Exploring the anti-obesity effects of Lactobacillus in C57BL/6 mice: mechanisms, interventions, and future directions
Lactobacillus species show strong potential in fighting obesity-related inflammation and metabolic issues. Obesity causes inflammation in adipose tissue, which harms insulin sensitivity and leads to fat buildup. Lactobacillus strains like Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacill...
Saved in:
Published in | Letters in applied microbiology Vol. 78; no. 3 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
03.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1472-765X 0266-8254 1472-765X |
DOI | 10.1093/lambio/ovaf024 |
Cover
Abstract | Lactobacillus species show strong potential in fighting obesity-related inflammation and metabolic issues. Obesity causes inflammation in adipose tissue, which harms insulin sensitivity and leads to fat buildup. Lactobacillus strains like Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus plantarum help regulate lipid metabolism by boosting key genes, preventing fat cell formation, and encouraging fat breakdown. They also produce short-chain fatty acids (SCFAs) that improve gut health, activate metabolic pathways, and reduce inflammation. Studies in animals have shown that Lactobacillus can reduce body weight, fat, and inflammation, with Lactobacillus plantarum being especially effective in improving gut microbiota and liver function. When combined with other probiotics or prebiotics, these strains work even better, enhancing lipid metabolism and reducing inflammation. These results suggest that Lactobacillus could be an effective way to manage obesity and related health problems by influencing metabolism, gut health, and inflammation. However, more research, particularly human clinical trials, is needed to confirm its potential as a dietary treatment for obesity. |
---|---|
AbstractList | Lactobacillus species show strong potential in fighting obesity-related inflammation and metabolic issues. Obesity causes inflammation in adipose tissue, which harms insulin sensitivity and leads to fat buildup. Lactobacillus strains like Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus plantarum help regulate lipid metabolism by boosting key genes, preventing fat cell formation, and encouraging fat breakdown. They also produce short-chain fatty acids (SCFAs) that improve gut health, activate metabolic pathways, and reduce inflammation. Studies in animals have shown that Lactobacillus can reduce body weight, fat, and inflammation, with Lactobacillus plantarum being especially effective in improving gut microbiota and liver function. When combined with other probiotics or prebiotics, these strains work even better, enhancing lipid metabolism and reducing inflammation. These results suggest that Lactobacillus could be an effective way to manage obesity and related health problems by influencing metabolism, gut health, and inflammation. However, more research, particularly human clinical trials, is needed to confirm its potential as a dietary treatment for obesity. Lactobacillus species show strong potential in fighting obesity-related inflammation and metabolic issues. Obesity causes inflammation in adipose tissue, which harms insulin sensitivity and leads to fat buildup. Lactobacillus strains like Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus plantarum help regulate lipid metabolism by boosting key genes, preventing fat cell formation, and encouraging fat breakdown. They also produce short-chain fatty acids (SCFAs) that improve gut health, activate metabolic pathways, and reduce inflammation. Studies in animals have shown that Lactobacillus can reduce body weight, fat, and inflammation, with Lactobacillus plantarum being especially effective in improving gut microbiota and liver function. When combined with other probiotics or prebiotics, these strains work even better, enhancing lipid metabolism and reducing inflammation. These results suggest that Lactobacillus could be an effective way to manage obesity and related health problems by influencing metabolism, gut health, and inflammation. However, more research, particularly human clinical trials, is needed to confirm its potential as a dietary treatment for obesity.Lactobacillus species show strong potential in fighting obesity-related inflammation and metabolic issues. Obesity causes inflammation in adipose tissue, which harms insulin sensitivity and leads to fat buildup. Lactobacillus strains like Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus plantarum help regulate lipid metabolism by boosting key genes, preventing fat cell formation, and encouraging fat breakdown. They also produce short-chain fatty acids (SCFAs) that improve gut health, activate metabolic pathways, and reduce inflammation. Studies in animals have shown that Lactobacillus can reduce body weight, fat, and inflammation, with Lactobacillus plantarum being especially effective in improving gut microbiota and liver function. When combined with other probiotics or prebiotics, these strains work even better, enhancing lipid metabolism and reducing inflammation. These results suggest that Lactobacillus could be an effective way to manage obesity and related health problems by influencing metabolism, gut health, and inflammation. However, more research, particularly human clinical trials, is needed to confirm its potential as a dietary treatment for obesity. |
Author | Fang, Chee Mun Chong, E-Jayn Lim, Sharoen Yu Ming Murugaiah, Chandrika Alshagga, Mustafa Pan, Yan Mah, Weng Yan |
Author_xml | – sequence: 1 givenname: Sharoen Yu Ming orcidid: 0000-0002-9787-3996 surname: Lim fullname: Lim, Sharoen Yu Ming – sequence: 2 givenname: E-Jayn surname: Chong fullname: Chong, E-Jayn – sequence: 3 givenname: Weng Yan surname: Mah fullname: Mah, Weng Yan – sequence: 4 givenname: Yan orcidid: 0000-0002-4546-2351 surname: Pan fullname: Pan, Yan – sequence: 5 givenname: Chee Mun orcidid: 0000-0002-4934-5697 surname: Fang fullname: Fang, Chee Mun – sequence: 6 givenname: Chandrika surname: Murugaiah fullname: Murugaiah, Chandrika – sequence: 7 givenname: Mustafa orcidid: 0000-0001-5064-2560 surname: Alshagga fullname: Alshagga, Mustafa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39965784$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkctr3DAQxkVJaV699hgEufRQZ_WwLSm3dEkfsNBLA70ZSR4lCra0keTQ_PfVstsSeprXbz6G-U7RUYgBEPpAyRUliq8mPRsfV_FZO8LaN-iEtoI1ou9-Hb3Kj9Fpzo-EEEmZeoeOuVJ9J2R7gpbb39spJh_ucXkArEPxTTSQfXnB4BzYknF0eKNtiUZbP01Lxj7gdSc-b1Y9nr2FazyDfdDB5zl_qsMC6RmqUAy11GHEbilLAjz6VPV27XP01ukpw_tDPEN3X25_rr81mx9fv69vNo3lVJZGGGVc31NloB5OO9k7ogQjrZSMcWYsHQ0japSKCAW2c1wq4bh1VgBXpOVn6ONed5vi0wK5DLPPFqZJB4hLHjjtZd1pmazo5X_oY1xSqNcNnLUt7XrFd9TFgVrMDOOwTX7W6WX4-9AKXO0Bm2LOCdw_hJJh59iwd2w4OMb_AF5iio0 |
Cites_doi | 10.1007/s11739-023-03374-w 10.1016/j.jff.2020.104103 10.1002/mnfr.202100348 10.1002/fbe2.12002 10.1016/j.jdiacomp.2020.107795 10.3390/genes14040857 10.3390/nu12113326 10.1021/acs.jproteome.8b00945 10.1017/S0007114510004770 10.3389/fmicb.2022.1051200 10.3390/app13010610 10.1128/mSphere.00183-20 10.3390/ijms222413452 10.3389/fnut.2016.00010 10.1016/j.heliyon.2023.e12926 10.1177/0884533611436116 10.3390/nu12040977 10.3389/fmicb.2024.1343511 10.1016/j.phrs.2021.105471 10.3390/nu12082465 10.1111/cpr.13039 10.3389/fphys.2019.00836 10.1016/j.foodres.2022.111125 10.12938/bmfh.2019-026 10.1210/er.2018-00280 10.1038/s41467-019-12896-x 10.1016/j.jff.2022.105176 10.3389/fcimb.2023.1139800 10.3390/nu12123703 10.1016/j.nut.2021.111439 10.3390/nu15122727 10.1016/j.molmet.2019.01.012 10.3390/microorganisms11040896 10.1007/s00253-020-11060-6 10.1186/s12950-021-00272-w 10.12938/bmfh.2020-040 10.4014/jmb.2107.07024 10.2337/diabetes.52.8.1958 10.3390/nu15081859 10.1007/s00394-019-02117-y 10.1002/jsfa.12538 10.1089/jmf.2018.4349 10.3389/fnut.2022.947367 10.1039/D1FO04316A 10.1111/jfbc.14509 10.3390/nu12113234 10.1016/j.fbio.2022.101619 10.3389/fcell.2022.1003118 10.1021/acs.jafc.1c07884 10.1038/s41598-019-56817-w 10.1186/s12865-020-00380-x 10.1016/j.nut.2018.10.002 10.1039/C9FO00417C 10.2217/fmb-2017-0280 10.3389/fimmu.2017.01882 10.1097/NT.0000000000000167 10.1210/endrev/bnac004 10.1007/s00018-017-2693-8 10.1590/fst.30020 10.1038/ijo.2017.161 10.3390/nu10111590 10.3390/nu13030883 10.3390/nu15204466 10.1016/j.carbpol.2020.116398 10.1016/j.micres.2022.127291 10.1021/acs.jafc.2c05764 10.1038/s42003-021-01820-z 10.1016/j.immuni.2021.12.013 10.1016/S0092-8674(00)81104-6 10.3390/nu15092211 10.1080/19490976.2024.2304900 10.1186/s13073-016-0303-2 10.3389/fmicb.2020.573586 10.3390/nu13093161 10.1038/s41366-022-01174-4 10.3390/nu11061306 10.3390/microorganisms8111715 10.3748/wjg.v27.i25.3837 10.3389/fnut.2022.1031502 10.3390/microorganisms10122488 10.1016/j.biopha.2022.112678 10.1021/acs.jafc.2c09151 10.1007/s13530-018-0341-9 10.3389/fnut.2024.1387394 10.1038/s41598-019-55987-x 10.1007/s00253-019-09703-4 10.1007/s12602-020-09720-0 10.1002/fsn3.3073 10.1038/nrd.2016.75 10.1038/s41598-017-07190-z 10.1111/jam.15079 10.1039/D1FO02501E 10.1089/jmf.2018.4329 10.3389/fcimb.2012.00086 10.3389/fimmu.2023.1139913 10.1002/mnfr.201800978 10.3389/fnut.2021.746515 10.1002/mnfr.202100136 10.3390/nu13030713 10.3390/nu12051474 10.1039/D0FO00439A 10.1016/j.foodres.2022.111396 10.1016/j.micpath.2012.05.007 10.1039/D0FO02879G 10.1039/D0FO01720E 10.1016/0026-0495(95)90123-X 10.1007/s00125-017-4495-9 10.3746/pnf.2019.24.2.136 10.3390/nu13113989 10.1007/s13679-023-00503-6 10.1002/mnfr.201800329 10.1007/s00394-017-1445-8 10.3389/fmicb.2018.00710 10.1038/s41598-020-70765-w 10.1080/19490976.2024.2390176 10.1128/IAI.00615-20 10.3389/fimmu.2020.594150 10.1016/j.jff.2023.105404 10.1111/jhn.13253 10.1089/jmf.2019.4627 10.1203/00006450-198901000-00010 10.3389/fphar.2022.1042189 10.3390/nu13061762 10.1080/09168451.2018.1497939 10.1096/fj.201801672R 10.1007/s12602-022-10012-y 10.3389/fmicb.2019.01179 10.1016/j.idairyj.2020.104914 10.3389/fnut.2021.754222 10.3390/obesities2020012 10.1016/j.phrs.2021.106020 10.1017/S0007114520002743 10.29219/fnr.v65.8087 10.1039/C9FO02478F 10.3389/fimmu.2022.840245 10.3390/ijms222312665 10.3389/fmicb.2017.00891 10.1093/advances/nmaa101 10.3389/fvets.2020.560241 |
ContentType | Journal Article |
Copyright | The Author(s) 2025. Published by Oxford University Press on behalf of Applied Microbiology International. |
Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press on behalf of Applied Microbiology International. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7ST 7T7 7TM 8FD C1K FR3 M7N P64 SOI 7X8 |
DOI | 10.1093/lambio/ovaf024 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1472-765X |
ExternalDocumentID | 39965784 10_1093_lambio_ovaf024 |
Genre | Journal Article Review |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1OC 29L 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5RE 5VS 5WD 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAONW AAPXW AARHZ AAUAY AAVAP AAXRX AAYXX AAZKR ABCQN ABCUV ABDFA ABEJV ABGNP ABJNI ABMNT ABPQP ABPTD ABPVW ABVGC ABWST ABXVV ABXZS ACAHQ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACXBN ADBBV ADEOM ADGKP ADIPN ADIZJ ADKYN ADMGS ADNBA ADOZA ADQBN ADVEK ADVOB ADXAS ADZMN AEGXH AEIMD AENEX AFBPY AFEBI AFGKR AFGWE AFRAH AFZJQ AGORE AGQXC AHGBF AIAGR AJBYB AJEEA AJNCP AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALXQX AMBMR AMYDB ATGXG ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BCRHZ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS F00 F01 F04 F5P G-S G.N GODZA H.T H.X H13 HZI HZ~ IHE IX1 J0M K48 KOP LATKE LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBOKY OIG OJZSN OK1 OVD OWPYF P2P P2W P2X P4D Q.N Q11 QB0 R.K ROX RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WYISQ XG1 Y6R YOC ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM UMC 7QL 7QO 7ST 7T7 7TM 8FD C1K FR3 M7N P64 SOI 7X8 |
ID | FETCH-LOGICAL-c318t-7b9bf6619be8121586f097204882232bc1db209d89079ec5f3897f3cfc7e39043 |
ISSN | 1472-765X 0266-8254 |
IngestDate | Fri Sep 05 03:32:05 EDT 2025 Tue Sep 02 07:41:03 EDT 2025 Sat May 10 01:40:58 EDT 2025 Wed Aug 20 07:47:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Latilactobacillus Lactilactobacillus C57BL/6 HFD-induced obesity obese mice |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press on behalf of Applied Microbiology International. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-7b9bf6619be8121586f097204882232bc1db209d89079ec5f3897f3cfc7e39043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4546-2351 0000-0001-5064-2560 0000-0002-4934-5697 0000-0002-9787-3996 |
OpenAccessLink | https://doi.org/10.1093/lambio/ovaf024 |
PMID | 39965784 |
PQID | 3244156938 |
PQPubID | 1006551 |
ParticipantIDs | proquest_miscellaneous_3168389428 proquest_journals_3244156938 pubmed_primary_39965784 crossref_primary_10_1093_lambio_ovaf024 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-03 |
PublicationDateYYYYMMDD | 2025-03-03 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Letters in applied microbiology |
PublicationTitleAlternate | Lett Appl Microbiol |
PublicationYear | 2025 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Kullar (2025042401512015600_bib70) 2023; 11 Chen (2025042401512015600_bib16) 2023; 103 Murphy (2025042401512015600_bib102) 2021; 12 Choi (2025042401512015600_bib22) 2020; 10 Geng (2025042401512015600_bib44) 2022; 147 Liu (2025042401512015600_bib92) 2022; 70 Lang (2025042401512015600_bib72) 2019; 9 Park (2025042401512015600_bib110) 2019; 9 Le Barz (2025042401512015600_bib75) 2019; 33 Wang (2025042401512015600_bib140) 2020; 59 Lu (2025042401512015600_bib94) 2021; 13 Sun (2025042401512015600_bib134) 2020; 7 Amelia (2025042401512015600_bib7) 2021; 41 Chai (2025042401512015600_bib14) 2022; 157 Wan (2025042401512015600_bib139) 2022; 9 Wen (2025042401512015600_bib143) 2024; 15 Park (2025042401512015600_bib111) 2021; 31 Kleyn (2025042401512015600_bib66) 1996; 85 Martins (2025042401512015600_bib97) 2022; 2 Zheng (2025042401512015600_bib159) 2021; 12 Chen (2025042401512015600_bib17) 2022; 66 Dahiya (2025042401512015600_bib27) 2018; 13 Li (2025042401512015600_bib82) 2023; 14 Ji (2025042401512015600_bib59) 2018; 9 Olofsson (2025042401512015600_bib106) 2022; 43 Jeung (2025042401512015600_bib57) 2019; 24 Foroozan (2025042401512015600_bib38) 2021; 13 Kang (2025042401512015600_bib63) 2023; 15 Teng (2025042401512015600_bib137) 2022; 95 Huang (2025042401512015600_bib52) 2019; 10 Shan (2025042401512015600_bib123) 2022; 71 Dempsey (2025042401512015600_bib31) 2022; 13 Zhao (2025042401512015600_bib158) 2019; 103 Joung (2025042401512015600_bib60) 2021; 105 Yang (2025042401512015600_bib152) 2022; 93 Hansen (2025042401512015600_bib48) 2018; 10 WHO (2025042401512015600_bib144) 2021 Hussain (2025042401512015600_bib54) 2020; 23 Gan (2025042401512015600_bib40) 2020; 44 Stojanov (2025042401512015600_bib128) 2020; 8 Heo (2025042401512015600_bib49) 2018; 82 Magne (2025042401512015600_bib96) 2020; 12 Di Vincenzo (2025042401512015600_bib34) 2024; 19 Lee (2025042401512015600_bib80) 2021; 22 Chanda (2025042401512015600_bib15) 2024; 16 Mohammad (2025042401512015600_bib100) 2021; 11 Wu (2025042401512015600_bib148) 2021; 18 Million (2025042401512015600_bib98) 2012; 53 Desai (2025042401512015600_bib32) 2020; 12 Enriquez (2025042401512015600_bib36) 2020; 21 Liang (2025042401512015600_bib87) 2021; 65 Lee (2025042401512015600_bib76) 2018; 10 Liu (2025042401512015600_bib89) 2020; 12 Choi (2025042401512015600_bib20) 2021; 65 Seo (2025042401512015600_bib122) 2020; 12 Tang (2025042401512015600_bib136) 2020; 243 Yang (2025042401512015600_bib153) 2021; 13 Pessione (2025042401512015600_bib112) 2012; 2 Youn (2025042401512015600_bib157) 2021; 89 Jang (2025042401512015600_bib56) 2023; 9 Jang (2025042401512015600_bib55) 2019; 63 ŠtŠepetova (2025042401512015600_bib129) 2011; 105 Jung (2025042401512015600_bib61) 2022; 10 Kusminski (2025042401512015600_bib71) 2016; 15 Oraha (2025042401512015600_bib108) 2022; 46 Huang (2025042401512015600_bib51) 2021; 13 Obanda (2025042401512015600_bib103) 2021; 8 Won (2025042401512015600_bib145) 2020; 12 Wood (2025042401512015600_bib146) 1989; 25 Wu (2025042401512015600_bib147) 2024; 16 Lange (2025042401512015600_bib73) 2024; 37 Boulangé (2025042401512015600_bib11) 2016; 8 D’innocenzo (2025042401512015600_bib33) 2019; 11 Mims (2025042401512015600_bib99) 2021; 4 Watanabe (2025042401512015600_bib142) 2021; 131 Gomes (2025042401512015600_bib45) 2018; 9 Li (2025042401512015600_bib86) 2017; 8 Rossmeisl (2025042401512015600_bib120) 2003; 52 Lee (2025042401512015600_bib79) 2018; 10 Bourrie (2025042401512015600_bib12) 2021; 125 Wu (2025042401512015600_bib149) 2023; 268 Boccuto (2025042401512015600_bib9) 2023; 14 Sun (2025042401512015600_bib131) 2018; 11 Hugenholtz (2025042401512015600_bib53) 2018; 75 Davis (2025042401512015600_bib29) 2016; 51 Alard (2025042401512015600_bib5) 2021; 13 Chen (2025042401512015600_bib18) 2018; 8 Oh (2025042401512015600_bib104) 2020; 5 Ji (2025042401512015600_bib58) 2019; 2019 Portincasa (2025042401512015600_bib113) 2022; 10 Park (2025042401512015600_bib109) 2020; 12 Rowland (2025042401512015600_bib121) 2018; 57 Zhong (2025042401512015600_bib160) 2021; 8 Yi (2025042401512015600_bib154) 2020; 11 Dai (2025042401512015600_bib28) 2023; 15 Gangoiti (2025042401512015600_bib42) 2017; 7 Lou (2025042401512015600_bib93) 2024; 11 Chusyd (2025042401512015600_bib23) 2016; 3 Abdel Aziz (2025042401512015600_bib1) 2023; 14 Liu (2025042401512015600_bib88) 2021; 27 Kim (2025042401512015600_bib65) 2023; 101 Wang (2025042401512015600_bib141) 2023; 71 Rangel-Torres (2025042401512015600_bib115) 2022; 16 Liu (2025042401512015600_bib91) 2022; 13 Sun (2025042401512015600_bib130) 2019; 10 Li (2025042401512015600_bib84) 2019; 10 Liu (2025042401512015600_bib90) 2020; 11 Ondee (2025042401512015600_bib107) 2022; 14 Oh (2025042401512015600_bib105) 2019; 22 Kang (2025042401512015600_bib62) 2022; 175 Lee (2025042401512015600_bib78) 2021; 54 Lew (2025042401512015600_bib81) 2018; 38 Li (2025042401512015600_bib83) 2020; 11 Sun (2025042401512015600_bib133) 2023; 11 Akram (2025042401512015600_bib4) 2022; 13 Casimiro (2025042401512015600_bib13) 2021; 35 Krajmalnik-Brown (2025042401512015600_bib69) 2012; 27 Condon (2025042401512015600_bib24) 1983; 7 Shin (2025042401512015600_bib125) 2023; 15 Yoshitake (2025042401512015600_bib156) 2021; 40 Lange (2025042401512015600_bib74) 2023; 12 Rastogi (2025042401512015600_bib118) 2022; 13 Chiou (2025042401512015600_bib19) 2021; 13 Ejtahed (2025042401512015600_bib35) 2020; 39 De Cedrón (2025042401512015600_bib30) 2020 Surwit (2025042401512015600_bib135) 1995; 44 Siersbæk (2025042401512015600_bib126) 2020; 10 Cui (2025042401512015600_bib26) 2021; 22 Kodde (2025042401512015600_bib67) 2019; 10 Alquier (2025042401512015600_bib6) 2018; 61 Lee (2025042401512015600_bib77) 2018; 62 Rastelli (2025042401512015600_bib117) 2019; 40 Bastías-Pérez (2025042401512015600_bib8) 2020; 12 Molina-Tijeras (2025042401512015600_bib101) 2021; 167 Rani (2025042401512015600_bib116) 2022; 46 Yan (2025042401512015600_bib151) 2022; 155 Zsálig (2025042401512015600_bib161) 2023; 13 Li (2025042401512015600_bib85) 2020; 73 Ke (2025042401512015600_bib64) 2019; 22 Rohm (2025042401512015600_bib119) 2022; 55 Qu (2025042401512015600_bib114) 2020; 11 Gan (2025042401512015600_bib41) 2020; 44 Yan (2025042401512015600_bib150) 2022; 13 Börgeson (2025042401512015600_bib10) 2022; 10 Gu (2025042401512015600_bib46) 2022; 47 Choi (2025042401512015600_bib21) 2019; 22 Hossain (2025042401512015600_bib50) 2018; 13 Gu (2025042401512015600_bib47) 2019; 18 Fusco (2025042401512015600_bib39) 2023; 15 Ma (2025042401512015600_bib95) 2022; 9 Fan (2025042401512015600_bib37) 2023; 13 Aguilera (2025042401512015600_bib3) 2022; 12 Abriouel (2025042401512015600_bib2) 2017; 8 Crovesy (2025042401512015600_bib25) 2017; 41 Shen (2025042401512015600_bib124) 2022; 1 Siroli (2025042401512015600_bib127) 2021; 114 Sun (2025042401512015600_bib132) 2020; 11 Kong (2025042401512015600_bib68) 2019; 60 |
References_xml | – volume: 19 start-page: 275 year: 2024 ident: 2025042401512015600_bib34 article-title: Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review publication-title: Intern Emerg Med doi: 10.1007/s11739-023-03374-w – volume: 73 start-page: 104103 year: 2020 ident: 2025042401512015600_bib85 article-title: Lactobacillus plantarum prevents obesity via modulation of gut microbiota and metabolites in high-fat feeding mice publication-title: J Funct Foods doi: 10.1016/j.jff.2020.104103 – volume: 66 start-page: 1 year: 2022 ident: 2025042401512015600_bib17 article-title: Lactobacillus rhamnosus strain LRH05 intervention ameliorated body weight gain and adipose inflammation via modulating the gut microbiota in high-fat diet-induced obese mice publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.202100348 – volume: 1 start-page: 101 year: 2022 ident: 2025042401512015600_bib124 article-title: Advances in the role and mechanism of lactic acid bacteria in treating obesity publication-title: Food Bioeng doi: 10.1002/fbe2.12002 – volume: 35 start-page: 107795 year: 2021 ident: 2025042401512015600_bib13 article-title: Phenotypic sexual dimorphism in response to dietary fat manipulation in C57BL/6 J mice publication-title: J Diabetes Complicat doi: 10.1016/j.jdiacomp.2020.107795 – volume: 14 start-page: 1 year: 2023 ident: 2025042401512015600_bib9 article-title: Human genes involved in the interaction between host and gut microbiome: regulation and pathogenic mechanisms publication-title: Genes (Basel) doi: 10.3390/genes14040857 – volume: 12 start-page: 1 year: 2020 ident: 2025042401512015600_bib32 article-title: Maternal high fat diet programs male mice offspring hyperphagia and obesity: mechanism of increased appetite neurons via altered neurogenic factors and nutrient sensor AMPK publication-title: Nutrients doi: 10.3390/nu12113326 – volume: 18 start-page: 1703 year: 2019 ident: 2025042401512015600_bib47 article-title: Metabolic and gut microbial characterization of obesity-prone mice under a high-fat diet publication-title: J Proteome Res doi: 10.1021/acs.jproteome.8b00945 – volume: 105 start-page: 1235 year: 2011 ident: 2025042401512015600_bib129 article-title: Diversity and metabolic impact of intestinal Lactobacillus species in healthy adults and the elderly publication-title: Br J Nutr doi: 10.1017/S0007114510004770 – volume: 13 start-page: 1 year: 2022 ident: 2025042401512015600_bib150 article-title: Characteristics of intestinal microbiota in C57BL/6 mice with non-alcoholic fatty liver induced by high-fat diet publication-title: Front Microbiol doi: 10.3389/fmicb.2022.1051200 – volume: 13 start-page: 1 year: 2023 ident: 2025042401512015600_bib161 article-title: A review of the relationship between gut microbiome and obesity publication-title: Appl Sci doi: 10.3390/app13010610 – volume: 5 start-page: e00183 year: 2020 ident: 2025042401512015600_bib104 article-title: Secretion of recombinant interleukin-22 by engineered Lactobacillus reuteri reduces fatty liver disease in a mouse model of diet-induced obesity publication-title: mSphere doi: 10.1128/mSphere.00183-20 – volume: 9 start-page: 308 year: 2018 ident: 2025042401512015600_bib45 article-title: The human gut microbiota: metabolism and perspective in obesity publication-title: Gut Microbes – volume: 22 start-page: 1 year: 2021 ident: 2025042401512015600_bib26 article-title: The carbohydrate metabolism of Lactiplantibacillus plantarum publication-title: Int J Mol Sci doi: 10.3390/ijms222413452 – volume: 10 start-page: 1 year: 2018 ident: 2025042401512015600_bib76 article-title: Lactobacillus plantarum strain ln4 attenuates diet-induced obesity, insulin resistance, and changes in hepatic mRNA levels associated with glucose and lipid metabolism publication-title: Nutrients – volume: 3 start-page: 1 year: 2016 ident: 2025042401512015600_bib23 article-title: Relationships between rodent white adipose fat pads and human white adipose fat depots publication-title: Front Nutr doi: 10.3389/fnut.2016.00010 – volume: 9 start-page: 1 year: 2023 ident: 2025042401512015600_bib56 article-title: Anti-obesity potential of heat-killed Lactiplantibacillus plantarum K8 in 3T3-L1 cells and high-fat diet mice publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e12926 – volume: 44 start-page: e13491 year: 2020 ident: 2025042401512015600_bib41 article-title: Anti-obesity effect of Lactobacillus plantarum CQPC01 by modulating lipid metabolism in high-fat diet-induced C57BL/6 mice publication-title: J Food Biochem – volume: 27 start-page: 201 year: 2012 ident: 2025042401512015600_bib69 article-title: Effects of gut microbes on nutrient absorption and energy regulation publication-title: Nutr Clin Pract doi: 10.1177/0884533611436116 – volume: 7 start-page: 15 year: 1983 ident: 2025042401512015600_bib24 article-title: Aerobic metabolism of lactic acid bacteria publication-title: Irish J Food Sci Technol – volume: 12 start-page: 1 year: 2020 ident: 2025042401512015600_bib89 article-title: Weight-reducing effect of Lactobacillus plantarum ZJUFT17 isolated from Sourdough ecosystem publication-title: Nutrients doi: 10.3390/nu12040977 – volume: 15 start-page: 1 year: 2024 ident: 2025042401512015600_bib143 article-title: Gut microbiota affects obesity susceptibility in mice through gut metabolites publication-title: Front Microbiol doi: 10.3389/fmicb.2024.1343511 – volume: 167 start-page: 1 year: 2021 ident: 2025042401512015600_bib101 article-title: Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis publication-title: Pharmacol Res doi: 10.1016/j.phrs.2021.105471 – volume: 12 start-page: 1 year: 2020 ident: 2025042401512015600_bib122 article-title: Synergistic effects of heat-killed kefir paraprobiotics and flavonoid-rich prebiotics on western diet-induced obesity publication-title: Nutrients doi: 10.3390/nu12082465 – volume: 54 start-page: 1 year: 2021 ident: 2025042401512015600_bib78 article-title: Oral intake of Lactobacillus plantarum L-14 extract alleviates TLR2- and AMPK-mediated obesity-associated disorders in high-fat-diet-induced obese C57BL/6 J mice publication-title: Cell Prolif doi: 10.1111/cpr.13039 – start-page: 291 volume-title: Precision Medicine for Investigators, Practitioners and Providers year: 2020 ident: 2025042401512015600_bib30 article-title: Precision nutrition to target lipid metabolism alterations in cancer – volume: 10 start-page: 1 year: 2019 ident: 2025042401512015600_bib67 article-title: Maturation of white adipose tissue function in C57BL/6j mice from weaning to young adulthood publication-title: Front Physiol doi: 10.3389/fphys.2019.00836 – volume: 155 start-page: 1 year: 2022 ident: 2025042401512015600_bib151 article-title: Probiotic-fermented rice buckwheat alleviates high-fat diet-induced hyperlipidemia in mice by suppressing lipid accumulation and modulating gut microbiota publication-title: Food Res Int doi: 10.1016/j.foodres.2022.111125 – volume: 39 start-page: 65 year: 2020 ident: 2025042401512015600_bib35 article-title: Gut microbiota-derived metabolites in obesity: a systematic review publication-title: Biosci Microbiota, Food Heal doi: 10.12938/bmfh.2019-026 – volume: 14 start-page: 1 year: 2023 ident: 2025042401512015600_bib82 article-title: Lactobacillus reuteri strain 8008 attenuated the aggravation of depressive-like behavior induced by CUMS in high-fat diet-fed mice through regulating the gut microbiota publication-title: Front Pharmacol – volume: 40 start-page: 1271 year: 2019 ident: 2025042401512015600_bib117 article-title: The gut microbiome influences host endocrine functions publication-title: Endocr Rev doi: 10.1210/er.2018-00280 – volume: 10 start-page: 1 year: 2019 ident: 2025042401512015600_bib52 article-title: Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism publication-title: Nat Commun doi: 10.1038/s41467-019-12896-x – volume: 95 start-page: 1 year: 2022 ident: 2025042401512015600_bib137 article-title: Effect of Lactobacillus plantarum LP104 on hyperlipidemia in high-fat diet induced C57BL/6 N mice via alteration of intestinal microbiota publication-title: J Funct Foods doi: 10.1016/j.jff.2022.105176 – volume: 13 start-page: 1 year: 2023 ident: 2025042401512015600_bib37 article-title: Research progress of gut microbiota and obesity caused by high-fat diet publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2023.1139800 – volume: 10 start-page: 1 year: 2022 ident: 2025042401512015600_bib113 article-title: Intestinal barrier and permeability in health, obesity and NAFLD publication-title: Biomedicines – volume: 12 start-page: 1 year: 2020 ident: 2025042401512015600_bib145 article-title: Lactobacillus sakei ADM14 induces anti-obesity effects and changes in gut microbiome in high-fat diet-induced obese mice publication-title: Nutrients doi: 10.3390/nu12123703 – volume: 93 start-page: 1 year: 2022 ident: 2025042401512015600_bib152 article-title: Beneficial effects of a combination of Clostridium cochlearium and Lactobacillus acidophilus on body weight gain, insulin sensitivity, and gut microbiota in high-fat diet-induced obese mice publication-title: Nutrition doi: 10.1016/j.nut.2021.111439 – volume: 15 start-page: 1 year: 2023 ident: 2025042401512015600_bib28 article-title: Vitamin K and hallmarks of ageing: focus on diet and gut microbiome publication-title: Nutrients doi: 10.3390/nu15122727 – volume: 22 start-page: 96 year: 2019 ident: 2025042401512015600_bib64 article-title: Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice publication-title: Mol Metab doi: 10.1016/j.molmet.2019.01.012 – volume: 11 start-page: 1 year: 2023 ident: 2025042401512015600_bib70 article-title: Lactobacillus bacteremia and probiotics: a review publication-title: Microorganisms doi: 10.3390/microorganisms11040896 – volume: 105 start-page: 1203 year: 2021 ident: 2025042401512015600_bib60 article-title: Probiotics ameliorate chronic low-grade inflammation and fat accumulation with gut microbiota composition change in diet-induced obese mice models publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-020-11060-6 – volume: 18 start-page: 1 year: 2021 ident: 2025042401512015600_bib148 article-title: Lactobacillus fermentum CQPC07 attenuates obesity, inflammation and dyslipidemia by modulating the antioxidant capacity and lipid metabolism in high-fat diet induced obese mice publication-title: J Inflamm doi: 10.1186/s12950-021-00272-w – volume: 40 start-page: 84 year: 2021 ident: 2025042401512015600_bib156 article-title: Heat-killed Lactobacillus plantarum L-137 attenuates obesity and associated metabolic abnormalities in C57BL/6 J mice on a high-fat diet publication-title: Biosci Microbiota Food Health doi: 10.12938/bmfh.2020-040 – volume: 31 start-page: 1568 year: 2021 ident: 2025042401512015600_bib111 article-title: Latilactobacillus sakei WIKIM31 decelerates weight gain in high-fat diet-induced obese mice by modulating lipid metabolism and suppressing inflammation publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.2107.07024 – volume: 52 start-page: 1958 year: 2003 ident: 2025042401512015600_bib120 article-title: Variation in type 2 diabetes—related traits in mouse strains susceptible to diet-induced obesity publication-title: Diabetes doi: 10.2337/diabetes.52.8.1958 – volume: 15 start-page: 1 year: 2023 ident: 2025042401512015600_bib63 article-title: Combination of Lactobacillus plantarum HAC03 and Garcinia cambogia has a significant anti-obesity effect in diet-induced obesity mice publication-title: Nutrients doi: 10.3390/nu15081859 – volume: 59 start-page: 2709 year: 2020 ident: 2025042401512015600_bib140 article-title: Anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on high-fat and high-fructose diet mice base on inflammatory response alleviation and gut microbiota regulation publication-title: Eur J Nutr doi: 10.1007/s00394-019-02117-y – volume: 103 start-page: 4625 year: 2023 ident: 2025042401512015600_bib16 article-title: Lactobacillus plantarum HF02 alleviates lipid accumulation and intestinal microbiota dysbiosis in high-fat diet-induced obese mice publication-title: J Sci Food Agric doi: 10.1002/jsfa.12538 – volume: 22 start-page: 1199 year: 2019 ident: 2025042401512015600_bib105 article-title: Effects of Lactobacillus plantarum PMO 08 alone and combined with chia seeds on metabolic syndrome and parameters related to gut health in high-fat diet-induced obese mice publication-title: J Med Food doi: 10.1089/jmf.2018.4349 – volume: 9 start-page: 1 year: 2022 ident: 2025042401512015600_bib95 article-title: Lactobacillus plantarum alleviates obesity by altering the composition of the gut microbiota in high-fat diet-fed mice publication-title: Front Nutr doi: 10.3389/fnut.2022.947367 – volume: 8 start-page: 1 year: 2018 ident: 2025042401512015600_bib18 article-title: A combination of Lactobacillus Mali APS1 and dieting improved the efficacy of obesity treatment via manipulating gut microbiome in mice publication-title: Sci Rep – volume: 13 start-page: 5971 year: 2022 ident: 2025042401512015600_bib91 article-title: Lactobacillus plantarum 23–1 improves intestinal inflammation and barrier function through the TLR4/NF-κb signaling pathway in obese mice publication-title: Food Funct doi: 10.1039/D1FO04316A – volume: 46 start-page: 1 year: 2022 ident: 2025042401512015600_bib116 article-title: Protective effect of probiotic and prebiotic fermented milk containing Lactobacillus fermentum against obesity-induced hepatic steatosis and inflammation publication-title: J Food Biochem doi: 10.1111/jfbc.14509 – volume: 12 start-page: 1 year: 2020 ident: 2025042401512015600_bib8 article-title: Dietary options for rodents in the study of obesity publication-title: Nutrients doi: 10.3390/nu12113234 – volume: 47 start-page: 1 year: 2022 ident: 2025042401512015600_bib46 article-title: Antidiabetic effects of multi-species probiotic and its fermented milk in mice via restoring gut microbiota and intestinal barrier publication-title: Food Biosci doi: 10.1016/j.fbio.2022.101619 – volume: 10 start-page: 1 year: 2022 ident: 2025042401512015600_bib10 article-title: Of mice and men: pinpointing species differences in adipose tissue biology publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2022.1003118 – volume: 10 start-page: 1 year: 2020 ident: 2025042401512015600_bib22 article-title: Lactobacillus plantarum LMT1–48 exerts anti-obesity effect in high-fat diet-induced obese mice by regulating expression of lipogenic genes publication-title: Sci Rep – volume: 70 start-page: 4631 year: 2022 ident: 2025042401512015600_bib92 article-title: Lactobacillus paracasei 24 attenuates lipid accumulation in high-fat diet-induced obese mice by regulating the gut microbiota publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.1c07884 – volume: 9 start-page: 1 year: 2019 ident: 2025042401512015600_bib110 article-title: Lactobacillus amylovorus KU4 ameliorates diet-induced obesity in mice by promoting adipose browning through pparγ signaling publication-title: Sci Rep doi: 10.1038/s41598-019-56817-w – volume: 21 start-page: 1 year: 2020 ident: 2025042401512015600_bib36 article-title: Genomic, microbial and environmental standardization in animal experimentation limiting immunological discovery publication-title: BMC Immunol doi: 10.1186/s12865-020-00380-x – volume: 60 start-page: 175 year: 2019 ident: 2025042401512015600_bib68 article-title: Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet publication-title: Nutrition doi: 10.1016/j.nut.2018.10.002 – volume: 11 start-page: 8453 year: 2018 ident: 2025042401512015600_bib131 article-title: Anti-hyperlipidemia efficacy of Lactobacillus delbrueckii on blood lipids and gut microbiota in high-fat diet-fed mice publication-title: Int J Clin Exp Med – volume: 10 start-page: 4705 year: 2019 ident: 2025042401512015600_bib84 article-title: Lactobacillus reuteri improves gut barrier function and affects diurnal variation of the gut microbiota in mice fed a high-fat diet publication-title: Food Funct doi: 10.1039/C9FO00417C – volume: 13 start-page: 1007 year: 2018 ident: 2025042401512015600_bib27 article-title: Conjugated linoleic acid enriched skim milk prepared with Lactobacillus fermentum DDHI27 endorsed antiobesity in mice publication-title: Future Microbiol doi: 10.2217/fmb-2017-0280 – volume: 8 start-page: 1 year: 2017 ident: 2025042401512015600_bib86 article-title: Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases publication-title: Front Immunol doi: 10.3389/fimmu.2017.01882 – volume: 51 start-page: 1 year: 2016 ident: 2025042401512015600_bib29 article-title: the gut microbiome and its role in obesity publication-title: Nutr Today doi: 10.1097/NT.0000000000000167 – volume: 43 start-page: 907 year: 2022 ident: 2025042401512015600_bib106 article-title: The metabolic role and therapeutic potential of the microbiome publication-title: Endocr Rev doi: 10.1210/endrev/bnac004 – volume: 75 start-page: 149 year: 2018 ident: 2025042401512015600_bib53 article-title: Mouse models for human intestinal microbiota research: a critical evaluation publication-title: Cell Mol Life Sci doi: 10.1007/s00018-017-2693-8 – volume: 41 start-page: 746 year: 2021 ident: 2025042401512015600_bib7 article-title: Characterization and probiotic potential of lactic acid bacteria isolated from dadiah sampled in West Sumatra publication-title: Food Sci Technol doi: 10.1590/fst.30020 – volume: 41 start-page: 1607 year: 2017 ident: 2025042401512015600_bib25 article-title: Effect of Lactobacillus on body weight and body fat in overweight subjects: a systematic review of randomized controlled clinical trials publication-title: Int J Obes doi: 10.1038/ijo.2017.161 – volume: 10 start-page: 1 year: 2018 ident: 2025042401512015600_bib48 article-title: The microbiotic highway to health—new perspective on food structure, gut microbiota, and host inflammation publication-title: Nutrients doi: 10.3390/nu10111590 – volume: 13 start-page: 1 year: 2021 ident: 2025042401512015600_bib94 article-title: Nutrient-induced cellular mechanisms of gut hormone secretion publication-title: Nutrients doi: 10.3390/nu13030883 – volume: 15 start-page: 1 year: 2023 ident: 2025042401512015600_bib125 article-title: Roles of short-chain fatty acids in inflammatory bowel disease publication-title: Nutrients doi: 10.3390/nu15204466 – volume: 243 start-page: 1 year: 2020 ident: 2025042401512015600_bib136 article-title: A synbiotic consisting of Lactobacillus plantarum S58 and hull-less barley β-glucan ameliorates lipid accumulation in mice fed with a high-fat diet by activating AMPK signaling and modulating the gut microbiota publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2020.116398 – volume: 11 start-page: 1 year: 2020 ident: 2025042401512015600_bib83 article-title: Probiotic mixture of Lactobacillus plantarum strains improves lipid metabolism and gut microbiota structure in high fat diet-fed mice publication-title: Front Microbiol – volume: 268 start-page: 127291 year: 2023 ident: 2025042401512015600_bib149 article-title: Gut microbiota and its roles in the pathogenesis and therapy of endocrine system diseases publication-title: Microbiol Res doi: 10.1016/j.micres.2022.127291 – volume: 71 start-page: 3239 year: 2022 ident: 2025042401512015600_bib123 article-title: Identification of a novel strain Lactobacillus reuteri and anti-obesity effect through metabolite indole-3-carboxaldehyde in diet-induced obese mice publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.2c05764 – volume: 4 start-page: 2 year: 2021 ident: 2025042401512015600_bib99 article-title: The gut mycobiome of healthy mice is shaped by the environment and correlates with metabolic outcomes in response to diet publication-title: Commun Biol doi: 10.1038/s42003-021-01820-z – volume: 55 start-page: 31 year: 2022 ident: 2025042401512015600_bib119 article-title: Inflammation in obesity, diabetes, and related disorders publication-title: Immunity doi: 10.1016/j.immuni.2021.12.013 – volume: 85 start-page: 281 year: 1996 ident: 2025042401512015600_bib66 article-title: Identification and characterization of the mouse obesity gene tubby: a member of a novel gene Family publication-title: Cell doi: 10.1016/S0092-8674(00)81104-6 – volume: 15 start-page: 1 year: 2023 ident: 2025042401512015600_bib39 article-title: Short-chain fatty-acid-producing bacteria: key components of the Human gut microbiota publication-title: Nutrients doi: 10.3390/nu15092211 – volume: 14 start-page: 1 year: 2022 ident: 2025042401512015600_bib107 article-title: Lactiplantibacillus plantarum dfa1 outperforms Enterococcus faecium dfa1 on anti-obesity in high fat-induced obesity mice possibly through the differences in gut dysbiosis attenuation, despite the similar anti-inflammatory properties publication-title: Nutrients – volume: 16 start-page: 1 year: 2024 ident: 2025042401512015600_bib15 article-title: Meta-analysis reveals obesity associated gut microbial alteration patterns and reproducible contributors of functional shift publication-title: Gut Microbes doi: 10.1080/19490976.2024.2304900 – volume: 8 start-page: 1 year: 2016 ident: 2025042401512015600_bib11 article-title: Impact of the gut microbiota on inflammation, obesity, and metabolic disease publication-title: Genome Med doi: 10.1186/s13073-016-0303-2 – volume: 11 start-page: 1 year: 2020 ident: 2025042401512015600_bib154 article-title: Effects of Lactobacillus fermentum CQPC04 on lipid reduction in C57BL/6 J mice publication-title: Front Microbiol doi: 10.3389/fmicb.2020.573586 – volume: 13 start-page: 1 year: 2021 ident: 2025042401512015600_bib19 article-title: Synbiotic intervention with an adlay-based prebiotic and probiotics improved diet-induced metabolic disturbance in mice by modulation of the gut microbiota publication-title: Nutrients doi: 10.3390/nu13093161 – volume: 46 start-page: 1749 year: 2022 ident: 2025042401512015600_bib108 article-title: Sex-specific changes in metabolism during the transition from chow to high-fat diet feeding are abolished in response to dieting in C57BL/6 J mice publication-title: Int J Obes doi: 10.1038/s41366-022-01174-4 – volume: 11 start-page: 1 year: 2019 ident: 2025042401512015600_bib33 article-title: Obesity and the mediterranean diet: a review of evidence of the role and sustainability of the mediterranean diet publication-title: Nutrients doi: 10.3390/nu11061306 – volume: 44 start-page: e13495 year: 2020 ident: 2025042401512015600_bib40 article-title: Regulating effect of Lactobacillus plantarum CQPC03 on lipid metabolism in high-fat diet-induced obesity in mice publication-title: J Food Biochem – volume: 13 start-page: 1 year: 2018 ident: 2025042401512015600_bib50 article-title: Enhancement of lipid metabolism and hepatic stability in fat-induced obese mice by fermented cucurbita moschata extract publication-title: Evid Based Complement Alternat Med – volume: 38 start-page: 350 year: 2018 ident: 2025042401512015600_bib81 article-title: Lactobacillus plantarum DR7 reduces cholesterol via phosphorylation of AMPK that down-regulated the mRNA expression of HMG-CoA reductase publication-title: Korean J Food Sci Anim Resour – volume: 8 start-page: 1 year: 2020 ident: 2025042401512015600_bib128 article-title: The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease publication-title: Microorganisms doi: 10.3390/microorganisms8111715 – volume: 27 start-page: 3837 year: 2021 ident: 2025042401512015600_bib88 article-title: Gut microbiota in obesity publication-title: World J Gastroenterol doi: 10.3748/wjg.v27.i25.3837 – volume: 9 start-page: 1 year: 2022 ident: 2025042401512015600_bib139 article-title: Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health publication-title: Front Nutr doi: 10.3389/fnut.2022.1031502 – volume: 10 start-page: 1 year: 2022 ident: 2025042401512015600_bib61 article-title: Levilactobacillus brevis MG5311 alleviates ethanol-induced liver injury by suppressing hepatic oxidative stress in C57BL/6 mice publication-title: Microorganisms doi: 10.3390/microorganisms10122488 – volume: 147 start-page: 112678 year: 2022 ident: 2025042401512015600_bib44 article-title: The links between gut microbiota and obesity and obesity related diseases publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2022.112678 – volume: 71 start-page: 7334 year: 2023 ident: 2025042401512015600_bib141 article-title: Prevention of high-fat-diet-induced dyslipidemia by Lactobacillus plantarum LP104 through mediating bile acid enterohepatic axis circulation and intestinal flora publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.2c09151 – volume: 10 start-page: 11 year: 2018 ident: 2025042401512015600_bib79 article-title: Lactic acid bacteria isolated from kimchi to evaluate anti-obesity effect in high fat diet-induced obese mice publication-title: Toxicol Environ Health Sci doi: 10.1007/s13530-018-0341-9 – volume: 11 start-page: 1 year: 2024 ident: 2025042401512015600_bib93 article-title: Dietary patterns interfere with gut microbiota to combat obesity publication-title: Front Nutr doi: 10.3389/fnut.2024.1387394 – volume: 9 start-page: 1 year: 2019 ident: 2025042401512015600_bib72 article-title: Effects of different diets used in diet-induced obesity models on insulin resistance and vascular dysfunction in C57BL/6 mice publication-title: Sci Rep doi: 10.1038/s41598-019-55987-x – volume: 103 start-page: 5843 year: 2019 ident: 2025042401512015600_bib158 article-title: Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-019-09703-4 – volume: 13 start-page: 677 year: 2021 ident: 2025042401512015600_bib51 article-title: Modulation of the gut microbiome and obesity biomarkers by Lactobacillus plantarum KC28 in a diet–induced obesity murine model publication-title: Probiotics Antimicrob Proteins doi: 10.1007/s12602-020-09720-0 – volume: 11 start-page: 418 year: 2023 ident: 2025042401512015600_bib133 article-title: Lactobacillus paracasei N1115 attenuates obesity in high-fat diet-induced obese mice publication-title: Food Sci Nutr doi: 10.1002/fsn3.3073 – volume: 15 start-page: 639 year: 2016 ident: 2025042401512015600_bib71 article-title: Targeting adipose tissue in the treatment of obesity-associated diabetes publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2016.75 – volume: 7 start-page: 1 year: 2017 ident: 2025042401512015600_bib42 article-title: Mining novel starch-converting glycoside hydrolase 70 enzymes from the Nestlé Culture Collection genome database: the Lactobacillus reuteri NCC 2613 GtfB publication-title: Sci Rep doi: 10.1038/s41598-017-07190-z – volume: 131 start-page: 1998 year: 2021 ident: 2025042401512015600_bib142 article-title: Heat-killed Lactobacillus brevis KB290 attenuates visceral fat accumulation induced by high-fat diet in mice publication-title: J Appl Microbiol doi: 10.1111/jam.15079 – volume: 13 start-page: 737 year: 2022 ident: 2025042401512015600_bib4 article-title: Dietary intake of probiotic fermented milk benefits the gut and reproductive health in mice fed with an obesogenic diet publication-title: Food Funct doi: 10.1039/D1FO02501E – volume: 22 start-page: 560 year: 2019 ident: 2025042401512015600_bib21 article-title: Antiobesity effects of Lactobacillus plantarum LMT1–48 accompanied by inhibition of Enterobacter cloacae in the intestine of diet-induced obese mice publication-title: J Med Food doi: 10.1089/jmf.2018.4329 – volume: 2 start-page: 1 year: 2012 ident: 2025042401512015600_bib112 article-title: Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2012.00086 – volume: 14 start-page: 1 year: 2023 ident: 2025042401512015600_bib1 article-title: Environmental and microbial factors influence affective and cognitive behavior in C57BL/6 sub-strains publication-title: Front Immunol doi: 10.3389/fimmu.2023.1139913 – volume: 63 start-page: 1 year: 2019 ident: 2025042401512015600_bib55 article-title: Lactobacillus sakei alleviates hish-fat-diet-induced obesity and anxiety in mice by inducing AMPK activation and SIRT1 expression and inhibiting gut microbiota-mediated NF-κb activation publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201800978 – volume: 8 start-page: 1 year: 2021 ident: 2025042401512015600_bib103 article-title: Gut microbiota composition and predicted microbial metabolic pathways of obesity prone and obesity resistant outbred Sprague-Dawley CD rats may account for differences in their phenotype publication-title: Front Nutr doi: 10.3389/fnut.2021.746515 – volume: 65 start-page: e2100136 year: 2021 ident: 2025042401512015600_bib87 article-title: Ligilactobacillus salivarius LCK11 prevents obesity by promoting PYY secretion to inhibit appetite and regulating gut microbiota in C57BL/6 J mice publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.202100136 – volume: 13 start-page: 1 year: 2021 ident: 2025042401512015600_bib5 article-title: Multiple selection criteria for probiotic strains with high potential for obesity management publication-title: Nutrients doi: 10.3390/nu13030713 – volume: 12 start-page: 1 year: 2020 ident: 2025042401512015600_bib109 article-title: Lactobacillus brevis OPK-3 from kimchi prevents obesity and modulates the expression of adipogenic and pro-inflammatory genes in adipose tissue of diet-induced obese mice publication-title: Nutrients – volume: 12 start-page: 1 year: 2020 ident: 2025042401512015600_bib96 article-title: The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? publication-title: Nutrients doi: 10.3390/nu12051474 – volume: 12 start-page: 1 year: 2022 ident: 2025042401512015600_bib3 article-title: Probiotics and gut microbiota in obesity: myths and realities of a new health revolution publication-title: J Pers Med – volume: 11 start-page: 5024 year: 2020 ident: 2025042401512015600_bib90 article-title: The ameliorative effect of: Lactobacillus plantarum Y44 oral administration on inflammation and lipid metabolism in obese mice fed with a high fat diet publication-title: Food Funct doi: 10.1039/D0FO00439A – volume: 157 start-page: 1 year: 2022 ident: 2025042401512015600_bib14 article-title: Probiotic-fermented blueberry pomace alleviates obesity and hyperlipidemia in high-fat diet C57BL/6 J mice publication-title: Food Res Int doi: 10.1016/j.foodres.2022.111396 – volume: 53 start-page: 100 year: 2012 ident: 2025042401512015600_bib98 article-title: Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals publication-title: Microb Pathog doi: 10.1016/j.micpath.2012.05.007 – volume: 12 start-page: 3919 year: 2021 ident: 2025042401512015600_bib159 article-title: Lactobacillus rhamnosus FJSYC4–1 and Lactobacillus reuteri FGSZY33L6 alleviate metabolic syndrome via gut microbiota regulation publication-title: Food Funct doi: 10.1039/D0FO02879G – volume: 11 start-page: 9514 year: 2020 ident: 2025042401512015600_bib132 article-title: Lactobacillus rhamnosus LRa05 improves lipid accumulation in mice fed with a high fat diet via regulating the intestinal microbiota, reducing glucose content and promoting liver carbohydrate metabolism publication-title: Food Funct doi: 10.1039/D0FO01720E – volume: 44 start-page: 645 year: 1995 ident: 2025042401512015600_bib135 article-title: Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6 J and a/J mice publication-title: Metabolism doi: 10.1016/0026-0495(95)90123-X – volume: 61 start-page: 526 year: 2018 ident: 2025042401512015600_bib6 article-title: Considerations and guidelines for mouse metabolic phenotyping in diabetes research publication-title: Diabetologia doi: 10.1007/s00125-017-4495-9 – volume: 24 start-page: 136 year: 2019 ident: 2025042401512015600_bib57 article-title: Oral administration of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 with Cinnamomi ramulus extract reduces diet-induced obesity and modulates gut microbiota publication-title: Prev Nutr Food Sci doi: 10.3746/pnf.2019.24.2.136 – volume: 13 start-page: 1 year: 2021 ident: 2025042401512015600_bib153 article-title: Preventive effect and molecular mechanism of Lactobacillus rhamnosus JL1 on food-borne obesity in mice publication-title: Nutrients doi: 10.3390/nu13113989 – volume: 12 start-page: 108 year: 2023 ident: 2025042401512015600_bib74 article-title: Short-chain fatty acids—a product of the microbiome and its participation in two-way communication on the microbiome-host mammal line publication-title: Curr Obes Rep doi: 10.1007/s13679-023-00503-6 – volume-title: World Heal Organ year: 2021 ident: 2025042401512015600_bib144 article-title: Obesity and overweight – volume: 2019 start-page: 1 year: 2019 ident: 2025042401512015600_bib58 article-title: Dose-dependent and strain-dependent anti-obesity effects of Lactobacillus sakei in a diet induced obese murine model publication-title: PeerJ – volume: 62 start-page: 1 year: 2018 ident: 2025042401512015600_bib77 article-title: Mixture of two Lactobacillus plantarum strains modulates the gut microbiota structure and regulatory T cell response in diet-induced obese mice publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201800329 – volume: 57 start-page: 1 year: 2018 ident: 2025042401512015600_bib121 article-title: Gut microbiota functions: metabolism of nutrients and other food components publication-title: Eur J Nutr doi: 10.1007/s00394-017-1445-8 – volume: 9 start-page: 1 year: 2018 ident: 2025042401512015600_bib59 article-title: Modulation of active gut microbiota by Lactobacillus rhamnosus GG in a diet induced obesity murine model publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00710 – volume: 10 start-page: 1 year: 2020 ident: 2025042401512015600_bib126 article-title: C57BL/6 J substrain differences in response to high-fat diet intervention publication-title: Sci Rep doi: 10.1038/s41598-020-70765-w – volume: 16 start-page: 1 year: 2024 ident: 2025042401512015600_bib147 article-title: Lactobacillus acidophilus ameliorates cholestatic liver injury through inhibiting bile acid synthesis and promoting bile acid excretion publication-title: Gut Microbes doi: 10.1080/19490976.2024.2390176 – volume: 89 start-page: e00615 year: 2021 ident: 2025042401512015600_bib157 article-title: Lactobacillus plantarum reduces low-grade inflammation and glucose levels in a mouse model of chronic stress and diabetes publication-title: Infect Immun doi: 10.1128/IAI.00615-20 – volume: 11 start-page: 1 year: 2021 ident: 2025042401512015600_bib100 article-title: Role of metabolic endotoxemia in systemic inflammation and potential interventions publication-title: Front Immunol doi: 10.3389/fimmu.2020.594150 – volume: 101 start-page: 1 year: 2023 ident: 2025042401512015600_bib65 article-title: Lacticaseibacillus paracasei AO356 ameliorates obesity by regulating adipogenesis and thermogenesis in C57BL/6 J male mice publication-title: J Funct Foods doi: 10.1016/j.jff.2023.105404 – volume: 37 start-page: 256 year: 2024 ident: 2025042401512015600_bib73 article-title: Metabolic changes with intermittent fasting publication-title: J Hum Nutr Diet doi: 10.1111/jhn.13253 – volume: 23 start-page: 750 year: 2020 ident: 2025042401512015600_bib54 article-title: Anti-obesity effect of Lactobacillus plantarum LB818 is associated with regulation of gut microbiota in high-fat diet-fed obese mice publication-title: J Med Food doi: 10.1089/jmf.2019.4627 – volume: 25 start-page: 38 year: 1989 ident: 2025042401512015600_bib146 article-title: Short-chain acyl-coenzyme a dehydrogenase deficiency publication-title: Pediatr Res doi: 10.1203/00006450-198901000-00010 – volume: 13 start-page: 1 year: 2022 ident: 2025042401512015600_bib118 article-title: Gut microbiome and human health: exploring how the probiotic genus Lactobacillus modulate immune responses publication-title: Front Pharmacol doi: 10.3389/fphar.2022.1042189 – volume: 13 start-page: 1 year: 2021 ident: 2025042401512015600_bib38 article-title: Probiotic supplementation and high-intensity interval training modify anxiety-like behaviors and corticosterone in high-fat diet-induced obesity mice publication-title: Nutrients doi: 10.3390/nu13061762 – volume: 82 start-page: 1964 year: 2018 ident: 2025042401512015600_bib49 article-title: Lactobacillus plantarum LRCC 5273 isolated from Kimchi ameliorates diet-induced hypercholesterolemia in C57BL/6 mice publication-title: Biosci Biotechnol Biochem doi: 10.1080/09168451.2018.1497939 – volume: 33 start-page: 4921 year: 2019 ident: 2025042401512015600_bib75 article-title: In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and bifidobacterium animalis ssp. Lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity publication-title: FASEB J doi: 10.1096/fj.201801672R – volume: 16 start-page: 26 year: 2022 ident: 2025042401512015600_bib115 article-title: The symbiosis between Lactobacillus acidophilus and inulin: metabolic benefits in an obese murine model publication-title: Probiotics Antimicrob Proteins doi: 10.1007/s12602-022-10012-y – volume: 10 start-page: 1 year: 2019 ident: 2025042401512015600_bib130 article-title: IgA-targeted Lactobacillus jensenii modulated gut barrier and microbiota in high-fat diet-fed mice publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01179 – volume: 114 start-page: 1 year: 2021 ident: 2025042401512015600_bib127 article-title: Sex-dependent effects of a yoghurt enriched with proteins in a mouse model of diet-induced obesity publication-title: Int Dairy J doi: 10.1016/j.idairyj.2020.104914 – volume: 8 start-page: 1 year: 2021 ident: 2025042401512015600_bib160 article-title: Lactobacillus plantarum ZJUFB2 prevents high fat diet-induced insulin resistance in association with modulation of the gut microbiota publication-title: Front Nutr doi: 10.3389/fnut.2021.754222 – volume: 2 start-page: 127 year: 2022 ident: 2025042401512015600_bib97 article-title: Murine models of obesity publication-title: Obesities doi: 10.3390/obesities2020012 – volume: 175 start-page: 106020 year: 2022 ident: 2025042401512015600_bib62 article-title: Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability publication-title: Pharmacol Res doi: 10.1016/j.phrs.2021.106020 – volume: 125 start-page: 129 year: 2021 ident: 2025042401512015600_bib12 article-title: Kefir microbial composition is a deciding factor in the physiological impact of kefir in a mouse model of obesity publication-title: Br J Nutr doi: 10.1017/S0007114520002743 – volume: 65 start-page: 1 year: 2021 ident: 2025042401512015600_bib20 article-title: Weissella cibaria MG5285 and Lactobacillus reuteri MG5149 attenuated fat accumulation in adipose and hepatic steatosis in high-fat diet-induced C57BL/6 J obese mice publication-title: Food Nutr Res doi: 10.29219/fnr.v65.8087 – volume: 11 start-page: 1397 year: 2020 ident: 2025042401512015600_bib114 article-title: Reduction of serum cholesterol and its mechanism by: Lactobacillus plantarum H6 screened from local fermented food products publication-title: Food Funct doi: 10.1039/C9FO02478F – volume: 13 start-page: 1 year: 2022 ident: 2025042401512015600_bib31 article-title: Lactobacillus spp. for gastrointestinal health: current and future perspectives publication-title: Front Immunol doi: 10.3389/fimmu.2022.840245 – volume: 22 start-page: 1 year: 2021 ident: 2025042401512015600_bib80 article-title: Lactiplantibacillus plantarum ATG-K2 exerts an anti-obesity effect in high-fat diet-induced obese mice by modulating the gut microbiome publication-title: Int J Mol Sci doi: 10.3390/ijms222312665 – volume: 8 start-page: 1 year: 2017 ident: 2025042401512015600_bib2 article-title: Insight into potential probiotic markers predicted in Lactobacillus pentosus MP-10 genome sequence publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00891 – volume: 12 start-page: 223 year: 2021 ident: 2025042401512015600_bib102 article-title: High-fat ketogenic diets and physical performance: a systematic review publication-title: Adv Nutr doi: 10.1093/advances/nmaa101 – volume: 7 start-page: 1 year: 2020 ident: 2025042401512015600_bib134 article-title: Novel Lactobacillus reuteri HI120 affects lipid metabolism in C57BL/6 obese mice publication-title: Front Vet Sci doi: 10.3389/fvets.2020.560241 |
SSID | ssj0008129 |
Score | 2.4407063 |
SecondaryResourceType | review_article |
Snippet | Lactobacillus species show strong potential in fighting obesity-related inflammation and metabolic issues. Obesity causes inflammation in adipose tissue, which... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Adipose tissue Animals Body weight Clinical trials Gastrointestinal Microbiome Health problems Humans Inflammation Intestinal microflora Lactobacilli Lactobacillus Lactobacillus - physiology Lactobacillus plantarum Lipid Metabolism Lipids Metabolic pathways Metabolism Mice Mice, Inbred C57BL Obesity Obesity - metabolism Obesity - microbiology Obesity - therapy Probiotics Probiotics - administration & dosage |
Title | Exploring the anti-obesity effects of Lactobacillus in C57BL/6 mice: mechanisms, interventions, and future directions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39965784 https://www.proquest.com/docview/3244156938 https://www.proquest.com/docview/3168389428 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WitIX8Vq3VhlB8GEbN5fJTOKblkoprYi0uH0KmRsEuklxN4Xqn_fMJZeFFtSXEGZ2M8mcL2e-c3LOGYTeMVKGUmY8iLjUAZFg7pRMyCDkMZVJooBy22iLr_TonBwv0sVk8nucXbLmH8SvW_NK_keq0AZyNVmy_yDZ_qLQAOcgXziChOH4VzIeAugMfYQ5qoLGFfofx2mcmC11eCmqy8vWRr8epOzzCYxKZ2YveuMTWCqTAFytnN-lGsVBrrrwTld8ZOaWwN7J12VS26Qge_HS09plNZR46qN-3NbNpkh0o-rZRTs77VZOG2Hgw4MPg-PypgftaWk9Pz8UPObFgOVvznPbtXjHRZzayC2nzJRTtoQBu6fpYqyNWTZCXXKrkncFsOCFgYeAk-a61KFLxB7J_GpphQ78i4JSIsNy1wchdl330P2YMfeN__tQewyYT95X-Uzmbri5H2wbPez-vklo7rBSLFs5e4weeTMDf3KYeYImqn6KHriNR2-eobZHDgbk4DFysEcObjTeQA6uamyRM6fY4OYjHlCzjzcwsw9XlNghBg-IeY7OvxyeHRwFfgOOQICqXweM51wDgcu5ykwVkoxqU-3JKH1glTEXkeRxmMssD1muRKqB_TKdCC2YSvKQJC_QVt3U6iXCOcmAJFERcZYSbswGQZSOw1IrEkmaTtH7bhaLK1dnpXDxEUnhpr7wUz9Fe90kF_5dXBVgFhhPRJ5kU_S27wZNaT5_lbVqWvhNRDO4QbC3p2jHCacfqhPm7p09r9D2AOI9tLX-2arXwEfX_I3FzR_Feo45 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+anti-obesity+effects+of+Lactobacillus+in+C57BL%2F6+mice%3A+mechanisms%2C+interventions%2C+and+future+directions&rft.jtitle=Letters+in+applied+microbiology&rft.au=Lim%2C+Sharoen+Yu+Ming&rft.au=Chong%2C+E-Jayn&rft.au=Mah%2C+Weng+Yan&rft.au=Pan%2C+Yan&rft.date=2025-03-03&rft.eissn=1472-765X&rft.volume=78&rft.issue=3&rft_id=info:doi/10.1093%2Flambio%2Fovaf024&rft_id=info%3Apmid%2F39965784&rft.externalDocID=39965784 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-765X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-765X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-765X&client=summon |