Interfacial engineering for highly efficient quasi-two dimensional organic-inorganic hybrid perovskite light-emitting diodes
Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability. However, poor active-layer morphology and non-radiative charge recombination are still the main obstacles for practical...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 7; no. 15; pp. 4344 - 4349 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability. However, poor active-layer morphology and non-radiative charge recombination are still the main obstacles for practical use in displays and lighting. Here, we report a facile method to achieve high-performance green emitting perovskite light-emitting diodes (PeLEDs) by inserting an interface buffer layer (BL) based on an amphipathic conjugated molecule, betaine. We show evidence that the betaine layer controls the grain size of the perovskite and hence increases the crystalline nucleation sites, which ultimately leads to a high photoluminescence quantum yield (PLQY) and a device with an external quantum efficiency (EQE) of 11.1%. In addition, the current leakage is significantly reduced due to the high quality crystallization of the thin film. These results indicate that the interface BL is an effective strategy to boost the efficiency of PeLEDs.
Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability. |
---|---|
AbstractList | Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability. However, poor active-layer morphology and non-radiative charge recombination are still the main obstacles for practical use in displays and lighting. Here, we report a facile method to achieve high-performance green emitting perovskite light-emitting diodes (PeLEDs) by inserting an interface buffer layer (BL) based on an amphipathic conjugated molecule, betaine. We show evidence that the betaine layer controls the grain size of the perovskite and hence increases the crystalline nucleation sites, which ultimately leads to a high photoluminescence quantum yield (PLQY) and a device with an external quantum efficiency (EQE) of 11.1%. In addition, the current leakage is significantly reduced due to the high quality crystallization of the thin film. These results indicate that the interface BL is an effective strategy to boost the efficiency of PeLEDs. Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability. However, poor active-layer morphology and non-radiative charge recombination are still the main obstacles for practical use in displays and lighting. Here, we report a facile method to achieve high-performance green emitting perovskite light-emitting diodes (PeLEDs) by inserting an interface buffer layer (BL) based on an amphipathic conjugated molecule, betaine. We show evidence that the betaine layer controls the grain size of the perovskite and hence increases the crystalline nucleation sites, which ultimately leads to a high photoluminescence quantum yield (PLQY) and a device with an external quantum efficiency (EQE) of 11.1%. In addition, the current leakage is significantly reduced due to the high quality crystallization of the thin film. These results indicate that the interface BL is an effective strategy to boost the efficiency of PeLEDs. Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability. |
Author | Liao, Liang-Sheng Liu, Qing-Wei Sun, Shuang-Qiao Yuan, Shuai Luo, Wei Zhang, Yi-Jie Fung, Man-Keung |
AuthorAffiliation | Institute of Functional Nano & Soft Materials (FUNSOM) Wujiang Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Jiangsu Industrial Technology Research Institute (JITRI) Institute of Organic Optoelectronics 1198 Fenhu Dadao |
AuthorAffiliation_xml | – sequence: 0 name: Wujiang – sequence: 0 name: Soochow University – sequence: 0 name: Jiangsu Industrial Technology Research Institute (JITRI) – sequence: 0 name: Institute of Functional Nano & Soft Materials (FUNSOM) – sequence: 0 name: Institute of Organic Optoelectronics – sequence: 0 name: 1198 Fenhu Dadao – sequence: 0 name: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices |
Author_xml | – sequence: 1 givenname: Qing-Wei surname: Liu fullname: Liu, Qing-Wei – sequence: 2 givenname: Shuai surname: Yuan fullname: Yuan, Shuai – sequence: 3 givenname: Shuang-Qiao surname: Sun fullname: Sun, Shuang-Qiao – sequence: 4 givenname: Wei surname: Luo fullname: Luo, Wei – sequence: 5 givenname: Yi-Jie surname: Zhang fullname: Zhang, Yi-Jie – sequence: 6 givenname: Liang-Sheng surname: Liao fullname: Liao, Liang-Sheng – sequence: 7 givenname: Man-Keung surname: Fung fullname: Fung, Man-Keung |
BookMark | eNptUU1LAzEQDaKg1l68CwFvwmqySXfToyx-FAQvel6y2Uk7uk1qkioFf7zRioI4l3kM7z1m3hySXecdEHLM2TlnYnphVDKsklNmdshBySasqCdC7v7gston4xifWC7FK1VND8j7zCUIVhvUAwU3RwcQ0M2p9YEucL4YNhSsRYPgEn1Z64hFevO0xyW4iN5lmQ9z7dAU6L4RXWy6gD1dQfCv8RkT0CFbpQKWmNKne4--h3hE9qweIoy_-4g8Xl89NLfF3f3NrLm8K4zgKhV1PsNq0HpiBRcTKUso-6lVXBqZZ5p3CoSoatkx1skatISeG6O6isvSsF6MyOnWdxX8yxpiap_8OuTVY1uWrGYVk4pn1tmWZYKPMYBtVwGXOmxaztrPgNtGPTRfATeZzP6QDSadciApaBz-l5xsJSGaH-vfn4kPcaWMRw |
CitedBy_id | crossref_primary_10_2139_ssrn_4109928 crossref_primary_10_3390_nano14050391 crossref_primary_10_1021_acsami_0c11762 crossref_primary_10_1016_j_cej_2020_124787 crossref_primary_10_1021_acsaelm_1c01142 crossref_primary_10_1016_j_jpowsour_2020_228810 crossref_primary_10_1002_adma_202006004 crossref_primary_10_1002_pssa_202300247 crossref_primary_10_1002_adfm_202303370 crossref_primary_10_1016_j_displa_2022_102297 crossref_primary_10_1021_acs_jpclett_0c02304 crossref_primary_10_1002_adom_201901299 crossref_primary_10_1016_j_mtphys_2024_101490 crossref_primary_10_1016_j_orgel_2020_105675 crossref_primary_10_1002_chem_202400372 crossref_primary_10_1016_j_apmt_2021_100946 crossref_primary_10_1021_acsaelm_1c00319 crossref_primary_10_3390_ma16052110 crossref_primary_10_1002_adom_202200518 crossref_primary_10_1016_j_orgel_2024_107036 crossref_primary_10_1039_D0TC05056C crossref_primary_10_1039_D0TC05669C crossref_primary_10_1021_acsami_3c01024 crossref_primary_10_1021_acsmaterialslett_1c00474 crossref_primary_10_1039_C9TC07047H crossref_primary_10_3390_ma15134571 crossref_primary_10_1039_D3NJ02599C crossref_primary_10_1016_j_jallcom_2020_156827 crossref_primary_10_1002_adfm_202107644 crossref_primary_10_1016_j_cej_2022_138021 crossref_primary_10_1002_lpor_202000495 crossref_primary_10_1088_1402_4896_ad5a4a crossref_primary_10_1002_aesr_202300263 crossref_primary_10_1088_1361_6463_ab913a crossref_primary_10_1126_sciadv_adn5683 crossref_primary_10_3390_nano11010103 crossref_primary_10_1039_D0TC05003B crossref_primary_10_1039_D3NR06547B crossref_primary_10_1063_5_0239423 crossref_primary_10_1016_j_orgel_2022_106579 crossref_primary_10_1021_acsphotonics_0c01394 crossref_primary_10_1039_D3TC03780K crossref_primary_10_1039_D4NR05355A crossref_primary_10_1021_acsami_0c07514 crossref_primary_10_3390_mi14010011 |
Cites_doi | 10.1126/science.1254050 10.1021/acsnano.7b00608 10.1039/C6TA04503K 10.1039/C6NR05330K 10.1021/acsnano.8b05185 10.1002/adma.201403751 10.1021/acsnano.6b01540 10.1038/ncomms15640 10.1038/s41586-018-0575-3 10.1021/acs.chemrev.5b00715 10.1038/nnano.2014.149 10.1016/j.jlumin.2011.09.006 10.1039/C5NR06890H 10.1063/1.5020201 10.1038/s41586-018-0576-2 10.1021/acs.jpclett.5b02011 10.1021/acsami.7b03382 10.1002/anie.201405334 10.1038/s41566-018-0283-4 10.1021/acs.jpcc.8b01419 10.1103/PhysRevApplied.2.034007 10.1038/nphoton.2007.226 10.1103/PhysRevB.94.140302 10.1002/adma.201705176 10.1021/acs.jpcc.7b11518 10.1038/s41566-018-0260-y 10.1126/science.aad1818 10.1002/adma.201503954 10.1038/nnano.2016.110 10.1021/acsnano.5b01154 10.1021/ja00312a043 10.1021/ja809598r 10.1021/jacs.5b06658 10.1038/nmat1658 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/c8tc06490c |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 4349 |
ExternalDocumentID | 10_1039_C8TC06490C c8tc06490c |
GroupedDBID | -JG 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c318t-7753faeaa5f3135442e2d9f814c4a5fa1b8e33674b00b47ea4ed1cc8b6142c0d3 |
ISSN | 2050-7526 |
IngestDate | Sun Jun 29 12:31:37 EDT 2025 Tue Jul 01 02:08:54 EDT 2025 Thu Apr 24 23:00:21 EDT 2025 Tue Dec 17 21:00:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-7753faeaa5f3135442e2d9f814c4a5fa1b8e33674b00b47ea4ed1cc8b6142c0d3 |
Notes | 10.1039/c8tc06490c Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3447-9673 0000-0002-2352-9666 |
PQID | 2207060481 |
PQPubID | 2047521 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1039_C8TC06490C rsc_primary_c8tc06490c proquest_journals_2207060481 crossref_citationtrail_10_1039_C8TC06490C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Kojima (C8TC06490C-(cit2)/*[position()=1]) 2009; 131 Cao (C8TC06490C-(cit13)/*[position()=1]) 2018; 562 Wang (C8TC06490C-(cit21)/*[position()=1]) 2016; 94 Yuan (C8TC06490C-(cit29)/*[position()=1]) 2018; 12 Chiba (C8TC06490C-(cit34)/*[position()=1]) 2017; 9 Zhang (C8TC06490C-(cit32)/*[position()=1]) 2017; 8 Xiao (C8TC06490C-(cit26)/*[position()=1]) 2014; 53 Wei (C8TC06490C-(cit28)/*[position()=1]) 2016; 8 Stranks (C8TC06490C-(cit35)/*[position()=1]) 2014; 2 Zhang (C8TC06490C-(cit6)/*[position()=1]) 2015; 9 Zhao (C8TC06490C-(cit11)/*[position()=1]) 2018; 12 Kim (C8TC06490C-(cit30)/*[position()=1]) 2015; 27 Xing (C8TC06490C-(cit14)/*[position()=1]) 2016; 10 Rothenberger (C8TC06490C-(cit25)/*[position()=1]) 1985; 107 Sun (C8TC06490C-(cit18)/*[position()=1]) 2007; 1 Wang (C8TC06490C-(cit27)/*[position()=1]) 2017; 121 Balena (C8TC06490C-(cit5)/*[position()=1]) 2018; 122 Perulli (C8TC06490C-(cit4)/*[position()=1]) 2018; 112 Chen (C8TC06490C-(cit33)/*[position()=1]) 2012; 132 Yuan (C8TC06490C-(cit7)/*[position()=1]) 2016; 11 Tan (C8TC06490C-(cit3)/*[position()=1]) 2014; 9 Ling (C8TC06490C-(cit15)/*[position()=1]) 2016; 28 Zhou (C8TC06490C-(cit1)/*[position()=1]) 2014; 345 Lee (C8TC06490C-(cit16)/*[position()=1]) 2017; 11 Saparov (C8TC06490C-(cit8)/*[position()=1]) 2016; 116 Lin (C8TC06490C-(cit12)/*[position()=1]) 2018; 562 Chiba (C8TC06490C-(cit19)/*[position()=1]) 2018; 12 Yantara (C8TC06490C-(cit17)/*[position()=1]) 2015; 6 Hao (C8TC06490C-(cit24)/*[position()=1]) 2015; 137 Koch (C8TC06490C-(cit9)/*[position()=1]) 2006; 5 Vybornyi (C8TC06490C-(cit23)/*[position()=1]) 2016; 8 Xiao (C8TC06490C-(cit20)/*[position()=1]) 2018; 30 Wang (C8TC06490C-(cit22)/*[position()=1]) 2016; 4 Cho (C8TC06490C-(cit10)/*[position()=1]) 2015; 350 Yantara (C8TC06490C-(cit31)/*[position()=1]) 2015; 6 |
References_xml | – volume: 345 start-page: 542 year: 2014 ident: C8TC06490C-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1254050 – volume: 11 start-page: 3311 year: 2017 ident: C8TC06490C-(cit16)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00608 – volume: 4 start-page: 12080 year: 2016 ident: C8TC06490C-(cit22)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04503K – volume: 8 start-page: 18021 year: 2016 ident: C8TC06490C-(cit28)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR05330K – volume: 12 start-page: 9541 year: 2018 ident: C8TC06490C-(cit29)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b05185 – volume: 27 start-page: 1248 year: 2015 ident: C8TC06490C-(cit30)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201403751 – volume: 10 start-page: 6623 year: 2016 ident: C8TC06490C-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b01540 – volume: 8 start-page: 15640 year: 2017 ident: C8TC06490C-(cit32)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15640 – volume: 562 start-page: 245 year: 2018 ident: C8TC06490C-(cit12)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-018-0575-3 – volume: 116 start-page: 4558 year: 2016 ident: C8TC06490C-(cit8)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00715 – volume: 9 start-page: 687 year: 2014 ident: C8TC06490C-(cit3)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.149 – volume: 132 start-page: 345 year: 2012 ident: C8TC06490C-(cit33)/*[position()=1] publication-title: J. Lumin. doi: 10.1016/j.jlumin.2011.09.006 – volume: 8 start-page: 6278 year: 2016 ident: C8TC06490C-(cit23)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR06890H – volume: 112 start-page: 171904 year: 2018 ident: C8TC06490C-(cit4)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.5020201 – volume: 562 start-page: 249 year: 2018 ident: C8TC06490C-(cit13)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-018-0576-2 – volume: 6 start-page: 4360 year: 2015 ident: C8TC06490C-(cit31)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02011 – volume: 9 start-page: 18054 year: 2017 ident: C8TC06490C-(cit34)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03382 – volume: 53 start-page: 9898 year: 2014 ident: C8TC06490C-(cit26)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/anie.201405334 – volume: 12 start-page: 783 year: 2018 ident: C8TC06490C-(cit11)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/s41566-018-0283-4 – volume: 122 start-page: 5813 year: 2018 ident: C8TC06490C-(cit5)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b01419 – volume: 6 start-page: 4360 year: 2015 ident: C8TC06490C-(cit17)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02011 – volume: 2 start-page: 034007 year: 2014 ident: C8TC06490C-(cit35)/*[position()=1] publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.2.034007 – volume: 1 start-page: 717 year: 2007 ident: C8TC06490C-(cit18)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.226 – volume: 94 start-page: 140302 year: 2016 ident: C8TC06490C-(cit21)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.94.140302 – volume: 30 start-page: 1705176 year: 2018 ident: C8TC06490C-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705176 – volume: 121 start-page: 28132 year: 2017 ident: C8TC06490C-(cit27)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b11518 – volume: 12 start-page: 681 year: 2018 ident: C8TC06490C-(cit19)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/s41566-018-0260-y – volume: 350 start-page: 1222 year: 2015 ident: C8TC06490C-(cit10)/*[position()=1] publication-title: Science doi: 10.1126/science.aad1818 – volume: 28 start-page: 305 year: 2016 ident: C8TC06490C-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503954 – volume: 11 start-page: 872 year: 2016 ident: C8TC06490C-(cit7)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.110 – volume: 9 start-page: 4533 year: 2015 ident: C8TC06490C-(cit6)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b01154 – volume: 107 start-page: 8054 year: 1985 ident: C8TC06490C-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00312a043 – volume: 131 start-page: 6050 year: 2009 ident: C8TC06490C-(cit2)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 137 start-page: 11445 year: 2015 ident: C8TC06490C-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06658 – volume: 5 start-page: 523 year: 2006 ident: C8TC06490C-(cit9)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1658 |
SSID | ssj0000816869 |
Score | 2.4115162 |
Snippet | Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4344 |
SubjectTerms | Buffer layers Crystallization Current leakage Light emitting diodes Metal halides Morphology Nucleation Organic light emitting diodes Perovskites Photoluminescence Quantum efficiency Thin films |
Title | Interfacial engineering for highly efficient quasi-two dimensional organic-inorganic hybrid perovskite light-emitting diodes |
URI | https://www.proquest.com/docview/2207060481 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-uLYI-iFaLV6ss6IuE1CS7uSSPJVSqqFC8Yt-O_QoNnJfSSywV_yf_RWc_sknpCepLyE02e7mb383Mzs3-BqHXENWyNBVxyGOlSbWjNCxyTkKe8xnlKhG5-ff80-fZyRn9cJ6eTya_RlVLXcsPxY-N-0r-R6sgA73qXbL_oFk_KQjgHPQLR9AwHP9KxyadVzGT9VYDsaApHdQ8xMsbXa9Rmz2Pevvkug7b6yaQmtHfsnG4rk4irFfuLLi40Zu4NJ9x832tc7vB0pCNqG-1rZGWdSNd5eHdqBYCYPvJA9G3kjsMSrsrqL-iH6-5bD1PwagVj1TGcvkyobrTt57C24ZfVe1NVOfSthcd88IvnZfB6NOaNX6WzuSD-wlcjsPZUGMEkyiNwixNHF32WOaSoM6KZ2OwpiOTTIklmHTuHV4WG11HRDTzqshbAVFaEYnBQfqyxeHiFtpJYF0CnmDn6Hj-_qNP65k-JqaRon_ynhSXFG-HCW6HQcPaZuuqbzxjApz5I_TQ6RAfWZg9RhO12kUPRnyVu-ieqRcW6yfo5wh6eAQ9DLrFFnrYQw976OER9PAd6GELPTxAD9-GHrbQe4rO3h3Py5PQNfIIBbiMFlZwKamYYiytSExSShOVyKLKYyooyFjMc0XILKPgAzjNFKNKxkKAuYhpIiJJ9tD2qlmpZwhLCIdzGCEk55QVlFWMVxUtKsliNsv4FL3pv9eFcCz3utnKcmGqLUixKPN5aXRQTtErP_bScrtsHHXQq2fhfvvrRZJEhnYqj6doD1Tm7x80vP-nC8_RfY1xm8c7QNvtVadeQGTb8pcOTb8BGV-ulQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+engineering+for+highly+efficient+quasi-two+dimensional+organic-inorganic+hybrid+perovskite+light-emitting+diodes&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Liu%2C+Qing-Wei&rft.au=Yuan%2C+Shuai&rft.au=Sun%2C+Shuang-Qiao&rft.au=Luo%2C+Wei&rft.date=2019&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=7&rft.issue=15&rft.spage=4344&rft.epage=4349&rft_id=info:doi/10.1039%2Fc8tc06490c&rft.externalDocID=c8tc06490c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |