Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes

Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the existing recycling strategies, direct regeneration is largely encouraged from an economic and environmental perspective. However, current proce...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 14; no. 3; pp. 1461 - 1468
Main Authors Fan, Min, Chang, Xin, Guo, Yu-Jie, Chen, Wan-Ping, Yin, Ya-Xia, Yang, Xinan, Meng, Qinghai, Wan, Li-Jun, Guo, Yu-Guo
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 23.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the existing recycling strategies, direct regeneration is largely encouraged from an economic and environmental perspective. However, current procedures used to separate the active cathode materials from the aluminum foil have some limitations for direct regeneration because they either destroy the structure of the cathode or use too many toxic and expensive reagents. Hence, we conducted comprehensive research on the microstructural evolution of the LiNi 1− x − y Co x Mn y O 2 degraded electrode and then proposed a targeted method to recycle the spent cathode materials based on the increased residual lithium compounds. This separation process involves no other reagents but water, and toxic organic solvents, complicated processes, and waste treatments are unnecessary compared with the existing pretreatment strategies. Moreover, the separated cathodes are suitable for direct regeneration. Satisfactory capacity recovery of the cathode was achieved via simple sintering. Such a recycling process enables a sustainable closed-loop for the spent cathodes and provides new inspiration for the design of LIB recycling. Based on the increased residual lithium compounds of the degraded cathode, a green water-based strategy is designed for achieving closed-loop recycling of spent lithium-ion batteries.
AbstractList Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the existing recycling strategies, direct regeneration is largely encouraged from an economic and environmental perspective. However, current procedures used to separate the active cathode materials from the aluminum foil have some limitations for direct regeneration because they either destroy the structure of the cathode or use too many toxic and expensive reagents. Hence, we conducted comprehensive research on the microstructural evolution of the LiNi1−x−yCoxMnyO2 degraded electrode and then proposed a targeted method to recycle the spent cathode materials based on the increased residual lithium compounds. This separation process involves no other reagents but water, and toxic organic solvents, complicated processes, and waste treatments are unnecessary compared with the existing pretreatment strategies. Moreover, the separated cathodes are suitable for direct regeneration. Satisfactory capacity recovery of the cathode was achieved via simple sintering. Such a recycling process enables a sustainable closed-loop for the spent cathodes and provides new inspiration for the design of LIB recycling.
Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the existing recycling strategies, direct regeneration is largely encouraged from an economic and environmental perspective. However, current procedures used to separate the active cathode materials from the aluminum foil have some limitations for direct regeneration because they either destroy the structure of the cathode or use too many toxic and expensive reagents. Hence, we conducted comprehensive research on the microstructural evolution of the LiNi 1− x − y Co x Mn y O 2 degraded electrode and then proposed a targeted method to recycle the spent cathode materials based on the increased residual lithium compounds. This separation process involves no other reagents but water, and toxic organic solvents, complicated processes, and waste treatments are unnecessary compared with the existing pretreatment strategies. Moreover, the separated cathodes are suitable for direct regeneration. Satisfactory capacity recovery of the cathode was achieved via simple sintering. Such a recycling process enables a sustainable closed-loop for the spent cathodes and provides new inspiration for the design of LIB recycling. Based on the increased residual lithium compounds of the degraded cathode, a green water-based strategy is designed for achieving closed-loop recycling of spent lithium-ion batteries.
Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the existing recycling strategies, direct regeneration is largely encouraged from an economic and environmental perspective. However, current procedures used to separate the active cathode materials from the aluminum foil have some limitations for direct regeneration because they either destroy the structure of the cathode or use too many toxic and expensive reagents. Hence, we conducted comprehensive research on the microstructural evolution of the LiNi 1−x−y Co x Mn y O 2 degraded electrode and then proposed a targeted method to recycle the spent cathode materials based on the increased residual lithium compounds. This separation process involves no other reagents but water, and toxic organic solvents, complicated processes, and waste treatments are unnecessary compared with the existing pretreatment strategies. Moreover, the separated cathodes are suitable for direct regeneration. Satisfactory capacity recovery of the cathode was achieved via simple sintering. Such a recycling process enables a sustainable closed-loop for the spent cathodes and provides new inspiration for the design of LIB recycling.
Author Chang, Xin
Guo, Yu-Jie
Fan, Min
Meng, Qinghai
Wan, Li-Jun
Yang, Xinan
Chen, Wan-Ping
Yin, Ya-Xia
Guo, Yu-Guo
AuthorAffiliation Beijing National Laboratory for Condensed Matter Physics
Chinese Academy of Sciences
Institute of Chemistry
Chinese Academy of Sciences (CAS)
School of Chemical Sciences
Institute of Physics
CAS Research/Education Center for Excellence in Molecular Sciences
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
Beijing National Laboratory for Molecular Sciences (BNLMS)
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Institute of Chemistry
– name: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
– name: Beijing National Laboratory for Molecular Sciences (BNLMS)
– name: Chinese Academy of Sciences
– name: Chinese Academy of Sciences (CAS)
– name: School of Chemical Sciences
– name: University of Chinese Academy of Sciences
– name: CAS Research/Education Center for Excellence in Molecular Sciences
– name: Beijing National Laboratory for Condensed Matter Physics
– name: Institute of Physics
Author_xml – sequence: 1
  givenname: Min
  surname: Fan
  fullname: Fan, Min
– sequence: 2
  givenname: Xin
  surname: Chang
  fullname: Chang, Xin
– sequence: 3
  givenname: Yu-Jie
  surname: Guo
  fullname: Guo, Yu-Jie
– sequence: 4
  givenname: Wan-Ping
  surname: Chen
  fullname: Chen, Wan-Ping
– sequence: 5
  givenname: Ya-Xia
  surname: Yin
  fullname: Yin, Ya-Xia
– sequence: 6
  givenname: Xinan
  surname: Yang
  fullname: Yang, Xinan
– sequence: 7
  givenname: Qinghai
  surname: Meng
  fullname: Meng, Qinghai
– sequence: 8
  givenname: Li-Jun
  surname: Wan
  fullname: Wan, Li-Jun
– sequence: 9
  givenname: Yu-Guo
  surname: Guo
  fullname: Guo, Yu-Guo
BookMark eNptkU1LAzEQhoNUsK1evAsBb8JqstlNdo_SVi0UvOh5SfOxTdkma5I99N-bWqsgnmYOzzMzvDMBI-usAuAao3uMSP0gkVKp4kKegTFmZZGVDNHRqad1fgEmIWwRojli9RjIpRVe8aAk9CoYOfAOdiZuzLCDwu16N1gZYDsYmQiZiNZC7TxsvVI2KWIvOmNb6DQMvbLxJGfGWSh43LgkXYJzzbugrr7rFLw_Ld5mL9nq9Xk5e1xlguAqZkyVjGBa8brSVDOOmeAkV3pNqooWtWS4ElyhXJaFIJqta6Y1XnONCak4pzmZgtvj3N67j0GF2Gzd4G1a2eRlioXggpaJQkdKeBeCV7oRJvKYDo6em67BqDlk2czRYvGV5Twpd3-U3psd9_v_4Zsj7IP44X4fQz4BnDmBkg
CitedBy_id crossref_primary_10_1039_D2NJ01674E
crossref_primary_10_1016_j_cclet_2024_110041
crossref_primary_10_2139_ssrn_4125215
crossref_primary_10_1002_cnl2_73
crossref_primary_10_1088_2515_7655_acaa57
crossref_primary_10_1016_j_cej_2023_147607
crossref_primary_10_1016_j_est_2024_114214
crossref_primary_10_1002_cey2_231
crossref_primary_10_1002_ente_202100468
crossref_primary_10_1016_j_jpowsour_2023_233728
crossref_primary_10_1021_acsaem_3c03263
crossref_primary_10_1002_smll_202106719
crossref_primary_10_1021_acsenergylett_2c01539
crossref_primary_10_1002_aenm_202300596
crossref_primary_10_1016_j_jece_2024_114740
crossref_primary_10_1021_acs_iecr_1c05034
crossref_primary_10_1016_j_ensm_2024_103964
crossref_primary_10_1002_aenm_202103630
crossref_primary_10_1016_j_jpowsour_2024_235102
crossref_primary_10_1007_s11581_022_04497_4
crossref_primary_10_1016_j_ensm_2021_09_016
crossref_primary_10_1002_adma_202313273
crossref_primary_10_1002_er_7462
crossref_primary_10_1002_adma_202403818
crossref_primary_10_1016_j_scitotenv_2023_162567
crossref_primary_10_1021_acsami_1c23258
crossref_primary_10_1016_j_seppur_2025_131716
crossref_primary_10_1039_D4EE00331D
crossref_primary_10_1016_j_ensm_2023_102801
crossref_primary_10_1007_s40820_023_01106_5
crossref_primary_10_1039_D4GC01781A
crossref_primary_10_1002_aesr_202100153
crossref_primary_10_1039_D2NJ05377B
crossref_primary_10_1039_D4CS00362D
crossref_primary_10_1016_j_mattod_2023_12_012
crossref_primary_10_1016_j_nanoen_2023_109145
crossref_primary_10_1016_j_rser_2023_113693
crossref_primary_10_1016_j_ceramint_2022_11_074
crossref_primary_10_1016_j_nxener_2024_100234
crossref_primary_10_1016_j_jpowsour_2024_234365
crossref_primary_10_1039_D1GC04784A
crossref_primary_10_1007_s42765_023_00333_0
crossref_primary_10_1016_j_jechem_2023_10_012
crossref_primary_10_1002_adfm_202213168
crossref_primary_10_1016_j_wasman_2022_07_026
crossref_primary_10_3390_en15051611
crossref_primary_10_1149_1945_7111_ac22cb
crossref_primary_10_1002_adfm_202206428
crossref_primary_10_1021_acs_energyfuels_4c04598
crossref_primary_10_1016_j_desal_2022_115847
crossref_primary_10_1016_j_seppur_2024_129574
crossref_primary_10_1039_D2TA06959H
crossref_primary_10_1016_j_jpowsour_2025_236655
crossref_primary_10_1002_metm_5
crossref_primary_10_1002_anie_202202558
crossref_primary_10_1016_j_jhazmat_2023_131818
crossref_primary_10_1016_j_nanoen_2025_110741
crossref_primary_10_1002_adma_202203218
crossref_primary_10_1002_aenm_202402560
crossref_primary_10_1002_idm2_12041
crossref_primary_10_1002_smll_202402278
crossref_primary_10_1002_adfm_202416085
crossref_primary_10_1016_j_ensm_2025_104010
crossref_primary_10_1016_j_jhazmat_2024_134794
crossref_primary_10_1016_j_jallcom_2023_171130
crossref_primary_10_1016_j_nanoen_2023_108465
crossref_primary_10_1016_j_hazadv_2021_100003
crossref_primary_10_1016_j_nanoen_2022_107595
crossref_primary_10_1021_acsami_4c03606
crossref_primary_10_1016_j_cej_2023_146554
crossref_primary_10_1016_j_envpol_2023_123081
crossref_primary_10_1002_anie_202218672
crossref_primary_10_1016_j_jclepro_2024_144286
crossref_primary_10_1021_acsami_2c01526
crossref_primary_10_1002_ange_202202558
crossref_primary_10_1016_j_jpowsour_2022_231220
crossref_primary_10_1039_D5EE00641D
crossref_primary_10_1007_s11426_024_2085_1
crossref_primary_10_1039_D3CS00254C
crossref_primary_10_1002_sstr_202300107
crossref_primary_10_54227_mlab_20220036
crossref_primary_10_1002_smtd_202100672
crossref_primary_10_1016_j_jpowsour_2021_230827
crossref_primary_10_1016_j_scitotenv_2024_175459
crossref_primary_10_1038_s41467_023_36197_6
crossref_primary_10_1039_D2GC04620B
crossref_primary_10_1002_slct_202302863
crossref_primary_10_34133_energymatadv_0128
crossref_primary_10_1016_j_jcis_2024_10_022
crossref_primary_10_1016_j_isci_2022_103801
crossref_primary_10_1002_smll_202401089
crossref_primary_10_1016_j_jpowsour_2024_234845
crossref_primary_10_1039_D2GC01431A
crossref_primary_10_1007_s11581_023_04967_3
crossref_primary_10_1016_j_chempr_2022_03_007
crossref_primary_10_1016_j_seppur_2024_130251
crossref_primary_10_1016_j_seppur_2024_126551
crossref_primary_10_1002_adma_202405238
crossref_primary_10_1002_gch2_202200067
crossref_primary_10_1016_j_ensm_2024_103636
crossref_primary_10_1039_D2EE03257K
crossref_primary_10_1021_acsnano_3c00270
crossref_primary_10_1016_j_resconrec_2023_107115
crossref_primary_10_1039_D3EE04528E
crossref_primary_10_1021_acs_chemrev_3c00884
crossref_primary_10_1016_j_est_2025_115497
crossref_primary_10_1016_j_jallcom_2022_166487
crossref_primary_10_1016_j_mser_2025_100976
crossref_primary_10_1038_s41893_024_01412_9
crossref_primary_10_1039_D1EE00691F
crossref_primary_10_1002_adma_202307091
crossref_primary_10_1016_j_wasman_2021_09_032
crossref_primary_10_1021_acsami_2c06351
crossref_primary_10_1002_advs_202304425
crossref_primary_10_1016_j_mtener_2022_100997
crossref_primary_10_1002_eem2_12271
crossref_primary_10_1016_j_ensm_2021_11_005
crossref_primary_10_1021_acsenergylett_3c01635
crossref_primary_10_1039_D3GC04418A
crossref_primary_10_3390_separations12010004
crossref_primary_10_1016_j_resconrec_2024_107648
crossref_primary_10_1002_cssc_202400727
crossref_primary_10_1002_ange_202218672
crossref_primary_10_2139_ssrn_4109359
crossref_primary_10_1016_j_est_2023_110344
crossref_primary_10_1016_j_jechem_2024_11_016
crossref_primary_10_1002_adfm_202500117
crossref_primary_10_1016_j_carbon_2022_07_027
crossref_primary_10_1016_j_resconrec_2021_105802
crossref_primary_10_1016_j_jclepro_2021_128098
crossref_primary_10_1016_j_jechem_2022_08_005
crossref_primary_10_1016_j_mtcomm_2024_108449
crossref_primary_10_1038_s41467_024_50679_1
crossref_primary_10_1016_j_jenvman_2023_119814
Cites_doi 10.1016/j.jpowsour.2017.01.118
10.1021/acsenergylett.8b00833
10.1016/j.jhazmat.2017.05.024
10.1039/C4GC01951B
10.1016/j.cej.2019.123089
10.1039/C4RA16390G
10.1016/j.joule.2019.09.014
10.1016/j.jpowsour.2012.08.005
10.1021/acsami.9b12086
10.1016/j.jpowsour.2015.11.108
10.1038/s41586-019-1682-5
10.1016/j.jpowsour.2012.01.152
10.1002/aenm.201300787
10.1039/C8CS00297E
10.1039/c1ee01598b
10.1016/j.ensm.2019.08.013
10.1016/j.jpowsour.2017.03.035
10.1016/0013-4686(93)E0020-M
10.1016/j.electacta.2010.05.072
10.1007/s10163-013-0140-y
10.1016/j.jhazmat.2019.03.120
10.1039/C9CC08155K
10.1021/acssuschemeng.8b06694
10.1126/science.aal4263
10.1021/acssuschemeng.8b03545
10.1016/S0378-7753(02)00110-6
10.1149/07211.0011ecst
10.1016/j.joule.2019.10.011
10.1016/j.jhazmat.2019.120846
10.1016/j.nanoen.2017.11.010
10.1038/ncomms14101
10.1038/s41467-018-04762-z
10.1021/acssuschemeng.6b01948
10.1039/C9EE01478K
10.1039/C9EE02759A
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d0ee03914d
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 1468
ExternalDocumentID 10_1039_D0EE03914D
d0ee03914d
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
0R~
70~
AAJAE
AARTK
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c318t-7e573168a98f6f7a17ca32efb388649d718cae02d54c3f7b97ff1baf1338aa623
ISSN 1754-5692
IngestDate Mon Jun 30 12:02:52 EDT 2025
Tue Jul 01 01:45:48 EDT 2025
Thu Apr 24 22:59:47 EDT 2025
Sat Jan 08 03:48:09 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-7e573168a98f6f7a17ca32efb388649d718cae02d54c3f7b97ff1baf1338aa623
Notes 10.1039/d0ee03914d
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0983-9916
0000-0002-0656-0936
0000-0002-9264-0886
0000-0003-0322-8476
PQID 2503931465
PQPubID 2047494
PageCount 8
ParticipantIDs proquest_journals_2503931465
crossref_citationtrail_10_1039_D0EE03914D
crossref_primary_10_1039_D0EE03914D
rsc_primary_d0ee03914d
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210323
PublicationDateYYYYMMDD 2021-03-23
PublicationDate_xml – month: 3
  year: 2021
  text: 20210323
  day: 23
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Etacheri (D0EE03914D-(cit1)/*[position()=1]) 2011; 4
Liu (D0EE03914D-(cit25)/*[position()=1]) 2016; 306
Lu (D0EE03914D-(cit27)/*[position()=1]) 2020; 4
Wang (D0EE03914D-(cit18)/*[position()=1]) 2019; 380
Kanamura (D0EE03914D-(cit29)/*[position()=1]) 1995; 40
Garrick (D0EE03914D-(cit26)/*[position()=1]) 2016; 72
Rustomji (D0EE03914D-(cit32)/*[position()=1]) 2017; 356
Zhang (D0EE03914D-(cit16)/*[position()=1]) 2016; 4
Nie (D0EE03914D-(cit14)/*[position()=1]) 2015; 17
Yao (D0EE03914D-(cit35)/*[position()=1]) 2015; 5
Zhang (D0EE03914D-(cit4)/*[position()=1]) 2018; 47
Mohanty (D0EE03914D-(cit33)/*[position()=1]) 2012; 220
Wang (D0EE03914D-(cit17)/*[position()=1]) 2019; 7
Verma (D0EE03914D-(cit20)/*[position()=1]) 2010; 55
Yan (D0EE03914D-(cit21)/*[position()=1]) 2017; 8
Harper (D0EE03914D-(cit3)/*[position()=1]) 2019; 575
He (D0EE03914D-(cit28)/*[position()=1]) 2019; 375
Zhao (D0EE03914D-(cit12)/*[position()=1]) 2020; 383
Chen (D0EE03914D-(cit2)/*[position()=1]) 2019; 3
Zhang (D0EE03914D-(cit10)/*[position()=1]) 2013; 15
Jung (D0EE03914D-(cit34)/*[position()=1]) 2014; 4
Liang (D0EE03914D-(cit6)/*[position()=1]) 2019; 12
Zhang (D0EE03914D-(cit22)/*[position()=1]) 2020; 24
Li (D0EE03914D-(cit11)/*[position()=1]) 2017; 345
Meng (D0EE03914D-(cit15)/*[position()=1]) 2019; 11
Shi (D0EE03914D-(cit19)/*[position()=1]) 2018; 3
Yu (D0EE03914D-(cit5)/*[position()=1]) 2019; 12
Foster (D0EE03914D-(cit23)/*[position()=1]) 2017; 350
Liu (D0EE03914D-(cit30)/*[position()=1]) 2018; 44
Yao (D0EE03914D-(cit8)/*[position()=1]) 2018; 6
Zhang (D0EE03914D-(cit24)/*[position()=1]) 2002; 109
Wood (D0EE03914D-(cit31)/*[position()=1]) 2018; 9
Georgi-Maschler (D0EE03914D-(cit9)/*[position()=1]) 2012; 207
Xiao (D0EE03914D-(cit7)/*[position()=1]) 2017; 338
Wang (D0EE03914D-(cit13)/*[position()=1]) 2020; 56
References_xml – volume: 345
  start-page: 78
  year: 2017
  ident: D0EE03914D-(cit11)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.118
– volume: 3
  start-page: 1683
  year: 2018
  ident: D0EE03914D-(cit19)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00833
– volume: 338
  start-page: 124
  year: 2017
  ident: D0EE03914D-(cit7)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.05.024
– volume: 17
  start-page: 1276
  year: 2015
  ident: D0EE03914D-(cit14)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C4GC01951B
– volume: 383
  start-page: 123089
  year: 2020
  ident: D0EE03914D-(cit12)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123089
– volume: 5
  start-page: 44107
  year: 2015
  ident: D0EE03914D-(cit35)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA16390G
– volume: 3
  start-page: 2622
  year: 2019
  ident: D0EE03914D-(cit2)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.014
– volume: 220
  start-page: 405
  year: 2012
  ident: D0EE03914D-(cit33)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.08.005
– volume: 11
  start-page: 32062
  year: 2019
  ident: D0EE03914D-(cit15)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12086
– volume: 306
  start-page: 300
  year: 2016
  ident: D0EE03914D-(cit25)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.108
– volume: 575
  start-page: 75
  year: 2019
  ident: D0EE03914D-(cit3)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-1682-5
– volume: 207
  start-page: 173
  year: 2012
  ident: D0EE03914D-(cit9)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.152
– volume: 4
  start-page: 1300787
  year: 2014
  ident: D0EE03914D-(cit34)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300787
– volume: 47
  start-page: 7239
  year: 2018
  ident: D0EE03914D-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00297E
– volume: 4
  start-page: 3243
  year: 2011
  ident: D0EE03914D-(cit1)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01598b
– volume: 24
  start-page: 247
  year: 2020
  ident: D0EE03914D-(cit22)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.08.013
– volume: 350
  start-page: 140
  year: 2017
  ident: D0EE03914D-(cit23)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.035
– volume: 40
  start-page: 913
  year: 1995
  ident: D0EE03914D-(cit29)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(93)E0020-M
– volume: 55
  start-page: 6332
  year: 2010
  ident: D0EE03914D-(cit20)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.05.072
– volume: 15
  start-page: 420
  year: 2013
  ident: D0EE03914D-(cit10)/*[position()=1]
  publication-title: J. Mater. Cycles Waste Manage.
  doi: 10.1007/s10163-013-0140-y
– volume: 375
  start-page: 43
  year: 2019
  ident: D0EE03914D-(cit28)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.03.120
– volume: 56
  start-page: 245
  year: 2020
  ident: D0EE03914D-(cit13)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC08155K
– volume: 7
  start-page: 8287
  year: 2019
  ident: D0EE03914D-(cit17)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06694
– volume: 356
  start-page: eaal4263
  year: 2017
  ident: D0EE03914D-(cit32)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aal4263
– volume: 6
  start-page: 13611
  year: 2018
  ident: D0EE03914D-(cit8)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03545
– volume: 109
  start-page: 458
  year: 2002
  ident: D0EE03914D-(cit24)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00110-6
– volume: 72
  start-page: 11
  year: 2016
  ident: D0EE03914D-(cit26)/*[position()=1]
  publication-title: ECS Trans.
  doi: 10.1149/07211.0011ecst
– volume: 4
  start-page: 1
  year: 2020
  ident: D0EE03914D-(cit27)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2019.10.011
– volume: 380
  start-page: 120846
  year: 2019
  ident: D0EE03914D-(cit18)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.120846
– volume: 44
  start-page: 111
  year: 2018
  ident: D0EE03914D-(cit30)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.010
– volume: 8
  start-page: 14101
  year: 2017
  ident: D0EE03914D-(cit21)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14101
– volume: 9
  start-page: 2490
  year: 2018
  ident: D0EE03914D-(cit31)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04762-z
– volume: 4
  start-page: 7041
  year: 2016
  ident: D0EE03914D-(cit16)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01948
– volume: 12
  start-page: 2672
  year: 2019
  ident: D0EE03914D-(cit5)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01478K
– volume: 12
  start-page: 3575
  year: 2019
  ident: D0EE03914D-(cit6)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02759A
SSID ssj0062079
Score 2.6520367
Snippet Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1461
SubjectTerms Aluminum
Cathodes
Design for recycling
Electrode materials
Lithium
Lithium compounds
Lithium-ion batteries
Metal foils
Organic solvents
Pretreatment
Reagents
Rechargeable batteries
Recycling
Regeneration
Waste treatment
Title Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes
URI https://www.proquest.com/docview/2503931465
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOqDwqFgqyBBeEXJLYeR3LdrdVKYXDrlhOkZ9tpbJbdTeH8hf404wdO0mlFQIu0cqKo5Xny3g8-b4ZhN7KOCoYEzEpSp4TpqQmIheSGKuSZIkAb2n1zp_Ps5MZO52n88HgV4-1VK_Fgfy5UVfyP1aFMbCrVcn-g2Xbh8IA_Ab7whUsDNe_sjG83JZTrq0CZdWoqiCqvryqfziquO2YtHp_UV8puEM5qoZjFV5Yrg1MkXfy2pOeVzeWE-AnEwsJW891qTzDMKTuG6GgRUtPIBdklR1GJtxT8lvkjUJeet6Nfa_JafN15Lhedon9Bfnq-6yMLr1OzWclEkfLaoTDns5kcx-BeOqIJb59Xc_X5ikjada0wjvQvbE8yu45aNYDIu15W9uTvLdzWxXZxl0horaoqoq0tvXwmer2vvC9__xLNZmdnVXT8Xy6hXYSOHOA09w5_PTx-FvY2LMkcqUb2_8dqt3S8kP37PvxTXdo2boNHWVc5DLdRY_8kQMfNvh5jAZ68QQ97BWifIpUiyQckIQ9GHCLJNwgCTdIwoAk7JCEWyThpcEOSbiHJByQ9AzNJuPp6IT4_htEgqdfk1ynrq8ZLwuTmZzHueQ00UbQoshYqSCskVxHiUqZpCYXZW5MLLixaQ_OIa7eQ9uL5UI_RxhOIUIVmeGJoXDGVpxFBYdYN-YySjUvh-hdWLVK-uL0tkfKdeVIErSsjqLx2K3w0RC9ae-9aUqybLxrPyx-5V_ZVQXxPi0p4CQdoj0wSDu_s9-LP897iR50cN9H2-vbWr-CsHQtXnu4_AY9fZHO
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+residual+lithium+compounds+guided+design+for+green+recycling+of+spent+lithium-ion+cathodes&rft.jtitle=Energy+%26+environmental+science&rft.au=Fan%2C+Min&rft.au=Chang%2C+Xin&rft.au=Yu-Jie%2C+Guo&rft.au=Wan-Ping%2C+Chen&rft.date=2021-03-23&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=14&rft.issue=3&rft.spage=1461&rft.epage=1468&rft_id=info:doi/10.1039%2Fd0ee03914d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon