and 3500 Hz. The designed composite metasurface has a significant advantage in sound absorption performance compared with a uniform porous material, especially in the low-frequency range. The excellent sound absorption performance is achieved not only by the wavefront controlling with the phase gradient adjustment but also by the resonance dissipation of the modified MPP system. The high-order reflected waves have been converted into surface waves by the wave controlling ability of the designed metasurface for excellent sound absorption at the high frequency of interest. The modified MPP system is formed by a microperforated panel and a coiling-up space cavity to achieve excellent sound absorption in the low-frequency range. By adjusting the length of the coiling silt in the modified microperforated panel system, the absorption peak can move to the frequency of interest. The compact composite metasurface with 3 cm height has remarkably improved the sound absorption of porous material alone from low to high frequency, which could easily replace porous material for better sound absorption in industry.
ArticleNumber 116014
Author Zhou, Jie
Yuan, Tianyue
Song, Xiang
Sui, Dan
Xiao, Heye
Xu, Jingjian
Pan, Baorui
Author_xml – sequence: 1
  givenname: Tianyue
  surname: Yuan
  fullname: Yuan, Tianyue
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 2
  givenname: Xiang
  surname: Song
  fullname: Song, Xiang
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 3
  givenname: Jingjian
  surname: Xu
  fullname: Xu, Jingjian
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 4
  givenname: Baorui
  surname: Pan
  fullname: Pan, Baorui
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 5
  givenname: Dan
  surname: Sui
  fullname: Sui, Dan
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 6
  givenname: Heye
  surname: Xiao
  fullname: Xiao, Heye
  organization: Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 7
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
  email: jiezhou@nwpu.edu.cn
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
BookMark eNqNkE1LAzEQhoNUsFb_Q_7ArpNkd5teBC1-QcFLPXkIs8kspLSbkmQF_727VBC86GXm8r4PM88lm_WhJ8a4gFKAaG52pQ2HY8pxsLmUIGUpRAOiOmNzoZerQoCuZ2wOslGFllJdsMuUdgCgKyHm7H079NjuiaMNQ8re8gkXks_ED5QxDbFDS7zFRI4fQxxT_ICZosc970LkbQzoWuwdT2EYJ7YpxGP2ob9i5x3uE11_7wV7e3zYrp-LzevTy_puU1gldC60dVISgW5Aq6Wqq7ZubKMJ6pV2blUrpaSqEarGgbZLjXKptOhWukKFAJ1aMH3i2hhSitSZY_QHjJ9GgJkkmZ35kWQmSeYkaaze_qpan3E6Pkf0-_8A7k8AGh_88BRNsp56S85HGrMu-L8hX7lJjhc
CitedBy_id crossref_primary_10_1088_1402_4896_ad6ffd
crossref_primary_10_1016_j_apacoust_2024_110486
crossref_primary_10_1016_j_ijmecsci_2024_109717
crossref_primary_10_1088_1402_4896_ace2f4
crossref_primary_10_1016_j_apacoust_2024_110446
crossref_primary_10_1016_j_apacoust_2024_110481
crossref_primary_10_1016_j_apacoust_2024_110083
crossref_primary_10_1016_j_apacoust_2023_109816
crossref_primary_10_1016_j_jsv_2024_118306
crossref_primary_10_1016_j_ijmecsci_2024_109363
crossref_primary_10_1016_j_ijmecsci_2024_109563
crossref_primary_10_1016_j_jsv_2024_118498
crossref_primary_10_1016_j_apacoust_2023_109445
crossref_primary_10_1016_j_ijmecsci_2025_110138
crossref_primary_10_1016_j_compstruct_2025_119106
crossref_primary_10_1016_j_apacoust_2024_110098
crossref_primary_10_1016_j_apacoust_2024_110099
crossref_primary_10_1016_j_apacoust_2024_110374
crossref_primary_10_1016_j_compstruct_2024_118758
crossref_primary_10_1016_j_ymssp_2024_111849
crossref_primary_10_1016_j_apacoust_2024_110292
crossref_primary_10_1016_j_oceaneng_2024_119525
crossref_primary_10_1016_j_nanoen_2023_108248
crossref_primary_10_1016_j_ijmecsci_2024_109130
crossref_primary_10_1016_j_ijmecsci_2024_109696
crossref_primary_10_1016_j_ijmecsci_2023_108480
crossref_primary_10_1007_s10483_024_3186_9
crossref_primary_10_3390_math10183264
crossref_primary_10_1063_5_0228594
crossref_primary_10_1016_j_apacoust_2024_110146
crossref_primary_10_1021_acsapm_4c01852
crossref_primary_10_1016_j_jobe_2023_108305
crossref_primary_10_1121_10_0032453
crossref_primary_10_1007_s42452_025_06505_4
crossref_primary_10_1177_10775463221147734
crossref_primary_10_3390_app14209290
crossref_primary_10_1515_polyeng_2024_0211
crossref_primary_10_1063_5_0222584
crossref_primary_10_1016_j_tws_2024_111839
crossref_primary_10_1016_j_compstruct_2025_118873
crossref_primary_10_1063_5_0176066
crossref_primary_10_1016_j_compstruct_2023_117347
crossref_primary_10_3390_ma16124298
crossref_primary_10_1063_5_0158847
crossref_primary_10_1016_j_tws_2023_111226
crossref_primary_10_1002_adem_202301221
crossref_primary_10_1007_s13762_024_05719_0
crossref_primary_10_1016_j_apacoust_2024_109884
crossref_primary_10_1016_j_ijmecsci_2022_107895
crossref_primary_10_3390_ma16145051
Cites_doi 10.1121/1.423870
10.1038/srep06517
10.1016/j.compstruct.2017.11.054
10.1126/science.1210713
10.1007/s00348-016-2119-7
10.1063/1.5026022
10.1007/s00348-020-02972-0
10.1016/j.jsv.2018.08.003
10.1364/OL.37.002391
10.1121/1.2945115
10.1016/j.compstruct.2017.06.050
10.2514/1.C032021
10.1016/j.apacoust.2013.08.014
10.1063/1.5000055
10.1038/ncomms1758
10.2514/1.J058877
10.1038/nmat3994
10.1063/5.0031891
10.1017/S0022112087000727
10.2514/1.41369
10.1038/srep02546
10.1016/j.compstruct.2020.112366
10.1002/mawe.200390076
10.1103/PhysRevApplied.2.064002
10.1063/1.2829774
10.1063/1.5063289
10.1063/1.349482
10.1063/1.4941338
10.1360/TB-2019-0703
10.1121/1.2968300
10.1121/1.429596
10.1016/j.compstruct.2019.110948
10.1063/1.4982633
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruct.2022.116014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1085
ExternalDocumentID 10_1016_j_compstruct_2022_116014
S0263822322007656
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
SMS
SSH
WUQ
ID FETCH-LOGICAL-c318t-8cd22ee0860837354b56c68e0598dd95333235a046d08c78a27381f984a3a00f3
IEDL.DBID .~1
ISSN 0263-8223
IngestDate Thu Apr 24 23:03:02 EDT 2025
Tue Jul 01 03:54:17 EDT 2025
Fri Feb 23 02:35:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tunable
Composite metasurface
Broadband absorption
Porous material
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-8cd22ee0860837354b56c68e0598dd95333235a046d08c78a27381f984a3a00f3
ParticipantIDs crossref_primary_10_1016_j_compstruct_2022_116014
crossref_citationtrail_10_1016_j_compstruct_2022_116014
elsevier_sciencedirect_doi_10_1016_j_compstruct_2022_116014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Composite structures
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fang, Zhang, Zhou (b0115) 2018; 185
Maa (b0100) 1998; 104
Liu, Wu, Yang, Ma (b0095) 2020; 246
Fang, Zhang, Zhou (b0110) 2018; 434
Ma, Yang, Xiao, Yang, Sheng (b0065) 2014; 13
Geyer, Sarradj (b0025) 2016; 57
Champoux, Allard (b0150) 1991; 70
Sun, Han, Shi, Wang, Liu (b0135) 2013; 62
Liu, Chen, Zhang (b0175) 2014; 76
Zhou, Zhang, Fang (b0105) 2017; 176
Li, Jiang, Li, Liang, Zou, Yin (b0045) 2014; 2
Sutliff, Jones, Hartley (b0020) 2013; 50
Fang, Zhang, Zhou (b0145) 2017; 110
Li, Huang, Mo, Wang, Li (b0090) 2020; 65
Tang, Qiu, Ke, Lu, Ye, Liu (b0055) 2014; 4
Guo, Zhang, Fang, Jiang (b0085) 2020; 117
Inoue N, Sakuma T. Development of a measurement method for oblique-incidence sound absorption coefficient using a thin chamber. In: Proceedings of the 22nd International Congress on Acoustics, September 2016.no. ICA2016-I2421.
Perrot, Chevillotte, Panneton, Allard, Lafarge (b0165) 2008; 124
Mei, Ma, Yang, Yang, Wen, Sheng (b0060) 2012; 3
Li, Assouar (b0070) 2016; 108
Fang, Zhang, Zhou, Guo, Huang (b0120) 2019; 223
Grooteman F.P. Transmission loss analyses on fuselage panels: Approach, numerical results and validation. Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, Vols 1-8. 2006: 4583–4600.
Geyer (b0030) 2020; 58
Larouche, Smith (b0130) 2012; 37
Yu, Genevet, Kats, Aieta, Tetienne, Capasso (b0125) 2011; 334
Perrot, Chevillotte, Panneton (b0170) 2008; 103
Zhou, Zhang, Fang (b0190) 2018; 123
Geyer (b0035) 2020; 61
Li, Liang, Gu, Zou, Cheng (b0040) 2013; 3
Wang, Zhao, Yang, Zhong, Zhao, Lu (b0080) 2018; 123
Perrot, Chevillotte, Panneton (b0160) 2008; 124
Resewski, Buchgraber (b0005) 2003; 34
Li, Yu, Liang, Zou, Li, Cheng (b0050) 2015; 4
Wu, Cox, Lam (b0180) 2000; 108
Sutliff, Jones (b0015) 2009; 46
Zheng, Zhao (b0140) 2021
Huang, Fang, Wang, Assouar, Cheng, Li (b0075) 2018; 113
Johnson, Koplik, Dashen (b0155) 1987; 176
Resewski (10.1016/j.compstruct.2022.116014_b0005) 2003; 34
Fang (10.1016/j.compstruct.2022.116014_b0145) 2017; 110
Zhou (10.1016/j.compstruct.2022.116014_b0105) 2017; 176
Guo (10.1016/j.compstruct.2022.116014_b0085) 2020; 117
Maa (10.1016/j.compstruct.2022.116014_b0100) 1998; 104
Johnson (10.1016/j.compstruct.2022.116014_b0155) 1987; 176
Huang (10.1016/j.compstruct.2022.116014_b0075) 2018; 113
Perrot (10.1016/j.compstruct.2022.116014_b0165) 2008; 124
Li (10.1016/j.compstruct.2022.116014_b0090) 2020; 65
Liu (10.1016/j.compstruct.2022.116014_b0095) 2020; 246
Geyer (10.1016/j.compstruct.2022.116014_b0035) 2020; 61
Geyer (10.1016/j.compstruct.2022.116014_b0025) 2016; 57
Li (10.1016/j.compstruct.2022.116014_b0070) 2016; 108
Mei (10.1016/j.compstruct.2022.116014_b0060) 2012; 3
Fang (10.1016/j.compstruct.2022.116014_b0110) 2018; 434
Sutliff (10.1016/j.compstruct.2022.116014_b0020) 2013; 50
Zhou (10.1016/j.compstruct.2022.116014_b0190) 2018; 123
Ma (10.1016/j.compstruct.2022.116014_b0065) 2014; 13
Li (10.1016/j.compstruct.2022.116014_b0040) 2013; 3
Tang (10.1016/j.compstruct.2022.116014_b0055) 2014; 4
Zheng (10.1016/j.compstruct.2022.116014_b0140) 2021
Sun (10.1016/j.compstruct.2022.116014_b0135) 2013; 62
10.1016/j.compstruct.2022.116014_b0185
Sutliff (10.1016/j.compstruct.2022.116014_b0015) 2009; 46
Geyer (10.1016/j.compstruct.2022.116014_b0030) 2020; 58
Perrot (10.1016/j.compstruct.2022.116014_b0160) 2008; 124
Liu (10.1016/j.compstruct.2022.116014_b0175) 2014; 76
Fang (10.1016/j.compstruct.2022.116014_b0120) 2019; 223
Li (10.1016/j.compstruct.2022.116014_b0045) 2014; 2
Yu (10.1016/j.compstruct.2022.116014_b0125) 2011; 334
Champoux (10.1016/j.compstruct.2022.116014_b0150) 1991; 70
Wu (10.1016/j.compstruct.2022.116014_b0180) 2000; 108
Wang (10.1016/j.compstruct.2022.116014_b0080) 2018; 123
Fang (10.1016/j.compstruct.2022.116014_b0115) 2018; 185
Perrot (10.1016/j.compstruct.2022.116014_b0170) 2008; 103
10.1016/j.compstruct.2022.116014_b0010
Li (10.1016/j.compstruct.2022.116014_b0050) 2015; 4
Larouche (10.1016/j.compstruct.2022.116014_b0130) 2012; 37
References_xml – volume: 46
  start-page: 1381
  year: 2009
  end-page: 1394
  ident: b0015
  article-title: Low-Speed Fan Noise Attenuation from a Foam-Metal Liner
  publication-title: J Aircraft
– volume: 108
  start-page: 063502
  year: 2016
  ident: b0070
  article-title: Acoustic metasurface-based perfect absorber with deep subwavelength thickness
  publication-title: Appl Phys Lett
– volume: 76
  start-page: 319
  year: 2014
  end-page: 328
  ident: b0175
  article-title: Design optimization of porous fibrous material for maximizing absorption of sounds under set frequency bands
  publication-title: Appl Acoust
– volume: 434
  start-page: 273
  year: 2018
  end-page: 283
  ident: b0110
  article-title: Acoustic porous metasurface for excellent sound absorption based on wave manipulation
  publication-title: J Sound Vib
– volume: 246
  start-page: 112366
  year: 2020
  ident: b0095
  article-title: Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance
  publication-title: Compos Struct
– volume: 58
  start-page: 2014
  year: 2020
  end-page: 2028
  ident: b0030
  article-title: Vortex Shedding Noise from Finite, Wall-Mounted, Circular Cylinders Modified with Porous Material
  publication-title: AIAA J
– volume: 123
  start-page: 185109
  year: 2018
  ident: b0080
  article-title: A tunable sound-absorbing metamaterial based on coiled-up space
  publication-title: J Appl Phys
– reference: Inoue N, Sakuma T. Development of a measurement method for oblique-incidence sound absorption coefficient using a thin chamber. In: Proceedings of the 22nd International Congress on Acoustics, September 2016.no. ICA2016-I2421.
– volume: 4
  start-page: 6517
  year: 2014
  ident: b0055
  article-title: Anomalous refraction of airborne sound through ultrathin metasurfaces
  publication-title: Sci Rep
– volume: 34
  start-page: 365
  year: 2003
  end-page: 369
  ident: b0005
  article-title: Properties of new polyimide foams and polyimide foam filled honeycomb composites
  publication-title: Materialwiss Werkstofftech
– reference: Grooteman F.P. Transmission loss analyses on fuselage panels: Approach, numerical results and validation. Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, Vols 1-8. 2006: 4583–4600.
– volume: 13
  start-page: 873
  year: 2014
  end-page: 878
  ident: b0065
  article-title: Acoustic metasurface with hybrid resonances
  publication-title: Nat Mater
– volume: 185
  start-page: 508
  year: 2018
  end-page: 514
  ident: b0115
  article-title: Experiments on reflection and transmission of acoustic porous metasurface with composite structure
  publication-title: Compos Struct
– volume: 37
  start-page: 2391
  year: 2012
  end-page: 2393
  ident: b0130
  article-title: Reconciliation of generalized refraction with diffraction theory
  publication-title: Opt Lett
– volume: 176
  start-page: 379
  year: 1987
  ident: b0155
  article-title: Theory of dynamic permeability and tortuosity in fluid-saturated porous media
  publication-title: J Fluid Mech
– volume: 4
  year: 2015
  ident: b0050
  article-title: Three-dimensional ultrathin planar lenses by acoustic metamaterials
  publication-title: Sci Rep
– volume: 104
  start-page: 2861
  year: 1998
  end-page: 2866
  ident: b0100
  article-title: Potential of microperforated panel absorber
  publication-title: J Acoust Soc Am
– volume: 113
  start-page: 233501
  year: 2018
  ident: b0075
  article-title: Acoustic perfect absorbers via spiral metasurfaces with embedded apertures
  publication-title: Appl Phys Lett
– volume: 124
  start-page: 940
  year: 2008
  end-page: 948
  ident: b0160
  article-title: Bottom-up approach for microstructure optimization of sound absorbing materials
  publication-title: J Acoust Soc Am
– volume: 65
  start-page: 1420
  year: 2020
  end-page: 1427
  ident: b0090
  article-title: Low-frequency broadband absorbers based on coupling micro-perforated panel and space-curling chamber
  publication-title: Chin Sci Bull
– volume: 103
  year: 2008
  ident: b0170
  article-title: Dynamic viscous permeability of an open-cell aluminum foam: Computations versus experiments
  publication-title: J Appl Phys
– volume: 2
  year: 2014
  ident: b0045
  article-title: Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces
  publication-title: Phys Rev Appl
– volume: 223
  start-page: 110948
  year: 2019
  ident: b0120
  article-title: Acoustic metaporous layer with composite structures for perfect and quasi-omnidirectional sound absorption
  publication-title: Compos Struct
– volume: 62
  year: 2013
  ident: b0135
  article-title: General laws of reflection and refraction for metasurface with phase discontinuity
  publication-title: Acta Phys Sin-ch Ed
– volume: 123
  start-page: 033106
  year: 2018
  ident: b0190
  article-title: Analytical modelling for predicting the sound field of planar acoustic metasurface
  publication-title: J Appl Phys
– volume: 50
  start-page: 1491
  year: 2013
  end-page: 1503
  ident: b0020
  article-title: High-Speed Turbofan Noise Reduction Using Foam-Metal Liner Over-the-Rotor
  publication-title: J Aircraft
– volume: 124
  start-page: EL210
  year: 2008
  end-page: EL217
  ident: b0165
  article-title: On the dynamic viscous permeability tensor symmetry
  publication-title: J Acoust Soc Am
– volume: 110
  start-page: 171904
  year: 2017
  ident: b0145
  article-title: Sound transmission through an acoustic porous metasurface with periodic structures
  publication-title: Appl Phys Lett
– volume: 176
  start-page: 1005
  year: 2017
  end-page: 1012
  ident: b0105
  article-title: Three-dimensional acoustic characteristic study of porous metasurface
  publication-title: Compos Struct
– start-page: 364
  year: 2021
  end-page: 372
  ident: b0140
  article-title: Generalized Snell’s law and its verification by metasurface. Innovative mobile and internet services in ubiquitous
  publication-title: Computing
– volume: 70
  start-page: 1975
  year: 1991
  end-page: 1979
  ident: b0150
  article-title: Dynamic tortuosity and bulk modulus in air-saturated porous media
  publication-title: J Appl Phys
– volume: 334
  start-page: 333
  year: 2011
  end-page: 337
  ident: b0125
  article-title: Light propagation with phase discontinuities: generalized laws of reflection and refraction
  publication-title: Science
– volume: 57
  year: 2016
  ident: b0025
  article-title: Circular cylinders with soft porous cover for flow noise reduction
  publication-title: Exp Fluids
– volume: 117
  start-page: 221902
  year: 2020
  ident: b0085
  article-title: A compact low-frequency sound-absorbing metasurface constructed by resonator with embedded spiral neck
  publication-title: Appl Phys Lett
– volume: 61
  year: 2020
  ident: b0035
  article-title: Experimental evaluation of cylinder vortex shedding noise reduction using porous material
  publication-title: Exp Fluids
– volume: 3
  start-page: 2546
  year: 2013
  ident: b0040
  article-title: Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces
  publication-title: Sci Rep
– volume: 108
  start-page: 643
  year: 2000
  end-page: 650
  ident: b0180
  article-title: From a profiled diffuser to an optimized absorber
  publication-title: J Acous Soc Am
– volume: 3
  start-page: 756
  year: 2012
  ident: b0060
  article-title: Dark acoustic metamaterials as super absorbers for low-frequency sound
  publication-title: Nat Commun
– volume: 104
  start-page: 2861
  issue: 5
  year: 1998
  ident: 10.1016/j.compstruct.2022.116014_b0100
  article-title: Potential of microperforated panel absorber
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.423870
– volume: 4
  start-page: 6517
  year: 2014
  ident: 10.1016/j.compstruct.2022.116014_b0055
  article-title: Anomalous refraction of airborne sound through ultrathin metasurfaces
  publication-title: Sci Rep
  doi: 10.1038/srep06517
– volume: 185
  start-page: 508
  year: 2018
  ident: 10.1016/j.compstruct.2022.116014_b0115
  article-title: Experiments on reflection and transmission of acoustic porous metasurface with composite structure
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.11.054
– volume: 334
  start-page: 333
  issue: 6054
  year: 2011
  ident: 10.1016/j.compstruct.2022.116014_b0125
  article-title: Light propagation with phase discontinuities: generalized laws of reflection and refraction
  publication-title: Science
  doi: 10.1126/science.1210713
– volume: 57
  issue: 3
  year: 2016
  ident: 10.1016/j.compstruct.2022.116014_b0025
  article-title: Circular cylinders with soft porous cover for flow noise reduction
  publication-title: Exp Fluids
  doi: 10.1007/s00348-016-2119-7
– volume: 123
  start-page: 185109
  issue: 18
  year: 2018
  ident: 10.1016/j.compstruct.2022.116014_b0080
  article-title: A tunable sound-absorbing metamaterial based on coiled-up space
  publication-title: J Appl Phys
  doi: 10.1063/1.5026022
– volume: 61
  issue: 7
  year: 2020
  ident: 10.1016/j.compstruct.2022.116014_b0035
  article-title: Experimental evaluation of cylinder vortex shedding noise reduction using porous material
  publication-title: Exp Fluids
  doi: 10.1007/s00348-020-02972-0
– volume: 434
  start-page: 273
  year: 2018
  ident: 10.1016/j.compstruct.2022.116014_b0110
  article-title: Acoustic porous metasurface for excellent sound absorption based on wave manipulation
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.08.003
– volume: 37
  start-page: 2391
  year: 2012
  ident: 10.1016/j.compstruct.2022.116014_b0130
  article-title: Reconciliation of generalized refraction with diffraction theory
  publication-title: Opt Lett
  doi: 10.1364/OL.37.002391
– volume: 124
  start-page: 940
  issue: 2
  year: 2008
  ident: 10.1016/j.compstruct.2022.116014_b0160
  article-title: Bottom-up approach for microstructure optimization of sound absorbing materials
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2945115
– volume: 176
  start-page: 1005
  year: 2017
  ident: 10.1016/j.compstruct.2022.116014_b0105
  article-title: Three-dimensional acoustic characteristic study of porous metasurface
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.06.050
– volume: 50
  start-page: 1491
  issue: 5
  year: 2013
  ident: 10.1016/j.compstruct.2022.116014_b0020
  article-title: High-Speed Turbofan Noise Reduction Using Foam-Metal Liner Over-the-Rotor
  publication-title: J Aircraft
  doi: 10.2514/1.C032021
– volume: 76
  start-page: 319
  year: 2014
  ident: 10.1016/j.compstruct.2022.116014_b0175
  article-title: Design optimization of porous fibrous material for maximizing absorption of sounds under set frequency bands
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2013.08.014
– volume: 123
  start-page: 033106
  issue: 3
  year: 2018
  ident: 10.1016/j.compstruct.2022.116014_b0190
  article-title: Analytical modelling for predicting the sound field of planar acoustic metasurface
  publication-title: J Appl Phys
  doi: 10.1063/1.5000055
– ident: 10.1016/j.compstruct.2022.116014_b0185
– start-page: 364
  year: 2021
  ident: 10.1016/j.compstruct.2022.116014_b0140
  article-title: Generalized Snell’s law and its verification by metasurface. Innovative mobile and internet services in ubiquitous
  publication-title: Computing
– volume: 3
  start-page: 756
  year: 2012
  ident: 10.1016/j.compstruct.2022.116014_b0060
  article-title: Dark acoustic metamaterials as super absorbers for low-frequency sound
  publication-title: Nat Commun
  doi: 10.1038/ncomms1758
– volume: 58
  start-page: 2014
  issue: 5
  year: 2020
  ident: 10.1016/j.compstruct.2022.116014_b0030
  article-title: Vortex Shedding Noise from Finite, Wall-Mounted, Circular Cylinders Modified with Porous Material
  publication-title: AIAA J
  doi: 10.2514/1.J058877
– volume: 13
  start-page: 873
  issue: 9
  year: 2014
  ident: 10.1016/j.compstruct.2022.116014_b0065
  article-title: Acoustic metasurface with hybrid resonances
  publication-title: Nat Mater
  doi: 10.1038/nmat3994
– volume: 62
  year: 2013
  ident: 10.1016/j.compstruct.2022.116014_b0135
  article-title: General laws of reflection and refraction for metasurface with phase discontinuity
  publication-title: Acta Phys Sin-ch Ed
– volume: 117
  start-page: 221902
  issue: 22
  year: 2020
  ident: 10.1016/j.compstruct.2022.116014_b0085
  article-title: A compact low-frequency sound-absorbing metasurface constructed by resonator with embedded spiral neck
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0031891
– volume: 176
  start-page: 379
  issue: -1
  year: 1987
  ident: 10.1016/j.compstruct.2022.116014_b0155
  article-title: Theory of dynamic permeability and tortuosity in fluid-saturated porous media
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112087000727
– volume: 46
  start-page: 1381
  issue: 4
  year: 2009
  ident: 10.1016/j.compstruct.2022.116014_b0015
  article-title: Low-Speed Fan Noise Attenuation from a Foam-Metal Liner
  publication-title: J Aircraft
  doi: 10.2514/1.41369
– volume: 3
  start-page: 2546
  year: 2013
  ident: 10.1016/j.compstruct.2022.116014_b0040
  article-title: Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces
  publication-title: Sci Rep
  doi: 10.1038/srep02546
– volume: 246
  start-page: 112366
  year: 2020
  ident: 10.1016/j.compstruct.2022.116014_b0095
  article-title: Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.112366
– volume: 34
  start-page: 365
  year: 2003
  ident: 10.1016/j.compstruct.2022.116014_b0005
  article-title: Properties of new polyimide foams and polyimide foam filled honeycomb composites
  publication-title: Materialwiss Werkstofftech
  doi: 10.1002/mawe.200390076
– volume: 2
  issue: 6
  year: 2014
  ident: 10.1016/j.compstruct.2022.116014_b0045
  article-title: Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.2.064002
– volume: 103
  year: 2008
  ident: 10.1016/j.compstruct.2022.116014_b0170
  article-title: Dynamic viscous permeability of an open-cell aluminum foam: Computations versus experiments
  publication-title: J Appl Phys
  doi: 10.1063/1.2829774
– volume: 113
  start-page: 233501
  issue: 23
  year: 2018
  ident: 10.1016/j.compstruct.2022.116014_b0075
  article-title: Acoustic perfect absorbers via spiral metasurfaces with embedded apertures
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5063289
– volume: 70
  start-page: 1975
  issue: 4
  year: 1991
  ident: 10.1016/j.compstruct.2022.116014_b0150
  article-title: Dynamic tortuosity and bulk modulus in air-saturated porous media
  publication-title: J Appl Phys
  doi: 10.1063/1.349482
– volume: 4
  issue: 1
  year: 2015
  ident: 10.1016/j.compstruct.2022.116014_b0050
  article-title: Three-dimensional ultrathin planar lenses by acoustic metamaterials
  publication-title: Sci Rep
– ident: 10.1016/j.compstruct.2022.116014_b0010
– volume: 108
  start-page: 063502
  issue: 6
  year: 2016
  ident: 10.1016/j.compstruct.2022.116014_b0070
  article-title: Acoustic metasurface-based perfect absorber with deep subwavelength thickness
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4941338
– volume: 65
  start-page: 1420
  issue: 15
  year: 2020
  ident: 10.1016/j.compstruct.2022.116014_b0090
  article-title: Low-frequency broadband absorbers based on coupling micro-perforated panel and space-curling chamber
  publication-title: Chin Sci Bull
  doi: 10.1360/TB-2019-0703
– volume: 124
  start-page: EL210
  issue: 4
  year: 2008
  ident: 10.1016/j.compstruct.2022.116014_b0165
  article-title: On the dynamic viscous permeability tensor symmetry
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2968300
– volume: 108
  start-page: 643
  issue: 2
  year: 2000
  ident: 10.1016/j.compstruct.2022.116014_b0180
  article-title: From a profiled diffuser to an optimized absorber
  publication-title: J Acous Soc Am
  doi: 10.1121/1.429596
– volume: 223
  start-page: 110948
  year: 2019
  ident: 10.1016/j.compstruct.2022.116014_b0120
  article-title: Acoustic metaporous layer with composite structures for perfect and quasi-omnidirectional sound absorption
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.110948
– volume: 110
  start-page: 171904
  issue: 17
  year: 2017
  ident: 10.1016/j.compstruct.2022.116014_b0145
  article-title: Sound transmission through an acoustic porous metasurface with periodic structures
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4982633
SSID ssj0008411
Score 2.5895808
Snippet This work designs a tunable acoustic composite metasurface, with porous material and a modified microperforated panel (MPP) system. The broadband sound...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116014
SubjectTerms Broadband absorption
Composite metasurface
Porous material
Tunable
Title Tunable acoustic composite metasurface based porous material for broadband sound absorption
URI https://dx.doi.org/10.1016/j.compstruct.2022.116014
Volume 298
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14XZvuZpstnkqxVMVebKHgIewrUNG0tPXqb3dmk1gFQcFjwgwbZifzSL79hpDLSFhpnPVMcd1lsXOGaZnFLOGSW-mjrgpTFB5GneEkvpvKaY30q7MwCKssY38R00O0Lu-0Smu2FrNZ6xG6BwHpDTwSfydJpN1G9jrw6av3DcxDxWEGLwozlC7RPAXGC2HbBU8rdIqcQ_yA_iT-OUV9STuDPbJb1ou0VzzSPqn5_IDsfGERPCRP47dwAIpCcAuzuSguiGAsT1_9Gr8BZtp6ignLUai3QYpCoRp8j0LRSs1yrp3RuaMrnLJEtVnNlyGWHJHJ4GbcH7JyZgKz8HaumbKOc--hUYHaKhEyNrJjO8pDFaWcQyyp4EJq6IpdpGyiNB7NaWewJVroKMrEMann89yfECqQzA-fD0nouU66ESxhFDeJyrJYRw2SVGZKbUkojnMtXtIKOfacbgycooHTwsAN0v7UXBSkGn_Qua52Iv3mICnE_l-1T_-lfUa28QpTVluekzoI-AuoRdamGZytSbZ6t_fD0Qd8VeC-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPrcw9eQ9NNttniqYiltY-LLRQ8hH0FKtqWtv5_Z_KoFQQFr8kOu8xOvpnJzn4DcOcHRmhrnCe5anqhtdpTIgm9iAtuhPObMu2iMBg2OuPwaSImJXgo7sJQWWWO_Rmmp2idP6nl2qwtptPaM2YPAbo3tEg6ThKNHagQO1VYhkqr2-sMN4Asw7QNL433SCAv6MnKvKhyO6NqxWSRc4QQTFHCn73UludpH8JBHjKyVraqIyi52THsbxEJnsDL6CO9A8UQ39L2XIwmpHosx97dmn4DJso4Rj7LMgy5cRTDWDU1P4ZxK9PLubJazSxbUaMlpvRqvkzh5BTG7cfRQ8fL2yZ4Bj_QtSeN5dw5zFUwvIoCEWrRMA3pMJCS1lI5acADoTAxtr40kVR0O6ee4K6oQPl-EpxBeTafuXNgAfH50fqIh56rqOnjFFpyHckkCZVfhahQU2xyTnFqbfEWF8Vjr_GXgmNScJwpuAr1jeQi49X4g8x9sRPxNxuJEf5_lb74l_Qt7HZGg37c7w57l7BHb8iD1cUVlHGwu8bQZK1vctP7BDPP428
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+acoustic+composite+metasurface+based+porous+material+for+broadband+sound+absorption&rft.jtitle=Composite+structures&rft.au=Yuan%2C+Tianyue&rft.au=Song%2C+Xiang&rft.au=Xu%2C+Jingjian&rft.au=Pan%2C+Baorui&rft.date=2022-10-15&rft.pub=Elsevier+Ltd&rft.issn=0263-8223&rft.eissn=1879-1085&rft.volume=298&rft_id=info:doi/10.1016%2Fj.compstruct.2022.116014&rft.externalDocID=S0263822322007656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon