Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation
A new low-alloyed Mg-2Sm-0.8Mn-0.6Ca-0.5Zn (wt.%) alloy is prepared by low-temperature and low-speed extrusion. The as-extruded alloy has ultra-high yield strength (YS, 453 MPa) but poor elongation (3.2%) mainly due to the formation of a fine-grained structure containing high-density residual disloc...
Saved in:
Published in | Scripta materialia Vol. 209; p. 114414 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new low-alloyed Mg-2Sm-0.8Mn-0.6Ca-0.5Zn (wt.%) alloy is prepared by low-temperature and low-speed extrusion. The as-extruded alloy has ultra-high yield strength (YS, 453 MPa) but poor elongation (3.2%) mainly due to the formation of a fine-grained structure containing high-density residual dislocations and Mn nanoparticles. More importantly, after subsequent simple annealing, the alloy exhibits an excellent combination of high-strength and high-ductility, with the YS of 403 MPa and elongation of 15.5%. The effective inhibition of grain growth by grain boundary (GB) co-segregation of Sm/Zn/Ca is crucial for the annealed alloy to maintain high strength. Appropriately decreased dislocation density, especially the evolution of immovable long S-<c+a> dislocations towards new GBs, is a key factor for the remarkable increase of ductility for the annealed alloy. Thus, we put forward a new strategy for developing low-alloyed Mg alloy with high strength-ductility mainly based on dislocation evolution and GB segregation.
[Display omitted] |
---|---|
AbstractList | A new low-alloyed Mg-2Sm-0.8Mn-0.6Ca-0.5Zn (wt.%) alloy is prepared by low-temperature and low-speed extrusion. The as-extruded alloy has ultra-high yield strength (YS, 453 MPa) but poor elongation (3.2%) mainly due to the formation of a fine-grained structure containing high-density residual dislocations and Mn nanoparticles. More importantly, after subsequent simple annealing, the alloy exhibits an excellent combination of high-strength and high-ductility, with the YS of 403 MPa and elongation of 15.5%. The effective inhibition of grain growth by grain boundary (GB) co-segregation of Sm/Zn/Ca is crucial for the annealed alloy to maintain high strength. Appropriately decreased dislocation density, especially the evolution of immovable long S-<c+a> dislocations towards new GBs, is a key factor for the remarkable increase of ductility for the annealed alloy. Thus, we put forward a new strategy for developing low-alloyed Mg alloy with high strength-ductility mainly based on dislocation evolution and GB segregation.
[Display omitted] |
ArticleNumber | 114414 |
Author | Xie, Jinshu Wu, Ruizhi Zhang, Jinghuai Guan, Kai Zhang, Zhi He, Yuying Liu, Shujuan |
Author_xml | – sequence: 1 givenname: Zhi surname: Zhang fullname: Zhang, Zhi organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 2 givenname: Jinghuai surname: Zhang fullname: Zhang, Jinghuai email: zhangjinghuai@hrbeu.edu.cn organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 3 givenname: Jinshu surname: Xie fullname: Xie, Jinshu organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 4 givenname: Shujuan surname: Liu fullname: Liu, Shujuan organization: Key Laboratory of Micro-systems and Micro-structures Manufacturing, (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China – sequence: 5 givenname: Yuying surname: He fullname: He, Yuying organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 6 givenname: Kai surname: Guan fullname: Guan, Kai organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 7 givenname: Ruizhi surname: Wu fullname: Wu, Ruizhi organization: Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China |
BookMark | eNqNkE1OwzAQhS1UJNrCHXyBFDtxnHSDBOVXKmID68ixJ6kr165st1WPwK1xWyQkNrCap5k3n2beCA2ss4AQpmRCCeXXy0mQXq-jWIk4yUlOJ5QyRtkZGtK6yrOalXyQdFFOM854foFGISwJIZzmdIg-72ELxq217bHAxu0yYYzbg8KdtpD1XqSi8GuaHvp4p-MCL3S_wCF6sH1cZGojozY67nErQvI6i5UOxkkRddKwdWZzVMIqfATi1m2sEn6PA_Qe-qPxEp13wgS4-q5j9PH48D57zuZvTy-z23kmC1rHrG4LXrJaKlpQJkkpq04RDpyXVVtRNWVEKpXXpGN0yhRMGZBcdHnJVQXJ0RZjVJ-40rsQPHTN2utVOqahpDlE2iybn0ibQ6TNKdK0evNrVep4PD6mt8x_AHcnAKQHtxp8MmqwEpT2IGOjnP4b8gW7Ep-0 |
CitedBy_id | crossref_primary_10_1007_s11665_024_09371_0 crossref_primary_10_1080_21663831_2022_2158048 crossref_primary_10_1007_s11665_022_07646_y crossref_primary_10_1016_j_msea_2022_143238 crossref_primary_10_3390_met12081341 crossref_primary_10_1063_5_0219468 crossref_primary_10_3390_nano13071219 crossref_primary_10_1016_j_jmrt_2024_01_166 crossref_primary_10_1016_j_jmrt_2024_10_131 crossref_primary_10_1016_j_jallcom_2023_169212 crossref_primary_10_1016_j_jma_2024_03_021 crossref_primary_10_1016_j_jmrt_2022_10_122 crossref_primary_10_1016_j_actamat_2023_118949 crossref_primary_10_1016_j_jallcom_2024_175989 crossref_primary_10_1007_s12613_022_2572_7 crossref_primary_10_1016_j_jmrt_2024_02_131 crossref_primary_10_1016_j_jre_2024_10_007 crossref_primary_10_1007_s10853_023_08877_7 crossref_primary_10_1088_1402_4896_acbdd3 crossref_primary_10_1016_j_jma_2023_01_002 crossref_primary_10_1016_j_jallcom_2022_164219 crossref_primary_10_1016_j_scriptamat_2022_114963 crossref_primary_10_1016_j_jma_2024_03_016 crossref_primary_10_1016_j_jmrt_2023_12_127 crossref_primary_10_3390_ma18051036 crossref_primary_10_1016_j_jmapro_2022_07_057 crossref_primary_10_3390_molecules29174138 crossref_primary_10_1016_j_jmrt_2024_01_175 crossref_primary_10_1016_j_msea_2023_146066 crossref_primary_10_1016_j_matchar_2022_112336 crossref_primary_10_1016_j_jallcom_2022_165937 crossref_primary_10_1080_21663831_2024_2342511 crossref_primary_10_1016_j_matlet_2024_136691 crossref_primary_10_1016_j_jre_2024_06_039 crossref_primary_10_1016_j_msea_2023_145119 crossref_primary_10_1016_j_jma_2024_12_008 crossref_primary_10_1016_j_jmst_2023_01_005 crossref_primary_10_1016_j_jma_2024_12_007 crossref_primary_10_3390_cryst14100908 crossref_primary_10_1016_j_jma_2024_12_002 crossref_primary_10_1016_j_matchar_2023_113420 crossref_primary_10_1007_s11015_024_01709_2 crossref_primary_10_1016_j_jnucmat_2024_154912 crossref_primary_10_1007_s11837_025_07169_6 crossref_primary_10_1016_j_msea_2023_144827 crossref_primary_10_1016_j_jmst_2022_12_014 crossref_primary_10_1016_j_jmrt_2024_12_079 crossref_primary_10_1007_s10853_022_07961_8 crossref_primary_10_1016_j_jma_2023_06_009 crossref_primary_10_1016_j_ijplas_2023_103548 crossref_primary_10_1016_j_jallcom_2023_171880 crossref_primary_10_1016_j_matchar_2024_114308 crossref_primary_10_2139_ssrn_4123042 crossref_primary_10_1016_j_jallcom_2022_166337 crossref_primary_10_1016_j_jma_2023_10_004 crossref_primary_10_3390_ma15227986 crossref_primary_10_1007_s12613_022_2472_x crossref_primary_10_1016_j_jma_2024_12_011 crossref_primary_10_1016_j_jmrt_2022_09_108 crossref_primary_10_1016_j_jmrt_2023_08_180 crossref_primary_10_1016_j_jallcom_2024_174669 crossref_primary_10_1016_j_msea_2022_144083 crossref_primary_10_1016_j_ijplas_2023_103679 crossref_primary_10_1016_j_msea_2022_143272 crossref_primary_10_1016_j_jma_2023_04_003 crossref_primary_10_1016_j_jallcom_2023_172187 crossref_primary_10_1016_j_jmrt_2023_06_108 crossref_primary_10_1007_s11771_024_5675_7 crossref_primary_10_1016_j_fmre_2024_08_001 crossref_primary_10_1016_j_jmrt_2023_08_111 crossref_primary_10_1016_j_jmrt_2024_02_171 crossref_primary_10_1016_j_scriptamat_2024_116412 crossref_primary_10_1016_S1003_6326_23_66311_3 crossref_primary_10_1016_j_jmrt_2022_05_024 crossref_primary_10_1016_j_jmrt_2022_06_064 crossref_primary_10_1016_j_jre_2024_05_010 crossref_primary_10_1016_j_jre_2024_05_014 crossref_primary_10_1016_j_jre_2024_07_025 crossref_primary_10_1016_j_jma_2024_04_030 crossref_primary_10_1016_j_ijplas_2022_103362 crossref_primary_10_1016_j_scriptamat_2025_116542 crossref_primary_10_1016_j_matchar_2022_111972 crossref_primary_10_1016_j_jmst_2023_07_051 crossref_primary_10_1016_j_matchar_2022_112428 crossref_primary_10_1016_j_jmst_2023_11_042 crossref_primary_10_1007_s10853_024_10161_1 crossref_primary_10_1016_j_jallcom_2022_164533 crossref_primary_10_1016_j_msea_2022_143962 crossref_primary_10_1016_j_msea_2025_147906 crossref_primary_10_1007_s12540_024_01648_2 crossref_primary_10_1007_s10853_025_10625_y crossref_primary_10_1016_j_jallcom_2023_169523 crossref_primary_10_1016_j_jmrt_2023_04_171 crossref_primary_10_1016_j_jmrt_2023_10_041 crossref_primary_10_1016_j_jmrt_2022_07_019 crossref_primary_10_1080_21663831_2024_2438872 crossref_primary_10_1016_j_actbio_2024_12_050 crossref_primary_10_1016_S1003_6326_22_66037_0 crossref_primary_10_1007_s11665_022_07473_1 crossref_primary_10_1007_s11665_023_08277_7 crossref_primary_10_1007_s12540_022_01354_x crossref_primary_10_1016_j_msea_2024_146562 crossref_primary_10_1007_s11665_023_08980_5 crossref_primary_10_1016_j_jallcom_2022_164863 crossref_primary_10_1016_j_jma_2023_08_022 crossref_primary_10_1016_j_msea_2022_143733 crossref_primary_10_1016_j_jmst_2023_03_057 crossref_primary_10_1016_j_jmst_2024_01_089 crossref_primary_10_1016_j_msea_2022_144309 crossref_primary_10_1080_17452759_2023_2279152 crossref_primary_10_1016_j_jma_2024_05_007 crossref_primary_10_1016_j_jma_2023_11_002 crossref_primary_10_1016_j_jma_2024_02_007 crossref_primary_10_1016_j_jallcom_2023_171041 crossref_primary_10_1007_s00170_022_09684_1 crossref_primary_10_1016_j_msea_2023_145201 crossref_primary_10_1016_j_jma_2022_10_027 crossref_primary_10_1016_j_matdes_2022_110696 crossref_primary_10_1016_j_jmrt_2023_11_181 crossref_primary_10_1016_j_jmrt_2024_12_206 crossref_primary_10_1016_j_msea_2022_143901 crossref_primary_10_1080_21663831_2025_2470886 crossref_primary_10_1002_adem_202201164 crossref_primary_10_1016_j_corsci_2022_110163 crossref_primary_10_1016_j_jmst_2024_12_008 crossref_primary_10_1016_j_jmrt_2023_10_023 crossref_primary_10_1016_j_jallcom_2024_175716 crossref_primary_10_3390_ma15175973 crossref_primary_10_1016_j_ijplas_2024_104185 crossref_primary_10_1016_j_jmrt_2022_08_117 crossref_primary_10_1016_j_jallcom_2025_179411 crossref_primary_10_1016_j_jmrt_2023_02_204 |
Cites_doi | 10.1016/j.jma.2018.08.001 10.1080/09506608.2017.1421439 10.1016/0001-6160(73)90141-7 10.1016/j.scriptamat.2016.07.035 10.1016/j.msea.2020.140569 10.1016/j.scriptamat.2020.10.052 10.1126/science.aaw2843 10.1038/s41467-018-04981-4 10.1016/j.actamat.2018.03.002 10.1007/s11661-020-05974-z 10.1016/j.jma.2020.08.016 10.1080/21663831.2021.1918776 10.1016/j.actamat.2020.09.024 10.1016/j.scriptamat.2014.04.017 10.1007/s12613-020-2190-1 10.1007/s11661-019-05318-6 10.1038/nature15364 10.1016/j.actamat.2020.01.017 10.1016/j.msea.2019.138796 10.1016/j.actamat.2018.08.045 10.1126/science.aap8716 10.1016/j.scriptamat.2020.06.001 10.1016/j.matlet.2018.11.080 10.1016/j.scriptamat.2015.06.002 |
ContentType | Journal Article |
Copyright | 2021 Acta Materialia Inc. |
Copyright_xml | – notice: 2021 Acta Materialia Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.scriptamat.2021.114414 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-8456 |
ExternalDocumentID | 10_1016_j_scriptamat_2021_114414 S1359646221006941 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH T9H |
ID | FETCH-LOGICAL-c318t-8b36548cd1314c05c7fd06e6657b71d940cdd280f4194de94e02af256d7e7b7b3 |
IEDL.DBID | .~1 |
ISSN | 1359-6462 |
IngestDate | Tue Jul 01 01:27:39 EDT 2025 Thu Apr 24 23:05:44 EDT 2025 Fri Feb 23 02:41:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High ductility High strength Grain boundary segregation Magnesium alloys Dislocations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-8b36548cd1314c05c7fd06e6657b71d940cdd280f4194de94e02af256d7e7b7b3 |
ParticipantIDs | crossref_primary_10_1016_j_scriptamat_2021_114414 crossref_citationtrail_10_1016_j_scriptamat_2021_114414 elsevier_sciencedirect_doi_10_1016_j_scriptamat_2021_114414 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 2022-03-00 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Scripta materialia |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Pan, Qin, Huang, Ren, Sha, Han, Liu, Li, Wu, Chen, He, Chai, Wang, Nie (bib0013) 2018; 149 Pan, Xie, Li, Xie, Huang, Yang, Qin (bib0016) 2021; 9 Zeng, Zhu, Nie, Xu, Davies, Birbilis (bib0012) 2019; 50A Peng, Tang, She, Zhang, Zhou, Song, Pan (bib0027) 2021; 803 Williams, Carter (bib0023) 2009 Pan, Yang, Yang, Dai, Zhou, Chai, Huang, Yang, Liu, Ren, Qin (bib0022) 2019; 237 Zhang, Liu, Wu, Hou, Zhang (bib0005) 2018; 6 Zeng, Zhu, Liu, Xu, Davies, Nie, Birbilis (bib0021) 2018; 160 Liu, Qiao, Pei, Chi, Yuan, Zheng (bib0015) 2021 She, Zhou, Peng, Tang, Wang, Pan, Yang, Pan (bib0017) 2020; 772 Pan, Kang, Li, Xie, Zeng, Huang, Yang, Ren, Qin (bib0014) 2020; 186 Suh, Shim, Shin, Kim (bib0001) 2014; 84-85 Joost, Krajewski (bib0003) 2017; 128 Wu, Curtin (bib0009) 2015; 526 Xie, Zhang, You, Liu, Guan, Wu, Wang, Feng (bib0002) 2021; 9 Li, Li, Pan, Xie, Zhang, Fang, Dai, Zhao, Zhang (bib0010) 2021; 193 Nie, Shin, Zeng (bib0007) 2020; 51 Zeng, Zhu, Bian, Xu, Davies, Birbilis, Nie (bib0004) 2015; 107 Obara, Yoshinga, Morozumi (bib0025) 1973; 21 Humphreys, Rohrer, Rollett (bib0020) 2017 Wu, Ahmad, Yin, Sandlöbes, Curtin (bib0008) 2018; 359 Liu, Liu, Yang, Zhai, Zhang, Yang, Li, Li, Ma, Nie, Shan (bib0024) 2019; 365 Wan, Tang, Gao, Tang, Sha, Zhang, Liang, Liu, Jiang, Chen, Guo, Zhao (bib0011) 2020; 200 Kim, Hong, Kim, Lee, Baek, Jeong, Park (bib0018) 2020; 187 Zhang, Zhang, Wang, Li, Xie, Liu, Guan, Wu (bib0026) 2021; 28 Zhang, Zhang, Xie, Liu, He, Wang, Fang, Fu, Jiao, Wu (bib0019) 2022; 831 Zeng, Stanford, Davies, Nie, Birbilis (bib0006) 2018; 64 Trang, Zhang, Kim, Zargaran, Hwang, Suh, Kim (bib0028) 2018; 9 Zeng (10.1016/j.scriptamat.2021.114414_bib0004) 2015; 107 Pan (10.1016/j.scriptamat.2021.114414_bib0013) 2018; 149 Wu (10.1016/j.scriptamat.2021.114414_bib0009) 2015; 526 Zhang (10.1016/j.scriptamat.2021.114414_bib0019) 2022; 831 Xie (10.1016/j.scriptamat.2021.114414_bib0002) 2021; 9 Liu (10.1016/j.scriptamat.2021.114414_bib0024) 2019; 365 Pan (10.1016/j.scriptamat.2021.114414_bib0014) 2020; 186 Zeng (10.1016/j.scriptamat.2021.114414_bib0006) 2018; 64 Humphreys (10.1016/j.scriptamat.2021.114414_bib0020) 2017 Kim (10.1016/j.scriptamat.2021.114414_bib0018) 2020; 187 Trang (10.1016/j.scriptamat.2021.114414_bib0028) 2018; 9 Obara (10.1016/j.scriptamat.2021.114414_bib0025) 1973; 21 Zhang (10.1016/j.scriptamat.2021.114414_bib0005) 2018; 6 Zeng (10.1016/j.scriptamat.2021.114414_bib0012) 2019; 50A Pan (10.1016/j.scriptamat.2021.114414_bib0016) 2021; 9 Wu (10.1016/j.scriptamat.2021.114414_bib0008) 2018; 359 Pan (10.1016/j.scriptamat.2021.114414_bib0022) 2019; 237 Williams (10.1016/j.scriptamat.2021.114414_bib0023) 2009 Zhang (10.1016/j.scriptamat.2021.114414_bib0026) 2021; 28 Suh (10.1016/j.scriptamat.2021.114414_bib0001) 2014; 84-85 Liu (10.1016/j.scriptamat.2021.114414_bib0015) 2021 She (10.1016/j.scriptamat.2021.114414_bib0017) 2020; 772 Li (10.1016/j.scriptamat.2021.114414_bib0010) 2021; 193 Zeng (10.1016/j.scriptamat.2021.114414_bib0021) 2018; 160 Joost (10.1016/j.scriptamat.2021.114414_bib0003) 2017; 128 Peng (10.1016/j.scriptamat.2021.114414_bib0027) 2021; 803 Nie (10.1016/j.scriptamat.2021.114414_bib0007) 2020; 51 Wan (10.1016/j.scriptamat.2021.114414_bib0011) 2020; 200 |
References_xml | – year: 2017 ident: bib0020 article-title: Recrystallization and Related Annealing Phenomena – volume: 803 year: 2021 ident: bib0027 publication-title: Mater. Sci. Eng. A – volume: 64 start-page: 27 year: 2018 end-page: 62 ident: bib0006 publication-title: Int. Mater. Rev. – volume: 193 start-page: 142 year: 2021 end-page: 146 ident: bib0010 publication-title: Scr. Mater. – volume: 9 start-page: 329 year: 2021 end-page: 335 ident: bib0016 publication-title: Mater. Res. Lett. – volume: 237 start-page: 65 year: 2019 end-page: 68 ident: bib0022 publication-title: Mater. Lett. – volume: 160 start-page: 97 year: 2018 end-page: 108 ident: bib0021 publication-title: Acta Mater. – volume: 200 start-page: 274 year: 2020 end-page: 286 ident: bib0011 publication-title: Acta Mater. – volume: 9 start-page: 41 year: 2021 end-page: 56 ident: bib0002 publication-title: J. Magnes. Alloy – volume: 28 start-page: 30 year: 2021 end-page: 45 ident: bib0026 publication-title: Int. J. Miner. Metall. Mater. – volume: 84-85 start-page: 1 year: 2014 end-page: 6 ident: bib0001 publication-title: Scr. Mater. – volume: 359 start-page: 447 year: 2018 end-page: 452 ident: bib0008 publication-title: Science – volume: 772 year: 2020 ident: bib0017 publication-title: Mater. Sci. Eng. A – year: 2009 ident: bib0023 article-title: Transmission Electron Microscopy: A Textbook For Materials Science – volume: 831 year: 2022 ident: bib0019 publication-title: Mater. Sci. Eng. A – volume: 6 start-page: 277 year: 2018 end-page: 291 ident: bib0005 publication-title: J. Magnes. Alloy – volume: 50A start-page: 4344 year: 2019 end-page: 4363 ident: bib0012 publication-title: Metall. Mater. Trans. A – year: 2021 ident: bib0015 publication-title: J. Magnes. Alloy – volume: 9 start-page: 2522 year: 2018 ident: bib0028 publication-title: Nat. Commun. – volume: 365 start-page: 73 year: 2019 end-page: 75 ident: bib0024 publication-title: Science – volume: 51 start-page: 6045 year: 2020 end-page: 6109 ident: bib0007 publication-title: Metall. Mater. Trans. A – volume: 21 start-page: 845 year: 1973 end-page: 853 ident: bib0025 publication-title: Acta Metall. – volume: 526 start-page: 62 year: 2015 end-page: 67 ident: bib0009 publication-title: Nature – volume: 107 start-page: 127 year: 2015 end-page: 130 ident: bib0004 publication-title: Scr. Mater. – volume: 187 start-page: 24 year: 2020 end-page: 29 ident: bib0018 publication-title: Scr. Mater. – volume: 128 start-page: 107 year: 2017 end-page: 112 ident: bib0003 publication-title: Scr. Mater. – volume: 149 start-page: 350 year: 2018 end-page: 363 ident: bib0013 publication-title: Acta Mater. – volume: 186 start-page: 278 year: 2020 end-page: 290 ident: bib0014 publication-title: Acta Mater. – volume: 6 start-page: 277 year: 2018 ident: 10.1016/j.scriptamat.2021.114414_bib0005 publication-title: J. Magnes. Alloy doi: 10.1016/j.jma.2018.08.001 – volume: 64 start-page: 27 year: 2018 ident: 10.1016/j.scriptamat.2021.114414_bib0006 publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2017.1421439 – volume: 21 start-page: 845 year: 1973 ident: 10.1016/j.scriptamat.2021.114414_bib0025 publication-title: Acta Metall. doi: 10.1016/0001-6160(73)90141-7 – volume: 128 start-page: 107 year: 2017 ident: 10.1016/j.scriptamat.2021.114414_bib0003 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.07.035 – volume: 803 year: 2021 ident: 10.1016/j.scriptamat.2021.114414_bib0027 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.140569 – year: 2017 ident: 10.1016/j.scriptamat.2021.114414_bib0020 – volume: 193 start-page: 142 year: 2021 ident: 10.1016/j.scriptamat.2021.114414_bib0010 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.10.052 – volume: 365 start-page: 73 year: 2019 ident: 10.1016/j.scriptamat.2021.114414_bib0024 publication-title: Science doi: 10.1126/science.aaw2843 – volume: 9 start-page: 2522 year: 2018 ident: 10.1016/j.scriptamat.2021.114414_bib0028 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04981-4 – volume: 149 start-page: 350 year: 2018 ident: 10.1016/j.scriptamat.2021.114414_bib0013 publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.03.002 – volume: 51 start-page: 6045 year: 2020 ident: 10.1016/j.scriptamat.2021.114414_bib0007 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-020-05974-z – volume: 9 start-page: 41 year: 2021 ident: 10.1016/j.scriptamat.2021.114414_bib0002 publication-title: J. Magnes. Alloy doi: 10.1016/j.jma.2020.08.016 – volume: 9 start-page: 329 year: 2021 ident: 10.1016/j.scriptamat.2021.114414_bib0016 publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2021.1918776 – volume: 831 year: 2022 ident: 10.1016/j.scriptamat.2021.114414_bib0019 publication-title: Mater. Sci. Eng. A – volume: 200 start-page: 274 year: 2020 ident: 10.1016/j.scriptamat.2021.114414_bib0011 publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.09.024 – volume: 84-85 start-page: 1 year: 2014 ident: 10.1016/j.scriptamat.2021.114414_bib0001 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2014.04.017 – year: 2009 ident: 10.1016/j.scriptamat.2021.114414_bib0023 – volume: 28 start-page: 30 year: 2021 ident: 10.1016/j.scriptamat.2021.114414_bib0026 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-020-2190-1 – volume: 50A start-page: 4344 year: 2019 ident: 10.1016/j.scriptamat.2021.114414_bib0012 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-019-05318-6 – volume: 526 start-page: 62 year: 2015 ident: 10.1016/j.scriptamat.2021.114414_bib0009 publication-title: Nature doi: 10.1038/nature15364 – volume: 186 start-page: 278 year: 2020 ident: 10.1016/j.scriptamat.2021.114414_bib0014 publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.01.017 – volume: 772 year: 2020 ident: 10.1016/j.scriptamat.2021.114414_bib0017 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138796 – volume: 160 start-page: 97 year: 2018 ident: 10.1016/j.scriptamat.2021.114414_bib0021 publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.08.045 – volume: 359 start-page: 447 year: 2018 ident: 10.1016/j.scriptamat.2021.114414_bib0008 publication-title: Science doi: 10.1126/science.aap8716 – year: 2021 ident: 10.1016/j.scriptamat.2021.114414_bib0015 publication-title: J. Magnes. Alloy – volume: 187 start-page: 24 year: 2020 ident: 10.1016/j.scriptamat.2021.114414_bib0018 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.06.001 – volume: 237 start-page: 65 year: 2019 ident: 10.1016/j.scriptamat.2021.114414_bib0022 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.11.080 – volume: 107 start-page: 127 year: 2015 ident: 10.1016/j.scriptamat.2021.114414_bib0004 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.06.002 |
SSID | ssj0006121 |
Score | 2.6666186 |
Snippet | A new low-alloyed Mg-2Sm-0.8Mn-0.6Ca-0.5Zn (wt.%) alloy is prepared by low-temperature and low-speed extrusion. The as-extruded alloy has ultra-high yield... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 114414 |
SubjectTerms | Dislocations Grain boundary segregation High ductility High strength Magnesium alloys |
Title | Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation |
URI | https://dx.doi.org/10.1016/j.scriptamat.2021.114414 |
Volume | 209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIrxmHLgGtY06UucpgEaILjApN2qpk7G0NQhVkC7cOdfE6fdBhISSByb2lUVO7Gd2J8JOeYcpLW7goEPikkTAVNSKJbl2NIY4jB2oD43t2G3J6_6QX-JdGa1MJhWWe_91Z7udut6pFXPZutpOGzdcREkoQx9G7Rg9aarYJcRavnJ-yLNAxGyXNAVJAyp62yeKserWpmZ9Q1tpOhzBM6VXP5sor6YnYsNsl77i7Rd_dImWdLFFln7giK4TT7O5oVPNKOj8RvDy_SpBmosERtgEwj7cGPf4jjFo1eKMMUUC0WKQfnAEPQVk2SnFK0a0HFBYThBO4dyo_q1VlCaFUDdB6ly_Ziep3Sibcg-cIQ7pHdxft_psrrDAsvtWi5ZrAT2jc-BCy5zL8gjA16o8TZGRRwS6eUAfuwZyRMJOpHa8zNjvSSItKVQYpcsF-NC7xGqbZxtgzejpfTtNJskNwKUiYXQwsgwaJBoNqlpXsOPYxeMUTrLM3tMF-JIURxpJY4G4XPOpwqC4w88pzO5pd_UKbWW4lfu_X9xH5BVH2skXKLaIVkun1_0kfVcStV0qtkkK-3L6-7tJ1Wu8fw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELZQ-8D2gBhjWgcDP_BqNY6dX-KpYqsKpX0ZSLxFcc4unVBaQQH1T-C_5i5xO5CQhsRjHF8U-Zy7--K77xg7khI0-l0lIAQjtEtAGK2MKEpqaQxpnNakPqNxPLjUZ1fR1QY7WdXCUFqlt_2NTa-ttR_p-tXszqfT7h-poizWcYighao3EQK1iZ0qarF273Q4GK8NMpFk1bgrygQJ-ISeJs2r-TgLDA8RLIaSuHO11G97qReep7_NtnzIyHvNW31hG7baYZ9fEAl-ZU-_1rVPvOA3s0dB5-lLC9zhJDGhPhB4McK7NM7p7ysnpmJOtSLVZHEtiPeV8mSXnBwb8FnFYXpHro5Ux-2D36O8qIDXD-Smbsl0u-R3FlH7pJ64yy77vy9OBsI3WRAlfs4LkRpFreNLkErqMojKxEEQWzqQMYmETAclQJgGTstMg820DcLCYaAEicUZRn1jrWpW2e-MW4TaiN-c1TrEZXZZ6RQYlyplldNx1GHJalHz0jOQUyOMm3yVavY3_6eOnNSRN-roMLmWnDcsHO-QOV7pLX-1o3J0Fv-V_vEh6UO2ObgYnefnp-PhHvsUUslEnbe2z1qL23v7EwOZhTnwG_UZlxH0rQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+low-alloyed+fine-grained+Mg+alloy+with+high+strength-ductility+based+on+dislocation+evolution+and+grain+boundary+segregation&rft.jtitle=Scripta+materialia&rft.au=Zhang%2C+Zhi&rft.au=Zhang%2C+Jinghuai&rft.au=Xie%2C+Jinshu&rft.au=Liu%2C+Shujuan&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6462&rft.eissn=1872-8456&rft.volume=209&rft_id=info:doi/10.1016%2Fj.scriptamat.2021.114414&rft.externalDocID=S1359646221006941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6462&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6462&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6462&client=summon |