Interfacial engineering for highly efficient quasi-two dimensional organic-inorganic hybrid perovskite light-emitting diodes

Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability. However, poor active-layer morphology and non-radiative charge recombination are still the main obstacles for practical...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 7; no. 15; pp. 4344 - 4349
Main Authors Liu, Qing-Wei, Yuan, Shuai, Sun, Shuang-Qiao, Luo, Wei, Zhang, Yi-Jie, Liao, Liang-Sheng, Fung, Man-Keung
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability. However, poor active-layer morphology and non-radiative charge recombination are still the main obstacles for practical use in displays and lighting. Here, we report a facile method to achieve high-performance green emitting perovskite light-emitting diodes (PeLEDs) by inserting an interface buffer layer (BL) based on an amphipathic conjugated molecule, betaine. We show evidence that the betaine layer controls the grain size of the perovskite and hence increases the crystalline nucleation sites, which ultimately leads to a high photoluminescence quantum yield (PLQY) and a device with an external quantum efficiency (EQE) of 11.1%. In addition, the current leakage is significantly reduced due to the high quality crystallization of the thin film. These results indicate that the interface BL is an effective strategy to boost the efficiency of PeLEDs. Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability.
AbstractList Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability. However, poor active-layer morphology and non-radiative charge recombination are still the main obstacles for practical use in displays and lighting. Here, we report a facile method to achieve high-performance green emitting perovskite light-emitting diodes (PeLEDs) by inserting an interface buffer layer (BL) based on an amphipathic conjugated molecule, betaine. We show evidence that the betaine layer controls the grain size of the perovskite and hence increases the crystalline nucleation sites, which ultimately leads to a high photoluminescence quantum yield (PLQY) and a device with an external quantum efficiency (EQE) of 11.1%. In addition, the current leakage is significantly reduced due to the high quality crystallization of the thin film. These results indicate that the interface BL is an effective strategy to boost the efficiency of PeLEDs.
Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability. However, poor active-layer morphology and non-radiative charge recombination are still the main obstacles for practical use in displays and lighting. Here, we report a facile method to achieve high-performance green emitting perovskite light-emitting diodes (PeLEDs) by inserting an interface buffer layer (BL) based on an amphipathic conjugated molecule, betaine. We show evidence that the betaine layer controls the grain size of the perovskite and hence increases the crystalline nucleation sites, which ultimately leads to a high photoluminescence quantum yield (PLQY) and a device with an external quantum efficiency (EQE) of 11.1%. In addition, the current leakage is significantly reduced due to the high quality crystallization of the thin film. These results indicate that the interface BL is an effective strategy to boost the efficiency of PeLEDs. Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and solution processability.
Author Liao, Liang-Sheng
Liu, Qing-Wei
Sun, Shuang-Qiao
Yuan, Shuai
Luo, Wei
Zhang, Yi-Jie
Fung, Man-Keung
AuthorAffiliation Institute of Functional Nano & Soft Materials (FUNSOM)
Wujiang
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
Soochow University
Jiangsu Industrial Technology Research Institute (JITRI)
Institute of Organic Optoelectronics
1198 Fenhu Dadao
AuthorAffiliation_xml – sequence: 0
  name: Wujiang
– sequence: 0
  name: Soochow University
– sequence: 0
  name: Jiangsu Industrial Technology Research Institute (JITRI)
– sequence: 0
  name: Institute of Functional Nano & Soft Materials (FUNSOM)
– sequence: 0
  name: Institute of Organic Optoelectronics
– sequence: 0
  name: 1198 Fenhu Dadao
– sequence: 0
  name: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
Author_xml – sequence: 1
  givenname: Qing-Wei
  surname: Liu
  fullname: Liu, Qing-Wei
– sequence: 2
  givenname: Shuai
  surname: Yuan
  fullname: Yuan, Shuai
– sequence: 3
  givenname: Shuang-Qiao
  surname: Sun
  fullname: Sun, Shuang-Qiao
– sequence: 4
  givenname: Wei
  surname: Luo
  fullname: Luo, Wei
– sequence: 5
  givenname: Yi-Jie
  surname: Zhang
  fullname: Zhang, Yi-Jie
– sequence: 6
  givenname: Liang-Sheng
  surname: Liao
  fullname: Liao, Liang-Sheng
– sequence: 7
  givenname: Man-Keung
  surname: Fung
  fullname: Fung, Man-Keung
BookMark eNptUU1LAzEQDaKg1l68CwFvwmqySXfToyx-FAQvel6y2Uk7uk1qkioFf7zRioI4l3kM7z1m3hySXecdEHLM2TlnYnphVDKsklNmdshBySasqCdC7v7gston4xifWC7FK1VND8j7zCUIVhvUAwU3RwcQ0M2p9YEucL4YNhSsRYPgEn1Z64hFevO0xyW4iN5lmQ9z7dAU6L4RXWy6gD1dQfCv8RkT0CFbpQKWmNKne4--h3hE9qweIoy_-4g8Xl89NLfF3f3NrLm8K4zgKhV1PsNq0HpiBRcTKUso-6lVXBqZZ5p3CoSoatkx1skatISeG6O6isvSsF6MyOnWdxX8yxpiap_8OuTVY1uWrGYVk4pn1tmWZYKPMYBtVwGXOmxaztrPgNtGPTRfATeZzP6QDSadciApaBz-l5xsJSGaH-vfn4kPcaWMRw
CitedBy_id crossref_primary_10_2139_ssrn_4109928
crossref_primary_10_3390_nano14050391
crossref_primary_10_1021_acsami_0c11762
crossref_primary_10_1016_j_cej_2020_124787
crossref_primary_10_1021_acsaelm_1c01142
crossref_primary_10_1016_j_jpowsour_2020_228810
crossref_primary_10_1002_adma_202006004
crossref_primary_10_1002_pssa_202300247
crossref_primary_10_1002_adfm_202303370
crossref_primary_10_1016_j_displa_2022_102297
crossref_primary_10_1021_acs_jpclett_0c02304
crossref_primary_10_1002_adom_201901299
crossref_primary_10_1016_j_mtphys_2024_101490
crossref_primary_10_1016_j_orgel_2020_105675
crossref_primary_10_1002_chem_202400372
crossref_primary_10_1016_j_apmt_2021_100946
crossref_primary_10_1021_acsaelm_1c00319
crossref_primary_10_3390_ma16052110
crossref_primary_10_1002_adom_202200518
crossref_primary_10_1016_j_orgel_2024_107036
crossref_primary_10_1039_D0TC05056C
crossref_primary_10_1039_D0TC05669C
crossref_primary_10_1021_acsami_3c01024
crossref_primary_10_1021_acsmaterialslett_1c00474
crossref_primary_10_1039_C9TC07047H
crossref_primary_10_3390_ma15134571
crossref_primary_10_1039_D3NJ02599C
crossref_primary_10_1016_j_jallcom_2020_156827
crossref_primary_10_1002_adfm_202107644
crossref_primary_10_1016_j_cej_2022_138021
crossref_primary_10_1002_lpor_202000495
crossref_primary_10_1088_1402_4896_ad5a4a
crossref_primary_10_1002_aesr_202300263
crossref_primary_10_1088_1361_6463_ab913a
crossref_primary_10_1126_sciadv_adn5683
crossref_primary_10_3390_nano11010103
crossref_primary_10_1039_D0TC05003B
crossref_primary_10_1039_D3NR06547B
crossref_primary_10_1063_5_0239423
crossref_primary_10_1016_j_orgel_2022_106579
crossref_primary_10_1021_acsphotonics_0c01394
crossref_primary_10_1039_D3TC03780K
crossref_primary_10_1039_D4NR05355A
crossref_primary_10_1021_acsami_0c07514
crossref_primary_10_3390_mi14010011
Cites_doi 10.1126/science.1254050
10.1021/acsnano.7b00608
10.1039/C6TA04503K
10.1039/C6NR05330K
10.1021/acsnano.8b05185
10.1002/adma.201403751
10.1021/acsnano.6b01540
10.1038/ncomms15640
10.1038/s41586-018-0575-3
10.1021/acs.chemrev.5b00715
10.1038/nnano.2014.149
10.1016/j.jlumin.2011.09.006
10.1039/C5NR06890H
10.1063/1.5020201
10.1038/s41586-018-0576-2
10.1021/acs.jpclett.5b02011
10.1021/acsami.7b03382
10.1002/anie.201405334
10.1038/s41566-018-0283-4
10.1021/acs.jpcc.8b01419
10.1103/PhysRevApplied.2.034007
10.1038/nphoton.2007.226
10.1103/PhysRevB.94.140302
10.1002/adma.201705176
10.1021/acs.jpcc.7b11518
10.1038/s41566-018-0260-y
10.1126/science.aad1818
10.1002/adma.201503954
10.1038/nnano.2016.110
10.1021/acsnano.5b01154
10.1021/ja00312a043
10.1021/ja809598r
10.1021/jacs.5b06658
10.1038/nmat1658
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/c8tc06490c
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 4349
ExternalDocumentID 10_1039_C8TC06490C
c8tc06490c
GroupedDBID -JG
0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c318t-7753faeaa5f3135442e2d9f814c4a5fa1b8e33674b00b47ea4ed1cc8b6142c0d3
ISSN 2050-7526
IngestDate Sun Jun 29 12:31:37 EDT 2025
Tue Jul 01 02:08:54 EDT 2025
Thu Apr 24 23:00:21 EDT 2025
Tue Dec 17 21:00:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-7753faeaa5f3135442e2d9f814c4a5fa1b8e33674b00b47ea4ed1cc8b6142c0d3
Notes 10.1039/c8tc06490c
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3447-9673
0000-0002-2352-9666
PQID 2207060481
PQPubID 2047521
PageCount 6
ParticipantIDs crossref_primary_10_1039_C8TC06490C
rsc_primary_c8tc06490c
proquest_journals_2207060481
crossref_citationtrail_10_1039_C8TC06490C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Kojima (C8TC06490C-(cit2)/*[position()=1]) 2009; 131
Cao (C8TC06490C-(cit13)/*[position()=1]) 2018; 562
Wang (C8TC06490C-(cit21)/*[position()=1]) 2016; 94
Yuan (C8TC06490C-(cit29)/*[position()=1]) 2018; 12
Chiba (C8TC06490C-(cit34)/*[position()=1]) 2017; 9
Zhang (C8TC06490C-(cit32)/*[position()=1]) 2017; 8
Xiao (C8TC06490C-(cit26)/*[position()=1]) 2014; 53
Wei (C8TC06490C-(cit28)/*[position()=1]) 2016; 8
Stranks (C8TC06490C-(cit35)/*[position()=1]) 2014; 2
Zhang (C8TC06490C-(cit6)/*[position()=1]) 2015; 9
Zhao (C8TC06490C-(cit11)/*[position()=1]) 2018; 12
Kim (C8TC06490C-(cit30)/*[position()=1]) 2015; 27
Xing (C8TC06490C-(cit14)/*[position()=1]) 2016; 10
Rothenberger (C8TC06490C-(cit25)/*[position()=1]) 1985; 107
Sun (C8TC06490C-(cit18)/*[position()=1]) 2007; 1
Wang (C8TC06490C-(cit27)/*[position()=1]) 2017; 121
Balena (C8TC06490C-(cit5)/*[position()=1]) 2018; 122
Perulli (C8TC06490C-(cit4)/*[position()=1]) 2018; 112
Chen (C8TC06490C-(cit33)/*[position()=1]) 2012; 132
Yuan (C8TC06490C-(cit7)/*[position()=1]) 2016; 11
Tan (C8TC06490C-(cit3)/*[position()=1]) 2014; 9
Ling (C8TC06490C-(cit15)/*[position()=1]) 2016; 28
Zhou (C8TC06490C-(cit1)/*[position()=1]) 2014; 345
Lee (C8TC06490C-(cit16)/*[position()=1]) 2017; 11
Saparov (C8TC06490C-(cit8)/*[position()=1]) 2016; 116
Lin (C8TC06490C-(cit12)/*[position()=1]) 2018; 562
Chiba (C8TC06490C-(cit19)/*[position()=1]) 2018; 12
Yantara (C8TC06490C-(cit17)/*[position()=1]) 2015; 6
Hao (C8TC06490C-(cit24)/*[position()=1]) 2015; 137
Koch (C8TC06490C-(cit9)/*[position()=1]) 2006; 5
Vybornyi (C8TC06490C-(cit23)/*[position()=1]) 2016; 8
Xiao (C8TC06490C-(cit20)/*[position()=1]) 2018; 30
Wang (C8TC06490C-(cit22)/*[position()=1]) 2016; 4
Cho (C8TC06490C-(cit10)/*[position()=1]) 2015; 350
Yantara (C8TC06490C-(cit31)/*[position()=1]) 2015; 6
References_xml – volume: 345
  start-page: 542
  year: 2014
  ident: C8TC06490C-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1254050
– volume: 11
  start-page: 3311
  year: 2017
  ident: C8TC06490C-(cit16)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00608
– volume: 4
  start-page: 12080
  year: 2016
  ident: C8TC06490C-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04503K
– volume: 8
  start-page: 18021
  year: 2016
  ident: C8TC06490C-(cit28)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR05330K
– volume: 12
  start-page: 9541
  year: 2018
  ident: C8TC06490C-(cit29)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05185
– volume: 27
  start-page: 1248
  year: 2015
  ident: C8TC06490C-(cit30)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403751
– volume: 10
  start-page: 6623
  year: 2016
  ident: C8TC06490C-(cit14)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01540
– volume: 8
  start-page: 15640
  year: 2017
  ident: C8TC06490C-(cit32)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15640
– volume: 562
  start-page: 245
  year: 2018
  ident: C8TC06490C-(cit12)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-018-0575-3
– volume: 116
  start-page: 4558
  year: 2016
  ident: C8TC06490C-(cit8)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00715
– volume: 9
  start-page: 687
  year: 2014
  ident: C8TC06490C-(cit3)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.149
– volume: 132
  start-page: 345
  year: 2012
  ident: C8TC06490C-(cit33)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2011.09.006
– volume: 8
  start-page: 6278
  year: 2016
  ident: C8TC06490C-(cit23)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR06890H
– volume: 112
  start-page: 171904
  year: 2018
  ident: C8TC06490C-(cit4)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5020201
– volume: 562
  start-page: 249
  year: 2018
  ident: C8TC06490C-(cit13)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-018-0576-2
– volume: 6
  start-page: 4360
  year: 2015
  ident: C8TC06490C-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02011
– volume: 9
  start-page: 18054
  year: 2017
  ident: C8TC06490C-(cit34)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03382
– volume: 53
  start-page: 9898
  year: 2014
  ident: C8TC06490C-(cit26)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201405334
– volume: 12
  start-page: 783
  year: 2018
  ident: C8TC06490C-(cit11)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0283-4
– volume: 122
  start-page: 5813
  year: 2018
  ident: C8TC06490C-(cit5)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b01419
– volume: 6
  start-page: 4360
  year: 2015
  ident: C8TC06490C-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02011
– volume: 2
  start-page: 034007
  year: 2014
  ident: C8TC06490C-(cit35)/*[position()=1]
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.2.034007
– volume: 1
  start-page: 717
  year: 2007
  ident: C8TC06490C-(cit18)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2007.226
– volume: 94
  start-page: 140302
  year: 2016
  ident: C8TC06490C-(cit21)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.94.140302
– volume: 30
  start-page: 1705176
  year: 2018
  ident: C8TC06490C-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705176
– volume: 121
  start-page: 28132
  year: 2017
  ident: C8TC06490C-(cit27)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b11518
– volume: 12
  start-page: 681
  year: 2018
  ident: C8TC06490C-(cit19)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0260-y
– volume: 350
  start-page: 1222
  year: 2015
  ident: C8TC06490C-(cit10)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad1818
– volume: 28
  start-page: 305
  year: 2016
  ident: C8TC06490C-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503954
– volume: 11
  start-page: 872
  year: 2016
  ident: C8TC06490C-(cit7)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.110
– volume: 9
  start-page: 4533
  year: 2015
  ident: C8TC06490C-(cit6)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01154
– volume: 107
  start-page: 8054
  year: 1985
  ident: C8TC06490C-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00312a043
– volume: 131
  start-page: 6050
  year: 2009
  ident: C8TC06490C-(cit2)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 137
  start-page: 11445
  year: 2015
  ident: C8TC06490C-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06658
– volume: 5
  start-page: 523
  year: 2006
  ident: C8TC06490C-(cit9)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1658
SSID ssj0000816869
Score 2.4115162
Snippet Metal halide-based perovskites are regarded as promising candidates for light-emitting diodes (LEDs) owing to their high color purity, tunable bandgap and...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4344
SubjectTerms Buffer layers
Crystallization
Current leakage
Light emitting diodes
Metal halides
Morphology
Nucleation
Organic light emitting diodes
Perovskites
Photoluminescence
Quantum efficiency
Thin films
Title Interfacial engineering for highly efficient quasi-two dimensional organic-inorganic hybrid perovskite light-emitting diodes
URI https://www.proquest.com/docview/2207060481
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-uLYI-iFaLV6ss6IuE1CS7uSSPJVSqqFC8Yt-O_QoNnJfSSywV_yf_RWc_sknpCepLyE02e7mb383Mzs3-BqHXENWyNBVxyGOlSbWjNCxyTkKe8xnlKhG5-ff80-fZyRn9cJ6eTya_RlVLXcsPxY-N-0r-R6sgA73qXbL_oFk_KQjgHPQLR9AwHP9KxyadVzGT9VYDsaApHdQ8xMsbXa9Rmz2Pevvkug7b6yaQmtHfsnG4rk4irFfuLLi40Zu4NJ9x832tc7vB0pCNqG-1rZGWdSNd5eHdqBYCYPvJA9G3kjsMSrsrqL-iH6-5bD1PwagVj1TGcvkyobrTt57C24ZfVe1NVOfSthcd88IvnZfB6NOaNX6WzuSD-wlcjsPZUGMEkyiNwixNHF32WOaSoM6KZ2OwpiOTTIklmHTuHV4WG11HRDTzqshbAVFaEYnBQfqyxeHiFtpJYF0CnmDn6Hj-_qNP65k-JqaRon_ynhSXFG-HCW6HQcPaZuuqbzxjApz5I_TQ6RAfWZg9RhO12kUPRnyVu-ieqRcW6yfo5wh6eAQ9DLrFFnrYQw976OER9PAd6GELPTxAD9-GHrbQe4rO3h3Py5PQNfIIBbiMFlZwKamYYiytSExSShOVyKLKYyooyFjMc0XILKPgAzjNFKNKxkKAuYhpIiJJ9tD2qlmpZwhLCIdzGCEk55QVlFWMVxUtKsliNsv4FL3pv9eFcCz3utnKcmGqLUixKPN5aXRQTtErP_bScrtsHHXQq2fhfvvrRZJEhnYqj6doD1Tm7x80vP-nC8_RfY1xm8c7QNvtVadeQGTb8pcOTb8BGV-ulQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+engineering+for+highly+efficient+quasi-two+dimensional+organic-inorganic+hybrid+perovskite+light-emitting+diodes&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Liu%2C+Qing-Wei&rft.au=Yuan%2C+Shuai&rft.au=Sun%2C+Shuang-Qiao&rft.au=Luo%2C+Wei&rft.date=2019&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=7&rft.issue=15&rft.spage=4344&rft.epage=4349&rft_id=info:doi/10.1039%2Fc8tc06490c&rft.externalDocID=c8tc06490c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon