Model predictive control of an active ankle-foot orthosis with non-linear actuation constraints

The goal of active ankle-foot orthoses (AAFO) is to assist the user in recreating a nominal gait motion. Previously proposed control systems for AAFOs have been reactive, with controllers based on the current tracking error. However, the optimal AAFO controller must ensure adequate trajectory tracki...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 136; p. 105538
Main Authors DeBoer, Benjamin, Hosseini, Ali, Rossa, Carlos
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The goal of active ankle-foot orthoses (AAFO) is to assist the user in recreating a nominal gait motion. Previously proposed control systems for AAFOs have been reactive, with controllers based on the current tracking error. However, the optimal AAFO controller must ensure adequate trajectory tracking while minimizing the amount of assistance provided to the user. To this end, a model predictive controller (MPC) can be considered to determine the optimal control sequence for a given trajectory. The MPC minimizes the control effort, thereby determining the minimal assistance required for a user to regain a natural gait. This work outlines the formulation of a non-linear MPC for an AAFO and its combination with an extended state observer (ESO) for tracking of an AAFO. In this work, a MPC controller is proposed for optimal control of an AAFO, a linear plant subject to non-linear actuation constraints. A novel method is expressed to determine the initial control horizon selection in combination with variable step Newton-based optimization to enable real-time implementation. The MPC control effort is then combined with the estimated disturbance from an ESO to accurately track the desired gait. Simulations and experimental results prove the tracking capabilities of the proposed method. Compared to a tuned proportional–derivative controller, the simulated controller reduced the trajectory tracking error by up to 65.1% and 15.3% in an undisturbed and disturbed environment, respectively. The MPC and ESO combination allows the controller to identify the optimal control action for accurate trajectory tracking. Concurrently, the ESO rejects both external and internal disturbances, with superior tracking capabilities in both undisturbed and heavily disturbed systems, making it the optimal choice for AAFO control.
AbstractList The goal of active ankle-foot orthoses (AAFO) is to assist the user in recreating a nominal gait motion. Previously proposed control systems for AAFOs have been reactive, with controllers based on the current tracking error. However, the optimal AAFO controller must ensure adequate trajectory tracking while minimizing the amount of assistance provided to the user. To this end, a model predictive controller (MPC) can be considered to determine the optimal control sequence for a given trajectory. The MPC minimizes the control effort, thereby determining the minimal assistance required for a user to regain a natural gait. This work outlines the formulation of a non-linear MPC for an AAFO and its combination with an extended state observer (ESO) for tracking of an AAFO. In this work, a MPC controller is proposed for optimal control of an AAFO, a linear plant subject to non-linear actuation constraints. A novel method is expressed to determine the initial control horizon selection in combination with variable step Newton-based optimization to enable real-time implementation. The MPC control effort is then combined with the estimated disturbance from an ESO to accurately track the desired gait. Simulations and experimental results prove the tracking capabilities of the proposed method. Compared to a tuned proportional–derivative controller, the simulated controller reduced the trajectory tracking error by up to 65.1% and 15.3% in an undisturbed and disturbed environment, respectively. The MPC and ESO combination allows the controller to identify the optimal control action for accurate trajectory tracking. Concurrently, the ESO rejects both external and internal disturbances, with superior tracking capabilities in both undisturbed and heavily disturbed systems, making it the optimal choice for AAFO control.
ArticleNumber 105538
Author Rossa, Carlos
DeBoer, Benjamin
Hosseini, Ali
Author_xml – sequence: 1
  givenname: Benjamin
  orcidid: 0000-0003-1377-4024
  surname: DeBoer
  fullname: DeBoer, Benjamin
  email: benjamin.deboer1@ontariotechu.net
  organization: Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada
– sequence: 2
  givenname: Ali
  orcidid: 0000-0001-6816-3824
  surname: Hosseini
  fullname: Hosseini, Ali
  email: SayyedAli.Hosseini@ontariotechu.ca
  organization: Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada
– sequence: 3
  givenname: Carlos
  surname: Rossa
  fullname: Rossa, Carlos
  email: rossa@sce.carleton.ca
  organization: Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
BookMark eNqNkNFKwzAYhYNMcJu-Q16gM2nWNrkRdKgTJt7odUiTvy6zJiOJE9_e1AqCN3oVOPzn4-SboYnzDhDClCwoofX5bqFz4J73QelFSUqW46pi_AhNKW9YUQsmJmhKRN0UpK7pCZrFuCO5KgSdInnvDfR4H8BYnewBcMal4HvsO6wcVmOo3EsPRed9wj6krY824nebtjivKXrrQIXh9E0l692AiCko61I8Rced6iOcfb9z9HRz_bhaF5uH27vV5abQjPJUcNEuiWmg6xgVy4rCsjKsNVSZqgXOS9ZqlW-6RglDuS5rQXWtDZSmNaZtCJuji5Grg48xQCe1TV9rhiG9pEQOuuRO_uiSgy456soA_guwD_ZVhY__VK_GKuQPHiwEGbUFp7PSADpJ4-3fkE-6RJEp
CitedBy_id crossref_primary_10_1016_j_est_2025_116242
Cites_doi 10.1109/SMC52423.2021.9659164
10.1016/j.conengprac.2020.104667
10.1109/TIE.2008.2011621
10.1016/j.mechatronics.2021.102554
10.1016/j.gaitpost.2010.08.009
10.1109/OJEMB.2020.2984429
10.1109/IROS.2013.6696470
10.1080/00207179.2017.1346299
10.1109/LRA.2022.3167065
10.1109/SMC52423.2021.9659241
10.1007/s40998-020-00358-w
10.1109/TNSRE.2003.823266
10.1049/ip-cta:20040008
10.1016/j.conengprac.2019.06.003
10.3390/app9204416
10.1016/j.conengprac.2021.104733
10.4316/AECE.2021.01007
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conengprac.2023.105538
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
ExternalDocumentID 10_1016_j_conengprac_2023_105538
S0967066123001077
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c318t-89b40d7eff319451e45d3bd1ad5be8823bca89bf7a9d18c2691c6cde2dbddb703
IEDL.DBID .~1
ISSN 0967-0661
IngestDate Tue Jul 01 00:39:08 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
Fri Feb 23 02:36:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Active ankle-foot orthosis
Non-linear model predictive control
Active disturbance rejection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-89b40d7eff319451e45d3bd1ad5be8823bca89bf7a9d18c2691c6cde2dbddb703
ORCID 0000-0003-1377-4024
0000-0001-6816-3824
ParticipantIDs crossref_citationtrail_10_1016_j_conengprac_2023_105538
crossref_primary_10_1016_j_conengprac_2023_105538
elsevier_sciencedirect_doi_10_1016_j_conengprac_2023_105538
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Control engineering practice
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zarandi, Sani, Tootoonchi (b20) 2021; 45
Wang, L., van Asseldonk, E. H., & van der Kooij, H. (2011). Model predictive control-based gait pattern generation for wearable exoskeletons. In
Kirtas, Savas, Bayraker (b14) 2021; 106
(pp. 1–6).
Adiputra, Rahman, Azizi (b1) 2019; 9
(pp. 983–989).
Arnez-Paniagua, Rifaï, Amirat (b2) 2019; 90
Ulkir, Akgun, Nasab (b18) 2021; 21
DeBoon, Nokleby, Rossa (b10) 2021; 109
Diehl, Findeisen, Allgöwer (b11) 2005; 152
Kuo, S.-Y., Wu, C.-H., Chen, C.-C., et al. (2021). A Novel Metaheuristic: Fast Jaguar Algorithm. In
Steinboeck, Guay, Kugi (b17) 2020; 93
Blaya, Herr (b5) 2004; 12
Benoussaad, M., Mombaur, K., & Azevedo-Coste, C. (2013). Nonlinear model predictive control of joint ankle by electrical stimulation for drop foot correction. In
Carolus, Becker, Cuny (b7) 2019; 116
Awad, Kudzia, Revi, Ellis, Walsh (b3) 2020; 1
Jammeli, Chemori, Moon, Elloumi, Mohammed (b13) 2021
(pp. 1105–1110).
Zhao, Yang, Sun (b21) 2021; 76
DeBoer, Hosseini, Rossa (b9) 2022; 7
Nakagaki, Zhai (b16) 2020
.
Bovi, Rabuffetti, Mazzoleni (b6) 2011; 33
Han (b12) 2009; 56
(pp. 146–151).
DeBoer, B., Hosseini, A., & Rossa, C. (2021). An Extended Parameter Estimation Disturbance Observer for an Active Ankle Foot Orthosis. In
Zhao (10.1016/j.conengprac.2023.105538_b21) 2021; 76
Zarandi (10.1016/j.conengprac.2023.105538_b20) 2021; 45
Bovi (10.1016/j.conengprac.2023.105538_b6) 2011; 33
Han (10.1016/j.conengprac.2023.105538_b12) 2009; 56
Nakagaki (10.1016/j.conengprac.2023.105538_b16) 2020
Kirtas (10.1016/j.conengprac.2023.105538_b14) 2021; 106
10.1016/j.conengprac.2023.105538_b19
DeBoon (10.1016/j.conengprac.2023.105538_b10) 2021; 109
10.1016/j.conengprac.2023.105538_b4
Steinboeck (10.1016/j.conengprac.2023.105538_b17) 2020; 93
Adiputra (10.1016/j.conengprac.2023.105538_b1) 2019; 9
Awad (10.1016/j.conengprac.2023.105538_b3) 2020; 1
10.1016/j.conengprac.2023.105538_b8
Diehl (10.1016/j.conengprac.2023.105538_b11) 2005; 152
Arnez-Paniagua (10.1016/j.conengprac.2023.105538_b2) 2019; 90
DeBoer (10.1016/j.conengprac.2023.105538_b9) 2022; 7
10.1016/j.conengprac.2023.105538_b15
Ulkir (10.1016/j.conengprac.2023.105538_b18) 2021; 21
Jammeli (10.1016/j.conengprac.2023.105538_b13) 2021
Blaya (10.1016/j.conengprac.2023.105538_b5) 2004; 12
Carolus (10.1016/j.conengprac.2023.105538_b7) 2019; 116
References_xml – volume: 116
  start-page: 347
  year: 2019
  ident: b7
  article-title: The interdisciplinary management of foot drop
  publication-title: Deutsches Ärzteblatt International
– volume: 1
  start-page: 108
  year: 2020
  end-page: 115
  ident: b3
  article-title: Walking faster and farther with a soft robotic exosuit: Implications for post-stroke gait assistance and rehabilitation
  publication-title: IEEE Open Journal of Engineering in Medicine and Biology
– reference: (pp. 983–989).
– reference: (pp. 1–6).
– reference: DeBoer, B., Hosseini, A., & Rossa, C. (2021). An Extended Parameter Estimation Disturbance Observer for an Active Ankle Foot Orthosis. In
– volume: 33
  start-page: 6
  year: 2011
  end-page: 13
  ident: b6
  article-title: A multiple-task gait analysis approach: kinematic, kinetic and emg reference data for healthy young and adult subjects
  publication-title: Gait & Posture
– year: 2020
  ident: b16
  article-title: A study on optimization algorithms in MPC
  publication-title: Journal of physics: conference series, Vol. 1490
– reference: Wang, L., van Asseldonk, E. H., & van der Kooij, H. (2011). Model predictive control-based gait pattern generation for wearable exoskeletons. In
– volume: 21
  start-page: 65
  year: 2021
  end-page: 74
  ident: b18
  article-title: Data-driven predictive control of a pneumatic ankle foot orthosis
  publication-title: Advances in Electrical and Computer Engineering
– volume: 45
  start-page: 309
  year: 2021
  end-page: 320
  ident: b20
  article-title: Design and implementation of a real-time nonlinear model predictive controller for a lower limb exoskeleton with input saturation
  publication-title: Iranian Journal of Science and Technology, Transactions of Electrical Engineering
– volume: 106
  year: 2021
  ident: b14
  article-title: Design, implementation, and evaluation of a backstepping control algorithm for an active ankle–foot orthosis
  publication-title: Control Engineering Practice
– volume: 152
  start-page: 296
  year: 2005
  end-page: 308
  ident: b11
  article-title: Nominal stability of real-time iteration scheme for nonlinear model predictive control
  publication-title: IEE Proceedings D (Control Theory and Applications)
– volume: 12
  start-page: 24
  year: 2004
  end-page: 31
  ident: b5
  article-title: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 9
  start-page: 4416
  year: 2019
  ident: b1
  article-title: Control reference parameter for stance assistance using a passive controlled ankle foot orthosis—A preliminary study
  publication-title: Applied Sciences
– year: 2021
  ident: b13
  article-title: An assistive explicit model predictive control framework for a knee rehabilitation exoskeleton
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 109
  year: 2021
  ident: b10
  article-title: Multi-objective gain optimizer for a multi-input active disturbance rejection controller: Application to series elastic actuators
  publication-title: Control Engineering Practice
– volume: 93
  start-page: 81
  year: 2020
  end-page: 97
  ident: b17
  article-title: A design technique for fast sampled-data nonlinear model predictive control with convergence and stability results
  publication-title: International Journal of Control
– volume: 76
  year: 2021
  ident: b21
  article-title: Sliding mode control combined with extended state observer for an ankle exoskeleton driven by electrical motor
  publication-title: Mechatronics
– reference: Kuo, S.-Y., Wu, C.-H., Chen, C.-C., et al. (2021). A Novel Metaheuristic: Fast Jaguar Algorithm. In
– reference: (pp. 1105–1110).
– volume: 56
  start-page: 900
  year: 2009
  end-page: 906
  ident: b12
  article-title: From PID to active disturbance rejection control
  publication-title: IEEE Transactions on Industrial Electronics
– reference: .
– reference: Benoussaad, M., Mombaur, K., & Azevedo-Coste, C. (2013). Nonlinear model predictive control of joint ankle by electrical stimulation for drop foot correction. In
– volume: 7
  start-page: 6211
  year: 2022
  end-page: 6217
  ident: b9
  article-title: A discrete non-linear series elastic actuator for active ankle-foot orthoses
  publication-title: IEEE Robotics and Automation Letters
– reference: (pp. 146–151).
– volume: 90
  start-page: 207
  year: 2019
  end-page: 220
  ident: b2
  article-title: Adaptive control of an actuated ankle foot orthosis for paretic patients
  publication-title: Control Engineering Practice
– volume: 116
  start-page: 347
  issue: 20
  year: 2019
  ident: 10.1016/j.conengprac.2023.105538_b7
  article-title: The interdisciplinary management of foot drop
  publication-title: Deutsches Ärzteblatt International
– ident: 10.1016/j.conengprac.2023.105538_b15
  doi: 10.1109/SMC52423.2021.9659164
– volume: 106
  year: 2021
  ident: 10.1016/j.conengprac.2023.105538_b14
  article-title: Design, implementation, and evaluation of a backstepping control algorithm for an active ankle–foot orthosis
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2020.104667
– volume: 56
  start-page: 900
  issue: 3
  year: 2009
  ident: 10.1016/j.conengprac.2023.105538_b12
  article-title: From PID to active disturbance rejection control
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2008.2011621
– volume: 76
  year: 2021
  ident: 10.1016/j.conengprac.2023.105538_b21
  article-title: Sliding mode control combined with extended state observer for an ankle exoskeleton driven by electrical motor
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2021.102554
– volume: 33
  start-page: 6
  issue: 1
  year: 2011
  ident: 10.1016/j.conengprac.2023.105538_b6
  article-title: A multiple-task gait analysis approach: kinematic, kinetic and emg reference data for healthy young and adult subjects
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2010.08.009
– volume: 1
  start-page: 108
  year: 2020
  ident: 10.1016/j.conengprac.2023.105538_b3
  article-title: Walking faster and farther with a soft robotic exosuit: Implications for post-stroke gait assistance and rehabilitation
  publication-title: IEEE Open Journal of Engineering in Medicine and Biology
  doi: 10.1109/OJEMB.2020.2984429
– ident: 10.1016/j.conengprac.2023.105538_b4
  doi: 10.1109/IROS.2013.6696470
– year: 2021
  ident: 10.1016/j.conengprac.2023.105538_b13
  article-title: An assistive explicit model predictive control framework for a knee rehabilitation exoskeleton
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 93
  start-page: 81
  issue: 1
  year: 2020
  ident: 10.1016/j.conengprac.2023.105538_b17
  article-title: A design technique for fast sampled-data nonlinear model predictive control with convergence and stability results
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2017.1346299
– ident: 10.1016/j.conengprac.2023.105538_b19
– volume: 7
  start-page: 6211
  issue: 3
  year: 2022
  ident: 10.1016/j.conengprac.2023.105538_b9
  article-title: A discrete non-linear series elastic actuator for active ankle-foot orthoses
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2022.3167065
– ident: 10.1016/j.conengprac.2023.105538_b8
  doi: 10.1109/SMC52423.2021.9659241
– volume: 45
  start-page: 309
  issue: 1
  year: 2021
  ident: 10.1016/j.conengprac.2023.105538_b20
  article-title: Design and implementation of a real-time nonlinear model predictive controller for a lower limb exoskeleton with input saturation
  publication-title: Iranian Journal of Science and Technology, Transactions of Electrical Engineering
  doi: 10.1007/s40998-020-00358-w
– volume: 12
  start-page: 24
  issue: 1
  year: 2004
  ident: 10.1016/j.conengprac.2023.105538_b5
  article-title: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2003.823266
– volume: 152
  start-page: 296
  issue: 3
  year: 2005
  ident: 10.1016/j.conengprac.2023.105538_b11
  article-title: Nominal stability of real-time iteration scheme for nonlinear model predictive control
  publication-title: IEE Proceedings D (Control Theory and Applications)
  doi: 10.1049/ip-cta:20040008
– volume: 90
  start-page: 207
  year: 2019
  ident: 10.1016/j.conengprac.2023.105538_b2
  article-title: Adaptive control of an actuated ankle foot orthosis for paretic patients
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2019.06.003
– volume: 9
  start-page: 4416
  issue: 20
  year: 2019
  ident: 10.1016/j.conengprac.2023.105538_b1
  article-title: Control reference parameter for stance assistance using a passive controlled ankle foot orthosis—A preliminary study
  publication-title: Applied Sciences
  doi: 10.3390/app9204416
– year: 2020
  ident: 10.1016/j.conengprac.2023.105538_b16
  article-title: A study on optimization algorithms in MPC
– volume: 109
  year: 2021
  ident: 10.1016/j.conengprac.2023.105538_b10
  article-title: Multi-objective gain optimizer for a multi-input active disturbance rejection controller: Application to series elastic actuators
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2021.104733
– volume: 21
  start-page: 65
  issue: 1
  year: 2021
  ident: 10.1016/j.conengprac.2023.105538_b18
  article-title: Data-driven predictive control of a pneumatic ankle foot orthosis
  publication-title: Advances in Electrical and Computer Engineering
  doi: 10.4316/AECE.2021.01007
SSID ssj0016991
Score 2.4065635
Snippet The goal of active ankle-foot orthoses (AAFO) is to assist the user in recreating a nominal gait motion. Previously proposed control systems for AAFOs have...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105538
SubjectTerms Active ankle-foot orthosis
Active disturbance rejection
Non-linear model predictive control
Title Model predictive control of an active ankle-foot orthosis with non-linear actuation constraints
URI https://dx.doi.org/10.1016/j.conengprac.2023.105538
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GDl47basabriaQzHVNhFB7uVfFUmox1rvfq3-96SzgmCgseGvLa8pL_80vzee4TccqtEFjLYmyiuAh5zEQwSEwXGDPqSY8oxp7aYismMP86jeYOM6lgYlFV67HeYvkFr39L13uyuFovuM5DvGBZMgF7c2MQYUc55jLO887GVeTCRuKp50Bmj7ZlX8ziNF2w5bf6K8UgdLCOORW8jjFT5aYnaWXbGR-TQ80U6dK90TBo2PyEHO1kET0mK9cyWdLXGMxdEL-r157TIqMypdI1YnN0GWVFUFM9qinJRUvwLS_MiD5BsyjV2dam_8RblpnxEVZ6R2fj-ZTQJfN2EQMMXWoGzFe-Z2GYwCAmPmOWRCZVh0kTKAqMOlZbQJ4tlYthA90XCtNDG9o0yRgEEnJMmPNpegKuEMTLrWRviWbDUwMc0UKJIi761mosWiWtXpdonFceXW6a1euwt_XJyik5OnZNbhG0tVy6xxh9s7urRSL9NkhTw_1fry39ZX5F9vHJK3WvSrNbv9gb4SKXamwnXJnvDh6fJ9BPAC-Mz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHNSD8RnxuQevFQrbLY0nQjQgyEVIuG32VYMhLYH6_51hF8TERBOv7U67-XY7M9t5fITcMat42gzhbKKYCljMeNBKTBQY02pIhi3HXLbFkHfH7HkSTUqks66FwbRKr_udTl9pa3-l5tGszafT2is43zEYTFC9eLCJ4x1Swe5UUZlU2r1-d7gJJvDEEefBeCy4D31Cj0vzglOnzd6wJOkemcSR9zbCYpWfrNSW5Xk6JAfeZaRtN6sjUrLZMdnfaiR4QgRSms3ofIFhF1Rg1Keg0zylMqPSXUR-dhukeV5QDNfky-mS4o9YmuVZgP6mXOBQ1_0bH7FcMUgUy1MyfnocdbqBp04INHykBeCtWN3ENoV1SFgUWhaZpjKhNJGy4FQ3lZYwJo1lYsKWbvAk1Fwb2zDKGAVa4IyU4dX2HKDixsi0bm0Tw8FSg0umwSuKNG9YqxmvkngNldC-rzhObibWCWTv4gtkgSALB3KVhBvJueut8QeZh_VqiG_7RIAJ-FX64l_St2S3O3oZiEFv2L8ke3jHJe5ekXKx-LDX4J4U6sZvv0-G_uXk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+predictive+control+of+an+active+ankle-foot+orthosis+with+non-linear+actuation+constraints&rft.jtitle=Control+engineering+practice&rft.au=DeBoer%2C+Benjamin&rft.au=Hosseini%2C+Ali&rft.au=Rossa%2C+Carlos&rft.date=2023-07-01&rft.issn=0967-0661&rft.volume=136&rft.spage=105538&rft_id=info:doi/10.1016%2Fj.conengprac.2023.105538&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2023_105538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon