Hydrothermal synthesis of ZnO nanostructures with controllable morphology change

Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based precursor reaction with equimolar amounts of hexamethylenetetramine (HMTA) is commonly used. In these reactions, zinc nitrate provides the so...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 22; no. 8; pp. 1346 - 1358
Main Authors Gerbreders, Vjaceslavs, Krasovska, Marina, Sledevskis, Eriks, Gerbreders, Andrejs, Mihailova, Irena, Tamanis, Edmunds, Ogurcovs, Andrejs
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 28.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based precursor reaction with equimolar amounts of hexamethylenetetramine (HMTA) is commonly used. In these reactions, zinc nitrate provides the source of Zn 2+ ions, and HMTA produces the desired amount of OH − ions. The growth process occurs due to a dissolution-secondary precipitation mechanism. ZnO nanostructures are characterized by anisotropic growth with different growth rates of the individual faces, where ( v (0001) > v (101&cmb.macr;0) > v (101&cmb.macr;1&cmb.macr;) > v (101&cmb.macr;1) > v (0001&cmb.macr;)). Therefore, considering the principle of energy minimization, the most favorable is vertical growth perpendicular to the (0001) plane, which ensures the formation of characteristic rod-like nanostruchtures of ZnO. The mentioned process takes place when chemical reactions are in equilibrium. Shifting from the equilibrium conditions by varying the parameters of reaction, or using capping agents, makes it possible to change the growth rate of individual crystallographic planes and, as result, affect the morphology of the obtained nanostructure. In this paper the influence of concentration and composition of the reagents, growth time and temperature, pH of the solution, and the presence of different capping agents on the growth process of nanostructured ZnO were investigated. Optimal synthesis parameters for obtaining nine independent ZnO morphologies have been determined. The distinctive feature of these experiments is the fact that the samples were obtained as durable, homogeneous, epitaxial coatings on hard surfaces. This can be especially interesting for the development of sensors and other fields where surface area is crucial, and it opens up more possibilities than use of the nanostructured ZnO powders. Optimal synthesis parameters for hydrothermal growth of nine ZnO nanostructure morphologies as a durable, homogeneous coating have been determined.
AbstractList Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based precursor reaction with equimolar amounts of hexamethylenetetramine (HMTA) is commonly used. In these reactions, zinc nitrate provides the source of Zn 2+ ions, and HMTA produces the desired amount of OH − ions. The growth process occurs due to a dissolution-secondary precipitation mechanism. ZnO nanostructures are characterized by anisotropic growth with different growth rates of the individual faces, where ( v (0001) > v (101&cmb.macr;0) > v (101&cmb.macr;1&cmb.macr;) > v (101&cmb.macr;1) > v (0001&cmb.macr;)). Therefore, considering the principle of energy minimization, the most favorable is vertical growth perpendicular to the (0001) plane, which ensures the formation of characteristic rod-like nanostruchtures of ZnO. The mentioned process takes place when chemical reactions are in equilibrium. Shifting from the equilibrium conditions by varying the parameters of reaction, or using capping agents, makes it possible to change the growth rate of individual crystallographic planes and, as result, affect the morphology of the obtained nanostructure. In this paper the influence of concentration and composition of the reagents, growth time and temperature, pH of the solution, and the presence of different capping agents on the growth process of nanostructured ZnO were investigated. Optimal synthesis parameters for obtaining nine independent ZnO morphologies have been determined. The distinctive feature of these experiments is the fact that the samples were obtained as durable, homogeneous, epitaxial coatings on hard surfaces. This can be especially interesting for the development of sensors and other fields where surface area is crucial, and it opens up more possibilities than use of the nanostructured ZnO powders. Optimal synthesis parameters for hydrothermal growth of nine ZnO nanostructure morphologies as a durable, homogeneous coating have been determined.
Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based precursor reaction with equimolar amounts of hexamethylenetetramine (HMTA) is commonly used. In these reactions, zinc nitrate provides the source of Zn2+ ions, and HMTA produces the desired amount of OH− ions. The growth process occurs due to a dissolution-secondary precipitation mechanism. ZnO nanostructures are characterized by anisotropic growth with different growth rates of the individual faces, where (v(0001) > v(1010) > v(1011) > v(1011) > v(0001)). Therefore, considering the principle of energy minimization, the most favorable is vertical growth perpendicular to the (0001) plane, which ensures the formation of characteristic rod-like nanostruchtures of ZnO. The mentioned process takes place when chemical reactions are in equilibrium. Shifting from the equilibrium conditions by varying the parameters of reaction, or using capping agents, makes it possible to change the growth rate of individual crystallographic planes and, as result, affect the morphology of the obtained nanostructure. In this paper the influence of concentration and composition of the reagents, growth time and temperature, pH of the solution, and the presence of different capping agents on the growth process of nanostructured ZnO were investigated. Optimal synthesis parameters for obtaining nine independent ZnO morphologies have been determined. The distinctive feature of these experiments is the fact that the samples were obtained as durable, homogeneous, epitaxial coatings on hard surfaces. This can be especially interesting for the development of sensors and other fields where surface area is crucial, and it opens up more possibilities than use of the nanostructured ZnO powders.
Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based precursor reaction with equimolar amounts of hexamethylenetetramine (HMTA) is commonly used. In these reactions, zinc nitrate provides the source of Zn 2+ ions, and HMTA produces the desired amount of OH − ions. The growth process occurs due to a dissolution-secondary precipitation mechanism. ZnO nanostructures are characterized by anisotropic growth with different growth rates of the individual faces, where ( v (0001) > v (101̄0) > v (101̄1̄) > v (101̄1) > v (0001̄)). Therefore, considering the principle of energy minimization, the most favorable is vertical growth perpendicular to the (0001) plane, which ensures the formation of characteristic rod-like nanostruchtures of ZnO. The mentioned process takes place when chemical reactions are in equilibrium. Shifting from the equilibrium conditions by varying the parameters of reaction, or using capping agents, makes it possible to change the growth rate of individual crystallographic planes and, as result, affect the morphology of the obtained nanostructure. In this paper the influence of concentration and composition of the reagents, growth time and temperature, pH of the solution, and the presence of different capping agents on the growth process of nanostructured ZnO were investigated. Optimal synthesis parameters for obtaining nine independent ZnO morphologies have been determined. The distinctive feature of these experiments is the fact that the samples were obtained as durable, homogeneous, epitaxial coatings on hard surfaces. This can be especially interesting for the development of sensors and other fields where surface area is crucial, and it opens up more possibilities than use of the nanostructured ZnO powders.
Author Gerbreders, Vjaceslavs
Krasovska, Marina
Gerbreders, Andrejs
Mihailova, Irena
Ogurcovs, Andrejs
Tamanis, Edmunds
Sledevskis, Eriks
AuthorAffiliation Daugavpils University
Department of Technology
G. Liberts' Innovative Microscopy Centre
Institute of Life Sciences and Technology
AuthorAffiliation_xml – sequence: 0
  name: Daugavpils University
– sequence: 0
  name: G. Liberts' Innovative Microscopy Centre
– sequence: 0
  name: Department of Technology
– sequence: 0
  name: Institute of Life Sciences and Technology
Author_xml – sequence: 1
  givenname: Vjaceslavs
  surname: Gerbreders
  fullname: Gerbreders, Vjaceslavs
– sequence: 2
  givenname: Marina
  surname: Krasovska
  fullname: Krasovska, Marina
– sequence: 3
  givenname: Eriks
  surname: Sledevskis
  fullname: Sledevskis, Eriks
– sequence: 4
  givenname: Andrejs
  surname: Gerbreders
  fullname: Gerbreders, Andrejs
– sequence: 5
  givenname: Irena
  surname: Mihailova
  fullname: Mihailova, Irena
– sequence: 6
  givenname: Edmunds
  surname: Tamanis
  fullname: Tamanis, Edmunds
– sequence: 7
  givenname: Andrejs
  surname: Ogurcovs
  fullname: Ogurcovs, Andrejs
BookMark eNptkc1LAzEQxYNUsF29eBcC3oTVzGY_j7K0VijUg168LEk26W7ZJjXJIvvfu7WiIp7mwfzeDPNmhibaaInQJZBbILS4E4WQBJIkVSdoCnGahjmhdPJLn6GZc1tCIAYgU_S0HGprfCPtjnXYDXqUrnXYKPyq11gzbZy3vfC9lQ6_t77BwmhvTdcx3km8M3bfmM5sBiwapjfyHJ0q1jl58VUD9LKYP5fLcLV-eCzvV6GgkPswrXmkMgEsSngMBaRcCCYYyTiklCRZninOpapJLfKkkJwpmufx2JdxkccqoQG6Ps7dW_PWS-erremtHldWEU2hSCAazw0QOVLCGuesVJVoPfPt4QTWdhWQ6pBbVRbl_DO3xWi5-WPZ23bH7PA_fHWErRPf3M8T6Ac4oXtP
CitedBy_id crossref_primary_10_1016_j_matlet_2023_134161
crossref_primary_10_1007_s00339_021_04861_7
crossref_primary_10_14710_jksa_26_9_363_371
crossref_primary_10_1039_D1TC00983D
crossref_primary_10_1007_s12613_024_2965_x
crossref_primary_10_1021_acsami_4c17414
crossref_primary_10_1016_j_enmm_2024_100947
crossref_primary_10_1021_acsanm_3c01432
crossref_primary_10_1002_admt_202000793
crossref_primary_10_1002_slct_202103457
crossref_primary_10_1039_D2QI02697J
crossref_primary_10_1016_j_inoche_2022_110311
crossref_primary_10_14233_ajchem_2022_23723
crossref_primary_10_1016_j_ceramint_2021_02_005
crossref_primary_10_1016_j_compositesb_2024_111564
crossref_primary_10_1016_j_jlumin_2023_120059
crossref_primary_10_1007_s10973_022_11255_1
crossref_primary_10_1016_j_eti_2021_102130
crossref_primary_10_3390_nano11010034
crossref_primary_10_1016_j_bsecv_2022_05_004
crossref_primary_10_1016_j_nanoso_2025_101436
crossref_primary_10_1016_j_optmat_2022_112295
crossref_primary_10_1016_j_apsusc_2021_150061
crossref_primary_10_3390_nano11041059
crossref_primary_10_1088_2399_1984_ac1dba
crossref_primary_10_2478_lpts_2023_0013
crossref_primary_10_1557_s43578_023_00941_x
crossref_primary_10_1007_s11664_024_11338_9
crossref_primary_10_1016_j_mssp_2024_109253
crossref_primary_10_1016_j_watres_2024_122736
crossref_primary_10_1088_2631_8695_ac184b
crossref_primary_10_1007_s10854_020_05063_2
crossref_primary_10_1016_j_jphotochem_2024_116141
crossref_primary_10_3390_w15101949
crossref_primary_10_1016_j_carbpol_2022_120536
crossref_primary_10_1016_j_jeurceramsoc_2023_04_061
crossref_primary_10_1016_j_molstruc_2025_141822
crossref_primary_10_1016_j_jpcs_2022_110947
crossref_primary_10_1007_s10854_021_06248_z
crossref_primary_10_1016_j_jtice_2023_104739
crossref_primary_10_1016_j_cej_2023_143470
crossref_primary_10_2478_lpts_2022_0004
crossref_primary_10_1007_s11356_023_30713_3
crossref_primary_10_1016_j_jconhyd_2022_104019
crossref_primary_10_3390_molecules28020906
crossref_primary_10_1016_j_jssc_2020_121494
crossref_primary_10_3390_nano12010114
crossref_primary_10_3390_ijms24031875
crossref_primary_10_1016_j_inoche_2022_110097
crossref_primary_10_1088_1361_6528_acf583
crossref_primary_10_3390_chemosensors12050083
crossref_primary_10_1016_j_matpr_2022_07_301
crossref_primary_10_3390_catal13030567
crossref_primary_10_3390_jmse10101546
crossref_primary_10_1016_j_surfin_2021_101682
crossref_primary_10_3390_ma15217661
crossref_primary_10_1186_s40824_022_00252_y
crossref_primary_10_1002_smll_202302864
crossref_primary_10_1002_cplu_202400005
crossref_primary_10_1016_j_poly_2024_117285
crossref_primary_10_1111_1541_4337_70051
crossref_primary_10_3390_nano13010058
crossref_primary_10_1016_j_ceramint_2022_08_084
crossref_primary_10_1016_j_tiv_2022_105460
crossref_primary_10_1016_j_cej_2021_128434
crossref_primary_10_1016_j_energy_2024_134188
crossref_primary_10_1016_j_jece_2023_111870
crossref_primary_10_1016_j_jafr_2025_101743
crossref_primary_10_1002_slct_202303214
crossref_primary_10_1016_j_ceramint_2024_06_056
crossref_primary_10_1016_j_mssp_2021_106149
crossref_primary_10_1016_j_ijbiomac_2024_137076
crossref_primary_10_1039_D1NR07237D
crossref_primary_10_1007_s10854_023_11714_x
crossref_primary_10_1134_S0036023621100132
crossref_primary_10_1007_s13204_023_02824_3
crossref_primary_10_1016_j_ceramint_2023_07_073
crossref_primary_10_1016_j_surfin_2023_103094
crossref_primary_10_1016_j_jcrysgro_2021_126328
crossref_primary_10_1016_j_physb_2024_416384
crossref_primary_10_1016_j_nxener_2023_100094
crossref_primary_10_1016_j_jlumin_2022_119655
crossref_primary_10_1016_j_surfin_2024_103965
crossref_primary_10_1016_j_jiec_2023_06_007
crossref_primary_10_1021_acsanm_3c02200
crossref_primary_10_1007_s12596_024_02377_w
crossref_primary_10_15251_JOR_2024_206_763
crossref_primary_10_1039_D3NJ05237K
crossref_primary_10_2478_lpts_2024_0042
crossref_primary_10_3390_nano14020150
crossref_primary_10_1002_aoc_7270
crossref_primary_10_1016_j_mtchem_2022_100921
crossref_primary_10_1038_s41598_020_78305_2
crossref_primary_10_1016_j_jcrysgro_2024_127894
crossref_primary_10_1016_j_jcrysgro_2025_128068
crossref_primary_10_1016_j_matchemphys_2023_128170
crossref_primary_10_1016_j_heliyon_2024_e24706
crossref_primary_10_1016_j_materresbull_2021_111419
crossref_primary_10_1149_2162_8777_abcb60
crossref_primary_10_1088_1742_6596_2227_1_012007
crossref_primary_10_1016_j_ijbiomac_2025_139768
crossref_primary_10_1016_j_physb_2023_415568
crossref_primary_10_2478_lpts_2021_0036
crossref_primary_10_1051_e3sconf_202448103005
crossref_primary_10_1016_j_inoche_2023_111430
crossref_primary_10_1016_j_jwpe_2025_107172
crossref_primary_10_1016_j_jallcom_2020_158410
crossref_primary_10_3390_nano14100844
crossref_primary_10_1016_j_jece_2020_104746
crossref_primary_10_1016_j_snb_2023_135257
crossref_primary_10_1007_s10854_024_12775_2
crossref_primary_10_1016_j_exppara_2022_108456
crossref_primary_10_1002_crat_202300013
crossref_primary_10_1007_s13204_021_01669_y
crossref_primary_10_1016_j_ceramint_2024_06_248
crossref_primary_10_1016_j_est_2023_108719
crossref_primary_10_1039_D3MA00227F
crossref_primary_10_1007_s13762_022_04354_x
crossref_primary_10_1039_D0RA10945B
crossref_primary_10_1007_s12668_023_01224_9
crossref_primary_10_1016_j_powtec_2021_03_051
crossref_primary_10_1515_pac_2022_1116
crossref_primary_10_3390_catal11040504
crossref_primary_10_1016_j_ceramint_2023_02_144
crossref_primary_10_1007_s10008_023_05740_2
crossref_primary_10_1007_s11664_021_09093_2
crossref_primary_10_3389_fchem_2024_1434488
crossref_primary_10_1039_D1RA03653J
crossref_primary_10_1016_j_ceramint_2024_09_178
crossref_primary_10_1016_j_tsf_2021_138967
crossref_primary_10_1016_j_colsurfa_2021_128156
crossref_primary_10_61435_ijred_2025_60983
crossref_primary_10_1039_D1CE00222H
crossref_primary_10_2478_lpts_2023_0035
crossref_primary_10_1016_j_ceramint_2025_01_538
crossref_primary_10_1088_2399_6528_ac8049
crossref_primary_10_3390_coatings11080936
crossref_primary_10_1016_j_ceramint_2022_05_147
crossref_primary_10_1007_s43207_022_00222_z
crossref_primary_10_1016_j_ijleo_2022_169099
crossref_primary_10_3390_nano13182537
crossref_primary_10_1016_j_saa_2024_123901
crossref_primary_10_1080_24701556_2024_2354926
crossref_primary_10_1007_s41779_024_01032_8
crossref_primary_10_1088_2632_959X_abeec6
Cites_doi 10.1038/srep12231
10.1016/j.matlet.2014.11.081
10.1515/lpts-2017-0005
10.1016/j.bios.2014.03.036
10.1039/c0ee00448k
10.1021/jp077573j
10.1016/j.colsurfa.2013.01.031
10.1007/s12274-011-0160-7
10.5772/57237
10.1021/acs.chemrev.5b00731
10.1016/j.sbsr.2017.07.003
10.1021/jp803059k
10.4236/ojab.2014.32002
10.1166/jnn.2005.182
10.1039/B917525C
10.1016/j.matchemphys.2016.01.015
10.1515/lpts-2015-0026
10.3390/s130708445
10.1016/j.pnsc.2013.05.005
10.1557/JMR.2008.0274
10.1039/C3CE40822A
10.1155/2011/269692
10.1016/j.matlet.2013.07.025
10.1021/la804009g
10.1517/17425247.2010.502560
10.1186/s11671-016-1803-0
10.1016/j.jallcom.2014.08.113
10.1016/j.apsusc.2008.12.037
10.1016/j.jssc.2012.09.001
10.1016/S1452-3981(23)14073-9
10.3762/bjnano.9.227
10.4172/2161-0525.1000154
10.3762/bjnano.1.15
10.4028/www.scientific.net/SSP.124-126.555
10.2174/1566524013666131111130058
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/c9ce01556f
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 1358
ExternalDocumentID 10_1039_C9CE01556F
c9ce01556f
GroupedDBID -JG
0-7
0R~
29F
5GY
6J9
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
E3Z
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
CITATION
R56
7U5
8FD
L7M
ID FETCH-LOGICAL-c318t-6db2f7c1a25b41916bccaca07b16305787fbbefd0dc859ebaf3884a07e4984f53
ISSN 1466-8033
IngestDate Mon Jun 30 07:13:27 EDT 2025
Tue Jul 01 02:21:10 EDT 2025
Thu Apr 24 23:10:19 EDT 2025
Tue Dec 17 20:58:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-6db2f7c1a25b41916bccaca07b16305787fbbefd0dc859ebaf3884a07e4984f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5959-0442
PQID 2361951280
PQPubID 2047491
PageCount 13
ParticipantIDs proquest_journals_2361951280
crossref_citationtrail_10_1039_C9CE01556F
crossref_primary_10_1039_C9CE01556F
rsc_primary_c9ce01556f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-28
PublicationDateYYYYMMDD 2020-02-28
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-28
  day: 28
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Singh (C9CE01556F-(cit32)/*[position()=1]) 2012; 2
Kim (C9CE01556F-(cit21)/*[position()=1]) 2016; 171
Wang (C9CE01556F-(cit31)/*[position()=1]) 2016; 116
Chang (C9CE01556F-(cit34)/*[position()=1]) 2013; 13
Xu (C9CE01556F-(cit35)/*[position()=1]) 2011; 4
Rasmussen (C9CE01556F-(cit7)/*[position()=1]) 2010; 7
Liu (C9CE01556F-(cit36)/*[position()=1]) 2013; 8
Krasovska (C9CE01556F-(cit28)/*[position()=1]) 2015; 52
Singh (C9CE01556F-(cit6)/*[position()=1]) 2013; 3
Wang (C9CE01556F-(cit4)/*[position()=1]) 2012; 2
Roza (C9CE01556F-(cit14)/*[position()=1]) 2015; 618
Das (C9CE01556F-(cit24)/*[position()=1]) 2013; 15
Wang (C9CE01556F-(cit5)/*[position()=1]) 2013; 422
Mansor (C9CE01556F-(cit11)/*[position()=1]) 2014; 3
Zhu (C9CE01556F-(cit20)/*[position()=1]) 2007; 111
Chae (C9CE01556F-(cit2)/*[position()=1]) 2010; 1
Wang (C9CE01556F-(cit16)/*[position()=1]) 2015; 141
Cho (C9CE01556F-(cit37)/*[position()=1]) 2009; 25
Perumal (C9CE01556F-(cit9)/*[position()=1]) 2015; 5
Krasovska (C9CE01556F-(cit26)/*[position()=1]) 2018; 9
Zhou (C9CE01556F-(cit29)/*[position()=1]) 2013; 23
Li (C9CE01556F-(cit30)/*[position()=1]) 2017; 12
Wahab (C9CE01556F-(cit22)/*[position()=1]) 2009; 255
Jang (C9CE01556F-(cit17)/*[position()=1]) 2007; 124–126
Fan (C9CE01556F-(cit1)/*[position()=1]) 2005; 5
Mohammed (C9CE01556F-(cit12)/*[position()=1]) 2017; 15
Zhang (C9CE01556F-(cit8)/*[position()=1]) 2013; 13
Tak (C9CE01556F-(cit10)/*[position()=1]) 2014; 59
Krasovska (C9CE01556F-(cit27)/*[position()=1]) 2017; 54
Urgessa (C9CE01556F-(cit18)/*[position()=1]) 2013; 108
Wang (C9CE01556F-(cit33)/*[position()=1]) 2008; 112
Xu (C9CE01556F-(cit3)/*[position()=1]) 2011; 4
Xu (C9CE01556F-(cit23)/*[position()=1]) 2008; 23
Xi (C9CE01556F-(cit15)/*[position()=1]) 2009; 19
Zhu (C9CE01556F-(cit25)/*[position()=1]) 2013; 197
Amin (C9CE01556F-(cit19)/*[position()=1]) 2011; 2011
References_xml – issn: 2012
  publication-title: Ph.D. Thesis
  doi: Amin
– volume: 5
  start-page: 12231
  year: 2015
  ident: C9CE01556F-(cit9)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep12231
– volume: 141
  start-page: 118
  year: 2015
  ident: C9CE01556F-(cit16)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.11.081
– volume: 54
  start-page: 41
  issue: 1
  year: 2017
  ident: C9CE01556F-(cit27)/*[position()=1]
  publication-title: Latv. J. Phys. Tech. Sci.
  doi: 10.1515/lpts-2017-0005
– volume: 59
  start-page: 200
  year: 2014
  ident: C9CE01556F-(cit10)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.03.036
– volume: 4
  start-page: 818
  year: 2011
  ident: C9CE01556F-(cit35)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00448k
– volume: 111
  start-page: 18629
  issue: 50
  year: 2007
  ident: C9CE01556F-(cit20)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp077573j
– volume: 422
  start-page: 199
  year: 2013
  ident: C9CE01556F-(cit5)/*[position()=1]
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2013.01.031
– volume: 4
  start-page: 1013
  issue: 11
  year: 2011
  ident: C9CE01556F-(cit3)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-011-0160-7
– volume: 3
  start-page: 2013
  issue: 20
  year: 2013
  ident: C9CE01556F-(cit6)/*[position()=1]
  publication-title: Nanomater. Nanotechnol.
  doi: 10.5772/57237
– volume: 116
  start-page: 10983
  year: 2016
  ident: C9CE01556F-(cit31)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00731
– volume: 15
  start-page: 46
  year: 2017
  ident: C9CE01556F-(cit12)/*[position()=1]
  publication-title: Sensing and Bio-Sensing Research
  doi: 10.1016/j.sbsr.2017.07.003
– volume: 112
  start-page: 11738
  issue: 31
  year: 2008
  ident: C9CE01556F-(cit33)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp803059k
– volume: 3
  start-page: 9
  year: 2014
  ident: C9CE01556F-(cit11)/*[position()=1]
  publication-title: Open J. Appl. Biosens.
  doi: 10.4236/ojab.2014.32002
– volume: 5
  start-page: 1
  year: 2005
  ident: C9CE01556F-(cit1)/*[position()=1]
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2005.182
– volume: 19
  start-page: 9260
  year: 2009
  ident: C9CE01556F-(cit15)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/B917525C
– volume: 171
  start-page: 252
  year: 2016
  ident: C9CE01556F-(cit21)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2016.01.015
– volume: 52
  start-page: 28
  issue: 5
  year: 2015
  ident: C9CE01556F-(cit28)/*[position()=1]
  publication-title: Latv. J. Phys. Tech. Sci.
  doi: 10.1515/lpts-2015-0026
– volume: 13
  start-page: 8445
  issue: 7
  year: 2013
  ident: C9CE01556F-(cit34)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s130708445
– volume: 2
  start-page: 106
  issue: 1
  year: 2012
  ident: C9CE01556F-(cit32)/*[position()=1]
  publication-title: J. Microbiol., Biotechnol. Food Sci.
– volume: 23
  start-page: 273
  issue: 3
  year: 2013
  ident: C9CE01556F-(cit29)/*[position()=1]
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2013.05.005
– volume: 23
  start-page: 2072
  issue: 8
  year: 2008
  ident: C9CE01556F-(cit23)/*[position()=1]
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2008.0274
– volume: 15
  start-page: 6349
  year: 2013
  ident: C9CE01556F-(cit24)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C3CE40822A
– volume: 2011
  start-page: 1
  issue: 269692
  year: 2011
  ident: C9CE01556F-(cit19)/*[position()=1]
  publication-title: J. Nanomater.
  doi: 10.1155/2011/269692
– volume: 108
  start-page: 280
  year: 2013
  ident: C9CE01556F-(cit18)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.07.025
– volume: 25
  start-page: 3825
  issue: 6
  year: 2009
  ident: C9CE01556F-(cit37)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la804009g
– volume: 7
  start-page: 1063
  issue: 9
  year: 2010
  ident: C9CE01556F-(cit7)/*[position()=1]
  publication-title: Expert Opin. Drug Delivery
  doi: 10.1517/17425247.2010.502560
– volume: 12
  start-page: 1
  issue: 10
  year: 2017
  ident: C9CE01556F-(cit30)/*[position()=1]
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1803-0
– volume: 618
  start-page: 153
  year: 2015
  ident: C9CE01556F-(cit14)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.08.113
– volume: 255
  start-page: 4891
  year: 2009
  ident: C9CE01556F-(cit22)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.12.037
– volume: 197
  start-page: 69
  year: 2013
  ident: C9CE01556F-(cit25)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2012.09.001
– volume: 8
  start-page: 983
  year: 2013
  ident: C9CE01556F-(cit36)/*[position()=1]
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)14073-9
– volume: 9
  start-page: 2421
  year: 2018
  ident: C9CE01556F-(cit26)/*[position()=1]
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.9.227
– volume: 2
  start-page: 1000154
  issue: 7
  year: 2012
  ident: C9CE01556F-(cit4)/*[position()=1]
  publication-title: J. Environ. Anal. Toxicol.
  doi: 10.4172/2161-0525.1000154
– volume: 1
  start-page: 128
  year: 2010
  ident: C9CE01556F-(cit2)/*[position()=1]
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.1.15
– volume: 124–126
  start-page: 555
  year: 2007
  ident: C9CE01556F-(cit17)/*[position()=1]
  publication-title: Solid State Phenom.
  doi: 10.4028/www.scientific.net/SSP.124-126.555
– volume: 13
  start-page: 1633
  issue: 10
  year: 2013
  ident: C9CE01556F-(cit8)/*[position()=1]
  publication-title: Curr. Mol. Med.
  doi: 10.2174/1566524013666131111130058
SSID ssj0014110
Score 2.62029
Snippet Amongst the most popular methods for the production of metal oxide nanostructures is hydrothermal synthesis. For producing ZnO nanostructures, a nitrate-based...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1346
SubjectTerms Capping
Chemical reactions
Crystallography
Energy conservation
Equilibrium conditions
Hexamethylenetetramine
Metal oxides
Morphology
Nanostructure
Optimization
Organic chemistry
Parameters
Production methods
Reagents
Zinc oxide
Title Hydrothermal synthesis of ZnO nanostructures with controllable morphology change
URI https://www.proquest.com/docview/2361951280
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYcZ2mHoq-gbtKCQLsUhVJZFCVqDAwHbtHX4ABBF4HPAokjBZITwB3623sUqYcbD2kXQaZEAuZ9Ot6Rd98h9BYWsTBVhgTMMB3EoP4CEWkSpEJyWO-FUM3WwJevyeIs_nROz0ej38PskrU4lr925pX8j1ShDeRqs2T_QbLdoNAA9yBfuIKE4XovGS82qmoyqK5s1semgFvPL_Kj-Pa-4EXp6GFvwKfugsxtZPqqSZi6KmGSHQeTbJMMetqCalOv58VPm0HSBemADCrLPuFKqF_YcK4Vv-3Pgypel7f1JfdZQL40t9-DVRoeOUoD0L6X9e5RmwjLi63dCHA9--xup0DjxBIcO3KLY72jzWvdKBqgiw1U6JT4PUntfzpq9zuqPiSWKXWWzebW7EtO-wWtPcT_a53rog-bc3eS5X3fPbQfgZsRjdH-yXz58XN3DhVPHZ9F-w9agluSfeh7b5s0vZ-yV7VFZBpjZfkYPfJeBj5xkHmCRrp4ih4OuCefoe9D8OAOPLg0GMCDt8GDLXjwEDy4Bw924HmOzk7ny9ki8OU1AgmKfB3YSmImlVMeURGD254I-JolD1MBNnpoNbkRQhsVKslopgU3hLEYnus4Y7Gh5ACNi7LQLxDm1GRGUKpDsGdDRZnihFCT6kwnkYrZBL1rZyiXnnvelkBZ5XdlMUFvunevHePKzreO2onO_RdZ55ZICDyGiIUTdACT3_WXmdRNP_PyXqMfogc9uI_QGKZbvwLjcy1ee4T8AX_HiCE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrothermal+synthesis+of+ZnO+nanostructures+with+controllable+morphology+change&rft.jtitle=CrystEngComm&rft.au=Gerbreders%2C+Vjaceslavs&rft.au=Krasovska%2C+Marina&rft.au=Sledevskis%2C+Eriks&rft.au=Gerbreders%2C+Andrejs&rft.date=2020-02-28&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=22&rft.issue=8&rft.spage=1346&rft.epage=1358&rft_id=info:doi/10.1039%2FC9CE01556F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9CE01556F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon