Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes
Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the existing recycling strategies, direct regeneration is largely encouraged from an economic and environmental perspective. However, current proce...
Saved in:
Published in | Energy & environmental science Vol. 14; no. 3; pp. 1461 - 1468 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
23.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the existing recycling strategies, direct regeneration is largely encouraged from an economic and environmental perspective. However, current procedures used to separate the active cathode materials from the aluminum foil have some limitations for direct regeneration because they either destroy the structure of the cathode or use too many toxic and expensive reagents. Hence, we conducted comprehensive research on the microstructural evolution of the LiNi
1−
x
−
y
Co
x
Mn
y
O
2
degraded electrode and then proposed a targeted method to recycle the spent cathode materials based on the increased residual lithium compounds. This separation process involves no other reagents but water, and toxic organic solvents, complicated processes, and waste treatments are unnecessary compared with the existing pretreatment strategies. Moreover, the separated cathodes are suitable for direct regeneration. Satisfactory capacity recovery of the cathode was achieved
via
simple sintering. Such a recycling process enables a sustainable closed-loop for the spent cathodes and provides new inspiration for the design of LIB recycling.
Based on the increased residual lithium compounds of the degraded cathode, a green water-based strategy is designed for achieving closed-loop recycling of spent lithium-ion batteries. |
---|---|
AbstractList | Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the existing recycling strategies, direct regeneration is largely encouraged from an economic and environmental perspective. However, current procedures used to separate the active cathode materials from the aluminum foil have some limitations for direct regeneration because they either destroy the structure of the cathode or use too many toxic and expensive reagents. Hence, we conducted comprehensive research on the microstructural evolution of the LiNi1−x−yCoxMnyO2 degraded electrode and then proposed a targeted method to recycle the spent cathode materials based on the increased residual lithium compounds. This separation process involves no other reagents but water, and toxic organic solvents, complicated processes, and waste treatments are unnecessary compared with the existing pretreatment strategies. Moreover, the separated cathodes are suitable for direct regeneration. Satisfactory capacity recovery of the cathode was achieved via simple sintering. Such a recycling process enables a sustainable closed-loop for the spent cathodes and provides new inspiration for the design of LIB recycling. Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the existing recycling strategies, direct regeneration is largely encouraged from an economic and environmental perspective. However, current procedures used to separate the active cathode materials from the aluminum foil have some limitations for direct regeneration because they either destroy the structure of the cathode or use too many toxic and expensive reagents. Hence, we conducted comprehensive research on the microstructural evolution of the LiNi 1− x − y Co x Mn y O 2 degraded electrode and then proposed a targeted method to recycle the spent cathode materials based on the increased residual lithium compounds. This separation process involves no other reagents but water, and toxic organic solvents, complicated processes, and waste treatments are unnecessary compared with the existing pretreatment strategies. Moreover, the separated cathodes are suitable for direct regeneration. Satisfactory capacity recovery of the cathode was achieved via simple sintering. Such a recycling process enables a sustainable closed-loop for the spent cathodes and provides new inspiration for the design of LIB recycling. Based on the increased residual lithium compounds of the degraded cathode, a green water-based strategy is designed for achieving closed-loop recycling of spent lithium-ion batteries. Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the existing recycling strategies, direct regeneration is largely encouraged from an economic and environmental perspective. However, current procedures used to separate the active cathode materials from the aluminum foil have some limitations for direct regeneration because they either destroy the structure of the cathode or use too many toxic and expensive reagents. Hence, we conducted comprehensive research on the microstructural evolution of the LiNi 1−x−y Co x Mn y O 2 degraded electrode and then proposed a targeted method to recycle the spent cathode materials based on the increased residual lithium compounds. This separation process involves no other reagents but water, and toxic organic solvents, complicated processes, and waste treatments are unnecessary compared with the existing pretreatment strategies. Moreover, the separated cathodes are suitable for direct regeneration. Satisfactory capacity recovery of the cathode was achieved via simple sintering. Such a recycling process enables a sustainable closed-loop for the spent cathodes and provides new inspiration for the design of LIB recycling. |
Author | Chang, Xin Guo, Yu-Jie Fan, Min Meng, Qinghai Wan, Li-Jun Yang, Xinan Chen, Wan-Ping Yin, Ya-Xia Guo, Yu-Guo |
AuthorAffiliation | Beijing National Laboratory for Condensed Matter Physics Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) School of Chemical Sciences Institute of Physics CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences (BNLMS) University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Institute of Chemistry – name: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology – name: Beijing National Laboratory for Molecular Sciences (BNLMS) – name: Chinese Academy of Sciences – name: Chinese Academy of Sciences (CAS) – name: School of Chemical Sciences – name: University of Chinese Academy of Sciences – name: CAS Research/Education Center for Excellence in Molecular Sciences – name: Beijing National Laboratory for Condensed Matter Physics – name: Institute of Physics |
Author_xml | – sequence: 1 givenname: Min surname: Fan fullname: Fan, Min – sequence: 2 givenname: Xin surname: Chang fullname: Chang, Xin – sequence: 3 givenname: Yu-Jie surname: Guo fullname: Guo, Yu-Jie – sequence: 4 givenname: Wan-Ping surname: Chen fullname: Chen, Wan-Ping – sequence: 5 givenname: Ya-Xia surname: Yin fullname: Yin, Ya-Xia – sequence: 6 givenname: Xinan surname: Yang fullname: Yang, Xinan – sequence: 7 givenname: Qinghai surname: Meng fullname: Meng, Qinghai – sequence: 8 givenname: Li-Jun surname: Wan fullname: Wan, Li-Jun – sequence: 9 givenname: Yu-Guo surname: Guo fullname: Guo, Yu-Guo |
BookMark | eNptkU1LAzEQhoNUsK1evAsBb8JqstlNdo_SVi0UvOh5SfOxTdkma5I99N-bWqsgnmYOzzMzvDMBI-usAuAao3uMSP0gkVKp4kKegTFmZZGVDNHRqad1fgEmIWwRojli9RjIpRVe8aAk9CoYOfAOdiZuzLCDwu16N1gZYDsYmQiZiNZC7TxsvVI2KWIvOmNb6DQMvbLxJGfGWSh43LgkXYJzzbugrr7rFLw_Ld5mL9nq9Xk5e1xlguAqZkyVjGBa8brSVDOOmeAkV3pNqooWtWS4ElyhXJaFIJqta6Y1XnONCak4pzmZgtvj3N67j0GF2Gzd4G1a2eRlioXggpaJQkdKeBeCV7oRJvKYDo6em67BqDlk2czRYvGV5Twpd3-U3psd9_v_4Zsj7IP44X4fQz4BnDmBkg |
CitedBy_id | crossref_primary_10_1039_D2NJ01674E crossref_primary_10_1016_j_cclet_2024_110041 crossref_primary_10_2139_ssrn_4125215 crossref_primary_10_1002_cnl2_73 crossref_primary_10_1088_2515_7655_acaa57 crossref_primary_10_1016_j_cej_2023_147607 crossref_primary_10_1016_j_est_2024_114214 crossref_primary_10_1002_cey2_231 crossref_primary_10_1002_ente_202100468 crossref_primary_10_1016_j_jpowsour_2023_233728 crossref_primary_10_1021_acsaem_3c03263 crossref_primary_10_1002_smll_202106719 crossref_primary_10_1021_acsenergylett_2c01539 crossref_primary_10_1002_aenm_202300596 crossref_primary_10_1016_j_jece_2024_114740 crossref_primary_10_1021_acs_iecr_1c05034 crossref_primary_10_1016_j_ensm_2024_103964 crossref_primary_10_1002_aenm_202103630 crossref_primary_10_1016_j_jpowsour_2024_235102 crossref_primary_10_1007_s11581_022_04497_4 crossref_primary_10_1016_j_ensm_2021_09_016 crossref_primary_10_1002_adma_202313273 crossref_primary_10_1002_er_7462 crossref_primary_10_1002_adma_202403818 crossref_primary_10_1016_j_scitotenv_2023_162567 crossref_primary_10_1021_acsami_1c23258 crossref_primary_10_1016_j_seppur_2025_131716 crossref_primary_10_1039_D4EE00331D crossref_primary_10_1016_j_ensm_2023_102801 crossref_primary_10_1007_s40820_023_01106_5 crossref_primary_10_1039_D4GC01781A crossref_primary_10_1002_aesr_202100153 crossref_primary_10_1039_D2NJ05377B crossref_primary_10_1039_D4CS00362D crossref_primary_10_1016_j_mattod_2023_12_012 crossref_primary_10_1016_j_nanoen_2023_109145 crossref_primary_10_1016_j_rser_2023_113693 crossref_primary_10_1016_j_ceramint_2022_11_074 crossref_primary_10_1016_j_nxener_2024_100234 crossref_primary_10_1016_j_jpowsour_2024_234365 crossref_primary_10_1039_D1GC04784A crossref_primary_10_1007_s42765_023_00333_0 crossref_primary_10_1016_j_jechem_2023_10_012 crossref_primary_10_1002_adfm_202213168 crossref_primary_10_1016_j_wasman_2022_07_026 crossref_primary_10_3390_en15051611 crossref_primary_10_1149_1945_7111_ac22cb crossref_primary_10_1002_adfm_202206428 crossref_primary_10_1021_acs_energyfuels_4c04598 crossref_primary_10_1016_j_desal_2022_115847 crossref_primary_10_1016_j_seppur_2024_129574 crossref_primary_10_1039_D2TA06959H crossref_primary_10_1016_j_jpowsour_2025_236655 crossref_primary_10_1002_metm_5 crossref_primary_10_1002_anie_202202558 crossref_primary_10_1016_j_jhazmat_2023_131818 crossref_primary_10_1016_j_nanoen_2025_110741 crossref_primary_10_1002_adma_202203218 crossref_primary_10_1002_aenm_202402560 crossref_primary_10_1002_idm2_12041 crossref_primary_10_1002_smll_202402278 crossref_primary_10_1002_adfm_202416085 crossref_primary_10_1016_j_ensm_2025_104010 crossref_primary_10_1016_j_jhazmat_2024_134794 crossref_primary_10_1016_j_jallcom_2023_171130 crossref_primary_10_1016_j_nanoen_2023_108465 crossref_primary_10_1016_j_hazadv_2021_100003 crossref_primary_10_1016_j_nanoen_2022_107595 crossref_primary_10_1021_acsami_4c03606 crossref_primary_10_1016_j_cej_2023_146554 crossref_primary_10_1016_j_envpol_2023_123081 crossref_primary_10_1002_anie_202218672 crossref_primary_10_1016_j_jclepro_2024_144286 crossref_primary_10_1021_acsami_2c01526 crossref_primary_10_1002_ange_202202558 crossref_primary_10_1016_j_jpowsour_2022_231220 crossref_primary_10_1039_D5EE00641D crossref_primary_10_1007_s11426_024_2085_1 crossref_primary_10_1039_D3CS00254C crossref_primary_10_1002_sstr_202300107 crossref_primary_10_54227_mlab_20220036 crossref_primary_10_1002_smtd_202100672 crossref_primary_10_1016_j_jpowsour_2021_230827 crossref_primary_10_1016_j_scitotenv_2024_175459 crossref_primary_10_1038_s41467_023_36197_6 crossref_primary_10_1039_D2GC04620B crossref_primary_10_1002_slct_202302863 crossref_primary_10_34133_energymatadv_0128 crossref_primary_10_1016_j_jcis_2024_10_022 crossref_primary_10_1016_j_isci_2022_103801 crossref_primary_10_1002_smll_202401089 crossref_primary_10_1016_j_jpowsour_2024_234845 crossref_primary_10_1039_D2GC01431A crossref_primary_10_1007_s11581_023_04967_3 crossref_primary_10_1016_j_chempr_2022_03_007 crossref_primary_10_1016_j_seppur_2024_130251 crossref_primary_10_1016_j_seppur_2024_126551 crossref_primary_10_1002_adma_202405238 crossref_primary_10_1002_gch2_202200067 crossref_primary_10_1016_j_ensm_2024_103636 crossref_primary_10_1039_D2EE03257K crossref_primary_10_1021_acsnano_3c00270 crossref_primary_10_1016_j_resconrec_2023_107115 crossref_primary_10_1039_D3EE04528E crossref_primary_10_1021_acs_chemrev_3c00884 crossref_primary_10_1016_j_est_2025_115497 crossref_primary_10_1016_j_jallcom_2022_166487 crossref_primary_10_1016_j_mser_2025_100976 crossref_primary_10_1038_s41893_024_01412_9 crossref_primary_10_1039_D1EE00691F crossref_primary_10_1002_adma_202307091 crossref_primary_10_1016_j_wasman_2021_09_032 crossref_primary_10_1021_acsami_2c06351 crossref_primary_10_1002_advs_202304425 crossref_primary_10_1016_j_mtener_2022_100997 crossref_primary_10_1002_eem2_12271 crossref_primary_10_1016_j_ensm_2021_11_005 crossref_primary_10_1021_acsenergylett_3c01635 crossref_primary_10_1039_D3GC04418A crossref_primary_10_3390_separations12010004 crossref_primary_10_1016_j_resconrec_2024_107648 crossref_primary_10_1002_cssc_202400727 crossref_primary_10_1002_ange_202218672 crossref_primary_10_2139_ssrn_4109359 crossref_primary_10_1016_j_est_2023_110344 crossref_primary_10_1016_j_jechem_2024_11_016 crossref_primary_10_1002_adfm_202500117 crossref_primary_10_1016_j_carbon_2022_07_027 crossref_primary_10_1016_j_resconrec_2021_105802 crossref_primary_10_1016_j_jclepro_2021_128098 crossref_primary_10_1016_j_jechem_2022_08_005 crossref_primary_10_1016_j_mtcomm_2024_108449 crossref_primary_10_1038_s41467_024_50679_1 crossref_primary_10_1016_j_jenvman_2023_119814 |
Cites_doi | 10.1016/j.jpowsour.2017.01.118 10.1021/acsenergylett.8b00833 10.1016/j.jhazmat.2017.05.024 10.1039/C4GC01951B 10.1016/j.cej.2019.123089 10.1039/C4RA16390G 10.1016/j.joule.2019.09.014 10.1016/j.jpowsour.2012.08.005 10.1021/acsami.9b12086 10.1016/j.jpowsour.2015.11.108 10.1038/s41586-019-1682-5 10.1016/j.jpowsour.2012.01.152 10.1002/aenm.201300787 10.1039/C8CS00297E 10.1039/c1ee01598b 10.1016/j.ensm.2019.08.013 10.1016/j.jpowsour.2017.03.035 10.1016/0013-4686(93)E0020-M 10.1016/j.electacta.2010.05.072 10.1007/s10163-013-0140-y 10.1016/j.jhazmat.2019.03.120 10.1039/C9CC08155K 10.1021/acssuschemeng.8b06694 10.1126/science.aal4263 10.1021/acssuschemeng.8b03545 10.1016/S0378-7753(02)00110-6 10.1149/07211.0011ecst 10.1016/j.joule.2019.10.011 10.1016/j.jhazmat.2019.120846 10.1016/j.nanoen.2017.11.010 10.1038/ncomms14101 10.1038/s41467-018-04762-z 10.1021/acssuschemeng.6b01948 10.1039/C9EE01478K 10.1039/C9EE02759A |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d0ee03914d |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 1468 |
ExternalDocumentID | 10_1039_D0EE03914D d0ee03914d |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- GNO HZ H~N J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ 0R~ 70~ AAJAE AARTK AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c318t-7e573168a98f6f7a17ca32efb388649d718cae02d54c3f7b97ff1baf1338aa623 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:02:52 EDT 2025 Tue Jul 01 01:45:48 EDT 2025 Thu Apr 24 22:59:47 EDT 2025 Sat Jan 08 03:48:09 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-7e573168a98f6f7a17ca32efb388649d718cae02d54c3f7b97ff1baf1338aa623 |
Notes | 10.1039/d0ee03914d Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0983-9916 0000-0002-0656-0936 0000-0002-9264-0886 0000-0003-0322-8476 |
PQID | 2503931465 |
PQPubID | 2047494 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2503931465 crossref_citationtrail_10_1039_D0EE03914D crossref_primary_10_1039_D0EE03914D rsc_primary_d0ee03914d |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210323 |
PublicationDateYYYYMMDD | 2021-03-23 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210323 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Etacheri (D0EE03914D-(cit1)/*[position()=1]) 2011; 4 Liu (D0EE03914D-(cit25)/*[position()=1]) 2016; 306 Lu (D0EE03914D-(cit27)/*[position()=1]) 2020; 4 Wang (D0EE03914D-(cit18)/*[position()=1]) 2019; 380 Kanamura (D0EE03914D-(cit29)/*[position()=1]) 1995; 40 Garrick (D0EE03914D-(cit26)/*[position()=1]) 2016; 72 Rustomji (D0EE03914D-(cit32)/*[position()=1]) 2017; 356 Zhang (D0EE03914D-(cit16)/*[position()=1]) 2016; 4 Nie (D0EE03914D-(cit14)/*[position()=1]) 2015; 17 Yao (D0EE03914D-(cit35)/*[position()=1]) 2015; 5 Zhang (D0EE03914D-(cit4)/*[position()=1]) 2018; 47 Mohanty (D0EE03914D-(cit33)/*[position()=1]) 2012; 220 Wang (D0EE03914D-(cit17)/*[position()=1]) 2019; 7 Verma (D0EE03914D-(cit20)/*[position()=1]) 2010; 55 Yan (D0EE03914D-(cit21)/*[position()=1]) 2017; 8 Harper (D0EE03914D-(cit3)/*[position()=1]) 2019; 575 He (D0EE03914D-(cit28)/*[position()=1]) 2019; 375 Zhao (D0EE03914D-(cit12)/*[position()=1]) 2020; 383 Chen (D0EE03914D-(cit2)/*[position()=1]) 2019; 3 Zhang (D0EE03914D-(cit10)/*[position()=1]) 2013; 15 Jung (D0EE03914D-(cit34)/*[position()=1]) 2014; 4 Liang (D0EE03914D-(cit6)/*[position()=1]) 2019; 12 Zhang (D0EE03914D-(cit22)/*[position()=1]) 2020; 24 Li (D0EE03914D-(cit11)/*[position()=1]) 2017; 345 Meng (D0EE03914D-(cit15)/*[position()=1]) 2019; 11 Shi (D0EE03914D-(cit19)/*[position()=1]) 2018; 3 Yu (D0EE03914D-(cit5)/*[position()=1]) 2019; 12 Foster (D0EE03914D-(cit23)/*[position()=1]) 2017; 350 Liu (D0EE03914D-(cit30)/*[position()=1]) 2018; 44 Yao (D0EE03914D-(cit8)/*[position()=1]) 2018; 6 Zhang (D0EE03914D-(cit24)/*[position()=1]) 2002; 109 Wood (D0EE03914D-(cit31)/*[position()=1]) 2018; 9 Georgi-Maschler (D0EE03914D-(cit9)/*[position()=1]) 2012; 207 Xiao (D0EE03914D-(cit7)/*[position()=1]) 2017; 338 Wang (D0EE03914D-(cit13)/*[position()=1]) 2020; 56 |
References_xml | – volume: 345 start-page: 78 year: 2017 ident: D0EE03914D-(cit11)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.118 – volume: 3 start-page: 1683 year: 2018 ident: D0EE03914D-(cit19)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00833 – volume: 338 start-page: 124 year: 2017 ident: D0EE03914D-(cit7)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.05.024 – volume: 17 start-page: 1276 year: 2015 ident: D0EE03914D-(cit14)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C4GC01951B – volume: 383 start-page: 123089 year: 2020 ident: D0EE03914D-(cit12)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123089 – volume: 5 start-page: 44107 year: 2015 ident: D0EE03914D-(cit35)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA16390G – volume: 3 start-page: 2622 year: 2019 ident: D0EE03914D-(cit2)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2019.09.014 – volume: 220 start-page: 405 year: 2012 ident: D0EE03914D-(cit33)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.08.005 – volume: 11 start-page: 32062 year: 2019 ident: D0EE03914D-(cit15)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12086 – volume: 306 start-page: 300 year: 2016 ident: D0EE03914D-(cit25)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.11.108 – volume: 575 start-page: 75 year: 2019 ident: D0EE03914D-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-1682-5 – volume: 207 start-page: 173 year: 2012 ident: D0EE03914D-(cit9)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.01.152 – volume: 4 start-page: 1300787 year: 2014 ident: D0EE03914D-(cit34)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300787 – volume: 47 start-page: 7239 year: 2018 ident: D0EE03914D-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00297E – volume: 4 start-page: 3243 year: 2011 ident: D0EE03914D-(cit1)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01598b – volume: 24 start-page: 247 year: 2020 ident: D0EE03914D-(cit22)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.08.013 – volume: 350 start-page: 140 year: 2017 ident: D0EE03914D-(cit23)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.035 – volume: 40 start-page: 913 year: 1995 ident: D0EE03914D-(cit29)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/0013-4686(93)E0020-M – volume: 55 start-page: 6332 year: 2010 ident: D0EE03914D-(cit20)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.05.072 – volume: 15 start-page: 420 year: 2013 ident: D0EE03914D-(cit10)/*[position()=1] publication-title: J. Mater. Cycles Waste Manage. doi: 10.1007/s10163-013-0140-y – volume: 375 start-page: 43 year: 2019 ident: D0EE03914D-(cit28)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.03.120 – volume: 56 start-page: 245 year: 2020 ident: D0EE03914D-(cit13)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC08155K – volume: 7 start-page: 8287 year: 2019 ident: D0EE03914D-(cit17)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b06694 – volume: 356 start-page: eaal4263 year: 2017 ident: D0EE03914D-(cit32)/*[position()=1] publication-title: Science doi: 10.1126/science.aal4263 – volume: 6 start-page: 13611 year: 2018 ident: D0EE03914D-(cit8)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b03545 – volume: 109 start-page: 458 year: 2002 ident: D0EE03914D-(cit24)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00110-6 – volume: 72 start-page: 11 year: 2016 ident: D0EE03914D-(cit26)/*[position()=1] publication-title: ECS Trans. doi: 10.1149/07211.0011ecst – volume: 4 start-page: 1 year: 2020 ident: D0EE03914D-(cit27)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2019.10.011 – volume: 380 start-page: 120846 year: 2019 ident: D0EE03914D-(cit18)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.120846 – volume: 44 start-page: 111 year: 2018 ident: D0EE03914D-(cit30)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.010 – volume: 8 start-page: 14101 year: 2017 ident: D0EE03914D-(cit21)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms14101 – volume: 9 start-page: 2490 year: 2018 ident: D0EE03914D-(cit31)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04762-z – volume: 4 start-page: 7041 year: 2016 ident: D0EE03914D-(cit16)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b01948 – volume: 12 start-page: 2672 year: 2019 ident: D0EE03914D-(cit5)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01478K – volume: 12 start-page: 3575 year: 2019 ident: D0EE03914D-(cit6)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02759A |
SSID | ssj0062079 |
Score | 2.6520367 |
Snippet | Recycling of spent lithium-ion batteries has recently become a critical issue based on environmental concerns and a desire to reutilize resources. Among the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1461 |
SubjectTerms | Aluminum Cathodes Design for recycling Electrode materials Lithium Lithium compounds Lithium-ion batteries Metal foils Organic solvents Pretreatment Reagents Rechargeable batteries Recycling Regeneration Waste treatment |
Title | Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes |
URI | https://www.proquest.com/docview/2503931465 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOqDwqFgqyBBeEXJLYeR3LdrdVKYXDrlhOkZ9tpbJbdTeH8hf404wdO0mlFQIu0cqKo5Xny3g8-b4ZhN7KOCoYEzEpSp4TpqQmIheSGKuSZIkAb2n1zp_Ps5MZO52n88HgV4-1VK_Fgfy5UVfyP1aFMbCrVcn-g2Xbh8IA_Ab7whUsDNe_sjG83JZTrq0CZdWoqiCqvryqfziquO2YtHp_UV8puEM5qoZjFV5Yrg1MkXfy2pOeVzeWE-AnEwsJW891qTzDMKTuG6GgRUtPIBdklR1GJtxT8lvkjUJeet6Nfa_JafN15Lhedon9Bfnq-6yMLr1OzWclEkfLaoTDns5kcx-BeOqIJb59Xc_X5ikjada0wjvQvbE8yu45aNYDIu15W9uTvLdzWxXZxl0horaoqoq0tvXwmer2vvC9__xLNZmdnVXT8Xy6hXYSOHOA09w5_PTx-FvY2LMkcqUb2_8dqt3S8kP37PvxTXdo2boNHWVc5DLdRY_8kQMfNvh5jAZ68QQ97BWifIpUiyQckIQ9GHCLJNwgCTdIwoAk7JCEWyThpcEOSbiHJByQ9AzNJuPp6IT4_htEgqdfk1ynrq8ZLwuTmZzHueQ00UbQoshYqSCskVxHiUqZpCYXZW5MLLixaQ_OIa7eQ9uL5UI_RxhOIUIVmeGJoXDGVpxFBYdYN-YySjUvh-hdWLVK-uL0tkfKdeVIErSsjqLx2K3w0RC9ae-9aUqybLxrPyx-5V_ZVQXxPi0p4CQdoj0wSDu_s9-LP897iR50cN9H2-vbWr-CsHQtXnu4_AY9fZHO |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+residual+lithium+compounds+guided+design+for+green+recycling+of+spent+lithium-ion+cathodes&rft.jtitle=Energy+%26+environmental+science&rft.au=Fan%2C+Min&rft.au=Chang%2C+Xin&rft.au=Yu-Jie%2C+Guo&rft.au=Wan-Ping%2C+Chen&rft.date=2021-03-23&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=14&rft.issue=3&rft.spage=1461&rft.epage=1468&rft_id=info:doi/10.1039%2Fd0ee03914d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |