Hydrothermal synthesis of ZnO nanostructures with controllable morphology change
Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based precursor reaction with equimolar amounts of hexamethylenetetramine (HMTA) is commonly used. In these reactions, zinc nitrate provides the so...
Saved in:
Published in | CrystEngComm Vol. 22; no. 8; pp. 1346 - 1358 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based precursor reaction with equimolar amounts of hexamethylenetetramine (HMTA) is commonly used. In these reactions, zinc nitrate provides the source of Zn
2+
ions, and HMTA produces the desired amount of OH
−
ions. The growth process occurs due to a dissolution-secondary precipitation mechanism. ZnO nanostructures are characterized by anisotropic growth with different growth rates of the individual faces, where (
v
(0001) >
v
(101&cmb.macr;0) >
v
(101&cmb.macr;1&cmb.macr;) >
v
(101&cmb.macr;1) >
v
(0001&cmb.macr;)). Therefore, considering the principle of energy minimization, the most favorable is vertical growth perpendicular to the (0001) plane, which ensures the formation of characteristic rod-like nanostruchtures of ZnO. The mentioned process takes place when chemical reactions are in equilibrium. Shifting from the equilibrium conditions by varying the parameters of reaction, or using capping agents, makes it possible to change the growth rate of individual crystallographic planes and, as result, affect the morphology of the obtained nanostructure. In this paper the influence of concentration and composition of the reagents, growth time and temperature, pH of the solution, and the presence of different capping agents on the growth process of nanostructured ZnO were investigated. Optimal synthesis parameters for obtaining nine independent ZnO morphologies have been determined. The distinctive feature of these experiments is the fact that the samples were obtained as durable, homogeneous, epitaxial coatings on hard surfaces. This can be especially interesting for the development of sensors and other fields where surface area is crucial, and it opens up more possibilities than use of the nanostructured ZnO powders.
Optimal synthesis parameters for hydrothermal growth of nine ZnO nanostructure morphologies as a durable, homogeneous coating have been determined. |
---|---|
AbstractList | Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based precursor reaction with equimolar amounts of hexamethylenetetramine (HMTA) is commonly used. In these reactions, zinc nitrate provides the source of Zn
2+
ions, and HMTA produces the desired amount of OH
−
ions. The growth process occurs due to a dissolution-secondary precipitation mechanism. ZnO nanostructures are characterized by anisotropic growth with different growth rates of the individual faces, where (
v
(0001) >
v
(101&cmb.macr;0) >
v
(101&cmb.macr;1&cmb.macr;) >
v
(101&cmb.macr;1) >
v
(0001&cmb.macr;)). Therefore, considering the principle of energy minimization, the most favorable is vertical growth perpendicular to the (0001) plane, which ensures the formation of characteristic rod-like nanostruchtures of ZnO. The mentioned process takes place when chemical reactions are in equilibrium. Shifting from the equilibrium conditions by varying the parameters of reaction, or using capping agents, makes it possible to change the growth rate of individual crystallographic planes and, as result, affect the morphology of the obtained nanostructure. In this paper the influence of concentration and composition of the reagents, growth time and temperature, pH of the solution, and the presence of different capping agents on the growth process of nanostructured ZnO were investigated. Optimal synthesis parameters for obtaining nine independent ZnO morphologies have been determined. The distinctive feature of these experiments is the fact that the samples were obtained as durable, homogeneous, epitaxial coatings on hard surfaces. This can be especially interesting for the development of sensors and other fields where surface area is crucial, and it opens up more possibilities than use of the nanostructured ZnO powders.
Optimal synthesis parameters for hydrothermal growth of nine ZnO nanostructure morphologies as a durable, homogeneous coating have been determined. Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based precursor reaction with equimolar amounts of hexamethylenetetramine (HMTA) is commonly used. In these reactions, zinc nitrate provides the source of Zn2+ ions, and HMTA produces the desired amount of OH− ions. The growth process occurs due to a dissolution-secondary precipitation mechanism. ZnO nanostructures are characterized by anisotropic growth with different growth rates of the individual faces, where (v(0001) > v(1010) > v(1011) > v(1011) > v(0001)). Therefore, considering the principle of energy minimization, the most favorable is vertical growth perpendicular to the (0001) plane, which ensures the formation of characteristic rod-like nanostruchtures of ZnO. The mentioned process takes place when chemical reactions are in equilibrium. Shifting from the equilibrium conditions by varying the parameters of reaction, or using capping agents, makes it possible to change the growth rate of individual crystallographic planes and, as result, affect the morphology of the obtained nanostructure. In this paper the influence of concentration and composition of the reagents, growth time and temperature, pH of the solution, and the presence of different capping agents on the growth process of nanostructured ZnO were investigated. Optimal synthesis parameters for obtaining nine independent ZnO morphologies have been determined. The distinctive feature of these experiments is the fact that the samples were obtained as durable, homogeneous, epitaxial coatings on hard surfaces. This can be especially interesting for the development of sensors and other fields where surface area is crucial, and it opens up more possibilities than use of the nanostructured ZnO powders. Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based precursor reaction with equimolar amounts of hexamethylenetetramine (HMTA) is commonly used. In these reactions, zinc nitrate provides the source of Zn 2+ ions, and HMTA produces the desired amount of OH − ions. The growth process occurs due to a dissolution-secondary precipitation mechanism. ZnO nanostructures are characterized by anisotropic growth with different growth rates of the individual faces, where ( v (0001) > v (101̄0) > v (101̄1̄) > v (101̄1) > v (0001̄)). Therefore, considering the principle of energy minimization, the most favorable is vertical growth perpendicular to the (0001) plane, which ensures the formation of characteristic rod-like nanostruchtures of ZnO. The mentioned process takes place when chemical reactions are in equilibrium. Shifting from the equilibrium conditions by varying the parameters of reaction, or using capping agents, makes it possible to change the growth rate of individual crystallographic planes and, as result, affect the morphology of the obtained nanostructure. In this paper the influence of concentration and composition of the reagents, growth time and temperature, pH of the solution, and the presence of different capping agents on the growth process of nanostructured ZnO were investigated. Optimal synthesis parameters for obtaining nine independent ZnO morphologies have been determined. The distinctive feature of these experiments is the fact that the samples were obtained as durable, homogeneous, epitaxial coatings on hard surfaces. This can be especially interesting for the development of sensors and other fields where surface area is crucial, and it opens up more possibilities than use of the nanostructured ZnO powders. |
Author | Gerbreders, Vjaceslavs Krasovska, Marina Gerbreders, Andrejs Mihailova, Irena Ogurcovs, Andrejs Tamanis, Edmunds Sledevskis, Eriks |
AuthorAffiliation | Daugavpils University Department of Technology G. Liberts' Innovative Microscopy Centre Institute of Life Sciences and Technology |
AuthorAffiliation_xml | – sequence: 0 name: Daugavpils University – sequence: 0 name: G. Liberts' Innovative Microscopy Centre – sequence: 0 name: Department of Technology – sequence: 0 name: Institute of Life Sciences and Technology |
Author_xml | – sequence: 1 givenname: Vjaceslavs surname: Gerbreders fullname: Gerbreders, Vjaceslavs – sequence: 2 givenname: Marina surname: Krasovska fullname: Krasovska, Marina – sequence: 3 givenname: Eriks surname: Sledevskis fullname: Sledevskis, Eriks – sequence: 4 givenname: Andrejs surname: Gerbreders fullname: Gerbreders, Andrejs – sequence: 5 givenname: Irena surname: Mihailova fullname: Mihailova, Irena – sequence: 6 givenname: Edmunds surname: Tamanis fullname: Tamanis, Edmunds – sequence: 7 givenname: Andrejs surname: Ogurcovs fullname: Ogurcovs, Andrejs |
BookMark | eNptkc1LAzEQxYNUsF29eBcC3oTVzGY_j7K0VijUg168LEk26W7ZJjXJIvvfu7WiIp7mwfzeDPNmhibaaInQJZBbILS4E4WQBJIkVSdoCnGahjmhdPJLn6GZc1tCIAYgU_S0HGprfCPtjnXYDXqUrnXYKPyq11gzbZy3vfC9lQ6_t77BwmhvTdcx3km8M3bfmM5sBiwapjfyHJ0q1jl58VUD9LKYP5fLcLV-eCzvV6GgkPswrXmkMgEsSngMBaRcCCYYyTiklCRZninOpapJLfKkkJwpmufx2JdxkccqoQG6Ps7dW_PWS-erremtHldWEU2hSCAazw0QOVLCGuesVJVoPfPt4QTWdhWQ6pBbVRbl_DO3xWi5-WPZ23bH7PA_fHWErRPf3M8T6Ac4oXtP |
CitedBy_id | crossref_primary_10_1016_j_matlet_2023_134161 crossref_primary_10_1007_s00339_021_04861_7 crossref_primary_10_14710_jksa_26_9_363_371 crossref_primary_10_1039_D1TC00983D crossref_primary_10_1007_s12613_024_2965_x crossref_primary_10_1021_acsami_4c17414 crossref_primary_10_1016_j_enmm_2024_100947 crossref_primary_10_1021_acsanm_3c01432 crossref_primary_10_1002_admt_202000793 crossref_primary_10_1002_slct_202103457 crossref_primary_10_1039_D2QI02697J crossref_primary_10_1016_j_inoche_2022_110311 crossref_primary_10_14233_ajchem_2022_23723 crossref_primary_10_1016_j_ceramint_2021_02_005 crossref_primary_10_1016_j_compositesb_2024_111564 crossref_primary_10_1016_j_jlumin_2023_120059 crossref_primary_10_1007_s10973_022_11255_1 crossref_primary_10_1016_j_eti_2021_102130 crossref_primary_10_3390_nano11010034 crossref_primary_10_1016_j_bsecv_2022_05_004 crossref_primary_10_1016_j_nanoso_2025_101436 crossref_primary_10_1016_j_optmat_2022_112295 crossref_primary_10_1016_j_apsusc_2021_150061 crossref_primary_10_3390_nano11041059 crossref_primary_10_1088_2399_1984_ac1dba crossref_primary_10_2478_lpts_2023_0013 crossref_primary_10_1557_s43578_023_00941_x crossref_primary_10_1007_s11664_024_11338_9 crossref_primary_10_1016_j_mssp_2024_109253 crossref_primary_10_1016_j_watres_2024_122736 crossref_primary_10_1088_2631_8695_ac184b crossref_primary_10_1007_s10854_020_05063_2 crossref_primary_10_1016_j_jphotochem_2024_116141 crossref_primary_10_3390_w15101949 crossref_primary_10_1016_j_carbpol_2022_120536 crossref_primary_10_1016_j_jeurceramsoc_2023_04_061 crossref_primary_10_1016_j_molstruc_2025_141822 crossref_primary_10_1016_j_jpcs_2022_110947 crossref_primary_10_1007_s10854_021_06248_z crossref_primary_10_1016_j_jtice_2023_104739 crossref_primary_10_1016_j_cej_2023_143470 crossref_primary_10_2478_lpts_2022_0004 crossref_primary_10_1007_s11356_023_30713_3 crossref_primary_10_1016_j_jconhyd_2022_104019 crossref_primary_10_3390_molecules28020906 crossref_primary_10_1016_j_jssc_2020_121494 crossref_primary_10_3390_nano12010114 crossref_primary_10_3390_ijms24031875 crossref_primary_10_1016_j_inoche_2022_110097 crossref_primary_10_1088_1361_6528_acf583 crossref_primary_10_3390_chemosensors12050083 crossref_primary_10_1016_j_matpr_2022_07_301 crossref_primary_10_3390_catal13030567 crossref_primary_10_3390_jmse10101546 crossref_primary_10_1016_j_surfin_2021_101682 crossref_primary_10_3390_ma15217661 crossref_primary_10_1186_s40824_022_00252_y crossref_primary_10_1002_smll_202302864 crossref_primary_10_1002_cplu_202400005 crossref_primary_10_1016_j_poly_2024_117285 crossref_primary_10_1111_1541_4337_70051 crossref_primary_10_3390_nano13010058 crossref_primary_10_1016_j_ceramint_2022_08_084 crossref_primary_10_1016_j_tiv_2022_105460 crossref_primary_10_1016_j_cej_2021_128434 crossref_primary_10_1016_j_energy_2024_134188 crossref_primary_10_1016_j_jece_2023_111870 crossref_primary_10_1016_j_jafr_2025_101743 crossref_primary_10_1002_slct_202303214 crossref_primary_10_1016_j_ceramint_2024_06_056 crossref_primary_10_1016_j_mssp_2021_106149 crossref_primary_10_1016_j_ijbiomac_2024_137076 crossref_primary_10_1039_D1NR07237D crossref_primary_10_1007_s10854_023_11714_x crossref_primary_10_1134_S0036023621100132 crossref_primary_10_1007_s13204_023_02824_3 crossref_primary_10_1016_j_ceramint_2023_07_073 crossref_primary_10_1016_j_surfin_2023_103094 crossref_primary_10_1016_j_jcrysgro_2021_126328 crossref_primary_10_1016_j_physb_2024_416384 crossref_primary_10_1016_j_nxener_2023_100094 crossref_primary_10_1016_j_jlumin_2022_119655 crossref_primary_10_1016_j_surfin_2024_103965 crossref_primary_10_1016_j_jiec_2023_06_007 crossref_primary_10_1021_acsanm_3c02200 crossref_primary_10_1007_s12596_024_02377_w crossref_primary_10_15251_JOR_2024_206_763 crossref_primary_10_1039_D3NJ05237K crossref_primary_10_2478_lpts_2024_0042 crossref_primary_10_3390_nano14020150 crossref_primary_10_1002_aoc_7270 crossref_primary_10_1016_j_mtchem_2022_100921 crossref_primary_10_1038_s41598_020_78305_2 crossref_primary_10_1016_j_jcrysgro_2024_127894 crossref_primary_10_1016_j_jcrysgro_2025_128068 crossref_primary_10_1016_j_matchemphys_2023_128170 crossref_primary_10_1016_j_heliyon_2024_e24706 crossref_primary_10_1016_j_materresbull_2021_111419 crossref_primary_10_1149_2162_8777_abcb60 crossref_primary_10_1088_1742_6596_2227_1_012007 crossref_primary_10_1016_j_ijbiomac_2025_139768 crossref_primary_10_1016_j_physb_2023_415568 crossref_primary_10_2478_lpts_2021_0036 crossref_primary_10_1051_e3sconf_202448103005 crossref_primary_10_1016_j_inoche_2023_111430 crossref_primary_10_1016_j_jwpe_2025_107172 crossref_primary_10_1016_j_jallcom_2020_158410 crossref_primary_10_3390_nano14100844 crossref_primary_10_1016_j_jece_2020_104746 crossref_primary_10_1016_j_snb_2023_135257 crossref_primary_10_1007_s10854_024_12775_2 crossref_primary_10_1016_j_exppara_2022_108456 crossref_primary_10_1002_crat_202300013 crossref_primary_10_1007_s13204_021_01669_y crossref_primary_10_1016_j_ceramint_2024_06_248 crossref_primary_10_1016_j_est_2023_108719 crossref_primary_10_1039_D3MA00227F crossref_primary_10_1007_s13762_022_04354_x crossref_primary_10_1039_D0RA10945B crossref_primary_10_1007_s12668_023_01224_9 crossref_primary_10_1016_j_powtec_2021_03_051 crossref_primary_10_1515_pac_2022_1116 crossref_primary_10_3390_catal11040504 crossref_primary_10_1016_j_ceramint_2023_02_144 crossref_primary_10_1007_s10008_023_05740_2 crossref_primary_10_1007_s11664_021_09093_2 crossref_primary_10_3389_fchem_2024_1434488 crossref_primary_10_1039_D1RA03653J crossref_primary_10_1016_j_ceramint_2024_09_178 crossref_primary_10_1016_j_tsf_2021_138967 crossref_primary_10_1016_j_colsurfa_2021_128156 crossref_primary_10_61435_ijred_2025_60983 crossref_primary_10_1039_D1CE00222H crossref_primary_10_2478_lpts_2023_0035 crossref_primary_10_1016_j_ceramint_2025_01_538 crossref_primary_10_1088_2399_6528_ac8049 crossref_primary_10_3390_coatings11080936 crossref_primary_10_1016_j_ceramint_2022_05_147 crossref_primary_10_1007_s43207_022_00222_z crossref_primary_10_1016_j_ijleo_2022_169099 crossref_primary_10_3390_nano13182537 crossref_primary_10_1016_j_saa_2024_123901 crossref_primary_10_1080_24701556_2024_2354926 crossref_primary_10_1007_s41779_024_01032_8 crossref_primary_10_1088_2632_959X_abeec6 |
Cites_doi | 10.1038/srep12231 10.1016/j.matlet.2014.11.081 10.1515/lpts-2017-0005 10.1016/j.bios.2014.03.036 10.1039/c0ee00448k 10.1021/jp077573j 10.1016/j.colsurfa.2013.01.031 10.1007/s12274-011-0160-7 10.5772/57237 10.1021/acs.chemrev.5b00731 10.1016/j.sbsr.2017.07.003 10.1021/jp803059k 10.4236/ojab.2014.32002 10.1166/jnn.2005.182 10.1039/B917525C 10.1016/j.matchemphys.2016.01.015 10.1515/lpts-2015-0026 10.3390/s130708445 10.1016/j.pnsc.2013.05.005 10.1557/JMR.2008.0274 10.1039/C3CE40822A 10.1155/2011/269692 10.1016/j.matlet.2013.07.025 10.1021/la804009g 10.1517/17425247.2010.502560 10.1186/s11671-016-1803-0 10.1016/j.jallcom.2014.08.113 10.1016/j.apsusc.2008.12.037 10.1016/j.jssc.2012.09.001 10.1016/S1452-3981(23)14073-9 10.3762/bjnano.9.227 10.4172/2161-0525.1000154 10.3762/bjnano.1.15 10.4028/www.scientific.net/SSP.124-126.555 10.2174/1566524013666131111130058 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/c9ce01556f |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 1358 |
ExternalDocumentID | 10_1039_C9CE01556F c9ce01556f |
GroupedDBID | -JG 0-7 0R~ 29F 5GY 6J9 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 E3Z EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF CITATION R56 7U5 8FD L7M |
ID | FETCH-LOGICAL-c318t-6db2f7c1a25b41916bccaca07b16305787fbbefd0dc859ebaf3884a07e4984f53 |
ISSN | 1466-8033 |
IngestDate | Mon Jun 30 07:13:27 EDT 2025 Tue Jul 01 02:21:10 EDT 2025 Thu Apr 24 23:10:19 EDT 2025 Tue Dec 17 20:58:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-6db2f7c1a25b41916bccaca07b16305787fbbefd0dc859ebaf3884a07e4984f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5959-0442 |
PQID | 2361951280 |
PQPubID | 2047491 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2361951280 crossref_citationtrail_10_1039_C9CE01556F crossref_primary_10_1039_C9CE01556F rsc_primary_c9ce01556f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-28 |
PublicationDateYYYYMMDD | 2020-02-28 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Singh (C9CE01556F-(cit32)/*[position()=1]) 2012; 2 Kim (C9CE01556F-(cit21)/*[position()=1]) 2016; 171 Wang (C9CE01556F-(cit31)/*[position()=1]) 2016; 116 Chang (C9CE01556F-(cit34)/*[position()=1]) 2013; 13 Xu (C9CE01556F-(cit35)/*[position()=1]) 2011; 4 Rasmussen (C9CE01556F-(cit7)/*[position()=1]) 2010; 7 Liu (C9CE01556F-(cit36)/*[position()=1]) 2013; 8 Krasovska (C9CE01556F-(cit28)/*[position()=1]) 2015; 52 Singh (C9CE01556F-(cit6)/*[position()=1]) 2013; 3 Wang (C9CE01556F-(cit4)/*[position()=1]) 2012; 2 Roza (C9CE01556F-(cit14)/*[position()=1]) 2015; 618 Das (C9CE01556F-(cit24)/*[position()=1]) 2013; 15 Wang (C9CE01556F-(cit5)/*[position()=1]) 2013; 422 Mansor (C9CE01556F-(cit11)/*[position()=1]) 2014; 3 Zhu (C9CE01556F-(cit20)/*[position()=1]) 2007; 111 Chae (C9CE01556F-(cit2)/*[position()=1]) 2010; 1 Wang (C9CE01556F-(cit16)/*[position()=1]) 2015; 141 Cho (C9CE01556F-(cit37)/*[position()=1]) 2009; 25 Perumal (C9CE01556F-(cit9)/*[position()=1]) 2015; 5 Krasovska (C9CE01556F-(cit26)/*[position()=1]) 2018; 9 Zhou (C9CE01556F-(cit29)/*[position()=1]) 2013; 23 Li (C9CE01556F-(cit30)/*[position()=1]) 2017; 12 Wahab (C9CE01556F-(cit22)/*[position()=1]) 2009; 255 Jang (C9CE01556F-(cit17)/*[position()=1]) 2007; 124–126 Fan (C9CE01556F-(cit1)/*[position()=1]) 2005; 5 Mohammed (C9CE01556F-(cit12)/*[position()=1]) 2017; 15 Zhang (C9CE01556F-(cit8)/*[position()=1]) 2013; 13 Tak (C9CE01556F-(cit10)/*[position()=1]) 2014; 59 Krasovska (C9CE01556F-(cit27)/*[position()=1]) 2017; 54 Urgessa (C9CE01556F-(cit18)/*[position()=1]) 2013; 108 Wang (C9CE01556F-(cit33)/*[position()=1]) 2008; 112 Xu (C9CE01556F-(cit3)/*[position()=1]) 2011; 4 Xu (C9CE01556F-(cit23)/*[position()=1]) 2008; 23 Xi (C9CE01556F-(cit15)/*[position()=1]) 2009; 19 Zhu (C9CE01556F-(cit25)/*[position()=1]) 2013; 197 Amin (C9CE01556F-(cit19)/*[position()=1]) 2011; 2011 |
References_xml | – issn: 2012 publication-title: Ph.D. Thesis doi: Amin – volume: 5 start-page: 12231 year: 2015 ident: C9CE01556F-(cit9)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep12231 – volume: 141 start-page: 118 year: 2015 ident: C9CE01556F-(cit16)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.11.081 – volume: 54 start-page: 41 issue: 1 year: 2017 ident: C9CE01556F-(cit27)/*[position()=1] publication-title: Latv. J. Phys. Tech. Sci. doi: 10.1515/lpts-2017-0005 – volume: 59 start-page: 200 year: 2014 ident: C9CE01556F-(cit10)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.03.036 – volume: 4 start-page: 818 year: 2011 ident: C9CE01556F-(cit35)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00448k – volume: 111 start-page: 18629 issue: 50 year: 2007 ident: C9CE01556F-(cit20)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp077573j – volume: 422 start-page: 199 year: 2013 ident: C9CE01556F-(cit5)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2013.01.031 – volume: 4 start-page: 1013 issue: 11 year: 2011 ident: C9CE01556F-(cit3)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-011-0160-7 – volume: 3 start-page: 2013 issue: 20 year: 2013 ident: C9CE01556F-(cit6)/*[position()=1] publication-title: Nanomater. Nanotechnol. doi: 10.5772/57237 – volume: 116 start-page: 10983 year: 2016 ident: C9CE01556F-(cit31)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00731 – volume: 15 start-page: 46 year: 2017 ident: C9CE01556F-(cit12)/*[position()=1] publication-title: Sensing and Bio-Sensing Research doi: 10.1016/j.sbsr.2017.07.003 – volume: 112 start-page: 11738 issue: 31 year: 2008 ident: C9CE01556F-(cit33)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp803059k – volume: 3 start-page: 9 year: 2014 ident: C9CE01556F-(cit11)/*[position()=1] publication-title: Open J. Appl. Biosens. doi: 10.4236/ojab.2014.32002 – volume: 5 start-page: 1 year: 2005 ident: C9CE01556F-(cit1)/*[position()=1] publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2005.182 – volume: 19 start-page: 9260 year: 2009 ident: C9CE01556F-(cit15)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/B917525C – volume: 171 start-page: 252 year: 2016 ident: C9CE01556F-(cit21)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2016.01.015 – volume: 52 start-page: 28 issue: 5 year: 2015 ident: C9CE01556F-(cit28)/*[position()=1] publication-title: Latv. J. Phys. Tech. Sci. doi: 10.1515/lpts-2015-0026 – volume: 13 start-page: 8445 issue: 7 year: 2013 ident: C9CE01556F-(cit34)/*[position()=1] publication-title: Sensors doi: 10.3390/s130708445 – volume: 2 start-page: 106 issue: 1 year: 2012 ident: C9CE01556F-(cit32)/*[position()=1] publication-title: J. Microbiol., Biotechnol. Food Sci. – volume: 23 start-page: 273 issue: 3 year: 2013 ident: C9CE01556F-(cit29)/*[position()=1] publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2013.05.005 – volume: 23 start-page: 2072 issue: 8 year: 2008 ident: C9CE01556F-(cit23)/*[position()=1] publication-title: J. Mater. Res. doi: 10.1557/JMR.2008.0274 – volume: 15 start-page: 6349 year: 2013 ident: C9CE01556F-(cit24)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C3CE40822A – volume: 2011 start-page: 1 issue: 269692 year: 2011 ident: C9CE01556F-(cit19)/*[position()=1] publication-title: J. Nanomater. doi: 10.1155/2011/269692 – volume: 108 start-page: 280 year: 2013 ident: C9CE01556F-(cit18)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.07.025 – volume: 25 start-page: 3825 issue: 6 year: 2009 ident: C9CE01556F-(cit37)/*[position()=1] publication-title: Langmuir doi: 10.1021/la804009g – volume: 7 start-page: 1063 issue: 9 year: 2010 ident: C9CE01556F-(cit7)/*[position()=1] publication-title: Expert Opin. Drug Delivery doi: 10.1517/17425247.2010.502560 – volume: 12 start-page: 1 issue: 10 year: 2017 ident: C9CE01556F-(cit30)/*[position()=1] publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1803-0 – volume: 618 start-page: 153 year: 2015 ident: C9CE01556F-(cit14)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.08.113 – volume: 255 start-page: 4891 year: 2009 ident: C9CE01556F-(cit22)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.12.037 – volume: 197 start-page: 69 year: 2013 ident: C9CE01556F-(cit25)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2012.09.001 – volume: 8 start-page: 983 year: 2013 ident: C9CE01556F-(cit36)/*[position()=1] publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)14073-9 – volume: 9 start-page: 2421 year: 2018 ident: C9CE01556F-(cit26)/*[position()=1] publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.9.227 – volume: 2 start-page: 1000154 issue: 7 year: 2012 ident: C9CE01556F-(cit4)/*[position()=1] publication-title: J. Environ. Anal. Toxicol. doi: 10.4172/2161-0525.1000154 – volume: 1 start-page: 128 year: 2010 ident: C9CE01556F-(cit2)/*[position()=1] publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.1.15 – volume: 124–126 start-page: 555 year: 2007 ident: C9CE01556F-(cit17)/*[position()=1] publication-title: Solid State Phenom. doi: 10.4028/www.scientific.net/SSP.124-126.555 – volume: 13 start-page: 1633 issue: 10 year: 2013 ident: C9CE01556F-(cit8)/*[position()=1] publication-title: Curr. Mol. Med. doi: 10.2174/1566524013666131111130058 |
SSID | ssj0014110 |
Score | 2.62029 |
Snippet | Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1346 |
SubjectTerms | Capping Chemical reactions Crystallography Energy conservation Equilibrium conditions Hexamethylenetetramine Metal oxides Morphology Nanostructure Optimization Organic chemistry Parameters Production methods Reagents Zinc oxide |
Title | Hydrothermal synthesis of ZnO nanostructures with controllable morphology change |
URI | https://www.proquest.com/docview/2361951280 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYcZ2mHoq-gbtKCQLsUhVJZFCVqDAwHbtHX4ABBF4HPAokjBZITwB3623sUqYcbD2kXQaZEAuZ9Ot6Rd98h9BYWsTBVhgTMMB3EoP4CEWkSpEJyWO-FUM3WwJevyeIs_nROz0ej38PskrU4lr925pX8j1ShDeRqs2T_QbLdoNAA9yBfuIKE4XovGS82qmoyqK5s1semgFvPL_Kj-Pa-4EXp6GFvwKfugsxtZPqqSZi6KmGSHQeTbJMMetqCalOv58VPm0HSBemADCrLPuFKqF_YcK4Vv-3Pgypel7f1JfdZQL40t9-DVRoeOUoD0L6X9e5RmwjLi63dCHA9--xup0DjxBIcO3KLY72jzWvdKBqgiw1U6JT4PUntfzpq9zuqPiSWKXWWzebW7EtO-wWtPcT_a53rog-bc3eS5X3fPbQfgZsRjdH-yXz58XN3DhVPHZ9F-w9agluSfeh7b5s0vZ-yV7VFZBpjZfkYPfJeBj5xkHmCRrp4ih4OuCefoe9D8OAOPLg0GMCDt8GDLXjwEDy4Bw924HmOzk7ny9ki8OU1AgmKfB3YSmImlVMeURGD254I-JolD1MBNnpoNbkRQhsVKslopgU3hLEYnus4Y7Gh5ACNi7LQLxDm1GRGUKpDsGdDRZnihFCT6kwnkYrZBL1rZyiXnnvelkBZ5XdlMUFvunevHePKzreO2onO_RdZ55ZICDyGiIUTdACT3_WXmdRNP_PyXqMfogc9uI_QGKZbvwLjcy1ee4T8AX_HiCE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrothermal+synthesis+of+ZnO+nanostructures+with+controllable+morphology+change&rft.jtitle=CrystEngComm&rft.au=Gerbreders%2C+Vjaceslavs&rft.au=Krasovska%2C+Marina&rft.au=Sledevskis%2C+Eriks&rft.au=Gerbreders%2C+Andrejs&rft.date=2020-02-28&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=22&rft.issue=8&rft.spage=1346&rft.epage=1358&rft_id=info:doi/10.1039%2FC9CE01556F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9CE01556F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |