A novel three-dimensional mechanical metamaterial with compression-torsion properties

A new design of a 3D compression-torsion mechanical metamaterial is proposed based on the chiral mechanism of inclined rods converting axial compression (or tension) into torsion. Experiments and numerical simulations are employed to investigate the compression-torsion properties of the new proposed...

Full description

Saved in:
Bibliographic Details
Published inComposite structures Vol. 226; p. 111232
Main Authors Zhong, Rongchang, Fu, Minghui, Chen, Xuan, Zheng, Binbin, Hu, Lingling
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.10.2019
Subjects
Online AccessGet full text
ISSN0263-8223
1879-1085
DOI10.1016/j.compstruct.2019.111232

Cover

Loading…
Abstract A new design of a 3D compression-torsion mechanical metamaterial is proposed based on the chiral mechanism of inclined rods converting axial compression (or tension) into torsion. Experiments and numerical simulations are employed to investigate the compression-torsion properties of the new proposed metamaterial under uniaxial compression. Results show that it possesses excellent compression-torsion properties compared to previously reported 3D compression-torsion metamaterials. Moreover, the torsion angle of the proposed metamaterial under compression can maintain a large value even when the transverse cell number N=9. By contrast, the torsion angle of structures reported in references declined rapidly with the cell number, and the compression-torsion properties nearly vanished when N=5. These outstanding properties of the proposed metamaterial are due to the better compression-torsion properties of the unit cell and weaker transverse constraint among cells. The latter reason also contributes to an interesting phenomenon wherein the torsion angle first increases and then declines with the transverse cell number N, which is much different from the monotonically decreasing trend of other 3D compression-torsion metamaterials. The main factors affecting the compression-torsion properties of 3D metamaterials are revealed and discussed in detail, shedding light on the design of 3D metamaterial with outstanding compression-torsion properties.
AbstractList A new design of a 3D compression-torsion mechanical metamaterial is proposed based on the chiral mechanism of inclined rods converting axial compression (or tension) into torsion. Experiments and numerical simulations are employed to investigate the compression-torsion properties of the new proposed metamaterial under uniaxial compression. Results show that it possesses excellent compression-torsion properties compared to previously reported 3D compression-torsion metamaterials. Moreover, the torsion angle of the proposed metamaterial under compression can maintain a large value even when the transverse cell number N=9. By contrast, the torsion angle of structures reported in references declined rapidly with the cell number, and the compression-torsion properties nearly vanished when N=5. These outstanding properties of the proposed metamaterial are due to the better compression-torsion properties of the unit cell and weaker transverse constraint among cells. The latter reason also contributes to an interesting phenomenon wherein the torsion angle first increases and then declines with the transverse cell number N, which is much different from the monotonically decreasing trend of other 3D compression-torsion metamaterials. The main factors affecting the compression-torsion properties of 3D metamaterials are revealed and discussed in detail, shedding light on the design of 3D metamaterial with outstanding compression-torsion properties.
ArticleNumber 111232
Author Fu, Minghui
Hu, Lingling
Zhong, Rongchang
Chen, Xuan
Zheng, Binbin
Author_xml – sequence: 1
  givenname: Rongchang
  surname: Zhong
  fullname: Zhong, Rongchang
– sequence: 2
  givenname: Minghui
  surname: Fu
  fullname: Fu, Minghui
– sequence: 3
  givenname: Xuan
  surname: Chen
  fullname: Chen, Xuan
– sequence: 4
  givenname: Binbin
  surname: Zheng
  fullname: Zheng, Binbin
– sequence: 5
  givenname: Lingling
  surname: Hu
  fullname: Hu, Lingling
BookMark eNqNkNFKwzAUhoNMcJu-Q1-gNWm6NL0R5lAnDLxx1yFNTlhGm5QkTnx7WycI3ujVOQf-_z_nfAs0c94BQhnBBcGE3R4L5fshpvCmUlFi0hSEkJKWF2hOeN3kBPPVDM1xyWjOy5JeoUWMR4wxrwiZo_06c_4EXZYOASDXtgcXrXeyy3pQB-ms-mqT7GWCYMfh3aZDNi0NECdpnnyYajYEP0BIFuI1ujSyi3DzXZdo__jwutnmu5en5816lytKeMqZoaSpgTFcK15r3fCVlopSykxbV4aWmGnDcLOSjEqjlMaatqaqjIZWVVVLl-junKuCjzGAEcommcZjUpC2EwSLCZI4ih9IYoIkzpDGAP4rYAi2l-HjP9b7sxXGB08WgojKglOgbYBRq739O-QT-6mOLw
CitedBy_id crossref_primary_10_1080_15376494_2022_2150338
crossref_primary_10_1016_j_matdes_2024_112945
crossref_primary_10_1016_j_compstruct_2020_113365
crossref_primary_10_1080_15376494_2022_2081751
crossref_primary_10_1016_j_eml_2021_101584
crossref_primary_10_1016_j_wavemoti_2024_103302
crossref_primary_10_1115_1_4055954
crossref_primary_10_1088_1361_665X_ad2f0a
crossref_primary_10_1016_j_tws_2024_112603
crossref_primary_10_1016_j_ijmecsci_2023_108411
crossref_primary_10_1063_5_0160973
crossref_primary_10_1038_s43246_020_00107_w
crossref_primary_10_1080_15376494_2021_1969607
crossref_primary_10_1016_j_ast_2024_109745
crossref_primary_10_1016_j_eng_2021_03_032
crossref_primary_10_1016_j_matdes_2025_113805
crossref_primary_10_1016_j_euromechsol_2024_105473
crossref_primary_10_1007_s10409_024_23608_x
crossref_primary_10_1038_s42005_022_00974_4
crossref_primary_10_1088_1361_665X_adaefb
crossref_primary_10_1016_j_eml_2021_101336
crossref_primary_10_1016_j_ijmecsci_2023_108307
crossref_primary_10_1002_adem_202000991
crossref_primary_10_1002_adem_202401613
crossref_primary_10_1016_j_ijmecsci_2025_109990
crossref_primary_10_3390_app14041497
crossref_primary_10_1177_10812865221122251
crossref_primary_10_1016_j_ijmecsci_2022_107470
crossref_primary_10_1016_j_compstruct_2020_113429
crossref_primary_10_1016_j_eml_2020_100706
crossref_primary_10_1016_j_engstruct_2024_117793
crossref_primary_10_1088_1361_665X_ada21b
crossref_primary_10_1016_j_cossms_2020_100869
crossref_primary_10_1016_j_compstruct_2020_112855
crossref_primary_10_1016_j_compstruct_2020_112853
crossref_primary_10_1016_j_ijmecsci_2023_108719
crossref_primary_10_1016_j_istruc_2024_106467
crossref_primary_10_1155_2023_9489270
crossref_primary_10_1016_j_compstruct_2020_112341
crossref_primary_10_1016_j_ijmecsci_2022_107586
crossref_primary_10_1007_s00033_021_01656_x
crossref_primary_10_1016_j_jmrt_2022_05_131
crossref_primary_10_1088_1402_4896_aca93e
crossref_primary_10_1016_j_mtcomm_2025_112070
crossref_primary_10_1016_j_pmatsci_2023_101132
crossref_primary_10_1002_smll_202202128
crossref_primary_10_1016_j_eml_2020_101069
crossref_primary_10_1016_j_compstruct_2022_115269
crossref_primary_10_1016_j_tws_2022_109570
crossref_primary_10_1016_j_tws_2025_112955
crossref_primary_10_1016_j_ijmecsci_2020_106208
crossref_primary_10_1063_5_0066210
crossref_primary_10_1088_1361_665X_acc621
crossref_primary_10_1136_injuryprev_2021_044450
crossref_primary_10_1016_j_ijimpeng_2024_104888
crossref_primary_10_1016_j_eml_2019_100553
crossref_primary_10_1016_j_mtcomm_2025_112120
crossref_primary_10_1039_D2MA00497F
crossref_primary_10_1016_j_compstruct_2021_114417
crossref_primary_10_1016_j_euromechsol_2021_104478
crossref_primary_10_1016_j_ijmecsci_2020_105981
crossref_primary_10_1016_j_mtcomm_2022_103483
crossref_primary_10_1016_j_engstruct_2020_110384
crossref_primary_10_3390_polym15122650
crossref_primary_10_1088_1361_665X_ac25c9
crossref_primary_10_1007_s42235_023_00364_8
crossref_primary_10_1002_adfm_202412901
crossref_primary_10_1115_1_4050983
crossref_primary_10_3390_sym15010014
crossref_primary_10_1039_D2MH00670G
crossref_primary_10_1088_1361_665X_ad9e5b
crossref_primary_10_1016_j_compstruct_2021_113715
crossref_primary_10_1002_pssb_202400050
crossref_primary_10_1016_j_engstruct_2024_119246
crossref_primary_10_4028_p_m8BbHS
crossref_primary_10_1016_j_compstruct_2023_117519
crossref_primary_10_1016_j_ymssp_2022_109922
crossref_primary_10_1088_1367_2630_ad617b
crossref_primary_10_1088_1361_665X_ad54ab
crossref_primary_10_1002_advs_202405835
crossref_primary_10_1016_j_ijmecsci_2024_109853
crossref_primary_10_1016_j_compstruct_2024_118244
crossref_primary_10_3390_ma14112887
crossref_primary_10_1016_j_ijsolstr_2024_112724
crossref_primary_10_1080_15376494_2024_2393735
crossref_primary_10_3788_CJL240471
crossref_primary_10_1088_1361_665X_ad56e8
crossref_primary_10_1016_j_compstruct_2025_119125
crossref_primary_10_1016_j_compstruct_2023_117418
crossref_primary_10_1016_j_paerosci_2024_101021
crossref_primary_10_1016_j_compstruct_2022_116556
crossref_primary_10_1016_j_compstruct_2022_115863
crossref_primary_10_1016_j_wavemoti_2024_103432
crossref_primary_10_1016_j_tws_2022_110199
crossref_primary_10_1016_j_compstruct_2022_116397
crossref_primary_10_1080_15376494_2023_2180553
crossref_primary_10_1016_j_tws_2022_110234
crossref_primary_10_1016_j_compstruct_2021_115043
crossref_primary_10_1615_NanoSciTechnolIntJ_2022044662
crossref_primary_10_1016_j_compstruct_2022_116151
crossref_primary_10_1016_j_jallcom_2021_162427
crossref_primary_10_1007_s00707_023_03584_5
Cites_doi 10.1088/1361-665X/aa819e
10.1016/j.eml.2018.02.001
10.1016/j.compscitech.2009.07.009
10.1126/science.aao4640
10.1243/0309324001514152
10.1016/j.ijsolstr.2015.11.015
10.1016/j.compstruct.2018.09.066
10.1016/j.mtcomm.2018.03.010
10.1016/j.euromechsol.2003.10.006
10.1016/j.compstruct.2016.11.080
10.1016/j.taml.2016.02.004
10.1016/j.ijsolstr.2019.04.020
10.1016/j.compositesa.2006.04.007
10.1016/j.compstruct.2015.08.048
10.1016/j.compscitech.2018.03.017
10.1016/j.matdes.2018.02.052
10.1016/j.jmps.2015.10.004
10.1016/j.ijsolstr.2006.12.017
10.1016/j.matdes.2016.03.088
10.1016/j.compscitech.2009.07.008
10.1016/S0263-8223(96)00054-2
10.1016/S0020-7403(96)00025-2
10.1038/35069035
10.1016/j.jmps.2018.07.016
10.1016/j.mechmat.2016.01.009
10.1016/j.ijsolstr.2009.01.023
10.1016/j.ijmecsci.2018.03.039
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruct.2019.111232
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1085
ExternalDocumentID 10_1016_j_compstruct_2019_111232
S0263822319306087
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
SSH
WUQ
ID FETCH-LOGICAL-c318t-6f3197e6607c87dd985dac3336fb74f3206df6095a63afccd0d3bf44fdebc44b3
IEDL.DBID .~1
ISSN 0263-8223
IngestDate Tue Jul 01 03:53:19 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Fri Feb 23 02:28:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Compression-torsion properties
Three-dimensional mechanical metamaterial
Cell number
Chiral mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-6f3197e6607c87dd985dac3336fb74f3206df6095a63afccd0d3bf44fdebc44b3
ParticipantIDs crossref_citationtrail_10_1016_j_compstruct_2019_111232
crossref_primary_10_1016_j_compstruct_2019_111232
elsevier_sciencedirect_doi_10_1016_j_compstruct_2019_111232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Composite structures
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hu, Wu, Fu (b0110) 2018; 140
Mukhopadhyay, Adhikari (b0160) 2017; 162
Mukhopadhyay, Adhikari (b0010) 2016; 95
Lakes, Lee, Bersie (b0035) 2001; 410
Chen, Fu (b0085) 2017; 26
Chen, Dong, Huang (b0145) 2018; 15
Prall, Lakes (b0095) 1997; 39
Lorato, Innocenti, Scarpa, Alderson, Alderson (b0100) 2010; 70
Gibson, Ashby (b0040) 1988
Fu, Xu, Hu, Yu (b0070) 2015; 80
Ebrahimi, Mousanezhad, Nayeb-Hashemi (b0125) 2018; 145
Zhong, Fu, Hu (b0130) 2019
Masters, Evans (b0045) 1996; 35
Wang, Li, Ma (b0080) 2016; 99
Scarpa, Panayiotou, Tomlinson (b0050) 2000; 35
Wan, Ohtaki, Kotosaka, Hu (b0060) 2004; 23
Hu, Luo, Zhang (b0065) 2018
Frenzel, Kadic, Wegener (b0135) 2017; 358
Wu, Geng, Niu (b0140) 2018; 20
Mousanezhad, Haghpanah, Ghosh (b0090) 2016; 6
Gong, Jian, Scarpa (b0015) 2015; 134
Fu, Liu, Hu (b0120) 2018; 160
Huang, Gong, Zhang (b0020) 2015; 89
Scarpa, Blain, Lew (b0115) 2007; 38
Alderson, Alderson, Attard (b0105) 2010; 70
Wei, Chen, Pei (b0025) 2016; 86
Grima, Attard, Ellul, Gatt (b0055) 2011; 30
Babaee, Shim, Weaver (b0005) 2013; 25
Jefferson, Parthasarathy, Kerans (b0030) 2009; 46
Hu, Zhou, Deng (b0075) 2019; 207
Duan, Wen, Fang (b0150) 2018; 121
Li, Gao, Wang (b0155) 2007; 44
Babaee (10.1016/j.compstruct.2019.111232_b0005) 2013; 25
Huang (10.1016/j.compstruct.2019.111232_b0020) 2015; 89
Wu (10.1016/j.compstruct.2019.111232_b0140) 2018; 20
Gong (10.1016/j.compstruct.2019.111232_b0015) 2015; 134
Mousanezhad (10.1016/j.compstruct.2019.111232_b0090) 2016; 6
Alderson (10.1016/j.compstruct.2019.111232_b0105) 2010; 70
Gibson (10.1016/j.compstruct.2019.111232_b0040) 1988
Hu (10.1016/j.compstruct.2019.111232_b0110) 2018; 140
Mukhopadhyay (10.1016/j.compstruct.2019.111232_b0160) 2017; 162
Fu (10.1016/j.compstruct.2019.111232_b0070) 2015; 80
Chen (10.1016/j.compstruct.2019.111232_b0145) 2018; 15
Jefferson (10.1016/j.compstruct.2019.111232_b0030) 2009; 46
Wang (10.1016/j.compstruct.2019.111232_b0080) 2016; 99
Prall (10.1016/j.compstruct.2019.111232_b0095) 1997; 39
Mukhopadhyay (10.1016/j.compstruct.2019.111232_b0010) 2016; 95
Duan (10.1016/j.compstruct.2019.111232_b0150) 2018; 121
Hu (10.1016/j.compstruct.2019.111232_b0065) 2018
Lakes (10.1016/j.compstruct.2019.111232_b0035) 2001; 410
Ebrahimi (10.1016/j.compstruct.2019.111232_b0125) 2018; 145
Zhong (10.1016/j.compstruct.2019.111232_b0130) 2019
Grima (10.1016/j.compstruct.2019.111232_b0055) 2011; 30
Masters (10.1016/j.compstruct.2019.111232_b0045) 1996; 35
Lorato (10.1016/j.compstruct.2019.111232_b0100) 2010; 70
Frenzel (10.1016/j.compstruct.2019.111232_b0135) 2017; 358
Scarpa (10.1016/j.compstruct.2019.111232_b0050) 2000; 35
Scarpa (10.1016/j.compstruct.2019.111232_b0115) 2007; 38
Wan (10.1016/j.compstruct.2019.111232_b0060) 2004; 23
Hu (10.1016/j.compstruct.2019.111232_b0075) 2019; 207
Wei (10.1016/j.compstruct.2019.111232_b0025) 2016; 86
Fu (10.1016/j.compstruct.2019.111232_b0120) 2018; 160
Chen (10.1016/j.compstruct.2019.111232_b0085) 2017; 26
Li (10.1016/j.compstruct.2019.111232_b0155) 2007; 44
References_xml – year: 1988
  ident: b0040
  article-title: Cellular solids: structure and properties
– year: 2019
  ident: b0130
  article-title: Special characteristics of tetrachiral honeycombs under large deformation
  publication-title: Int J Solids Struct
– volume: 25
  start-page: 5116-5116
  year: 2013
  ident: b0005
  article-title: 3D soft metamaterials with negative Poisson's ratio
  publication-title: Ad. Mater
– volume: 95
  start-page: 204
  year: 2016
  end-page: 222
  ident: b0010
  article-title: Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity
  publication-title: Mech Mater
– volume: 134
  start-page: 384
  year: 2015
  end-page: 392
  ident: b0015
  article-title: Zero Poisson’s ratio cellular structure for two-dimensional morphing applications
  publication-title: Compos Struct
– volume: 38
  start-page: 280
  year: 2007
  end-page: 289
  ident: b0115
  article-title: Elastic buckling of hexagonal chiral cell honeycombs
  publication-title: Compos A Appl Sci Manuf
– volume: 145
  start-page: 226
  year: 2018
  end-page: 231
  ident: b0125
  article-title: 3D cellular metamaterials with planar anti-chiral topology
  publication-title: Mater Des
– volume: 140
  start-page: 537
  year: 2018
  end-page: 546
  ident: b0110
  article-title: Mechanical behavior of anti-trichiral honeycombs under lateral crushing
  publication-title: Int J Mech Sci
– volume: 23
  start-page: 95
  year: 2004
  end-page: 106
  ident: b0060
  article-title: A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model
  publication-title: Euro J Mech A-Solids
– volume: 35
  start-page: 403
  year: 1996
  end-page: 422
  ident: b0045
  article-title: Models for the elastic deformation of honeycombs
  publication-title: Compos Struct
– volume: 15
  start-page: 175
  year: 2018
  end-page: 184
  ident: b0145
  article-title: Optimization for twist chirality of structural materials induced by axial strain
  publication-title: Mater Today Commun
– volume: 70
  start-page: 1057
  year: 2010
  end-page: 1063
  ident: b0100
  article-title: The transverse elastic properties of chiral honeycombs
  publication-title: Compos Sci Technol
– volume: 20
  start-page: 104
  year: 2018
  end-page: 111
  ident: b0140
  article-title: Compression twist deformation of novel tetrachiral architected cylindrical tube inspired by towel gourd tendrils
  publication-title: Extreme Mech Lett
– volume: 89
  year: 2015
  ident: b0020
  article-title: In-plane mechanics of a novel zero Poisson’s ratio honeycomb core
  publication-title: Compos BEng
– volume: 121
  start-page: 23
  year: 2018
  end-page: 46
  ident: b0150
  article-title: A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior
  publication-title: J Mech Phys Solids
– year: 2018
  ident: b0065
  article-title: Mechanical property of re-entrant anti-trichiral honeycombs under large deformation
  publication-title: Compos BEng
– volume: 35
  start-page: 383
  year: 2000
  end-page: 388
  ident: b0050
  article-title: Numerical and experimental uniaxial loading on in-plane auxetic honeycombs
  publication-title: J Strain Anal Eng Des
– volume: 160
  start-page: 111
  year: 2018
  end-page: 118
  ident: b0120
  article-title: A novel category of 3D chiral material with negative Poisson's ratio
  publication-title: Compos Sci Technol
– volume: 80
  start-page: 284
  year: 2015
  end-page: 296
  ident: b0070
  article-title: Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation
  publication-title: Int J Solids Struct
– volume: 410
  start-page: 565
  year: 2001
  end-page: 567
  ident: b0035
  article-title: Extreme damping in composite materials with negative-stiffness inclusions
  publication-title: Nature
– volume: 26
  year: 2017
  ident: b0085
  article-title: A novel three-dimensional auxetic lattice meta-material with enhanced stiffness
  publication-title: Smart Mater Struct
– volume: 6
  start-page: 81
  year: 2016
  end-page: 96
  ident: b0090
  article-title: Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach
  publication-title: Theor Appl Mech Lett
– volume: 70
  start-page: 1042
  year: 2010
  end-page: 1048
  ident: b0105
  article-title: Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading
  publication-title: Compos Sci Technol
– volume: 44
  start-page: 5003
  year: 2007
  end-page: 5026
  ident: b0155
  article-title: Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness
  publication-title: Int J Solids Struct
– volume: 46
  start-page: 2372
  year: 2009
  end-page: 2387
  ident: b0030
  article-title: Tailorable thermal expansion hybrid structures
  publication-title: Int J Solids Struct
– volume: 39
  start-page: 305
  year: 1997
  end-page: 307
  ident: b0095
  article-title: Properties of a chiral honeycomb with a Poisson's ratio of -1
  publication-title: Int J Mech Sci
– volume: 30
  start-page: 287
  year: 2011
  end-page: 310
  ident: b0055
  article-title: An improved analytical model for the elastic constants of auxetic and conventional hexagonal honeycombs
  publication-title: CellPolym
– volume: 358
  start-page: 1072
  year: 2017
  ident: b0135
  article-title: Three-dimensional mechanical metamaterials with a twist
  publication-title: Science
– volume: 99
  start-page: 467
  year: 2016
  end-page: 476
  ident: b0080
  article-title: Interlocking assembled 3D auxetic cellular structures
  publication-title: Mater Des
– volume: 162
  start-page: 85
  year: 2017
  end-page: 97
  ident: b0160
  article-title: Stochastic mechanics of metamaterials
  publication-title: Compos Struct
– volume: 207
  start-page: 323
  year: 2019
  end-page: 330
  ident: b0075
  article-title: Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation
  publication-title: Compos Struct
– volume: 86
  start-page: 173
  year: 2016
  end-page: 191
  ident: b0025
  article-title: Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit
  publication-title: J Mech Phys Solids
– volume: 25
  start-page: 5116-5116
  issue: 36
  year: 2013
  ident: 10.1016/j.compstruct.2019.111232_b0005
  article-title: 3D soft metamaterials with negative Poisson's ratio
  publication-title: Ad. Mater
– volume: 26
  issue: 10
  year: 2017
  ident: 10.1016/j.compstruct.2019.111232_b0085
  article-title: A novel three-dimensional auxetic lattice meta-material with enhanced stiffness
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aa819e
– volume: 20
  start-page: 104
  year: 2018
  ident: 10.1016/j.compstruct.2019.111232_b0140
  article-title: Compression twist deformation of novel tetrachiral architected cylindrical tube inspired by towel gourd tendrils
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2018.02.001
– year: 1988
  ident: 10.1016/j.compstruct.2019.111232_b0040
– volume: 70
  start-page: 1042
  issue: 7
  year: 2010
  ident: 10.1016/j.compstruct.2019.111232_b0105
  article-title: Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2009.07.009
– volume: 358
  start-page: 1072
  issue: 6366
  year: 2017
  ident: 10.1016/j.compstruct.2019.111232_b0135
  article-title: Three-dimensional mechanical metamaterials with a twist
  publication-title: Science
  doi: 10.1126/science.aao4640
– volume: 30
  start-page: 287
  issue: 6
  year: 2011
  ident: 10.1016/j.compstruct.2019.111232_b0055
  article-title: An improved analytical model for the elastic constants of auxetic and conventional hexagonal honeycombs
  publication-title: CellPolym
– volume: 35
  start-page: 383
  issue: 5
  year: 2000
  ident: 10.1016/j.compstruct.2019.111232_b0050
  article-title: Numerical and experimental uniaxial loading on in-plane auxetic honeycombs
  publication-title: J Strain Anal Eng Des
  doi: 10.1243/0309324001514152
– volume: 80
  start-page: 284
  year: 2015
  ident: 10.1016/j.compstruct.2019.111232_b0070
  article-title: Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2015.11.015
– volume: 207
  start-page: 323
  year: 2019
  ident: 10.1016/j.compstruct.2019.111232_b0075
  article-title: Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2018.09.066
– volume: 15
  start-page: 175
  year: 2018
  ident: 10.1016/j.compstruct.2019.111232_b0145
  article-title: Optimization for twist chirality of structural materials induced by axial strain
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2018.03.010
– volume: 23
  start-page: 95
  issue: 1
  year: 2004
  ident: 10.1016/j.compstruct.2019.111232_b0060
  article-title: A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model
  publication-title: Euro J Mech A-Solids
  doi: 10.1016/j.euromechsol.2003.10.006
– volume: 162
  start-page: 85
  year: 2017
  ident: 10.1016/j.compstruct.2019.111232_b0160
  article-title: Stochastic mechanics of metamaterials
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.11.080
– volume: 6
  start-page: 81
  issue: 2
  year: 2016
  ident: 10.1016/j.compstruct.2019.111232_b0090
  article-title: Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach
  publication-title: Theor Appl Mech Lett
  doi: 10.1016/j.taml.2016.02.004
– year: 2019
  ident: 10.1016/j.compstruct.2019.111232_b0130
  article-title: Special characteristics of tetrachiral honeycombs under large deformation
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2019.04.020
– volume: 38
  start-page: 280
  issue: 2
  year: 2007
  ident: 10.1016/j.compstruct.2019.111232_b0115
  article-title: Elastic buckling of hexagonal chiral cell honeycombs
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2006.04.007
– volume: 134
  start-page: 384
  year: 2015
  ident: 10.1016/j.compstruct.2019.111232_b0015
  article-title: Zero Poisson’s ratio cellular structure for two-dimensional morphing applications
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.08.048
– volume: 160
  start-page: 111
  year: 2018
  ident: 10.1016/j.compstruct.2019.111232_b0120
  article-title: A novel category of 3D chiral material with negative Poisson's ratio
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2018.03.017
– volume: 145
  start-page: 226
  year: 2018
  ident: 10.1016/j.compstruct.2019.111232_b0125
  article-title: 3D cellular metamaterials with planar anti-chiral topology
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.02.052
– volume: 86
  start-page: 173
  year: 2016
  ident: 10.1016/j.compstruct.2019.111232_b0025
  article-title: Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2015.10.004
– volume: 44
  start-page: 5003
  issue: 14–15
  year: 2007
  ident: 10.1016/j.compstruct.2019.111232_b0155
  article-title: Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2006.12.017
– year: 2018
  ident: 10.1016/j.compstruct.2019.111232_b0065
  article-title: Mechanical property of re-entrant anti-trichiral honeycombs under large deformation
  publication-title: Compos BEng
– volume: 89
  year: 2015
  ident: 10.1016/j.compstruct.2019.111232_b0020
  article-title: In-plane mechanics of a novel zero Poisson’s ratio honeycomb core
  publication-title: Compos BEng
– volume: 99
  start-page: 467
  year: 2016
  ident: 10.1016/j.compstruct.2019.111232_b0080
  article-title: Interlocking assembled 3D auxetic cellular structures
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.03.088
– volume: 70
  start-page: 1057
  issue: 7
  year: 2010
  ident: 10.1016/j.compstruct.2019.111232_b0100
  article-title: The transverse elastic properties of chiral honeycombs
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2009.07.008
– volume: 35
  start-page: 403
  issue: 4
  year: 1996
  ident: 10.1016/j.compstruct.2019.111232_b0045
  article-title: Models for the elastic deformation of honeycombs
  publication-title: Compos Struct
  doi: 10.1016/S0263-8223(96)00054-2
– volume: 39
  start-page: 305
  issue: 3
  year: 1997
  ident: 10.1016/j.compstruct.2019.111232_b0095
  article-title: Properties of a chiral honeycomb with a Poisson's ratio of -1
  publication-title: Int J Mech Sci
  doi: 10.1016/S0020-7403(96)00025-2
– volume: 410
  start-page: 565
  issue: 6828
  year: 2001
  ident: 10.1016/j.compstruct.2019.111232_b0035
  article-title: Extreme damping in composite materials with negative-stiffness inclusions
  publication-title: Nature
  doi: 10.1038/35069035
– volume: 121
  start-page: 23
  year: 2018
  ident: 10.1016/j.compstruct.2019.111232_b0150
  article-title: A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2018.07.016
– volume: 95
  start-page: 204
  year: 2016
  ident: 10.1016/j.compstruct.2019.111232_b0010
  article-title: Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2016.01.009
– volume: 46
  start-page: 2372
  issue: 11
  year: 2009
  ident: 10.1016/j.compstruct.2019.111232_b0030
  article-title: Tailorable thermal expansion hybrid structures
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2009.01.023
– volume: 140
  start-page: 537
  year: 2018
  ident: 10.1016/j.compstruct.2019.111232_b0110
  article-title: Mechanical behavior of anti-trichiral honeycombs under lateral crushing
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2018.03.039
SSID ssj0008411
Score 2.587125
Snippet A new design of a 3D compression-torsion mechanical metamaterial is proposed based on the chiral mechanism of inclined rods converting axial compression (or...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111232
SubjectTerms Cell number
Chiral mechanism
Compression-torsion properties
Three-dimensional mechanical metamaterial
Title A novel three-dimensional mechanical metamaterial with compression-torsion properties
URI https://dx.doi.org/10.1016/j.compstruct.2019.111232
Volume 226
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBy8xibZzW6Cp1IsVaEXLfQW9gmVmhYJHv3tzmQTW0FQ8JRk2YFlZjIzu3z7DSHXnIrYxFyFNgEzMKNcmGunYZeSOSeEgRxZs31O-WTGHubpvENG7V0YhFU2sd_H9DpaNyODRpuD9WIxeILdA4X0Bj4EZW-U4Y1yxgR6-c3HBuaRsboHL04OcXaD5vEYL4Rte55WBHnlGD8SmvycorbSzviA7Df1YjD0SzokHVsekb0tFsFjMhsG5erdLoMK7GJDg3z9nmsjeLV4sRftAK-VhOq0drgAT18DXJZHwZYh9tyBZ7DGs_k3JFk9IbPx3fNoEjbdEkIN_2UVcgeaEJbzSOhMGJNnqZGaUsqdEszRJOLGIb2c5FQ6rU1kqHKMOWOVZkzRU9ItV6U9I4HKbSyzVLrcGOY0lSDJjDR5wm3CVNYjolVQoRsqcexosSxazNhLsVFtgaotvGp7JP6SXHs6jT_I3LY2KL65RgFR_1fp839JX5Bd_MJkFaeXpAsT7BVUIZXq127WJzvD-8fJ9BO-ZeH_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPrMwevoU12s5vgqRSltbUXW-gtZF9QqWmR4u93JklrBUHBU0J2B5aZyczs8u03AHeCycAEQvk2RDNwo5yfaKdxlxI7J6XBHFmwfY5Eb8KfptG0Bt31XRiCVVaxv4zpRbSuvrQqbbaWs1nrBXcPDNMb-hCWve1Y7kCD2KmiOjQ6_UFvtAnIMS_a8NJ8nwQqQE8J8yLkdknVSjivhEJIyMKfs9RW5nk8hIOqZPQ65aqOoGbzY9jfIhI8gUnHyxcfdu6t0DTWN0TZX9JteG-W7vaSKfB1lWGBWvicRwewHi2rBMLmPrXdwae3pOP5d-JZPYXJ48O42_Orhgm-xl9z5QuHypBWiLbUsTQmiSOTacaYcEpyx8K2MI4Y5jLBMqe1aRumHOfOWKU5V-wM6vkit-fgqcQGWRxlLjGGO80ylOQmM0kobMhV3AS5VlCqKzZxamoxT9ewsdf0S7UpqTYtVduEYCO5LBk1_iBzv7ZB-s07Ugz8v0pf_Ev6FnZ74-dhOuyPBpewRyOUu4LoCuo42V5jUbJSN5XTfQJ4YOSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+three-dimensional+mechanical+metamaterial+with+compression-torsion+properties&rft.jtitle=Composite+structures&rft.au=Zhong%2C+Rongchang&rft.au=Fu%2C+Minghui&rft.au=Chen%2C+Xuan&rft.au=Zheng%2C+Binbin&rft.date=2019-10-15&rft.issn=0263-8223&rft.volume=226&rft.spage=111232&rft_id=info:doi/10.1016%2Fj.compstruct.2019.111232&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruct_2019_111232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon