Mechanisms for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3: The role of crystal orientation
The mechanisms of adsorption of hydrogen on alpha -Al2O3(1-102) surface and of its diffusion in bulk are investigated, using first principles thermodynamics and kinetics, and compared with similar results obtained for the diffusion of hydrogen on alpha -Al2O3(0001) surface. Because of the different...
Saved in:
Published in | International journal of hydrogen energy Vol. 39; no. 1; pp. 610 - 619 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier
02.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanisms of adsorption of hydrogen on alpha -Al2O3(1-102) surface and of its diffusion in bulk are investigated, using first principles thermodynamics and kinetics, and compared with similar results obtained for the diffusion of hydrogen on alpha -Al2O3(0001) surface. Because of the different oxygen environments on both surfaces, the H binding energies on the (1-102) surface are 0.3-1.2 eV smaller than in the (0001) surface. The H2 binding energies on (1-102) and (0001) surfaces are resembled. We have identified four main mechanisms, leading to dissociation of H2, H migration on the surface, H diffusion into and inside the bulk. Equilibrium constant and activation barrier show that H2 dissociation is the most favorable process and significant diffusion of H into the bulk can occur more readily from the (1-102) surface compared to the (0001) surface. Based on the hydrogen interaction with alpha -Al2O3(1-102) surface, a mechanism of alpha -Al2O3 suppressing H-permeation is identified. |
---|---|
AbstractList | The mechanisms of adsorption of hydrogen on alpha -Al2O3(1-102) surface and of its diffusion in bulk are investigated, using first principles thermodynamics and kinetics, and compared with similar results obtained for the diffusion of hydrogen on alpha -Al2O3(0001) surface. Because of the different oxygen environments on both surfaces, the H binding energies on the (1-102) surface are 0.3-1.2 eV smaller than in the (0001) surface. The H2 binding energies on (1-102) and (0001) surfaces are resembled. We have identified four main mechanisms, leading to dissociation of H2, H migration on the surface, H diffusion into and inside the bulk. Equilibrium constant and activation barrier show that H2 dissociation is the most favorable process and significant diffusion of H into the bulk can occur more readily from the (1-102) surface compared to the (0001) surface. Based on the hydrogen interaction with alpha -Al2O3(1-102) surface, a mechanism of alpha -Al2O3 suppressing H-permeation is identified. |
Author | Lai, Xinchun Lu, Yongjie Dou, Sanping Shi, Yan Wang, Xiaolin Zhang, Guikai |
Author_xml | – sequence: 1 givenname: Guikai surname: Zhang fullname: Zhang, Guikai – sequence: 2 givenname: Sanping surname: Dou fullname: Dou, Sanping – sequence: 3 givenname: Yongjie surname: Lu fullname: Lu, Yongjie – sequence: 4 givenname: Yan surname: Shi fullname: Shi, Yan – sequence: 5 givenname: Xinchun surname: Lai fullname: Lai, Xinchun – sequence: 6 givenname: Xiaolin surname: Wang fullname: Wang, Xiaolin |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28083884$$DView record in Pascal Francis |
BookMark | eNqFkU1u2zAQRrlIgPw0Vyi4CZBF5JKiLYlFNobRJgUSeJOuhRE5rGnIpMuRFz5EDpOL9EylYrcFsumKnA_vDQF-F-wkxICMfZRiIoWsPq0nfr3aWww4KYVUOZyISp2wc6EqUSip9Rm7IFoLIWsx1efs5QnNCoKnDXEXEwdLMW0HH8Mtt54oGg_jxCHYHDi3o3GKjudnUvyBgfvw777FtMGD0EFKHtOI_not5n25VJ_58wp5ij2OqUl7GqDnMWNheJM-sFMHPeHV8bxk379-eV48FI_L-2-L-WNhlGyGopad6mCmpXEaprKyGsCoWadqLDXMGiyhtq6xpbMWtZO2EW5qK91ZIRpVl-qS3Rz2blP8uUMa2o0ng30PAeOOWjlTUpR1XdUZvT6iQAZ6lyAYT-02-Q2kfVs2eWPTTDNXHTiTIlFC9xeRoh27adftn27asZsxz91k8e6daPzhN4YEvv-f_htvbKFR |
CODEN | IJHEDX |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2024_08_413 crossref_primary_10_1016_j_ijhydene_2016_11_026 crossref_primary_10_1016_j_fusengdes_2015_11_043 crossref_primary_10_1016_j_fusengdes_2017_05_039 crossref_primary_10_1016_j_tsf_2019_137531 crossref_primary_10_1016_j_ijhydene_2022_07_123 crossref_primary_10_1016_j_ijhydene_2022_07_164 crossref_primary_10_1016_j_jnucmat_2018_10_008 crossref_primary_10_1016_j_jnucmat_2022_154156 crossref_primary_10_1016_j_nme_2025_101890 crossref_primary_10_1007_s10894_018_0158_1 crossref_primary_10_1142_S0217984915500645 crossref_primary_10_1016_j_corsci_2024_111928 crossref_primary_10_1088_1741_4326_abcf8c crossref_primary_10_35848_1347_4065_ac21af crossref_primary_10_1016_j_ijhydene_2015_02_128 crossref_primary_10_1016_j_corsci_2020_108963 crossref_primary_10_1109_TASC_2016_2642053 crossref_primary_10_1021_acsami_4c13331 crossref_primary_10_1016_j_mtcomm_2025_111877 crossref_primary_10_1016_j_ijfatigue_2019_105235 crossref_primary_10_1016_j_ijhydene_2016_04_233 crossref_primary_10_1007_s12666_024_03526_2 crossref_primary_10_1016_j_matchemphys_2024_130028 crossref_primary_10_1016_j_ijhydene_2020_11_130 crossref_primary_10_3390_hydrogen4020022 crossref_primary_10_1016_j_fusengdes_2017_05_028 crossref_primary_10_1016_j_fusengdes_2019_05_004 crossref_primary_10_1002_srin_202200691 crossref_primary_10_1016_j_ijhydene_2016_03_132 crossref_primary_10_1016_j_ceramint_2020_10_156 crossref_primary_10_1016_j_jnucmat_2020_152102 crossref_primary_10_1515_secm_2015_0263 crossref_primary_10_1016_j_ijhydene_2015_03_093 crossref_primary_10_1016_j_jallcom_2023_170520 crossref_primary_10_1016_j_ijhydene_2015_12_004 crossref_primary_10_1021_acsami_4c11025 crossref_primary_10_1088_1361_648X_ac17ad crossref_primary_10_1116_1_4977106 crossref_primary_10_1016_j_ijhydene_2016_01_018 crossref_primary_10_1016_j_ijhydene_2021_10_116 crossref_primary_10_3390_hydrogen5030032 crossref_primary_10_1016_j_ijhydene_2021_12_049 crossref_primary_10_1016_j_actamat_2019_02_031 crossref_primary_10_1021_acs_jpcc_1c00941 crossref_primary_10_1021_acsomega_8b03163 crossref_primary_10_1116_1_4919736 |
Cites_doi | 10.1016/B978-0-08-056033-5.00116-6 10.1016/0022-3115(91)90413-2 10.1103/PhysRevB.69.024302 10.1021/jp203579s 10.1038/35102031 10.1524/zkri.220.5.567.65075 10.1103/PhysRevB.70.035412 10.1021/jp310234h 10.1103/PhysRevB.71.184107 10.1103/PhysRevB.82.155319 10.1016/j.jnucmat.2010.12.285 10.1016/j.ijhydene.2012.10.108 10.1103/PhysRevB.13.5188 10.1016/j.fusengdes.2012.03.042 10.1111/j.1551-2916.2004.00003.x 10.1016/0920-3796(95)90039-X 10.1103/PhysRevB.50.4954 10.1016/0304-5102(90)85157-D 10.1016/j.jnucmat.2013.05.038 10.1016/j.susc.2008.08.022 10.1103/PhysRevLett.84.3650 10.1021/jp4037588 10.1103/PhysRevB.76.094301 10.1107/S0108767301010698 10.1016/0022-3115(93)90249-X 10.1016/S0039-6028(97)01031-5 10.1103/PhysRevB.81.125423 10.1111/j.1151-2916.1977.tb15493.x 10.1021/ja028059o 10.1021/jp070469h 10.1016/S0039-6028(01)01617-X 10.1103/PhysRevB.41.7892 10.1103/PhysRevB.69.041405 10.1016/j.ijhydene.2013.05.152 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QF 7QQ 7SP 8FD JG9 L7M |
DOI | 10.1016/j.ijhydene.2013.10.063 |
DatabaseName | CrossRef Pascal-Francis Aluminium Industry Abstracts Ceramic Abstracts Electronics & Communications Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Aluminium Industry Abstracts Ceramic Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 619 |
ExternalDocumentID | 28083884 10_1016_j_ijhydene_2013_10_063 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SCC SDF SDG SES SEW SPC SPCBC SSH SSK SSM SSR SSZ T5K T9H TN5 WUQ XPP ZMT ~G- AACTN IQODW 7QF 7QQ 7SP 8FD JG9 L7M |
ID | FETCH-LOGICAL-c318t-71b3ba591cf9a416d9aac35b37e29a58e2a7df8d2fdde9f1d80f4d69bd0083723 |
ISSN | 0360-3199 |
IngestDate | Thu Jul 10 18:06:00 EDT 2025 Wed Apr 02 07:35:53 EDT 2025 Tue Jul 01 00:58:47 EDT 2025 Thu Apr 24 22:53:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hydrogen diffusion Crystal orientation Hydrogen α-Al Hydrogen adsorption Hydrogen permeation barrier O |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-71b3ba591cf9a416d9aac35b37e29a58e2a7df8d2fdde9f1d80f4d69bd0083723 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1531027767 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1531027767 pascalfrancis_primary_28083884 crossref_primary_10_1016_j_ijhydene_2013_10_063 crossref_citationtrail_10_1016_j_ijhydene_2013_10_063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-02 |
PublicationDateYYYYMMDD | 2014-01-02 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2014 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Monkhorst (10.1016/j.ijhydene.2013.10.063_bib23) 1976; 13 Fowler (10.1016/j.ijhydene.2013.10.063_bib32) 1977; 60 Sundell (10.1016/j.ijhydene.2013.10.063_bib33) 2007; 76 Toofan (10.1016/j.ijhydene.2013.10.063_bib11) 1998; 401 Barth (10.1016/j.ijhydene.2013.10.063_bib12) 2001; 414 Zhang (10.1016/j.ijhydene.2013.10.063_bib15) 2013; 38 10.1016/j.ijhydene.2013.10.063_bib28 Wang (10.1016/j.ijhydene.2013.10.063_bib13) 2000; 84 Wirth (10.1016/j.ijhydene.2013.10.063_bib29) 2012; 116 Kurita (10.1016/j.ijhydene.2013.10.063_bib10) 2010; 82 10.1016/j.ijhydene.2013.10.063_bib25 Wang (10.1016/j.ijhydene.2013.10.063_bib16) 2011; 115 Meriaudeau (10.1016/j.ijhydene.2013.10.063_bib26) 1990; 61 Zhang (10.1016/j.ijhydene.2013.10.063_bib5) 2011; 417 Mcguire (10.1016/j.ijhydene.2013.10.063_bib7) 1980 Ke (10.1016/j.ijhydene.2013.10.063_bib30) 2005; 71 Belonoshko (10.1016/j.ijhydene.2013.10.063_bib14) 2004; 69 Trainor (10.1016/j.ijhydene.2013.10.063_bib17) 2002; 496 Mason (10.1016/j.ijhydene.2013.10.063_bib19) 2010; 81 White (10.1016/j.ijhydene.2013.10.063_bib22) 1994; 50 Perujo (10.1016/j.ijhydene.2013.10.063_bib8) 1993; 207 Kirfel (10.1016/j.ijhydene.2013.10.063_bib24) 2001; 57 Vanderbilt (10.1016/j.ijhydene.2013.10.063_bib21) 1990; 41 Sterrer (10.1016/j.ijhydene.2013.10.063_bib37) 2003; 125 Hashizume (10.1016/j.ijhydene.2013.10.063_bib36) 2013; 442 Yamabe (10.1016/j.ijhydene.2013.10.063_bib1) 2013; 38 Konys (10.1016/j.ijhydene.2013.10.063_bib6) 2012; 87 10.1016/j.ijhydene.2013.10.063_bib31 Dai (10.1016/j.ijhydene.2013.10.063_bib27) 2007; 111 Chen (10.1016/j.ijhydene.2013.10.063_bib38) 2013; 117 Hollenberg (10.1016/j.ijhydene.2013.10.063_bib3) 1995; 28 Causey (10.1016/j.ijhydene.2013.10.063_bib4) 2012; 4 Clark (10.1016/j.ijhydene.2013.10.063_bib20) 2005; 220 Vegge (10.1016/j.ijhydene.2013.10.063_bib34) 2004; 70 Serraw (10.1016/j.ijhydene.2013.10.063_bib35) 2005; 88 Forcey (10.1016/j.ijhydene.2013.10.063_bib9) 1991; 182 Nguyen (10.1016/j.ijhydene.2013.10.063_bib18) 2008; 602 Jennison (10.1016/j.ijhydene.2013.10.063_bib2) 2004; 69 |
References_xml | – volume: 4 start-page: 511 year: 2012 ident: 10.1016/j.ijhydene.2013.10.063_bib4 article-title: Tritium barriers and tritium diffusion in fusion reactors publication-title: Comprehensive Nucl Mater doi: 10.1016/B978-0-08-056033-5.00116-6 – volume: 182 start-page: 36 year: 1991 ident: 10.1016/j.ijhydene.2013.10.063_bib9 article-title: The formation of hydrogen permeation barriers on steels by aluminizing publication-title: J Nucl Mater doi: 10.1016/0022-3115(91)90413-2 – volume: 69 start-page: 24302 year: 2004 ident: 10.1016/j.ijhydene.2013.10.063_bib14 article-title: First-principles study of hydrogen diffusion in α-Al2O3 and liquid alumina publication-title: Phys Rev B doi: 10.1103/PhysRevB.69.024302 – volume: 115 start-page: 13399 year: 2011 ident: 10.1016/j.ijhydene.2013.10.063_bib16 article-title: Density functional/all-electron basis set slab model calculations of the adsorption/dissociation mechanisms of water on α-Al2O3(0001) surface publication-title: J Phys Chem C doi: 10.1021/jp203579s – volume: 414 start-page: 54 year: 2001 ident: 10.1016/j.ijhydene.2013.10.063_bib12 article-title: Imaging the atomic arrangement on the high temperature reconstructed α-Al2O3 (0001) surface publication-title: Nature doi: 10.1038/35102031 – volume: 220 start-page: 567 issue: 5–6 year: 2005 ident: 10.1016/j.ijhydene.2013.10.063_bib20 article-title: First principles methods using CASTEP publication-title: Z Kristallogr doi: 10.1524/zkri.220.5.567.65075 – volume: 70 start-page: 35412 year: 2004 ident: 10.1016/j.ijhydene.2013.10.063_bib34 article-title: Locating the rate-limiting step for the interaction of hydrogen with Mg(0001)using density-functional theory calculations and rate theory publication-title: Phys Rev B doi: 10.1103/PhysRevB.70.035412 – volume: 116 start-page: 26829 year: 2012 ident: 10.1016/j.ijhydene.2013.10.063_bib29 article-title: The chemistry of water on α-alumina: kinetics and nuclear quantum effects from first principles publication-title: J Phys Chem C doi: 10.1021/jp310234h – volume: 71 start-page: 184107 year: 2005 ident: 10.1016/j.ijhydene.2013.10.063_bib30 article-title: Cubic and orthorhombic structures of aluminum hydride AlH3 predicted by a first-principles study publication-title: Phys Rev B doi: 10.1103/PhysRevB.71.184107 – volume: 82 start-page: 155319 year: 2010 ident: 10.1016/j.ijhydene.2013.10.063_bib10 article-title: Atomic and electronic structures of α-Al2O3 surfaces publication-title: Phys Rev B doi: 10.1103/PhysRevB.82.155319 – volume: 417 start-page: 1245 year: 2011 ident: 10.1016/j.ijhydene.2013.10.063_bib5 article-title: Tritium permeation barrier-aluminized coating prepared by Al-plating and subsequent oxidation process publication-title: J Nucl Mater doi: 10.1016/j.jnucmat.2010.12.285 – volume: 38 start-page: 1157 year: 2013 ident: 10.1016/j.ijhydene.2013.10.063_bib15 article-title: Mechanism for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3: a density functional theory study publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.10.108 – ident: 10.1016/j.ijhydene.2013.10.063_bib25 – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.ijhydene.2013.10.063_bib23 article-title: Special points for brillouin-zone integrations publication-title: Phys Rev B doi: 10.1103/PhysRevB.13.5188 – volume: 87 start-page: 1483 year: 2012 ident: 10.1016/j.ijhydene.2013.10.063_bib6 article-title: Impact of heat treatment on surface chemistry of Al-coated Eurofer97 for application as anti-corrosion and T-permeation barriers in a flowing Pb-15.7Li environment publication-title: Fusion Eng Des doi: 10.1016/j.fusengdes.2012.03.042 – volume: 88 start-page: 15 year: 2005 ident: 10.1016/j.ijhydene.2013.10.063_bib35 article-title: Hydrogen permeation measurements on alumina publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2004.00003.x – volume: 28 start-page: 190 year: 1995 ident: 10.1016/j.ijhydene.2013.10.063_bib3 article-title: Tritium hydrogen barrier development publication-title: Fusion Eng Des doi: 10.1016/0920-3796(95)90039-X – volume: 50 start-page: 4954 year: 1994 ident: 10.1016/j.ijhydene.2013.10.063_bib22 article-title: Implementation of gradient-corrected exchange-correlation potentials in car-parrinello total-energy calculations publication-title: Phys Rev B doi: 10.1103/PhysRevB.50.4954 – volume: 61 start-page: 227 year: 1990 ident: 10.1016/j.ijhydene.2013.10.063_bib26 article-title: FTIR study of hydrogen adsorption on α-Ga2O3 publication-title: J Mol Catal doi: 10.1016/0304-5102(90)85157-D – volume: 442 start-page: 880 year: 2013 ident: 10.1016/j.ijhydene.2013.10.063_bib36 article-title: Study on kinetics of hydrogen dissolution and hydrogen solubility in oxides using imaging plate technique publication-title: J Nucl Mater doi: 10.1016/j.jnucmat.2013.05.038 – ident: 10.1016/j.ijhydene.2013.10.063_bib31 – volume: 602 start-page: 3232 year: 2008 ident: 10.1016/j.ijhydene.2013.10.063_bib18 article-title: Coarsening of two-dimensional Al2O3 islands on vicinal (1-102) sapphire surfaces during annealing in air publication-title: Surf Sci doi: 10.1016/j.susc.2008.08.022 – volume: 84 start-page: 3650 year: 2000 ident: 10.1016/j.ijhydene.2013.10.063_bib13 article-title: Effect of the environment on α-Al2O3(0001) surface structures publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.84.3650 – volume: 117 start-page: 10623 year: 2013 ident: 10.1016/j.ijhydene.2013.10.063_bib38 article-title: From heterolytic to homolytic H2 dissociation on nanostructured MgO(001) films as function of the metal support publication-title: J Phys Chem C doi: 10.1021/jp4037588 – volume: 76 start-page: 094301 year: 2007 ident: 10.1016/j.ijhydene.2013.10.063_bib33 article-title: Density-functional calculations of prefactors and activation energies for H diffusion in BaZrO3 publication-title: Phys Rev B doi: 10.1103/PhysRevB.76.094301 – volume: 57 start-page: 663 year: 2001 ident: 10.1016/j.ijhydene.2013.10.063_bib24 article-title: Electron-density distribution in stishovite, SiO2: a new high-energy synchrotron-radiation study publication-title: Acta Crystallogr A doi: 10.1107/S0108767301010698 – volume: 207 start-page: 86 year: 1993 ident: 10.1016/j.ijhydene.2013.10.063_bib8 article-title: Reduction of deuterium permeation through DIN-1.4914 stainless-steel (MANET) by plasma-spray deposited aluminum publication-title: J Nucl Mater doi: 10.1016/0022-3115(93)90249-X – ident: 10.1016/j.ijhydene.2013.10.063_bib28 – volume: 401 start-page: 162 year: 1998 ident: 10.1016/j.ijhydene.2013.10.063_bib11 article-title: The termination of a-Al2O3 (0001) surface: a LEED crystallography determination publication-title: Surf Sci doi: 10.1016/S0039-6028(97)01031-5 – volume: 81 start-page: 125423 year: 2010 ident: 10.1016/j.ijhydene.2013.10.063_bib19 article-title: Density functional theory study of clean, hydrated, and defective alumina (1-102) surfaces publication-title: Phys Rev B doi: 10.1103/PhysRevB.81.125423 – volume: 60 start-page: 155 year: 1977 ident: 10.1016/j.ijhydene.2013.10.063_bib32 article-title: Tritium diffusion in Al2O3 and BeO publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1977.tb15493.x – volume: 125 start-page: 195 year: 2003 ident: 10.1016/j.ijhydene.2013.10.063_bib37 article-title: Energy transfer on the MgO surface monitored by UV-induced H2 chemisorption publication-title: J Am Chem Soc doi: 10.1021/ja028059o – volume: 111 start-page: 6910 year: 2007 ident: 10.1016/j.ijhydene.2013.10.063_bib27 article-title: First principles investigation of adsorption and dissociation of hydrogen on Mg2Si surfaces publication-title: J Phys Chem C doi: 10.1021/jp070469h – start-page: 64 year: 1980 ident: 10.1016/j.ijhydene.2013.10.063_bib7 article-title: Hydrogen permeation resistant layers for liquid metal reactors – volume: 496 start-page: 238 year: 2002 ident: 10.1016/j.ijhydene.2013.10.063_bib17 article-title: Crystal truncation rod diffraction study of the α-Al2O3 (1-102) surface publication-title: Surf Sci doi: 10.1016/S0039-6028(01)01617-X – volume: 41 start-page: 7892 issue: 11 year: 1990 ident: 10.1016/j.ijhydene.2013.10.063_bib21 article-title: Soft self-consistent pseudo potentials in a generalized eigenvalue formalism publication-title: Phys Rev B doi: 10.1103/PhysRevB.41.7892 – volume: 69 start-page: 041405 year: 2004 ident: 10.1016/j.ijhydene.2013.10.063_bib2 article-title: Evidence for interstitial hydrogen as the dominant electronic defect in nanometer alumina films publication-title: Phys Rev B doi: 10.1103/PhysRevB.69.041405 – volume: 38 start-page: 10141 year: 2013 ident: 10.1016/j.ijhydene.2013.10.063_bib1 article-title: Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.05.152 |
SSID | ssj0017049 |
Score | 2.333077 |
Snippet | The mechanisms of adsorption of hydrogen on alpha -Al2O3(1-102) surface and of its diffusion in bulk are investigated, using first principles thermodynamics... |
SourceID | proquest pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 610 |
SubjectTerms | Adsorption Alternative fuels. Production and utilization Applied sciences Barriers Binding energy Diffusion Diffusion barriers Energy Exact sciences and technology Fuels Hydrogen Hydrogen-based energy Migration Surface chemistry |
Title | Mechanisms for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3: The role of crystal orientation |
URI | https://www.proquest.com/docview/1531027767 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcgEhxFOER7VI3IJD_PZyq1BLhUp7IJHSk7X2eiuHyo7s-NAe-h-48XOZWe_ajhqJwsVyNn5_n2dnxvMg5EOQslnqeY4lZhG3PDDXLCa4BJuHzyLPl64UKtriNDheeN-W_nI0-j2IWmo2yTS93plX8j-owhjgilmy_4Bsd1AYgHXAF5aAMCzvhPH3DPN287otqjDhoi4rJQLwweGXdvPk1ScC7IXS1EZBvBJVCQdGf0e3vgYxrXXIhFeqlx2GCWA67sQ6uHTOXBOkYYIS0-qqxnTKssp1ElMxVHe3_Y2DKhXdKTOVe3jLff21yX_yvNOyy6b1XhdrM9NiDJEaPC-Li1Xe0fOHalI8Odek1_4M21P-jKGL0w1wZmjbJhkZ3RY82uJiK3ADHRSb6V9s57TQeihW03wFtwc3hiF97hSj-rR03arDfXoWHy1OTuL54XJ-j9x3wABBCTq96YKH7FAbVuZaB7nnu8-ypfY8WvMa3kDZtk65pQUo1Wb-hDzWNgk9aAn2lIyy4hl5OKhU-Zz86qlGgWq0p9pHOiQaBaLRjmi0lNQgTfOiX--JRjXRcFNFNNoS7TMFmlGkGf6jaUYHNHtBFkeH8y_Hlu7mYaUwb2ys0E7chPvMTiXjYAYIxnnq-okbZg7jfpQ5PBQyEo6EGZdJW0Qz6YmAJQLNBIDgJdkryiJ7RSiTrgAzXWapzcEcSJMA7BAvSLgtwDwWckx887DjVJe6x44rl7GJaVzFBqQYQcJxAGlMPnX7rdtiL3_dY38Ly243J4KLjiJvTN4bcGMQ3Pg1jhdZ2dQxqBo2BlAE4es7bPOGPOhflrdkb1M12TtQhzfJvmLmH1xdv5Q |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+for+adsorption%2C+dissociation+and+diffusion+of+hydrogen+in+hydrogen+permeation+barrier+of+alpha+-Al2O3%3A+The+role+of+crystal+orientation&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhang%2C+Guikai&rft.au=Dou%2C+Sanping&rft.au=Lu%2C+Yongjie&rft.au=Shi%2C+Yan&rft.date=2014-01-02&rft.issn=0360-3199&rft.volume=39&rft.issue=1&rft.spage=610&rft.epage=619&rft_id=info:doi/10.1016%2Fj.ijhydene.2013.10.063&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |