Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels
Aluminum sandwich panels with honeycomb core have been widely used as energy absorption structure in lightweight design. This study aimed to characterize the indentation and perforation behaviors of sandwich structures with different geometric configurations. The specimens with four characteristic g...
Saved in:
Published in | Composite structures Vol. 184; pp. 110 - 124 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aluminum sandwich panels with honeycomb core have been widely used as energy absorption structure in lightweight design. This study aimed to characterize the indentation and perforation behaviors of sandwich structures with different geometric configurations. The specimens with four characteristic geometric variables, namely, facesheet thickness, core height, honeycomb core thickness and side length of hexagon cell were tested experimentally. Photographs of cross-sectional view near the loading area and failure modes in the tests were investigated in detail. For the first time, digital image correlation (DIC) technique through an ARAMIS™ real-time optical strain measurement system was adopted for capturing the deformation process of lower skin by acquiring the displacement-time data. Three typical damage modes were identified from the force-displacement curves with different geometric parameters and configurations. It was found that the thickness of facesheet has the most significant effects on both force-displacement curves and energy absorption capacity. Changes in the core parameters have relatively small influences in total energy absorption but sizeable effects on the force-displacement curve and failure modes. A finite element model for predicting damage evolution was also developed and validated through the force-displacement relation and deformation process on the bottom skin. The damage mechanisms of the sandwich panel subject to quasi-static indentation and perforation were analyzed through the numerical models. The present study contributed on understanding how the geometric parameters affect the characteristics of indentation and perforation, thereby providing useful guidelines for its potential applications in impact engineering. |
---|---|
AbstractList | Aluminum sandwich panels with honeycomb core have been widely used as energy absorption structure in lightweight design. This study aimed to characterize the indentation and perforation behaviors of sandwich structures with different geometric configurations. The specimens with four characteristic geometric variables, namely, facesheet thickness, core height, honeycomb core thickness and side length of hexagon cell were tested experimentally. Photographs of cross-sectional view near the loading area and failure modes in the tests were investigated in detail. For the first time, digital image correlation (DIC) technique through an ARAMIS™ real-time optical strain measurement system was adopted for capturing the deformation process of lower skin by acquiring the displacement-time data. Three typical damage modes were identified from the force-displacement curves with different geometric parameters and configurations. It was found that the thickness of facesheet has the most significant effects on both force-displacement curves and energy absorption capacity. Changes in the core parameters have relatively small influences in total energy absorption but sizeable effects on the force-displacement curve and failure modes. A finite element model for predicting damage evolution was also developed and validated through the force-displacement relation and deformation process on the bottom skin. The damage mechanisms of the sandwich panel subject to quasi-static indentation and perforation were analyzed through the numerical models. The present study contributed on understanding how the geometric parameters affect the characteristics of indentation and perforation, thereby providing useful guidelines for its potential applications in impact engineering. |
Author | Chen, Dongdong Huo, Xintao Li, Qing Sun, Guangyong Zheng, Gang |
Author_xml | – sequence: 1 givenname: Guangyong surname: Sun fullname: Sun, Guangyong email: sgy800@126.com organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China – sequence: 2 givenname: Dongdong surname: Chen fullname: Chen, Dongdong organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China – sequence: 3 givenname: Xintao surname: Huo fullname: Huo, Xintao organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China – sequence: 4 givenname: Gang surname: Zheng fullname: Zheng, Gang organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China – sequence: 5 givenname: Qing surname: Li fullname: Li, Qing organization: School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia |
BookMark | eNqNkN1KAzEQhYNUsK2-Q15g18lus83eCCr1Bwre6HVIJwlN2WaXJFX79qasIHijV8kM3znMOTMy8b03hFAGJQPWXO9K7PdDTOGAqayALUtoS6j4GZkysWwLBoJPyBSqpi5EVdUXZBbjDgDEgrEp8avPwQS3Nz6pjiqvqT_s8wLzFNNBOxNp76nz-kQkl_8nKGtsH8YZtyooTFkUk8OMW7rNNx7zXRsaM_3hcEsH5U0XL8m5VV00V9_vnLw9rF7vn4r1y-Pz_e26wJqJVDQN17zlKNBwsQQOm5rlVW1btkANmlltONcN2lovbE4Ira4aJVC0XAHYek7E6IuhjzEYK4ccUoWjZCBPvcmd_OlNnnqT0MrcW5be_JKiG5OnoFz3H4O70SDnNe_OBBnRGY9Gu2Ayq3v3t8kXuS6XSQ |
CitedBy_id | crossref_primary_10_1016_j_compstruct_2024_118260 crossref_primary_10_1080_15376494_2019_1567883 crossref_primary_10_1080_15376494_2021_1941448 crossref_primary_10_1007_s40430_024_04865_3 crossref_primary_10_1016_j_engstruct_2021_113204 crossref_primary_10_1177_10996362251330154 crossref_primary_10_1016_j_engstruct_2024_119319 crossref_primary_10_1016_j_jmapro_2024_04_088 crossref_primary_10_1002_pc_28981 crossref_primary_10_1016_j_synthmet_2021_116731 crossref_primary_10_1016_j_tws_2024_111597 crossref_primary_10_1002_pc_25593 crossref_primary_10_1016_j_matpr_2023_03_106 crossref_primary_10_1007_s42417_024_01667_8 crossref_primary_10_1016_j_tws_2024_111874 crossref_primary_10_1016_j_tws_2024_111592 crossref_primary_10_1177_0731684420915996 crossref_primary_10_1016_j_engfailanal_2024_108290 crossref_primary_10_1016_j_ijmecsci_2024_109000 crossref_primary_10_1016_j_compstruct_2018_06_018 crossref_primary_10_1016_j_compositesb_2018_12_054 crossref_primary_10_1016_j_tws_2022_109559 crossref_primary_10_1016_j_ijmecsci_2019_105380 crossref_primary_10_1515_rams_2021_0020 crossref_primary_10_1016_j_compstruct_2019_04_007 crossref_primary_10_1007_s40430_023_04185_y crossref_primary_10_1016_j_engstruct_2024_119607 crossref_primary_10_1016_j_compstruct_2024_118436 crossref_primary_10_1002_mdp2_55 crossref_primary_10_1016_j_tws_2019_106399 crossref_primary_10_1080_15376494_2024_2433092 crossref_primary_10_1007_s42235_023_00358_6 crossref_primary_10_1002_pc_26396 crossref_primary_10_1016_j_ijmecsci_2021_106406 crossref_primary_10_1016_j_tws_2019_04_029 crossref_primary_10_1080_15376494_2021_1885770 crossref_primary_10_1016_j_ijmecsci_2023_108149 crossref_primary_10_1177_1099636221993871 crossref_primary_10_1016_j_compstruct_2022_116092 crossref_primary_10_1016_j_msea_2024_146484 crossref_primary_10_1007_s10338_023_00396_x crossref_primary_10_1108_RPJ_03_2023_0082 crossref_primary_10_1007_s00707_018_2182_7 crossref_primary_10_1007_s10853_018_3163_x crossref_primary_10_1002_pc_26989 crossref_primary_10_1007_s11837_019_03968_w crossref_primary_10_1016_j_compscitech_2025_111106 crossref_primary_10_1016_j_tws_2020_107188 crossref_primary_10_1088_1757_899X_1294_1_012046 crossref_primary_10_1016_j_tws_2020_107223 crossref_primary_10_1021_acs_langmuir_4c04933 crossref_primary_10_1016_j_compstruct_2022_115369 crossref_primary_10_1016_j_tws_2019_01_022 crossref_primary_10_1016_j_tws_2019_106288 crossref_primary_10_1007_s11029_023_10080_3 crossref_primary_10_1016_j_compositesb_2019_107496 crossref_primary_10_1007_s00107_021_01677_3 crossref_primary_10_1016_j_tws_2023_111256 crossref_primary_10_1016_j_compstruct_2022_116102 crossref_primary_10_1016_j_conbuildmat_2020_121996 crossref_primary_10_1016_j_compstruct_2020_113396 crossref_primary_10_1016_j_mechmat_2024_105084 crossref_primary_10_1016_j_tws_2020_106929 crossref_primary_10_1016_j_ijmecsci_2023_108795 crossref_primary_10_1080_23248378_2024_2331783 crossref_primary_10_3390_ma16155482 crossref_primary_10_1016_j_matdes_2021_110234 crossref_primary_10_1016_j_compstruct_2024_118173 crossref_primary_10_1016_j_compositesb_2018_12_071 crossref_primary_10_1016_j_ijsolstr_2022_111922 crossref_primary_10_1016_j_tws_2020_107079 crossref_primary_10_1080_13588265_2018_1480471 crossref_primary_10_1016_j_compstruct_2020_113431 crossref_primary_10_1016_j_dt_2024_06_015 crossref_primary_10_1016_j_matpr_2019_12_101 crossref_primary_10_1016_j_eml_2020_100775 crossref_primary_10_1017_aer_2023_81 crossref_primary_10_1016_j_tws_2018_09_044 crossref_primary_10_1016_j_tws_2024_112499 crossref_primary_10_1515_mt_2023_0024 crossref_primary_10_1016_j_compstruct_2019_111223 crossref_primary_10_1016_j_compstruct_2021_114152 crossref_primary_10_1016_j_compositesb_2020_107976 crossref_primary_10_1007_s10443_023_10190_0 crossref_primary_10_1515_cls_2022_0211 crossref_primary_10_3390_polym16060729 crossref_primary_10_1177_1099636218791162 crossref_primary_10_1080_15376494_2019_1605009 crossref_primary_10_1177_1548512921995923 crossref_primary_10_3390_polym14194047 crossref_primary_10_1016_j_tws_2020_106995 crossref_primary_10_1177_00219983241240472 crossref_primary_10_1016_j_tws_2020_107326 crossref_primary_10_1177_1099636218759827 crossref_primary_10_1177_1099636218800360 crossref_primary_10_1177_14644207221130361 crossref_primary_10_1186_s40069_024_00662_3 crossref_primary_10_1016_j_mtcomm_2023_106750 crossref_primary_10_1007_s12205_024_0934_6 crossref_primary_10_3390_met11101544 crossref_primary_10_1016_j_ast_2020_106270 crossref_primary_10_1002_pc_25706 crossref_primary_10_1016_j_ijimpeng_2021_104137 crossref_primary_10_1016_j_tws_2021_108800 crossref_primary_10_1088_1742_6596_2808_1_012074 crossref_primary_10_1016_j_tws_2021_108760 crossref_primary_10_1016_j_compstruct_2023_117517 crossref_primary_10_1088_2631_6331_ac8d7a crossref_primary_10_1016_j_compstruct_2022_115514 crossref_primary_10_1080_23789689_2018_1469359 crossref_primary_10_1016_j_compstruct_2018_10_051 crossref_primary_10_1016_j_addma_2022_103051 crossref_primary_10_1016_j_tws_2024_111702 crossref_primary_10_3390_met13101745 crossref_primary_10_1016_j_ijimpeng_2018_08_007 crossref_primary_10_1016_j_compositesb_2018_12_139 crossref_primary_10_1016_j_ijmecsci_2023_108102 crossref_primary_10_3390_jcs7030102 crossref_primary_10_1177_09544062251315017 crossref_primary_10_1016_j_compositesb_2021_108881 crossref_primary_10_1016_j_engstruct_2023_117232 crossref_primary_10_1016_j_compstruct_2020_112893 crossref_primary_10_1016_j_mtcomm_2023_106259 crossref_primary_10_1177_1099636220905996 crossref_primary_10_1016_j_ijmecsci_2020_105681 crossref_primary_10_1016_j_msea_2024_147464 crossref_primary_10_1177_0021998318810899 crossref_primary_10_1007_s40799_022_00589_y crossref_primary_10_1016_j_ijimpeng_2023_104548 crossref_primary_10_1016_j_tws_2020_106866 crossref_primary_10_1016_j_matdes_2023_111600 crossref_primary_10_1002_pc_26934 crossref_primary_10_3390_ma14164731 crossref_primary_10_1007_s00158_024_03743_9 crossref_primary_10_1016_j_tws_2019_106494 crossref_primary_10_1177_00219983221124204 crossref_primary_10_3390_su15043437 crossref_primary_10_1080_0305215X_2018_1486401 crossref_primary_10_3390_ma17164024 crossref_primary_10_1007_s00707_018_2342_9 crossref_primary_10_1007_s40430_019_1646_6 crossref_primary_10_1016_j_ijimpeng_2019_103327 crossref_primary_10_1016_j_compstruct_2020_113081 |
Cites_doi | 10.1016/0025-5416(87)90496-4 10.1016/j.compscitech.2007.12.007 10.1016/j.compstruct.2016.09.071 10.4271/982279 10.1016/j.ijimpeng.2008.03.002 10.1016/j.compositesb.2016.08.038 10.1177/1099636206056888 10.1016/j.ijmecsci.2017.02.027 10.1016/j.compstruct.2014.06.005 10.1016/j.ijimpeng.2011.12.002 10.1007/s10443-005-1125-3 10.1016/j.commatsci.2008.09.017 10.1177/1099636215603047 10.1016/j.compstruct.2013.10.034 10.1016/j.compstruct.2012.11.031 10.1016/j.compstruct.2006.08.030 10.1016/j.compstruct.2009.11.014 10.1016/j.compstruct.2015.02.039 10.1016/j.ijimpeng.2016.01.012 10.1177/1099636207067134 10.1007/s00158-016-1592-1 10.1016/j.ijsolstr.2005.06.003 10.1016/j.compstruct.2016.06.059 10.1016/j.matdes.2013.04.086 10.1016/j.compstruct.2016.09.054 10.1016/j.ijimpeng.2014.07.019 10.1016/j.finel.2016.04.003 10.1016/S0263-8231(99)00026-9 10.1016/j.compstruct.2013.06.010 10.1016/j.compstruct.2007.10.016 10.1007/s00158-016-1579-y 10.1007/s10853-006-0373-4 10.1016/j.marstruc.2012.11.002 10.1016/j.ijimpeng.2004.09.001 10.4271/2015-36-0219 10.1016/j.ijimpeng.2016.05.013 10.1016/j.ijimpeng.2015.09.003 10.1016/j.ijimpeng.2013.10.004 10.1016/j.compstruct.2012.10.037 10.1016/S0734-743X(97)00004-3 10.1177/0021998310371541 10.1016/j.matdes.2017.07.057 10.1016/j.compositesb.2014.07.015 10.1016/j.compstruct.2014.11.034 10.1016/j.compositesa.2015.09.017 10.1177/1099636212445057 10.1016/j.ijimpeng.2008.12.004 10.1016/j.compstruct.2016.09.009 10.1016/S0266-3538(00)00023-3 10.1016/j.ijimpeng.2007.11.003 10.1016/j.compstruct.2013.02.010 10.1016/j.compstruct.2015.07.058 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compstruct.2017.09.025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1085 |
EndPage | 124 |
ExternalDocumentID | 10_1016_j_compstruct_2017_09_025 S0263822317317348 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS SSH WUQ |
ID | FETCH-LOGICAL-c318t-665d595c8ce587050b3165d3f914cd0d1fde55d6cf3d4f08509d26a8c895a00f3 |
IEDL.DBID | .~1 |
ISSN | 0263-8223 |
IngestDate | Tue Jul 01 03:52:28 EDT 2025 Thu Apr 24 23:11:32 EDT 2025 Fri Feb 23 02:28:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Honeycomb core Sandwich panel Digital image correlation (DIC) Indentation tests Failure modes Crashworthiness Finite element |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-665d595c8ce587050b3165d3f914cd0d1fde55d6cf3d4f08509d26a8c895a00f3 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_compstruct_2017_09_025 crossref_citationtrail_10_1016_j_compstruct_2017_09_025 elsevier_sciencedirect_doi_10_1016_j_compstruct_2017_09_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-15 |
PublicationDateYYYYMMDD | 2018-01-15 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Composite structures |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Heimbs (b0110) 2009; 45 Zhang, Qin, Xiang, Wang (b0065) 2016; 153 Crupi, Epasto, Guglielmino (b0245) 2012; 43 Hou, Shu, Zhao, Liu, Han, Li (b0130) 2015; 126 Zhu, Chai (b0085) 2013; 101 Wang (b0020) 2009; 36 Zhou, Guan, Cantwell (b0150) 2013; 97 Hou, Zhao, Ren, Han, Li (b0115) 2013; 51 Aminanda, Castanié, Barrau, Thevenet (b0235) 2005; 12 Paik, Thayamballi, Kim (b0190) 1999; 35 Triantafillou (b0045) 1987 Zhu, Zhao, Lu, Gad (b0220) 2009; 36 Manes, Gilioli, Sbarufatti, Giglio (b0265) 2013; 99 Sun, Pang, Fang, Li, Li (b0290) 2017; 124–125 Hou, Ren, Dong, Han (b0075) 2012; 14 Yang, Wang, Zhou, Zhang, Tong, Liang (b0025) 2015; 132 Kaman, Solmaz, Turan (b0035) 2010; 44 Elnasri, Zhao (b0060) 2016; 96 Wen, Reddy, Reid, Soden (b0180) 1998; 141–143 Sun, Zhang, Fang, Li, Li (b0295) 2017; 55 Liu, Zhu, Li, Zhou, Wu, Ma (b0155) 2014; 116 Fang, Sun, Qiu, Kim, Li (b0300) 2017; 55 Gunes, Arslan (b0205) 2015; 18 Crupi, Epasto, Guglielmino (b0230) 2013; 30 Zhou, Hill, Hookham (b0250) 2007; 9 Ávila (b0140) 2007; 81 Li, Zhang, Wang, Wu, Zhao (b0010) 2014; 108 Lu, Yu (b0015) 2003 Menna, Zinno, Asprone, Prota (b0090) 2013; 106 Zhang, Jiang, Fei, Wu (b0195) 2016; 117–118 Ruan, Lu, Wong (b0005) 2010; 92 Gibson, Ashby (b0040) 1999 Gunes, Arslan, Apalak, Reddy (b0280) 2014 Zhang, Cheng, Liu, Li, Zhang, Hou (b0120) 2016; 105 Triantafillou, Gibson (b0050) 1987; 95 Seemann, Krause (b0100) 2017; 159 Liu, Xiang, Kan (b0160) 2015; 79 Mohan, Yip, Sridhar, Seow (b0055) 2007; 42 Foo, Seah, Chai (b0200) 2008; 85 Haber D. Lightweight materials for automotive applications: a review, SAE Technical Paper, 2015. Gobessi M, Arnold W. The application of bonded aluminum sandwich construction technology to achieve a lightweight, low cost automotive structure, SAE Technical Paper, 1998. Yahaya, Ruan, Lu, Dargusch (b0070) 2015; 75 Seah, Chai, Foo (b0185) 2006; 220 Zhu, Zhao, Lu, Wang (b0215) 2008; 35 Wu, Jiang (b0240) 1997; 19 Boonkong, Shen, Guan, Cantwell (b0125) 2016; 93 Zhou (b0255) 2006; 8 Liu, Wang, Guan (b0105) 2015; 121 He, Liu, Tao, Xie, Liu, Zhang (b0030) 2016; 158 Chai, Zhu (b0270) 2011; 225 Niewenhuis, Wells (b0165) 2003 Yamashita, Gotoh (b0225) 2005; 32 Apetre, Sankar, Ambur (b0145) 2006; 43 Sun, Huo, Chen, Li (b0080) 2017; 133 Gilioli, Sbarufatti, Manes, Giglio (b0095) 2014; 67 Foo, Chai, Seah (b0210) 2008; 68 Sun, Xu, Li, Li (b0275) 2014; 64 A. Version, 6.13, Analysis User’s Manual, Dassault Systemes Simulia Corp., Providence, RI, 2013. Wu, Zheng, Sun, Liu, Sun, Li (b0305) 2016; 88 Baba (b0135) 2017; 159 Lee, Tsotsis (b0260) 2000; 60 Zhu (10.1016/j.compstruct.2017.09.025_b0085) 2013; 101 Zhang (10.1016/j.compstruct.2017.09.025_b0120) 2016; 105 Hou (10.1016/j.compstruct.2017.09.025_b0115) 2013; 51 Zhang (10.1016/j.compstruct.2017.09.025_b0195) 2016; 117–118 Heimbs (10.1016/j.compstruct.2017.09.025_b0110) 2009; 45 10.1016/j.compstruct.2017.09.025_b0170 Zhou (10.1016/j.compstruct.2017.09.025_b0150) 2013; 97 Foo (10.1016/j.compstruct.2017.09.025_b0200) 2008; 85 Baba (10.1016/j.compstruct.2017.09.025_b0135) 2017; 159 10.1016/j.compstruct.2017.09.025_b0175 Yahaya (10.1016/j.compstruct.2017.09.025_b0070) 2015; 75 Sun (10.1016/j.compstruct.2017.09.025_b0295) 2017; 55 Liu (10.1016/j.compstruct.2017.09.025_b0155) 2014; 116 Aminanda (10.1016/j.compstruct.2017.09.025_b0235) 2005; 12 Triantafillou (10.1016/j.compstruct.2017.09.025_b0045) 1987 Foo (10.1016/j.compstruct.2017.09.025_b0210) 2008; 68 Mohan (10.1016/j.compstruct.2017.09.025_b0055) 2007; 42 Crupi (10.1016/j.compstruct.2017.09.025_b0245) 2012; 43 Zhou (10.1016/j.compstruct.2017.09.025_b0255) 2006; 8 Gilioli (10.1016/j.compstruct.2017.09.025_b0095) 2014; 67 Gunes (10.1016/j.compstruct.2017.09.025_b0280) 2014 Kaman (10.1016/j.compstruct.2017.09.025_b0035) 2010; 44 Hou (10.1016/j.compstruct.2017.09.025_b0130) 2015; 126 Wen (10.1016/j.compstruct.2017.09.025_b0180) 1998; 141–143 10.1016/j.compstruct.2017.09.025_b0285 Chai (10.1016/j.compstruct.2017.09.025_b0270) 2011; 225 Lee (10.1016/j.compstruct.2017.09.025_b0260) 2000; 60 Yamashita (10.1016/j.compstruct.2017.09.025_b0225) 2005; 32 Lu (10.1016/j.compstruct.2017.09.025_b0015) 2003 Ávila (10.1016/j.compstruct.2017.09.025_b0140) 2007; 81 Sun (10.1016/j.compstruct.2017.09.025_b0290) 2017; 124–125 Zhu (10.1016/j.compstruct.2017.09.025_b0220) 2009; 36 Liu (10.1016/j.compstruct.2017.09.025_b0160) 2015; 79 Seemann (10.1016/j.compstruct.2017.09.025_b0100) 2017; 159 Triantafillou (10.1016/j.compstruct.2017.09.025_b0050) 1987; 95 Hou (10.1016/j.compstruct.2017.09.025_b0075) 2012; 14 Ruan (10.1016/j.compstruct.2017.09.025_b0005) 2010; 92 Zhang (10.1016/j.compstruct.2017.09.025_b0065) 2016; 153 Elnasri (10.1016/j.compstruct.2017.09.025_b0060) 2016; 96 Menna (10.1016/j.compstruct.2017.09.025_b0090) 2013; 106 Gunes (10.1016/j.compstruct.2017.09.025_b0205) 2015; 18 Li (10.1016/j.compstruct.2017.09.025_b0010) 2014; 108 Zhu (10.1016/j.compstruct.2017.09.025_b0215) 2008; 35 He (10.1016/j.compstruct.2017.09.025_b0030) 2016; 158 Sun (10.1016/j.compstruct.2017.09.025_b0275) 2014; 64 Apetre (10.1016/j.compstruct.2017.09.025_b0145) 2006; 43 Boonkong (10.1016/j.compstruct.2017.09.025_b0125) 2016; 93 Sun (10.1016/j.compstruct.2017.09.025_b0080) 2017; 133 Manes (10.1016/j.compstruct.2017.09.025_b0265) 2013; 99 Wu (10.1016/j.compstruct.2017.09.025_b0305) 2016; 88 Fang (10.1016/j.compstruct.2017.09.025_b0300) 2017; 55 Paik (10.1016/j.compstruct.2017.09.025_b0190) 1999; 35 Gibson (10.1016/j.compstruct.2017.09.025_b0040) 1999 Crupi (10.1016/j.compstruct.2017.09.025_b0230) 2013; 30 Niewenhuis (10.1016/j.compstruct.2017.09.025_b0165) 2003 Wang (10.1016/j.compstruct.2017.09.025_b0020) 2009; 36 Liu (10.1016/j.compstruct.2017.09.025_b0105) 2015; 121 Yang (10.1016/j.compstruct.2017.09.025_b0025) 2015; 132 Wu (10.1016/j.compstruct.2017.09.025_b0240) 1997; 19 Zhou (10.1016/j.compstruct.2017.09.025_b0250) 2007; 9 Seah (10.1016/j.compstruct.2017.09.025_b0185) 2006; 220 |
References_xml | – volume: 36 start-page: 110 year: 2009 end-page: 114 ident: b0020 article-title: Impact behavior and energy absorption of paper honeycomb sandwich panels publication-title: Int J Impact Eng – volume: 117–118 start-page: 21 year: 2016 end-page: 30 ident: b0195 article-title: Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact publication-title: Finite Elem Anal Des – volume: 18 start-page: 95 year: 2015 end-page: 112 ident: b0205 article-title: Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures publication-title: J Sandwich Struct Mater – volume: 45 start-page: 205 year: 2009 end-page: 216 ident: b0110 article-title: Virtual testing of sandwich core structures using dynamic finite element simulations publication-title: Comput Mater Sci – volume: 81 start-page: 323 year: 2007 end-page: 330 ident: b0140 article-title: Failure mode investigation of sandwich beams with functionally graded core publication-title: Compos Struct – volume: 8 start-page: 55 year: 2006 end-page: 90 ident: b0255 article-title: Damage characteristics of composite honeycomb sandwich panels in bending under quasi-static loading publication-title: J Sandwich Struct Mater – year: 1987 ident: b0045 article-title: Failure mode maps and minimum weight design for structural sandwich beams with rigid foam cores – volume: 14 start-page: 655 year: 2012 end-page: 678 ident: b0075 article-title: Crashworthiness optimization design of honeycomb sandwich panel based on factor screening publication-title: J Sandwich Struct Mater – volume: 9 start-page: 309 year: 2007 end-page: 342 ident: b0250 article-title: Investigation of parameters governing the damage and energy absorption characteristics of honeycomb sandwich panels publication-title: J Sandwich Struct Mater – volume: 75 start-page: 100 year: 2015 end-page: 109 ident: b0070 article-title: Response of aluminium honeycomb sandwich panels subjected to foam projectile impact – An experimental study publication-title: Int J Impact Eng – volume: 19 start-page: 439 year: 1997 end-page: 456 ident: b0240 article-title: Axial crush of metallic honeycombs publication-title: Int J Impact Eng – volume: 79 start-page: 146 year: 2015 end-page: 154 ident: b0160 article-title: The effect of temperature on the bending properties and failure mechanism of composite truss core sandwich structures publication-title: Compos A Appl Sci Manuf – volume: 32 start-page: 618 year: 2005 end-page: 630 ident: b0225 article-title: Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment publication-title: Int J Impact Eng – volume: 99 start-page: 8 year: 2013 end-page: 18 ident: b0265 article-title: Experimental and numerical investigations of low velocity impact on sandwich panels publication-title: Compos Struct – reference: Haber D. Lightweight materials for automotive applications: a review, SAE Technical Paper, 2015. – volume: 35 start-page: 937 year: 2008 end-page: 951 ident: b0215 article-title: Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations publication-title: Int J Impact Eng – reference: A. Version, 6.13, Analysis User’s Manual, Dassault Systemes Simulia Corp., Providence, RI, 2013. – volume: 132 start-page: 1129 year: 2015 end-page: 1140 ident: b0025 article-title: Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet publication-title: Compos Struct – volume: 121 start-page: 304 year: 2015 end-page: 314 ident: b0105 article-title: Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading publication-title: Compos Struct – year: 2003 ident: b0015 article-title: Energy absorption of structures and materials – volume: 97 start-page: 370 year: 2013 end-page: 377 ident: b0150 article-title: The impact response of graded foam sandwich structures publication-title: Compos Struct – volume: 64 start-page: 62 year: 2014 end-page: 74 ident: b0275 article-title: Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness publication-title: Int J Impact Eng – volume: 126 start-page: 371 year: 2015 end-page: 385 ident: b0130 article-title: Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading publication-title: Compos Struct – volume: 44 start-page: 2819 year: 2010 end-page: 2831 ident: b0035 article-title: Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels publication-title: J Compos Mater – volume: 43 start-page: 2479 year: 2006 end-page: 2496 ident: b0145 article-title: Low-velocity impact response of sandwich beams with functionally graded core publication-title: Int J Solids Struct – volume: 159 start-page: 1 year: 2017 end-page: 11 ident: b0135 article-title: Curved sandwich composites with layer-wise graded cores under impact loads publication-title: Compos Struct – volume: 106 start-page: 326 year: 2013 end-page: 339 ident: b0090 article-title: Numerical assessment of the impact behavior of honeycomb sandwich structures publication-title: Compos Struct – volume: 67 start-page: 313 year: 2014 end-page: 325 ident: b0095 article-title: Compression after impact test (CAI) on NOMEX™ honeycomb sandwich panels with thin aluminum skins publication-title: Compos B Eng – volume: 116 start-page: 670 year: 2014 end-page: 681 ident: b0155 article-title: Experimental study on the low velocity impact responses of all-composite pyramidal truss core sandwich panel after high temperature exposure publication-title: Compos Struct – year: 1999 ident: b0040 article-title: Cellular solids: structure and properties – volume: 124–125 start-page: 145 year: 2017 end-page: 157 ident: b0290 article-title: Parameterization of criss-cross configurations for multiobjective crashworthiness optimization publication-title: Int J Mech Sci – volume: 96 start-page: 50 year: 2016 end-page: 60 ident: b0060 article-title: Impact perforation of sandwich panels with aluminum foam core: A numerical and analytical study publication-title: Int J Impact Eng – volume: 108 start-page: 1001 year: 2014 end-page: 1008 ident: b0010 article-title: Dynamic behavior of aluminum honeycomb sandwich panels under air blast: Experiment and numerical analysis publication-title: Compos Struct – volume: 159 start-page: 702 year: 2017 end-page: 718 ident: b0100 article-title: Numerical modelling of Nomex honeycomb sandwich cores at meso-scale level publication-title: Compos Struct – volume: 12 start-page: 213 year: 2005 end-page: 227 ident: b0235 article-title: Experimental Analysis and Modeling of the Crushing of Honeycomb Cores publication-title: Appl Compos Mater – volume: 42 start-page: 3714 year: 2007 end-page: 3723 ident: b0055 article-title: Effect of face sheet material on the indentation response of metallic foams publication-title: J Mater Sci – volume: 36 start-page: 687 year: 2009 end-page: 699 ident: b0220 article-title: A numerical simulation of the blast impact of square metallic sandwich panels publication-title: Int J Impact Eng – volume: 141–143 start-page: 501 year: 1998 end-page: 552 ident: b0180 article-title: Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading publication-title: Key Eng Mater – volume: 35 start-page: 205 year: 1999 end-page: 231 ident: b0190 article-title: The strength characteristics of aluminum honeycomb sandwich panels publication-title: Thin-walled Struct – volume: 55 start-page: 1091 year: 2017 end-page: 1119 ident: b0300 article-title: On design optimization for structural crashworthiness and its state of the art publication-title: Struct Multidisciplinary Optim – volume: 92 start-page: 2039 year: 2010 end-page: 2046 ident: b0005 article-title: Quasi-static indentation tests on aluminium foam sandwich panels publication-title: Compos Struct – volume: 133 start-page: 154 year: 2017 end-page: 168 ident: b0080 article-title: Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression publication-title: Mater Des – reference: Gobessi M, Arnold W. The application of bonded aluminum sandwich construction technology to achieve a lightweight, low cost automotive structure, SAE Technical Paper, 1998. – volume: 55 start-page: 1899 year: 2017 end-page: 1916 ident: b0295 article-title: Multi-objective and multi-case reliability-based design optimization for tailor rolled blank (TRB) structures publication-title: Struct Multidisciplinary Optim – volume: 153 start-page: 614 year: 2016 end-page: 623 ident: b0065 article-title: Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact publication-title: Compos Struct – volume: 101 start-page: 204 year: 2013 end-page: 214 ident: b0085 article-title: Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact publication-title: Compos Struct – volume: 220 start-page: 53 year: 2006 end-page: 66 ident: b0185 article-title: Quasi-static and low-velocity impact failure of aluminium honeycomb sandwich panels, proceedings of the institution of mechanical engineers publication-title: Part L: J Mater: Des Appl – volume: 158 start-page: 30 year: 2016 end-page: 43 ident: b0030 article-title: Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures publication-title: Compos Struct – volume: 30 start-page: 74 year: 2013 end-page: 96 ident: b0230 article-title: Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam publication-title: Marine Struct – volume: 85 start-page: 20 year: 2008 end-page: 28 ident: b0200 article-title: Low-velocity impact failure of aluminium honeycomb sandwich panels publication-title: Compos Struct – volume: 68 start-page: 1348 year: 2008 end-page: 1356 ident: b0210 article-title: A model to predict low-velocity impact response and damage in sandwich composites publication-title: Compos Sci Technol – volume: 95 start-page: 37 year: 1987 end-page: 53 ident: b0050 article-title: Failure mode maps for foam core sandwich beams publication-title: Mater Sci Eng – volume: 93 start-page: 28 year: 2016 end-page: 38 ident: b0125 article-title: The low velocity impact response of curvilinear-core sandwich structures publication-title: Int J Impact Eng – year: 2014 ident: b0280 article-title: Numerical investigations on the ballistic performance of honeycomb sandwich structures reinforced by functionally graded plates publication-title: 13th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials, Sao Paulo, Brazil – year: 2003 ident: b0165 article-title: The automotive industry and the environment – volume: 225 start-page: 207 year: 2011 end-page: 230 ident: b0270 article-title: A review of low-velocity impact on sandwich structures publication-title: Proc Inst Mech Eng, Part L: J Mater Des Appl – volume: 105 start-page: 67 year: 2016 end-page: 81 ident: b0120 article-title: Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading publication-title: Compos B Eng – volume: 51 start-page: 1071 year: 2013 end-page: 1084 ident: b0115 article-title: Crashworthiness optimization of corrugated sandwich panels publication-title: Mater Des – volume: 88 start-page: 102 year: 2016 end-page: 117 ident: b0305 article-title: On design of multi-cell thin-wall structures for crashworthiness publication-title: Int J Impact Eng – volume: 60 start-page: 1147 year: 2000 end-page: 1159 ident: b0260 article-title: Indentation failure behavior of honeycomb sandwich panels publication-title: Compos Sci Technol – volume: 43 start-page: 6 year: 2012 end-page: 15 ident: b0245 article-title: Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading publication-title: Int J Impact Eng – volume: 141–143 start-page: 501 year: 1998 ident: 10.1016/j.compstruct.2017.09.025_b0180 article-title: Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading publication-title: Key Eng Mater – year: 2003 ident: 10.1016/j.compstruct.2017.09.025_b0165 – volume: 95 start-page: 37 year: 1987 ident: 10.1016/j.compstruct.2017.09.025_b0050 article-title: Failure mode maps for foam core sandwich beams publication-title: Mater Sci Eng doi: 10.1016/0025-5416(87)90496-4 – volume: 68 start-page: 1348 issue: 6 year: 2008 ident: 10.1016/j.compstruct.2017.09.025_b0210 article-title: A model to predict low-velocity impact response and damage in sandwich composites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2007.12.007 – volume: 159 start-page: 702 year: 2017 ident: 10.1016/j.compstruct.2017.09.025_b0100 article-title: Numerical modelling of Nomex honeycomb sandwich cores at meso-scale level publication-title: Compos Struct doi: 10.1016/j.compstruct.2016.09.071 – ident: 10.1016/j.compstruct.2017.09.025_b0175 doi: 10.4271/982279 – volume: 36 start-page: 110 issue: 1 year: 2009 ident: 10.1016/j.compstruct.2017.09.025_b0020 article-title: Impact behavior and energy absorption of paper honeycomb sandwich panels publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2008.03.002 – volume: 105 start-page: 67 year: 2016 ident: 10.1016/j.compstruct.2017.09.025_b0120 article-title: Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading publication-title: Compos B Eng doi: 10.1016/j.compositesb.2016.08.038 – volume: 8 start-page: 55 issue: 1 year: 2006 ident: 10.1016/j.compstruct.2017.09.025_b0255 article-title: Damage characteristics of composite honeycomb sandwich panels in bending under quasi-static loading publication-title: J Sandwich Struct Mater doi: 10.1177/1099636206056888 – volume: 124–125 start-page: 145 year: 2017 ident: 10.1016/j.compstruct.2017.09.025_b0290 article-title: Parameterization of criss-cross configurations for multiobjective crashworthiness optimization publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2017.02.027 – volume: 116 start-page: 670 year: 2014 ident: 10.1016/j.compstruct.2017.09.025_b0155 article-title: Experimental study on the low velocity impact responses of all-composite pyramidal truss core sandwich panel after high temperature exposure publication-title: Compos Struct doi: 10.1016/j.compstruct.2014.06.005 – volume: 43 start-page: 6 year: 2012 ident: 10.1016/j.compstruct.2017.09.025_b0245 article-title: Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2011.12.002 – volume: 12 start-page: 213 issue: 3–4 year: 2005 ident: 10.1016/j.compstruct.2017.09.025_b0235 article-title: Experimental Analysis and Modeling of the Crushing of Honeycomb Cores publication-title: Appl Compos Mater doi: 10.1007/s10443-005-1125-3 – volume: 45 start-page: 205 issue: 2 year: 2009 ident: 10.1016/j.compstruct.2017.09.025_b0110 article-title: Virtual testing of sandwich core structures using dynamic finite element simulations publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2008.09.017 – volume: 18 start-page: 95 issue: 1 year: 2015 ident: 10.1016/j.compstruct.2017.09.025_b0205 article-title: Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures publication-title: J Sandwich Struct Mater doi: 10.1177/1099636215603047 – year: 2014 ident: 10.1016/j.compstruct.2017.09.025_b0280 article-title: Numerical investigations on the ballistic performance of honeycomb sandwich structures reinforced by functionally graded plates – volume: 108 start-page: 1001 year: 2014 ident: 10.1016/j.compstruct.2017.09.025_b0010 article-title: Dynamic behavior of aluminum honeycomb sandwich panels under air blast: Experiment and numerical analysis publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.10.034 – volume: 99 start-page: 8 year: 2013 ident: 10.1016/j.compstruct.2017.09.025_b0265 article-title: Experimental and numerical investigations of low velocity impact on sandwich panels publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.11.031 – year: 1999 ident: 10.1016/j.compstruct.2017.09.025_b0040 – volume: 81 start-page: 323 issue: 3 year: 2007 ident: 10.1016/j.compstruct.2017.09.025_b0140 article-title: Failure mode investigation of sandwich beams with functionally graded core publication-title: Compos Struct doi: 10.1016/j.compstruct.2006.08.030 – volume: 92 start-page: 2039 issue: 9 year: 2010 ident: 10.1016/j.compstruct.2017.09.025_b0005 article-title: Quasi-static indentation tests on aluminium foam sandwich panels publication-title: Compos Struct doi: 10.1016/j.compstruct.2009.11.014 – volume: 126 start-page: 371 year: 2015 ident: 10.1016/j.compstruct.2017.09.025_b0130 article-title: Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.02.039 – volume: 93 start-page: 28 year: 2016 ident: 10.1016/j.compstruct.2017.09.025_b0125 article-title: The low velocity impact response of curvilinear-core sandwich structures publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.01.012 – volume: 9 start-page: 309 issue: 4 year: 2007 ident: 10.1016/j.compstruct.2017.09.025_b0250 article-title: Investigation of parameters governing the damage and energy absorption characteristics of honeycomb sandwich panels publication-title: J Sandwich Struct Mater doi: 10.1177/1099636207067134 – volume: 55 start-page: 1899 issue: 5 year: 2017 ident: 10.1016/j.compstruct.2017.09.025_b0295 article-title: Multi-objective and multi-case reliability-based design optimization for tailor rolled blank (TRB) structures publication-title: Struct Multidisciplinary Optim doi: 10.1007/s00158-016-1592-1 – volume: 43 start-page: 2479 issue: 9 year: 2006 ident: 10.1016/j.compstruct.2017.09.025_b0145 article-title: Low-velocity impact response of sandwich beams with functionally graded core publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2005.06.003 – volume: 153 start-page: 614 year: 2016 ident: 10.1016/j.compstruct.2017.09.025_b0065 article-title: Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2016.06.059 – volume: 225 start-page: 207 issue: 4 year: 2011 ident: 10.1016/j.compstruct.2017.09.025_b0270 article-title: A review of low-velocity impact on sandwich structures publication-title: Proc Inst Mech Eng, Part L: J Mater Des Appl – volume: 220 start-page: 53 issue: 2 year: 2006 ident: 10.1016/j.compstruct.2017.09.025_b0185 article-title: Quasi-static and low-velocity impact failure of aluminium honeycomb sandwich panels, proceedings of the institution of mechanical engineers publication-title: Part L: J Mater: Des Appl – year: 2003 ident: 10.1016/j.compstruct.2017.09.025_b0015 – volume: 51 start-page: 1071 year: 2013 ident: 10.1016/j.compstruct.2017.09.025_b0115 article-title: Crashworthiness optimization of corrugated sandwich panels publication-title: Mater Des doi: 10.1016/j.matdes.2013.04.086 – volume: 159 start-page: 1 year: 2017 ident: 10.1016/j.compstruct.2017.09.025_b0135 article-title: Curved sandwich composites with layer-wise graded cores under impact loads publication-title: Compos Struct doi: 10.1016/j.compstruct.2016.09.054 – volume: 75 start-page: 100 year: 2015 ident: 10.1016/j.compstruct.2017.09.025_b0070 article-title: Response of aluminium honeycomb sandwich panels subjected to foam projectile impact – An experimental study publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.07.019 – volume: 117–118 start-page: 21 year: 2016 ident: 10.1016/j.compstruct.2017.09.025_b0195 article-title: Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2016.04.003 – volume: 35 start-page: 205 issue: 3 year: 1999 ident: 10.1016/j.compstruct.2017.09.025_b0190 article-title: The strength characteristics of aluminum honeycomb sandwich panels publication-title: Thin-walled Struct doi: 10.1016/S0263-8231(99)00026-9 – volume: 106 start-page: 326 year: 2013 ident: 10.1016/j.compstruct.2017.09.025_b0090 article-title: Numerical assessment of the impact behavior of honeycomb sandwich structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.06.010 – volume: 85 start-page: 20 issue: 1 year: 2008 ident: 10.1016/j.compstruct.2017.09.025_b0200 article-title: Low-velocity impact failure of aluminium honeycomb sandwich panels publication-title: Compos Struct doi: 10.1016/j.compstruct.2007.10.016 – volume: 55 start-page: 1091 issue: 3 year: 2017 ident: 10.1016/j.compstruct.2017.09.025_b0300 article-title: On design optimization for structural crashworthiness and its state of the art publication-title: Struct Multidisciplinary Optim doi: 10.1007/s00158-016-1579-y – volume: 42 start-page: 3714 issue: 11 year: 2007 ident: 10.1016/j.compstruct.2017.09.025_b0055 article-title: Effect of face sheet material on the indentation response of metallic foams publication-title: J Mater Sci doi: 10.1007/s10853-006-0373-4 – volume: 30 start-page: 74 year: 2013 ident: 10.1016/j.compstruct.2017.09.025_b0230 article-title: Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam publication-title: Marine Struct doi: 10.1016/j.marstruc.2012.11.002 – volume: 32 start-page: 618 issue: 1–4 year: 2005 ident: 10.1016/j.compstruct.2017.09.025_b0225 article-title: Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2004.09.001 – ident: 10.1016/j.compstruct.2017.09.025_b0170 doi: 10.4271/2015-36-0219 – volume: 96 start-page: 50 year: 2016 ident: 10.1016/j.compstruct.2017.09.025_b0060 article-title: Impact perforation of sandwich panels with aluminum foam core: A numerical and analytical study publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.05.013 – volume: 88 start-page: 102 year: 2016 ident: 10.1016/j.compstruct.2017.09.025_b0305 article-title: On design of multi-cell thin-wall structures for crashworthiness publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.09.003 – volume: 64 start-page: 62 year: 2014 ident: 10.1016/j.compstruct.2017.09.025_b0275 article-title: Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.10.004 – year: 1987 ident: 10.1016/j.compstruct.2017.09.025_b0045 – volume: 97 start-page: 370 year: 2013 ident: 10.1016/j.compstruct.2017.09.025_b0150 article-title: The impact response of graded foam sandwich structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.10.037 – volume: 19 start-page: 439 issue: 5–6 year: 1997 ident: 10.1016/j.compstruct.2017.09.025_b0240 article-title: Axial crush of metallic honeycombs publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(97)00004-3 – ident: 10.1016/j.compstruct.2017.09.025_b0285 – volume: 44 start-page: 2819 issue: 24 year: 2010 ident: 10.1016/j.compstruct.2017.09.025_b0035 article-title: Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels publication-title: J Compos Mater doi: 10.1177/0021998310371541 – volume: 133 start-page: 154 year: 2017 ident: 10.1016/j.compstruct.2017.09.025_b0080 article-title: Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression publication-title: Mater Des doi: 10.1016/j.matdes.2017.07.057 – volume: 67 start-page: 313 year: 2014 ident: 10.1016/j.compstruct.2017.09.025_b0095 article-title: Compression after impact test (CAI) on NOMEX™ honeycomb sandwich panels with thin aluminum skins publication-title: Compos B Eng doi: 10.1016/j.compositesb.2014.07.015 – volume: 121 start-page: 304 year: 2015 ident: 10.1016/j.compstruct.2017.09.025_b0105 article-title: Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading publication-title: Compos Struct doi: 10.1016/j.compstruct.2014.11.034 – volume: 79 start-page: 146 year: 2015 ident: 10.1016/j.compstruct.2017.09.025_b0160 article-title: The effect of temperature on the bending properties and failure mechanism of composite truss core sandwich structures publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2015.09.017 – volume: 14 start-page: 655 issue: 6 year: 2012 ident: 10.1016/j.compstruct.2017.09.025_b0075 article-title: Crashworthiness optimization design of honeycomb sandwich panel based on factor screening publication-title: J Sandwich Struct Mater doi: 10.1177/1099636212445057 – volume: 36 start-page: 687 issue: 5 year: 2009 ident: 10.1016/j.compstruct.2017.09.025_b0220 article-title: A numerical simulation of the blast impact of square metallic sandwich panels publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2008.12.004 – volume: 158 start-page: 30 year: 2016 ident: 10.1016/j.compstruct.2017.09.025_b0030 article-title: Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2016.09.009 – volume: 60 start-page: 1147 issue: 8 year: 2000 ident: 10.1016/j.compstruct.2017.09.025_b0260 article-title: Indentation failure behavior of honeycomb sandwich panels publication-title: Compos Sci Technol doi: 10.1016/S0266-3538(00)00023-3 – volume: 35 start-page: 937 issue: 8 year: 2008 ident: 10.1016/j.compstruct.2017.09.025_b0215 article-title: Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2007.11.003 – volume: 101 start-page: 204 year: 2013 ident: 10.1016/j.compstruct.2017.09.025_b0085 article-title: Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.02.010 – volume: 132 start-page: 1129 year: 2015 ident: 10.1016/j.compstruct.2017.09.025_b0025 article-title: Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.07.058 |
SSID | ssj0008411 |
Score | 2.5657184 |
Snippet | Aluminum sandwich panels with honeycomb core have been widely used as energy absorption structure in lightweight design. This study aimed to characterize the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110 |
SubjectTerms | Crashworthiness Digital image correlation (DIC) Failure modes Finite element Honeycomb core Indentation tests Sandwich panel |
Title | Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels |
URI | https://dx.doi.org/10.1016/j.compstruct.2017.09.025 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GDl4jWuWJm3wNMbGVNxFB7uV5aNsMrLBJuLFv92XpnUTBAWhl4T32sdr8l7S_vJ7CF0zxa2hlpNEK0tiqQSRwiaEakPbSsGazvjvHY9DMRjF92M-rqFudRbGwyrL2B9iehGty55W6c3WcjZrPcHugUF6gwTor9gf-I3jxI_ym48NzCONixq8Xph46RLNEzBeHrYdeFo9yCspGE990eyfUtRW2ukfoP1yvYg7waRDVLPuCO1tsQgeI9fbYunHE2ewew3_YeZ4FWCCeOGw50UM54xcIbQsgO2hrb_TNuNFjqcLZ9_BcoVXIP0201MMgQPMPEGjfu-5OyBlGQWiYcKuiRDccMl1qi2H2ckjxSh0sVzSWJvI0NxYzo3QOTNx7inspGmLSapTySdRlLNTVHfwzDOERWJSzQTcpT3xZdOVTZjVuZS5gX2iMA2UVJ7LdMkx7ktdzLMKTPaSbXyeeZ9nkczA5w1EvzSXgWfjDzq31cvJvo2ZDNLBr9rn_9K-QLvQ8jhAQvklqoOAvYLlyVo1i_HXRDudu4fB8BMoveqL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPrcw9elyZNdpPFUymV1j4uWuht6T6CFUkLVsR_72w2rRUEBSGXbGaSZbI7M5t8-w3ATaSYNaFlNNHK0lgoTgW3CQ21CZtKYU5n3PeO4Yh3x_H9hE0q0F7thXGwytL3e59eeOuypVFas7GYzRoPuHqIMLxhAHRHnG5BzbFTsSrUWr1-d7R2yGlclOF18tQplIAeD_NyyG1P1epwXklBeurqZv8UpTYiz90-7JUpI2n5Xh1AxeaHsLtBJHgEeWeDqJ9Mc0PyN_8r5oW8eqQgmefEUSP6rUZ5IbQosO3-XH9nbibzjDzNc_uBPVfkFaXfZ_qJoO_Abh7D-K7z2O7SspIC1Thnl5RzZphgOtWW4QRlgYpCbIoyEcbaBCbMjGXMcJ1FJs4ci50wTT5NdSrYNAiy6ASqOT7zFAhPTKojjndpTl3ldGWTyOpMiMzgUpGbOiQry0ld0oy7ahcvcoUne5ZfNpfO5jIQEm1eh3CtufBUG3_QuV29HPlt2EiMCL9qn_1L-xq2u4_DgRz0Rv1z2MErDhZIQ3YBVRS2l5itLNVVORo_ASon7Tw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+numerical+studies+on+indentation+and+perforation+characteristics+of+honeycomb+sandwich+panels&rft.jtitle=Composite+structures&rft.au=Sun%2C+Guangyong&rft.au=Chen%2C+Dongdong&rft.au=Huo%2C+Xintao&rft.au=Zheng%2C+Gang&rft.date=2018-01-15&rft.pub=Elsevier+Ltd&rft.issn=0263-8223&rft.eissn=1879-1085&rft.volume=184&rft.spage=110&rft.epage=124&rft_id=info:doi/10.1016%2Fj.compstruct.2017.09.025&rft.externalDocID=S0263822317317348 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon |