Model predictive control of an active ankle-foot orthosis with non-linear actuation constraints
The goal of active ankle-foot orthoses (AAFO) is to assist the user in recreating a nominal gait motion. Previously proposed control systems for AAFOs have been reactive, with controllers based on the current tracking error. However, the optimal AAFO controller must ensure adequate trajectory tracki...
Saved in:
Published in | Control engineering practice Vol. 136; p. 105538 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The goal of active ankle-foot orthoses (AAFO) is to assist the user in recreating a nominal gait motion. Previously proposed control systems for AAFOs have been reactive, with controllers based on the current tracking error. However, the optimal AAFO controller must ensure adequate trajectory tracking while minimizing the amount of assistance provided to the user. To this end, a model predictive controller (MPC) can be considered to determine the optimal control sequence for a given trajectory. The MPC minimizes the control effort, thereby determining the minimal assistance required for a user to regain a natural gait. This work outlines the formulation of a non-linear MPC for an AAFO and its combination with an extended state observer (ESO) for tracking of an AAFO.
In this work, a MPC controller is proposed for optimal control of an AAFO, a linear plant subject to non-linear actuation constraints. A novel method is expressed to determine the initial control horizon selection in combination with variable step Newton-based optimization to enable real-time implementation. The MPC control effort is then combined with the estimated disturbance from an ESO to accurately track the desired gait.
Simulations and experimental results prove the tracking capabilities of the proposed method. Compared to a tuned proportional–derivative controller, the simulated controller reduced the trajectory tracking error by up to 65.1% and 15.3% in an undisturbed and disturbed environment, respectively. The MPC and ESO combination allows the controller to identify the optimal control action for accurate trajectory tracking. Concurrently, the ESO rejects both external and internal disturbances, with superior tracking capabilities in both undisturbed and heavily disturbed systems, making it the optimal choice for AAFO control. |
---|---|
AbstractList | The goal of active ankle-foot orthoses (AAFO) is to assist the user in recreating a nominal gait motion. Previously proposed control systems for AAFOs have been reactive, with controllers based on the current tracking error. However, the optimal AAFO controller must ensure adequate trajectory tracking while minimizing the amount of assistance provided to the user. To this end, a model predictive controller (MPC) can be considered to determine the optimal control sequence for a given trajectory. The MPC minimizes the control effort, thereby determining the minimal assistance required for a user to regain a natural gait. This work outlines the formulation of a non-linear MPC for an AAFO and its combination with an extended state observer (ESO) for tracking of an AAFO.
In this work, a MPC controller is proposed for optimal control of an AAFO, a linear plant subject to non-linear actuation constraints. A novel method is expressed to determine the initial control horizon selection in combination with variable step Newton-based optimization to enable real-time implementation. The MPC control effort is then combined with the estimated disturbance from an ESO to accurately track the desired gait.
Simulations and experimental results prove the tracking capabilities of the proposed method. Compared to a tuned proportional–derivative controller, the simulated controller reduced the trajectory tracking error by up to 65.1% and 15.3% in an undisturbed and disturbed environment, respectively. The MPC and ESO combination allows the controller to identify the optimal control action for accurate trajectory tracking. Concurrently, the ESO rejects both external and internal disturbances, with superior tracking capabilities in both undisturbed and heavily disturbed systems, making it the optimal choice for AAFO control. |
ArticleNumber | 105538 |
Author | Rossa, Carlos DeBoer, Benjamin Hosseini, Ali |
Author_xml | – sequence: 1 givenname: Benjamin orcidid: 0000-0003-1377-4024 surname: DeBoer fullname: DeBoer, Benjamin email: benjamin.deboer1@ontariotechu.net organization: Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada – sequence: 2 givenname: Ali orcidid: 0000-0001-6816-3824 surname: Hosseini fullname: Hosseini, Ali email: SayyedAli.Hosseini@ontariotechu.ca organization: Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada – sequence: 3 givenname: Carlos surname: Rossa fullname: Rossa, Carlos email: rossa@sce.carleton.ca organization: Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada |
BookMark | eNqNkNFKwzAYhYNMcJu-Q16gM2nWNrkRdKgTJt7odUiTvy6zJiOJE9_e1AqCN3oVOPzn4-SboYnzDhDClCwoofX5bqFz4J73QelFSUqW46pi_AhNKW9YUQsmJmhKRN0UpK7pCZrFuCO5KgSdInnvDfR4H8BYnewBcMal4HvsO6wcVmOo3EsPRed9wj6krY824nebtjivKXrrQIXh9E0l692AiCko61I8Rced6iOcfb9z9HRz_bhaF5uH27vV5abQjPJUcNEuiWmg6xgVy4rCsjKsNVSZqgXOS9ZqlW-6RglDuS5rQXWtDZSmNaZtCJuji5Grg48xQCe1TV9rhiG9pEQOuuRO_uiSgy456soA_guwD_ZVhY__VK_GKuQPHiwEGbUFp7PSADpJ4-3fkE-6RJEp |
CitedBy_id | crossref_primary_10_1016_j_est_2025_116242 |
Cites_doi | 10.1109/SMC52423.2021.9659164 10.1016/j.conengprac.2020.104667 10.1109/TIE.2008.2011621 10.1016/j.mechatronics.2021.102554 10.1016/j.gaitpost.2010.08.009 10.1109/OJEMB.2020.2984429 10.1109/IROS.2013.6696470 10.1080/00207179.2017.1346299 10.1109/LRA.2022.3167065 10.1109/SMC52423.2021.9659241 10.1007/s40998-020-00358-w 10.1109/TNSRE.2003.823266 10.1049/ip-cta:20040008 10.1016/j.conengprac.2019.06.003 10.3390/app9204416 10.1016/j.conengprac.2021.104733 10.4316/AECE.2021.01007 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conengprac.2023.105538 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-6939 |
ExternalDocumentID | 10_1016_j_conengprac_2023_105538 S0967066123001077 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c318t-89b40d7eff319451e45d3bd1ad5be8823bca89bf7a9d18c2691c6cde2dbddb703 |
IEDL.DBID | .~1 |
ISSN | 0967-0661 |
IngestDate | Tue Jul 01 00:39:08 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Fri Feb 23 02:36:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Active ankle-foot orthosis Non-linear model predictive control Active disturbance rejection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-89b40d7eff319451e45d3bd1ad5be8823bca89bf7a9d18c2691c6cde2dbddb703 |
ORCID | 0000-0003-1377-4024 0000-0001-6816-3824 |
ParticipantIDs | crossref_citationtrail_10_1016_j_conengprac_2023_105538 crossref_primary_10_1016_j_conengprac_2023_105538 elsevier_sciencedirect_doi_10_1016_j_conengprac_2023_105538 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Control engineering practice |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zarandi, Sani, Tootoonchi (b20) 2021; 45 Wang, L., van Asseldonk, E. H., & van der Kooij, H. (2011). Model predictive control-based gait pattern generation for wearable exoskeletons. In Kirtas, Savas, Bayraker (b14) 2021; 106 (pp. 1–6). Adiputra, Rahman, Azizi (b1) 2019; 9 (pp. 983–989). Arnez-Paniagua, Rifaï, Amirat (b2) 2019; 90 Ulkir, Akgun, Nasab (b18) 2021; 21 DeBoon, Nokleby, Rossa (b10) 2021; 109 Diehl, Findeisen, Allgöwer (b11) 2005; 152 Kuo, S.-Y., Wu, C.-H., Chen, C.-C., et al. (2021). A Novel Metaheuristic: Fast Jaguar Algorithm. In Steinboeck, Guay, Kugi (b17) 2020; 93 Blaya, Herr (b5) 2004; 12 Benoussaad, M., Mombaur, K., & Azevedo-Coste, C. (2013). Nonlinear model predictive control of joint ankle by electrical stimulation for drop foot correction. In Carolus, Becker, Cuny (b7) 2019; 116 Awad, Kudzia, Revi, Ellis, Walsh (b3) 2020; 1 Jammeli, Chemori, Moon, Elloumi, Mohammed (b13) 2021 (pp. 1105–1110). Zhao, Yang, Sun (b21) 2021; 76 DeBoer, Hosseini, Rossa (b9) 2022; 7 Nakagaki, Zhai (b16) 2020 . Bovi, Rabuffetti, Mazzoleni (b6) 2011; 33 Han (b12) 2009; 56 (pp. 146–151). DeBoer, B., Hosseini, A., & Rossa, C. (2021). An Extended Parameter Estimation Disturbance Observer for an Active Ankle Foot Orthosis. In Zhao (10.1016/j.conengprac.2023.105538_b21) 2021; 76 Zarandi (10.1016/j.conengprac.2023.105538_b20) 2021; 45 Bovi (10.1016/j.conengprac.2023.105538_b6) 2011; 33 Han (10.1016/j.conengprac.2023.105538_b12) 2009; 56 Nakagaki (10.1016/j.conengprac.2023.105538_b16) 2020 Kirtas (10.1016/j.conengprac.2023.105538_b14) 2021; 106 10.1016/j.conengprac.2023.105538_b19 DeBoon (10.1016/j.conengprac.2023.105538_b10) 2021; 109 10.1016/j.conengprac.2023.105538_b4 Steinboeck (10.1016/j.conengprac.2023.105538_b17) 2020; 93 Adiputra (10.1016/j.conengprac.2023.105538_b1) 2019; 9 Awad (10.1016/j.conengprac.2023.105538_b3) 2020; 1 10.1016/j.conengprac.2023.105538_b8 Diehl (10.1016/j.conengprac.2023.105538_b11) 2005; 152 Arnez-Paniagua (10.1016/j.conengprac.2023.105538_b2) 2019; 90 DeBoer (10.1016/j.conengprac.2023.105538_b9) 2022; 7 10.1016/j.conengprac.2023.105538_b15 Ulkir (10.1016/j.conengprac.2023.105538_b18) 2021; 21 Jammeli (10.1016/j.conengprac.2023.105538_b13) 2021 Blaya (10.1016/j.conengprac.2023.105538_b5) 2004; 12 Carolus (10.1016/j.conengprac.2023.105538_b7) 2019; 116 |
References_xml | – volume: 116 start-page: 347 year: 2019 ident: b7 article-title: The interdisciplinary management of foot drop publication-title: Deutsches Ärzteblatt International – volume: 1 start-page: 108 year: 2020 end-page: 115 ident: b3 article-title: Walking faster and farther with a soft robotic exosuit: Implications for post-stroke gait assistance and rehabilitation publication-title: IEEE Open Journal of Engineering in Medicine and Biology – reference: (pp. 983–989). – reference: (pp. 1–6). – reference: DeBoer, B., Hosseini, A., & Rossa, C. (2021). An Extended Parameter Estimation Disturbance Observer for an Active Ankle Foot Orthosis. In – volume: 33 start-page: 6 year: 2011 end-page: 13 ident: b6 article-title: A multiple-task gait analysis approach: kinematic, kinetic and emg reference data for healthy young and adult subjects publication-title: Gait & Posture – year: 2020 ident: b16 article-title: A study on optimization algorithms in MPC publication-title: Journal of physics: conference series, Vol. 1490 – reference: Wang, L., van Asseldonk, E. H., & van der Kooij, H. (2011). Model predictive control-based gait pattern generation for wearable exoskeletons. In – volume: 21 start-page: 65 year: 2021 end-page: 74 ident: b18 article-title: Data-driven predictive control of a pneumatic ankle foot orthosis publication-title: Advances in Electrical and Computer Engineering – volume: 45 start-page: 309 year: 2021 end-page: 320 ident: b20 article-title: Design and implementation of a real-time nonlinear model predictive controller for a lower limb exoskeleton with input saturation publication-title: Iranian Journal of Science and Technology, Transactions of Electrical Engineering – volume: 106 year: 2021 ident: b14 article-title: Design, implementation, and evaluation of a backstepping control algorithm for an active ankle–foot orthosis publication-title: Control Engineering Practice – volume: 152 start-page: 296 year: 2005 end-page: 308 ident: b11 article-title: Nominal stability of real-time iteration scheme for nonlinear model predictive control publication-title: IEE Proceedings D (Control Theory and Applications) – volume: 12 start-page: 24 year: 2004 end-page: 31 ident: b5 article-title: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 9 start-page: 4416 year: 2019 ident: b1 article-title: Control reference parameter for stance assistance using a passive controlled ankle foot orthosis—A preliminary study publication-title: Applied Sciences – year: 2021 ident: b13 article-title: An assistive explicit model predictive control framework for a knee rehabilitation exoskeleton publication-title: IEEE/ASME Transactions on Mechatronics – volume: 109 year: 2021 ident: b10 article-title: Multi-objective gain optimizer for a multi-input active disturbance rejection controller: Application to series elastic actuators publication-title: Control Engineering Practice – volume: 93 start-page: 81 year: 2020 end-page: 97 ident: b17 article-title: A design technique for fast sampled-data nonlinear model predictive control with convergence and stability results publication-title: International Journal of Control – volume: 76 year: 2021 ident: b21 article-title: Sliding mode control combined with extended state observer for an ankle exoskeleton driven by electrical motor publication-title: Mechatronics – reference: Kuo, S.-Y., Wu, C.-H., Chen, C.-C., et al. (2021). A Novel Metaheuristic: Fast Jaguar Algorithm. In – reference: (pp. 1105–1110). – volume: 56 start-page: 900 year: 2009 end-page: 906 ident: b12 article-title: From PID to active disturbance rejection control publication-title: IEEE Transactions on Industrial Electronics – reference: . – reference: Benoussaad, M., Mombaur, K., & Azevedo-Coste, C. (2013). Nonlinear model predictive control of joint ankle by electrical stimulation for drop foot correction. In – volume: 7 start-page: 6211 year: 2022 end-page: 6217 ident: b9 article-title: A discrete non-linear series elastic actuator for active ankle-foot orthoses publication-title: IEEE Robotics and Automation Letters – reference: (pp. 146–151). – volume: 90 start-page: 207 year: 2019 end-page: 220 ident: b2 article-title: Adaptive control of an actuated ankle foot orthosis for paretic patients publication-title: Control Engineering Practice – volume: 116 start-page: 347 issue: 20 year: 2019 ident: 10.1016/j.conengprac.2023.105538_b7 article-title: The interdisciplinary management of foot drop publication-title: Deutsches Ärzteblatt International – ident: 10.1016/j.conengprac.2023.105538_b15 doi: 10.1109/SMC52423.2021.9659164 – volume: 106 year: 2021 ident: 10.1016/j.conengprac.2023.105538_b14 article-title: Design, implementation, and evaluation of a backstepping control algorithm for an active ankle–foot orthosis publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2020.104667 – volume: 56 start-page: 900 issue: 3 year: 2009 ident: 10.1016/j.conengprac.2023.105538_b12 article-title: From PID to active disturbance rejection control publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2008.2011621 – volume: 76 year: 2021 ident: 10.1016/j.conengprac.2023.105538_b21 article-title: Sliding mode control combined with extended state observer for an ankle exoskeleton driven by electrical motor publication-title: Mechatronics doi: 10.1016/j.mechatronics.2021.102554 – volume: 33 start-page: 6 issue: 1 year: 2011 ident: 10.1016/j.conengprac.2023.105538_b6 article-title: A multiple-task gait analysis approach: kinematic, kinetic and emg reference data for healthy young and adult subjects publication-title: Gait & Posture doi: 10.1016/j.gaitpost.2010.08.009 – volume: 1 start-page: 108 year: 2020 ident: 10.1016/j.conengprac.2023.105538_b3 article-title: Walking faster and farther with a soft robotic exosuit: Implications for post-stroke gait assistance and rehabilitation publication-title: IEEE Open Journal of Engineering in Medicine and Biology doi: 10.1109/OJEMB.2020.2984429 – ident: 10.1016/j.conengprac.2023.105538_b4 doi: 10.1109/IROS.2013.6696470 – year: 2021 ident: 10.1016/j.conengprac.2023.105538_b13 article-title: An assistive explicit model predictive control framework for a knee rehabilitation exoskeleton publication-title: IEEE/ASME Transactions on Mechatronics – volume: 93 start-page: 81 issue: 1 year: 2020 ident: 10.1016/j.conengprac.2023.105538_b17 article-title: A design technique for fast sampled-data nonlinear model predictive control with convergence and stability results publication-title: International Journal of Control doi: 10.1080/00207179.2017.1346299 – ident: 10.1016/j.conengprac.2023.105538_b19 – volume: 7 start-page: 6211 issue: 3 year: 2022 ident: 10.1016/j.conengprac.2023.105538_b9 article-title: A discrete non-linear series elastic actuator for active ankle-foot orthoses publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2022.3167065 – ident: 10.1016/j.conengprac.2023.105538_b8 doi: 10.1109/SMC52423.2021.9659241 – volume: 45 start-page: 309 issue: 1 year: 2021 ident: 10.1016/j.conengprac.2023.105538_b20 article-title: Design and implementation of a real-time nonlinear model predictive controller for a lower limb exoskeleton with input saturation publication-title: Iranian Journal of Science and Technology, Transactions of Electrical Engineering doi: 10.1007/s40998-020-00358-w – volume: 12 start-page: 24 issue: 1 year: 2004 ident: 10.1016/j.conengprac.2023.105538_b5 article-title: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2003.823266 – volume: 152 start-page: 296 issue: 3 year: 2005 ident: 10.1016/j.conengprac.2023.105538_b11 article-title: Nominal stability of real-time iteration scheme for nonlinear model predictive control publication-title: IEE Proceedings D (Control Theory and Applications) doi: 10.1049/ip-cta:20040008 – volume: 90 start-page: 207 year: 2019 ident: 10.1016/j.conengprac.2023.105538_b2 article-title: Adaptive control of an actuated ankle foot orthosis for paretic patients publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2019.06.003 – volume: 9 start-page: 4416 issue: 20 year: 2019 ident: 10.1016/j.conengprac.2023.105538_b1 article-title: Control reference parameter for stance assistance using a passive controlled ankle foot orthosis—A preliminary study publication-title: Applied Sciences doi: 10.3390/app9204416 – year: 2020 ident: 10.1016/j.conengprac.2023.105538_b16 article-title: A study on optimization algorithms in MPC – volume: 109 year: 2021 ident: 10.1016/j.conengprac.2023.105538_b10 article-title: Multi-objective gain optimizer for a multi-input active disturbance rejection controller: Application to series elastic actuators publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2021.104733 – volume: 21 start-page: 65 issue: 1 year: 2021 ident: 10.1016/j.conengprac.2023.105538_b18 article-title: Data-driven predictive control of a pneumatic ankle foot orthosis publication-title: Advances in Electrical and Computer Engineering doi: 10.4316/AECE.2021.01007 |
SSID | ssj0016991 |
Score | 2.4065635 |
Snippet | The goal of active ankle-foot orthoses (AAFO) is to assist the user in recreating a nominal gait motion. Previously proposed control systems for AAFOs have... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105538 |
SubjectTerms | Active ankle-foot orthosis Active disturbance rejection Non-linear model predictive control |
Title | Model predictive control of an active ankle-foot orthosis with non-linear actuation constraints |
URI | https://dx.doi.org/10.1016/j.conengprac.2023.105538 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GDl47basabriaQzHVNhFB7uVfFUmox1rvfq3-96SzgmCgseGvLa8pL_80vzee4TccqtEFjLYmyiuAh5zEQwSEwXGDPqSY8oxp7aYismMP86jeYOM6lgYlFV67HeYvkFr39L13uyuFovuM5DvGBZMgF7c2MQYUc55jLO887GVeTCRuKp50Bmj7ZlX8ziNF2w5bf6K8UgdLCOORW8jjFT5aYnaWXbGR-TQ80U6dK90TBo2PyEHO1kET0mK9cyWdLXGMxdEL-r157TIqMypdI1YnN0GWVFUFM9qinJRUvwLS_MiD5BsyjV2dam_8RblpnxEVZ6R2fj-ZTQJfN2EQMMXWoGzFe-Z2GYwCAmPmOWRCZVh0kTKAqMOlZbQJ4tlYthA90XCtNDG9o0yRgEEnJMmPNpegKuEMTLrWRviWbDUwMc0UKJIi761mosWiWtXpdonFceXW6a1euwt_XJyik5OnZNbhG0tVy6xxh9s7urRSL9NkhTw_1fry39ZX5F9vHJK3WvSrNbv9gb4SKXamwnXJnvDh6fJ9BPAC-Mz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHNSD8RnxuQevFQrbLY0nQjQgyEVIuG32VYMhLYH6_51hF8TERBOv7U67-XY7M9t5fITcMat42gzhbKKYCljMeNBKTBQY02pIhi3HXLbFkHfH7HkSTUqks66FwbRKr_udTl9pa3-l5tGszafT2is43zEYTFC9eLCJ4x1Swe5UUZlU2r1-d7gJJvDEEefBeCy4D31Cj0vzglOnzd6wJOkemcSR9zbCYpWfrNSW5Xk6JAfeZaRtN6sjUrLZMdnfaiR4QgRSms3ofIFhF1Rg1Keg0zylMqPSXUR-dhukeV5QDNfky-mS4o9YmuVZgP6mXOBQ1_0bH7FcMUgUy1MyfnocdbqBp04INHykBeCtWN3ENoV1SFgUWhaZpjKhNJGy4FQ3lZYwJo1lYsKWbvAk1Fwb2zDKGAVa4IyU4dX2HKDixsi0bm0Tw8FSg0umwSuKNG9YqxmvkngNldC-rzhObibWCWTv4gtkgSALB3KVhBvJueut8QeZh_VqiG_7RIAJ-FX64l_St2S3O3oZiEFv2L8ke3jHJe5ekXKx-LDX4J4U6sZvv0-G_uXk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+predictive+control+of+an+active+ankle-foot+orthosis+with+non-linear+actuation+constraints&rft.jtitle=Control+engineering+practice&rft.au=DeBoer%2C+Benjamin&rft.au=Hosseini%2C+Ali&rft.au=Rossa%2C+Carlos&rft.date=2023-07-01&rft.issn=0967-0661&rft.volume=136&rft.spage=105538&rft_id=info:doi/10.1016%2Fj.conengprac.2023.105538&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2023_105538 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |