Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation

A new low-alloyed Mg-2Sm-0.8Mn-0.6Ca-0.5Zn (wt.%) alloy is prepared by low-temperature and low-speed extrusion. The as-extruded alloy has ultra-high yield strength (YS, 453 MPa) but poor elongation (3.2%) mainly due to the formation of a fine-grained structure containing high-density residual disloc...

Full description

Saved in:
Bibliographic Details
Published inScripta materialia Vol. 209; p. 114414
Main Authors Zhang, Zhi, Zhang, Jinghuai, Xie, Jinshu, Liu, Shujuan, He, Yuying, Guan, Kai, Wu, Ruizhi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new low-alloyed Mg-2Sm-0.8Mn-0.6Ca-0.5Zn (wt.%) alloy is prepared by low-temperature and low-speed extrusion. The as-extruded alloy has ultra-high yield strength (YS, 453 MPa) but poor elongation (3.2%) mainly due to the formation of a fine-grained structure containing high-density residual dislocations and Mn nanoparticles. More importantly, after subsequent simple annealing, the alloy exhibits an excellent combination of high-strength and high-ductility, with the YS of 403 MPa and elongation of 15.5%. The effective inhibition of grain growth by grain boundary (GB) co-segregation of Sm/Zn/Ca is crucial for the annealed alloy to maintain high strength. Appropriately decreased dislocation density, especially the evolution of immovable long S-<c+a> dislocations towards new GBs, is a key factor for the remarkable increase of ductility for the annealed alloy. Thus, we put forward a new strategy for developing low-alloyed Mg alloy with high strength-ductility mainly based on dislocation evolution and GB segregation. [Display omitted]
AbstractList A new low-alloyed Mg-2Sm-0.8Mn-0.6Ca-0.5Zn (wt.%) alloy is prepared by low-temperature and low-speed extrusion. The as-extruded alloy has ultra-high yield strength (YS, 453 MPa) but poor elongation (3.2%) mainly due to the formation of a fine-grained structure containing high-density residual dislocations and Mn nanoparticles. More importantly, after subsequent simple annealing, the alloy exhibits an excellent combination of high-strength and high-ductility, with the YS of 403 MPa and elongation of 15.5%. The effective inhibition of grain growth by grain boundary (GB) co-segregation of Sm/Zn/Ca is crucial for the annealed alloy to maintain high strength. Appropriately decreased dislocation density, especially the evolution of immovable long S-<c+a> dislocations towards new GBs, is a key factor for the remarkable increase of ductility for the annealed alloy. Thus, we put forward a new strategy for developing low-alloyed Mg alloy with high strength-ductility mainly based on dislocation evolution and GB segregation. [Display omitted]
ArticleNumber 114414
Author Xie, Jinshu
Wu, Ruizhi
Zhang, Jinghuai
Guan, Kai
Zhang, Zhi
He, Yuying
Liu, Shujuan
Author_xml – sequence: 1
  givenname: Zhi
  surname: Zhang
  fullname: Zhang, Zhi
  organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 2
  givenname: Jinghuai
  surname: Zhang
  fullname: Zhang, Jinghuai
  email: zhangjinghuai@hrbeu.edu.cn
  organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 3
  givenname: Jinshu
  surname: Xie
  fullname: Xie, Jinshu
  organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 4
  givenname: Shujuan
  surname: Liu
  fullname: Liu, Shujuan
  organization: Key Laboratory of Micro-systems and Micro-structures Manufacturing, (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
– sequence: 5
  givenname: Yuying
  surname: He
  fullname: He, Yuying
  organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 6
  givenname: Kai
  surname: Guan
  fullname: Guan, Kai
  organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 7
  givenname: Ruizhi
  surname: Wu
  fullname: Wu, Ruizhi
  organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
BookMark eNqNkE1OwzAQhS1UJNrCHXyBFDtxnHSDBOVXKmID68ixJ6kr165st1WPwK1xWyQkNrCap5k3n2beCA2ss4AQpmRCCeXXy0mQXq-jWIk4yUlOJ5QyRtkZGtK6yrOalXyQdFFOM854foFGISwJIZzmdIg-72ELxq217bHAxu0yYYzbg8KdtpD1XqSi8GuaHvp4p-MCL3S_wCF6sH1cZGojozY67nErQvI6i5UOxkkRddKwdWZzVMIqfATi1m2sEn6PA_Qe-qPxEp13wgS4-q5j9PH48D57zuZvTy-z23kmC1rHrG4LXrJaKlpQJkkpq04RDpyXVVtRNWVEKpXXpGN0yhRMGZBcdHnJVQXJ0RZjVJ-40rsQPHTN2utVOqahpDlE2iybn0ibQ6TNKdK0evNrVep4PD6mt8x_AHcnAKQHtxp8MmqwEpT2IGOjnP4b8gW7Ep-0
CitedBy_id crossref_primary_10_1007_s11665_024_09371_0
crossref_primary_10_1080_21663831_2022_2158048
crossref_primary_10_1007_s11665_022_07646_y
crossref_primary_10_1016_j_msea_2022_143238
crossref_primary_10_3390_met12081341
crossref_primary_10_1063_5_0219468
crossref_primary_10_3390_nano13071219
crossref_primary_10_1016_j_jmrt_2024_01_166
crossref_primary_10_1016_j_jmrt_2024_10_131
crossref_primary_10_1016_j_jallcom_2023_169212
crossref_primary_10_1016_j_jma_2024_03_021
crossref_primary_10_1016_j_jmrt_2022_10_122
crossref_primary_10_1016_j_actamat_2023_118949
crossref_primary_10_1016_j_jallcom_2024_175989
crossref_primary_10_1007_s12613_022_2572_7
crossref_primary_10_1016_j_jmrt_2024_02_131
crossref_primary_10_1016_j_jre_2024_10_007
crossref_primary_10_1007_s10853_023_08877_7
crossref_primary_10_1088_1402_4896_acbdd3
crossref_primary_10_1016_j_jma_2023_01_002
crossref_primary_10_1016_j_jallcom_2022_164219
crossref_primary_10_1016_j_scriptamat_2022_114963
crossref_primary_10_1016_j_jma_2024_03_016
crossref_primary_10_1016_j_jmrt_2023_12_127
crossref_primary_10_3390_ma18051036
crossref_primary_10_1016_j_jmapro_2022_07_057
crossref_primary_10_3390_molecules29174138
crossref_primary_10_1016_j_jmrt_2024_01_175
crossref_primary_10_1016_j_msea_2023_146066
crossref_primary_10_1016_j_matchar_2022_112336
crossref_primary_10_1016_j_jallcom_2022_165937
crossref_primary_10_1080_21663831_2024_2342511
crossref_primary_10_1016_j_matlet_2024_136691
crossref_primary_10_1016_j_jre_2024_06_039
crossref_primary_10_1016_j_msea_2023_145119
crossref_primary_10_1016_j_jma_2024_12_008
crossref_primary_10_1016_j_jmst_2023_01_005
crossref_primary_10_1016_j_jma_2024_12_007
crossref_primary_10_3390_cryst14100908
crossref_primary_10_1016_j_jma_2024_12_002
crossref_primary_10_1016_j_matchar_2023_113420
crossref_primary_10_1007_s11015_024_01709_2
crossref_primary_10_1016_j_jnucmat_2024_154912
crossref_primary_10_1007_s11837_025_07169_6
crossref_primary_10_1016_j_msea_2023_144827
crossref_primary_10_1016_j_jmst_2022_12_014
crossref_primary_10_1016_j_jmrt_2024_12_079
crossref_primary_10_1007_s10853_022_07961_8
crossref_primary_10_1016_j_jma_2023_06_009
crossref_primary_10_1016_j_ijplas_2023_103548
crossref_primary_10_1016_j_jallcom_2023_171880
crossref_primary_10_1016_j_matchar_2024_114308
crossref_primary_10_2139_ssrn_4123042
crossref_primary_10_1016_j_jallcom_2022_166337
crossref_primary_10_1016_j_jma_2023_10_004
crossref_primary_10_3390_ma15227986
crossref_primary_10_1007_s12613_022_2472_x
crossref_primary_10_1016_j_jma_2024_12_011
crossref_primary_10_1016_j_jmrt_2022_09_108
crossref_primary_10_1016_j_jmrt_2023_08_180
crossref_primary_10_1016_j_jallcom_2024_174669
crossref_primary_10_1016_j_msea_2022_144083
crossref_primary_10_1016_j_ijplas_2023_103679
crossref_primary_10_1016_j_msea_2022_143272
crossref_primary_10_1016_j_jma_2023_04_003
crossref_primary_10_1016_j_jallcom_2023_172187
crossref_primary_10_1016_j_jmrt_2023_06_108
crossref_primary_10_1007_s11771_024_5675_7
crossref_primary_10_1016_j_fmre_2024_08_001
crossref_primary_10_1016_j_jmrt_2023_08_111
crossref_primary_10_1016_j_jmrt_2024_02_171
crossref_primary_10_1016_j_scriptamat_2024_116412
crossref_primary_10_1016_S1003_6326_23_66311_3
crossref_primary_10_1016_j_jmrt_2022_05_024
crossref_primary_10_1016_j_jmrt_2022_06_064
crossref_primary_10_1016_j_jre_2024_05_010
crossref_primary_10_1016_j_jre_2024_05_014
crossref_primary_10_1016_j_jre_2024_07_025
crossref_primary_10_1016_j_jma_2024_04_030
crossref_primary_10_1016_j_ijplas_2022_103362
crossref_primary_10_1016_j_scriptamat_2025_116542
crossref_primary_10_1016_j_matchar_2022_111972
crossref_primary_10_1016_j_jmst_2023_07_051
crossref_primary_10_1016_j_matchar_2022_112428
crossref_primary_10_1016_j_jmst_2023_11_042
crossref_primary_10_1007_s10853_024_10161_1
crossref_primary_10_1016_j_jallcom_2022_164533
crossref_primary_10_1016_j_msea_2022_143962
crossref_primary_10_1016_j_msea_2025_147906
crossref_primary_10_1007_s12540_024_01648_2
crossref_primary_10_1007_s10853_025_10625_y
crossref_primary_10_1016_j_jallcom_2023_169523
crossref_primary_10_1016_j_jmrt_2023_04_171
crossref_primary_10_1016_j_jmrt_2023_10_041
crossref_primary_10_1016_j_jmrt_2022_07_019
crossref_primary_10_1080_21663831_2024_2438872
crossref_primary_10_1016_j_actbio_2024_12_050
crossref_primary_10_1016_S1003_6326_22_66037_0
crossref_primary_10_1007_s11665_022_07473_1
crossref_primary_10_1007_s11665_023_08277_7
crossref_primary_10_1007_s12540_022_01354_x
crossref_primary_10_1016_j_msea_2024_146562
crossref_primary_10_1007_s11665_023_08980_5
crossref_primary_10_1016_j_jallcom_2022_164863
crossref_primary_10_1016_j_jma_2023_08_022
crossref_primary_10_1016_j_msea_2022_143733
crossref_primary_10_1016_j_jmst_2023_03_057
crossref_primary_10_1016_j_jmst_2024_01_089
crossref_primary_10_1016_j_msea_2022_144309
crossref_primary_10_1080_17452759_2023_2279152
crossref_primary_10_1016_j_jma_2024_05_007
crossref_primary_10_1016_j_jma_2023_11_002
crossref_primary_10_1016_j_jma_2024_02_007
crossref_primary_10_1016_j_jallcom_2023_171041
crossref_primary_10_1007_s00170_022_09684_1
crossref_primary_10_1016_j_msea_2023_145201
crossref_primary_10_1016_j_jma_2022_10_027
crossref_primary_10_1016_j_matdes_2022_110696
crossref_primary_10_1016_j_jmrt_2023_11_181
crossref_primary_10_1016_j_jmrt_2024_12_206
crossref_primary_10_1016_j_msea_2022_143901
crossref_primary_10_1080_21663831_2025_2470886
crossref_primary_10_1002_adem_202201164
crossref_primary_10_1016_j_corsci_2022_110163
crossref_primary_10_1016_j_jmst_2024_12_008
crossref_primary_10_1016_j_jmrt_2023_10_023
crossref_primary_10_1016_j_jallcom_2024_175716
crossref_primary_10_3390_ma15175973
crossref_primary_10_1016_j_ijplas_2024_104185
crossref_primary_10_1016_j_jmrt_2022_08_117
crossref_primary_10_1016_j_jallcom_2025_179411
crossref_primary_10_1016_j_jmrt_2023_02_204
Cites_doi 10.1016/j.jma.2018.08.001
10.1080/09506608.2017.1421439
10.1016/0001-6160(73)90141-7
10.1016/j.scriptamat.2016.07.035
10.1016/j.msea.2020.140569
10.1016/j.scriptamat.2020.10.052
10.1126/science.aaw2843
10.1038/s41467-018-04981-4
10.1016/j.actamat.2018.03.002
10.1007/s11661-020-05974-z
10.1016/j.jma.2020.08.016
10.1080/21663831.2021.1918776
10.1016/j.actamat.2020.09.024
10.1016/j.scriptamat.2014.04.017
10.1007/s12613-020-2190-1
10.1007/s11661-019-05318-6
10.1038/nature15364
10.1016/j.actamat.2020.01.017
10.1016/j.msea.2019.138796
10.1016/j.actamat.2018.08.045
10.1126/science.aap8716
10.1016/j.scriptamat.2020.06.001
10.1016/j.matlet.2018.11.080
10.1016/j.scriptamat.2015.06.002
ContentType Journal Article
Copyright 2021 Acta Materialia Inc.
Copyright_xml – notice: 2021 Acta Materialia Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.scriptamat.2021.114414
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-8456
ExternalDocumentID 10_1016_j_scriptamat_2021_114414
S1359646221006941
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
SSH
T9H
ID FETCH-LOGICAL-c318t-8b36548cd1314c05c7fd06e6657b71d940cdd280f4194de94e02af256d7e7b7b3
IEDL.DBID .~1
ISSN 1359-6462
IngestDate Tue Jul 01 01:27:39 EDT 2025
Thu Apr 24 23:05:44 EDT 2025
Fri Feb 23 02:41:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High ductility
High strength
Grain boundary segregation
Magnesium alloys
Dislocations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-8b36548cd1314c05c7fd06e6657b71d940cdd280f4194de94e02af256d7e7b7b3
ParticipantIDs crossref_primary_10_1016_j_scriptamat_2021_114414
crossref_citationtrail_10_1016_j_scriptamat_2021_114414
elsevier_sciencedirect_doi_10_1016_j_scriptamat_2021_114414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Scripta materialia
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pan, Qin, Huang, Ren, Sha, Han, Liu, Li, Wu, Chen, He, Chai, Wang, Nie (bib0013) 2018; 149
Pan, Xie, Li, Xie, Huang, Yang, Qin (bib0016) 2021; 9
Zeng, Zhu, Nie, Xu, Davies, Birbilis (bib0012) 2019; 50A
Peng, Tang, She, Zhang, Zhou, Song, Pan (bib0027) 2021; 803
Williams, Carter (bib0023) 2009
Pan, Yang, Yang, Dai, Zhou, Chai, Huang, Yang, Liu, Ren, Qin (bib0022) 2019; 237
Zhang, Liu, Wu, Hou, Zhang (bib0005) 2018; 6
Zeng, Zhu, Liu, Xu, Davies, Nie, Birbilis (bib0021) 2018; 160
Liu, Qiao, Pei, Chi, Yuan, Zheng (bib0015) 2021
She, Zhou, Peng, Tang, Wang, Pan, Yang, Pan (bib0017) 2020; 772
Pan, Kang, Li, Xie, Zeng, Huang, Yang, Ren, Qin (bib0014) 2020; 186
Suh, Shim, Shin, Kim (bib0001) 2014; 84-85
Joost, Krajewski (bib0003) 2017; 128
Wu, Curtin (bib0009) 2015; 526
Xie, Zhang, You, Liu, Guan, Wu, Wang, Feng (bib0002) 2021; 9
Li, Li, Pan, Xie, Zhang, Fang, Dai, Zhao, Zhang (bib0010) 2021; 193
Nie, Shin, Zeng (bib0007) 2020; 51
Zeng, Zhu, Bian, Xu, Davies, Birbilis, Nie (bib0004) 2015; 107
Obara, Yoshinga, Morozumi (bib0025) 1973; 21
Humphreys, Rohrer, Rollett (bib0020) 2017
Wu, Ahmad, Yin, Sandlöbes, Curtin (bib0008) 2018; 359
Liu, Liu, Yang, Zhai, Zhang, Yang, Li, Li, Ma, Nie, Shan (bib0024) 2019; 365
Wan, Tang, Gao, Tang, Sha, Zhang, Liang, Liu, Jiang, Chen, Guo, Zhao (bib0011) 2020; 200
Kim, Hong, Kim, Lee, Baek, Jeong, Park (bib0018) 2020; 187
Zhang, Zhang, Wang, Li, Xie, Liu, Guan, Wu (bib0026) 2021; 28
Zhang, Zhang, Xie, Liu, He, Wang, Fang, Fu, Jiao, Wu (bib0019) 2022; 831
Zeng, Stanford, Davies, Nie, Birbilis (bib0006) 2018; 64
Trang, Zhang, Kim, Zargaran, Hwang, Suh, Kim (bib0028) 2018; 9
Zeng (10.1016/j.scriptamat.2021.114414_bib0004) 2015; 107
Pan (10.1016/j.scriptamat.2021.114414_bib0013) 2018; 149
Wu (10.1016/j.scriptamat.2021.114414_bib0009) 2015; 526
Zhang (10.1016/j.scriptamat.2021.114414_bib0019) 2022; 831
Xie (10.1016/j.scriptamat.2021.114414_bib0002) 2021; 9
Liu (10.1016/j.scriptamat.2021.114414_bib0024) 2019; 365
Pan (10.1016/j.scriptamat.2021.114414_bib0014) 2020; 186
Zeng (10.1016/j.scriptamat.2021.114414_bib0006) 2018; 64
Humphreys (10.1016/j.scriptamat.2021.114414_bib0020) 2017
Kim (10.1016/j.scriptamat.2021.114414_bib0018) 2020; 187
Trang (10.1016/j.scriptamat.2021.114414_bib0028) 2018; 9
Obara (10.1016/j.scriptamat.2021.114414_bib0025) 1973; 21
Zhang (10.1016/j.scriptamat.2021.114414_bib0005) 2018; 6
Zeng (10.1016/j.scriptamat.2021.114414_bib0012) 2019; 50A
Pan (10.1016/j.scriptamat.2021.114414_bib0016) 2021; 9
Wu (10.1016/j.scriptamat.2021.114414_bib0008) 2018; 359
Pan (10.1016/j.scriptamat.2021.114414_bib0022) 2019; 237
Williams (10.1016/j.scriptamat.2021.114414_bib0023) 2009
Zhang (10.1016/j.scriptamat.2021.114414_bib0026) 2021; 28
Suh (10.1016/j.scriptamat.2021.114414_bib0001) 2014; 84-85
Liu (10.1016/j.scriptamat.2021.114414_bib0015) 2021
She (10.1016/j.scriptamat.2021.114414_bib0017) 2020; 772
Li (10.1016/j.scriptamat.2021.114414_bib0010) 2021; 193
Zeng (10.1016/j.scriptamat.2021.114414_bib0021) 2018; 160
Joost (10.1016/j.scriptamat.2021.114414_bib0003) 2017; 128
Peng (10.1016/j.scriptamat.2021.114414_bib0027) 2021; 803
Nie (10.1016/j.scriptamat.2021.114414_bib0007) 2020; 51
Wan (10.1016/j.scriptamat.2021.114414_bib0011) 2020; 200
References_xml – year: 2017
  ident: bib0020
  article-title: Recrystallization and Related Annealing Phenomena
– volume: 803
  year: 2021
  ident: bib0027
  publication-title: Mater. Sci. Eng. A
– volume: 64
  start-page: 27
  year: 2018
  end-page: 62
  ident: bib0006
  publication-title: Int. Mater. Rev.
– volume: 193
  start-page: 142
  year: 2021
  end-page: 146
  ident: bib0010
  publication-title: Scr. Mater.
– volume: 9
  start-page: 329
  year: 2021
  end-page: 335
  ident: bib0016
  publication-title: Mater. Res. Lett.
– volume: 237
  start-page: 65
  year: 2019
  end-page: 68
  ident: bib0022
  publication-title: Mater. Lett.
– volume: 160
  start-page: 97
  year: 2018
  end-page: 108
  ident: bib0021
  publication-title: Acta Mater.
– volume: 200
  start-page: 274
  year: 2020
  end-page: 286
  ident: bib0011
  publication-title: Acta Mater.
– volume: 9
  start-page: 41
  year: 2021
  end-page: 56
  ident: bib0002
  publication-title: J. Magnes. Alloy
– volume: 28
  start-page: 30
  year: 2021
  end-page: 45
  ident: bib0026
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 84-85
  start-page: 1
  year: 2014
  end-page: 6
  ident: bib0001
  publication-title: Scr. Mater.
– volume: 359
  start-page: 447
  year: 2018
  end-page: 452
  ident: bib0008
  publication-title: Science
– volume: 772
  year: 2020
  ident: bib0017
  publication-title: Mater. Sci. Eng. A
– year: 2009
  ident: bib0023
  article-title: Transmission Electron Microscopy: A Textbook For Materials Science
– volume: 831
  year: 2022
  ident: bib0019
  publication-title: Mater. Sci. Eng. A
– volume: 6
  start-page: 277
  year: 2018
  end-page: 291
  ident: bib0005
  publication-title: J. Magnes. Alloy
– volume: 50A
  start-page: 4344
  year: 2019
  end-page: 4363
  ident: bib0012
  publication-title: Metall. Mater. Trans. A
– year: 2021
  ident: bib0015
  publication-title: J. Magnes. Alloy
– volume: 9
  start-page: 2522
  year: 2018
  ident: bib0028
  publication-title: Nat. Commun.
– volume: 365
  start-page: 73
  year: 2019
  end-page: 75
  ident: bib0024
  publication-title: Science
– volume: 51
  start-page: 6045
  year: 2020
  end-page: 6109
  ident: bib0007
  publication-title: Metall. Mater. Trans. A
– volume: 21
  start-page: 845
  year: 1973
  end-page: 853
  ident: bib0025
  publication-title: Acta Metall.
– volume: 526
  start-page: 62
  year: 2015
  end-page: 67
  ident: bib0009
  publication-title: Nature
– volume: 107
  start-page: 127
  year: 2015
  end-page: 130
  ident: bib0004
  publication-title: Scr. Mater.
– volume: 187
  start-page: 24
  year: 2020
  end-page: 29
  ident: bib0018
  publication-title: Scr. Mater.
– volume: 128
  start-page: 107
  year: 2017
  end-page: 112
  ident: bib0003
  publication-title: Scr. Mater.
– volume: 149
  start-page: 350
  year: 2018
  end-page: 363
  ident: bib0013
  publication-title: Acta Mater.
– volume: 186
  start-page: 278
  year: 2020
  end-page: 290
  ident: bib0014
  publication-title: Acta Mater.
– volume: 6
  start-page: 277
  year: 2018
  ident: 10.1016/j.scriptamat.2021.114414_bib0005
  publication-title: J. Magnes. Alloy
  doi: 10.1016/j.jma.2018.08.001
– volume: 64
  start-page: 27
  year: 2018
  ident: 10.1016/j.scriptamat.2021.114414_bib0006
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2017.1421439
– volume: 21
  start-page: 845
  year: 1973
  ident: 10.1016/j.scriptamat.2021.114414_bib0025
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(73)90141-7
– volume: 128
  start-page: 107
  year: 2017
  ident: 10.1016/j.scriptamat.2021.114414_bib0003
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.07.035
– volume: 803
  year: 2021
  ident: 10.1016/j.scriptamat.2021.114414_bib0027
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.140569
– year: 2017
  ident: 10.1016/j.scriptamat.2021.114414_bib0020
– volume: 193
  start-page: 142
  year: 2021
  ident: 10.1016/j.scriptamat.2021.114414_bib0010
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.10.052
– volume: 365
  start-page: 73
  year: 2019
  ident: 10.1016/j.scriptamat.2021.114414_bib0024
  publication-title: Science
  doi: 10.1126/science.aaw2843
– volume: 9
  start-page: 2522
  year: 2018
  ident: 10.1016/j.scriptamat.2021.114414_bib0028
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04981-4
– volume: 149
  start-page: 350
  year: 2018
  ident: 10.1016/j.scriptamat.2021.114414_bib0013
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.03.002
– volume: 51
  start-page: 6045
  year: 2020
  ident: 10.1016/j.scriptamat.2021.114414_bib0007
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-020-05974-z
– volume: 9
  start-page: 41
  year: 2021
  ident: 10.1016/j.scriptamat.2021.114414_bib0002
  publication-title: J. Magnes. Alloy
  doi: 10.1016/j.jma.2020.08.016
– volume: 9
  start-page: 329
  year: 2021
  ident: 10.1016/j.scriptamat.2021.114414_bib0016
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2021.1918776
– volume: 831
  year: 2022
  ident: 10.1016/j.scriptamat.2021.114414_bib0019
  publication-title: Mater. Sci. Eng. A
– volume: 200
  start-page: 274
  year: 2020
  ident: 10.1016/j.scriptamat.2021.114414_bib0011
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.09.024
– volume: 84-85
  start-page: 1
  year: 2014
  ident: 10.1016/j.scriptamat.2021.114414_bib0001
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2014.04.017
– year: 2009
  ident: 10.1016/j.scriptamat.2021.114414_bib0023
– volume: 28
  start-page: 30
  year: 2021
  ident: 10.1016/j.scriptamat.2021.114414_bib0026
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-020-2190-1
– volume: 50A
  start-page: 4344
  year: 2019
  ident: 10.1016/j.scriptamat.2021.114414_bib0012
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-019-05318-6
– volume: 526
  start-page: 62
  year: 2015
  ident: 10.1016/j.scriptamat.2021.114414_bib0009
  publication-title: Nature
  doi: 10.1038/nature15364
– volume: 186
  start-page: 278
  year: 2020
  ident: 10.1016/j.scriptamat.2021.114414_bib0014
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.01.017
– volume: 772
  year: 2020
  ident: 10.1016/j.scriptamat.2021.114414_bib0017
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138796
– volume: 160
  start-page: 97
  year: 2018
  ident: 10.1016/j.scriptamat.2021.114414_bib0021
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.08.045
– volume: 359
  start-page: 447
  year: 2018
  ident: 10.1016/j.scriptamat.2021.114414_bib0008
  publication-title: Science
  doi: 10.1126/science.aap8716
– year: 2021
  ident: 10.1016/j.scriptamat.2021.114414_bib0015
  publication-title: J. Magnes. Alloy
– volume: 187
  start-page: 24
  year: 2020
  ident: 10.1016/j.scriptamat.2021.114414_bib0018
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.06.001
– volume: 237
  start-page: 65
  year: 2019
  ident: 10.1016/j.scriptamat.2021.114414_bib0022
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.11.080
– volume: 107
  start-page: 127
  year: 2015
  ident: 10.1016/j.scriptamat.2021.114414_bib0004
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.06.002
SSID ssj0006121
Score 2.6666186
Snippet A new low-alloyed Mg-2Sm-0.8Mn-0.6Ca-0.5Zn (wt.%) alloy is prepared by low-temperature and low-speed extrusion. The as-extruded alloy has ultra-high yield...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114414
SubjectTerms Dislocations
Grain boundary segregation
High ductility
High strength
Magnesium alloys
Title Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation
URI https://dx.doi.org/10.1016/j.scriptamat.2021.114414
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIrxmHLgGtY06UucpgEaILjApN2qpk7G0NQhVkC7cOdfE6fdBhISSByb2lUVO7Gd2J8JOeYcpLW7goEPikkTAVNSKJbl2NIY4jB2oD43t2G3J6_6QX-JdGa1MJhWWe_91Z7udut6pFXPZutpOGzdcREkoQx9G7Rg9aarYJcRavnJ-yLNAxGyXNAVJAyp62yeKserWpmZ9Q1tpOhzBM6VXP5sor6YnYsNsl77i7Rd_dImWdLFFln7giK4TT7O5oVPNKOj8RvDy_SpBmosERtgEwj7cGPf4jjFo1eKMMUUC0WKQfnAEPQVk2SnFK0a0HFBYThBO4dyo_q1VlCaFUDdB6ly_Ziep3Sibcg-cIQ7pHdxft_psrrDAsvtWi5ZrAT2jc-BCy5zL8gjA16o8TZGRRwS6eUAfuwZyRMJOpHa8zNjvSSItKVQYpcsF-NC7xGqbZxtgzejpfTtNJskNwKUiYXQwsgwaJBoNqlpXsOPYxeMUTrLM3tMF-JIURxpJY4G4XPOpwqC4w88pzO5pd_UKbWW4lfu_X9xH5BVH2skXKLaIVkun1_0kfVcStV0qtkkK-3L6-7tJ1Wu8fw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELZQ-8D2gBhjWgcDP_BqNY6dX-KpYqsKpX0ZSLxFcc4unVBaQQH1T-C_5i5xO5CQhsRjHF8U-Zy7--K77xg7khI0-l0lIAQjtEtAGK2MKEpqaQxpnNakPqNxPLjUZ1fR1QY7WdXCUFqlt_2NTa-ttR_p-tXszqfT7h-poizWcYighao3EQK1iZ0qarF273Q4GK8NMpFk1bgrygQJ-ISeJs2r-TgLDA8RLIaSuHO11G97qReep7_NtnzIyHvNW31hG7baYZ9fEAl-ZU-_1rVPvOA3s0dB5-lLC9zhJDGhPhB4McK7NM7p7ysnpmJOtSLVZHEtiPeV8mSXnBwb8FnFYXpHro5Ux-2D36O8qIDXD-Smbsl0u-R3FlH7pJ64yy77vy9OBsI3WRAlfs4LkRpFreNLkErqMojKxEEQWzqQMYmETAclQJgGTstMg820DcLCYaAEicUZRn1jrWpW2e-MW4TaiN-c1TrEZXZZ6RQYlyplldNx1GHJalHz0jOQUyOMm3yVavY3_6eOnNSRN-roMLmWnDcsHO-QOV7pLX-1o3J0Fv-V_vEh6UO2ObgYnefnp-PhHvsUUslEnbe2z1qL23v7EwOZhTnwG_UZlxH0rQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+low-alloyed+fine-grained+Mg+alloy+with+high+strength-ductility+based+on+dislocation+evolution+and+grain+boundary+segregation&rft.jtitle=Scripta+materialia&rft.au=Zhang%2C+Zhi&rft.au=Zhang%2C+Jinghuai&rft.au=Xie%2C+Jinshu&rft.au=Liu%2C+Shujuan&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6462&rft.eissn=1872-8456&rft.volume=209&rft_id=info:doi/10.1016%2Fj.scriptamat.2021.114414&rft.externalDocID=S1359646221006941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6462&client=summon