Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels

Aluminum sandwich panels with honeycomb core have been widely used as energy absorption structure in lightweight design. This study aimed to characterize the indentation and perforation behaviors of sandwich structures with different geometric configurations. The specimens with four characteristic g...

Full description

Saved in:
Bibliographic Details
Published inComposite structures Vol. 184; pp. 110 - 124
Main Authors Sun, Guangyong, Chen, Dongdong, Huo, Xintao, Zheng, Gang, Li, Qing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aluminum sandwich panels with honeycomb core have been widely used as energy absorption structure in lightweight design. This study aimed to characterize the indentation and perforation behaviors of sandwich structures with different geometric configurations. The specimens with four characteristic geometric variables, namely, facesheet thickness, core height, honeycomb core thickness and side length of hexagon cell were tested experimentally. Photographs of cross-sectional view near the loading area and failure modes in the tests were investigated in detail. For the first time, digital image correlation (DIC) technique through an ARAMIS™ real-time optical strain measurement system was adopted for capturing the deformation process of lower skin by acquiring the displacement-time data. Three typical damage modes were identified from the force-displacement curves with different geometric parameters and configurations. It was found that the thickness of facesheet has the most significant effects on both force-displacement curves and energy absorption capacity. Changes in the core parameters have relatively small influences in total energy absorption but sizeable effects on the force-displacement curve and failure modes. A finite element model for predicting damage evolution was also developed and validated through the force-displacement relation and deformation process on the bottom skin. The damage mechanisms of the sandwich panel subject to quasi-static indentation and perforation were analyzed through the numerical models. The present study contributed on understanding how the geometric parameters affect the characteristics of indentation and perforation, thereby providing useful guidelines for its potential applications in impact engineering.
AbstractList Aluminum sandwich panels with honeycomb core have been widely used as energy absorption structure in lightweight design. This study aimed to characterize the indentation and perforation behaviors of sandwich structures with different geometric configurations. The specimens with four characteristic geometric variables, namely, facesheet thickness, core height, honeycomb core thickness and side length of hexagon cell were tested experimentally. Photographs of cross-sectional view near the loading area and failure modes in the tests were investigated in detail. For the first time, digital image correlation (DIC) technique through an ARAMIS™ real-time optical strain measurement system was adopted for capturing the deformation process of lower skin by acquiring the displacement-time data. Three typical damage modes were identified from the force-displacement curves with different geometric parameters and configurations. It was found that the thickness of facesheet has the most significant effects on both force-displacement curves and energy absorption capacity. Changes in the core parameters have relatively small influences in total energy absorption but sizeable effects on the force-displacement curve and failure modes. A finite element model for predicting damage evolution was also developed and validated through the force-displacement relation and deformation process on the bottom skin. The damage mechanisms of the sandwich panel subject to quasi-static indentation and perforation were analyzed through the numerical models. The present study contributed on understanding how the geometric parameters affect the characteristics of indentation and perforation, thereby providing useful guidelines for its potential applications in impact engineering.
Author Chen, Dongdong
Huo, Xintao
Li, Qing
Sun, Guangyong
Zheng, Gang
Author_xml – sequence: 1
  givenname: Guangyong
  surname: Sun
  fullname: Sun, Guangyong
  email: sgy800@126.com
  organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 2
  givenname: Dongdong
  surname: Chen
  fullname: Chen, Dongdong
  organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 3
  givenname: Xintao
  surname: Huo
  fullname: Huo, Xintao
  organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 4
  givenname: Gang
  surname: Zheng
  fullname: Zheng, Gang
  organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 5
  givenname: Qing
  surname: Li
  fullname: Li, Qing
  organization: School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
BookMark eNqNkN1KAzEQhYNUsK2-Q15g18lus83eCCr1Bwre6HVIJwlN2WaXJFX79qasIHijV8kM3znMOTMy8b03hFAGJQPWXO9K7PdDTOGAqayALUtoS6j4GZkysWwLBoJPyBSqpi5EVdUXZBbjDgDEgrEp8avPwQS3Nz6pjiqvqT_s8wLzFNNBOxNp76nz-kQkl_8nKGtsH8YZtyooTFkUk8OMW7rNNx7zXRsaM_3hcEsH5U0XL8m5VV00V9_vnLw9rF7vn4r1y-Pz_e26wJqJVDQN17zlKNBwsQQOm5rlVW1btkANmlltONcN2lovbE4Ira4aJVC0XAHYek7E6IuhjzEYK4ccUoWjZCBPvcmd_OlNnnqT0MrcW5be_JKiG5OnoFz3H4O70SDnNe_OBBnRGY9Gu2Ayq3v3t8kXuS6XSQ
CitedBy_id crossref_primary_10_1016_j_compstruct_2024_118260
crossref_primary_10_1080_15376494_2019_1567883
crossref_primary_10_1080_15376494_2021_1941448
crossref_primary_10_1007_s40430_024_04865_3
crossref_primary_10_1016_j_engstruct_2021_113204
crossref_primary_10_1177_10996362251330154
crossref_primary_10_1016_j_engstruct_2024_119319
crossref_primary_10_1016_j_jmapro_2024_04_088
crossref_primary_10_1002_pc_28981
crossref_primary_10_1016_j_synthmet_2021_116731
crossref_primary_10_1016_j_tws_2024_111597
crossref_primary_10_1002_pc_25593
crossref_primary_10_1016_j_matpr_2023_03_106
crossref_primary_10_1007_s42417_024_01667_8
crossref_primary_10_1016_j_tws_2024_111874
crossref_primary_10_1016_j_tws_2024_111592
crossref_primary_10_1177_0731684420915996
crossref_primary_10_1016_j_engfailanal_2024_108290
crossref_primary_10_1016_j_ijmecsci_2024_109000
crossref_primary_10_1016_j_compstruct_2018_06_018
crossref_primary_10_1016_j_compositesb_2018_12_054
crossref_primary_10_1016_j_tws_2022_109559
crossref_primary_10_1016_j_ijmecsci_2019_105380
crossref_primary_10_1515_rams_2021_0020
crossref_primary_10_1016_j_compstruct_2019_04_007
crossref_primary_10_1007_s40430_023_04185_y
crossref_primary_10_1016_j_engstruct_2024_119607
crossref_primary_10_1016_j_compstruct_2024_118436
crossref_primary_10_1002_mdp2_55
crossref_primary_10_1016_j_tws_2019_106399
crossref_primary_10_1080_15376494_2024_2433092
crossref_primary_10_1007_s42235_023_00358_6
crossref_primary_10_1002_pc_26396
crossref_primary_10_1016_j_ijmecsci_2021_106406
crossref_primary_10_1016_j_tws_2019_04_029
crossref_primary_10_1080_15376494_2021_1885770
crossref_primary_10_1016_j_ijmecsci_2023_108149
crossref_primary_10_1177_1099636221993871
crossref_primary_10_1016_j_compstruct_2022_116092
crossref_primary_10_1016_j_msea_2024_146484
crossref_primary_10_1007_s10338_023_00396_x
crossref_primary_10_1108_RPJ_03_2023_0082
crossref_primary_10_1007_s00707_018_2182_7
crossref_primary_10_1007_s10853_018_3163_x
crossref_primary_10_1002_pc_26989
crossref_primary_10_1007_s11837_019_03968_w
crossref_primary_10_1016_j_compscitech_2025_111106
crossref_primary_10_1016_j_tws_2020_107188
crossref_primary_10_1088_1757_899X_1294_1_012046
crossref_primary_10_1016_j_tws_2020_107223
crossref_primary_10_1021_acs_langmuir_4c04933
crossref_primary_10_1016_j_compstruct_2022_115369
crossref_primary_10_1016_j_tws_2019_01_022
crossref_primary_10_1016_j_tws_2019_106288
crossref_primary_10_1007_s11029_023_10080_3
crossref_primary_10_1016_j_compositesb_2019_107496
crossref_primary_10_1007_s00107_021_01677_3
crossref_primary_10_1016_j_tws_2023_111256
crossref_primary_10_1016_j_compstruct_2022_116102
crossref_primary_10_1016_j_conbuildmat_2020_121996
crossref_primary_10_1016_j_compstruct_2020_113396
crossref_primary_10_1016_j_mechmat_2024_105084
crossref_primary_10_1016_j_tws_2020_106929
crossref_primary_10_1016_j_ijmecsci_2023_108795
crossref_primary_10_1080_23248378_2024_2331783
crossref_primary_10_3390_ma16155482
crossref_primary_10_1016_j_matdes_2021_110234
crossref_primary_10_1016_j_compstruct_2024_118173
crossref_primary_10_1016_j_compositesb_2018_12_071
crossref_primary_10_1016_j_ijsolstr_2022_111922
crossref_primary_10_1016_j_tws_2020_107079
crossref_primary_10_1080_13588265_2018_1480471
crossref_primary_10_1016_j_compstruct_2020_113431
crossref_primary_10_1016_j_dt_2024_06_015
crossref_primary_10_1016_j_matpr_2019_12_101
crossref_primary_10_1016_j_eml_2020_100775
crossref_primary_10_1017_aer_2023_81
crossref_primary_10_1016_j_tws_2018_09_044
crossref_primary_10_1016_j_tws_2024_112499
crossref_primary_10_1515_mt_2023_0024
crossref_primary_10_1016_j_compstruct_2019_111223
crossref_primary_10_1016_j_compstruct_2021_114152
crossref_primary_10_1016_j_compositesb_2020_107976
crossref_primary_10_1007_s10443_023_10190_0
crossref_primary_10_1515_cls_2022_0211
crossref_primary_10_3390_polym16060729
crossref_primary_10_1177_1099636218791162
crossref_primary_10_1080_15376494_2019_1605009
crossref_primary_10_1177_1548512921995923
crossref_primary_10_3390_polym14194047
crossref_primary_10_1016_j_tws_2020_106995
crossref_primary_10_1177_00219983241240472
crossref_primary_10_1016_j_tws_2020_107326
crossref_primary_10_1177_1099636218759827
crossref_primary_10_1177_1099636218800360
crossref_primary_10_1177_14644207221130361
crossref_primary_10_1186_s40069_024_00662_3
crossref_primary_10_1016_j_mtcomm_2023_106750
crossref_primary_10_1007_s12205_024_0934_6
crossref_primary_10_3390_met11101544
crossref_primary_10_1016_j_ast_2020_106270
crossref_primary_10_1002_pc_25706
crossref_primary_10_1016_j_ijimpeng_2021_104137
crossref_primary_10_1016_j_tws_2021_108800
crossref_primary_10_1088_1742_6596_2808_1_012074
crossref_primary_10_1016_j_tws_2021_108760
crossref_primary_10_1016_j_compstruct_2023_117517
crossref_primary_10_1088_2631_6331_ac8d7a
crossref_primary_10_1016_j_compstruct_2022_115514
crossref_primary_10_1080_23789689_2018_1469359
crossref_primary_10_1016_j_compstruct_2018_10_051
crossref_primary_10_1016_j_addma_2022_103051
crossref_primary_10_1016_j_tws_2024_111702
crossref_primary_10_3390_met13101745
crossref_primary_10_1016_j_ijimpeng_2018_08_007
crossref_primary_10_1016_j_compositesb_2018_12_139
crossref_primary_10_1016_j_ijmecsci_2023_108102
crossref_primary_10_3390_jcs7030102
crossref_primary_10_1177_09544062251315017
crossref_primary_10_1016_j_compositesb_2021_108881
crossref_primary_10_1016_j_engstruct_2023_117232
crossref_primary_10_1016_j_compstruct_2020_112893
crossref_primary_10_1016_j_mtcomm_2023_106259
crossref_primary_10_1177_1099636220905996
crossref_primary_10_1016_j_ijmecsci_2020_105681
crossref_primary_10_1016_j_msea_2024_147464
crossref_primary_10_1177_0021998318810899
crossref_primary_10_1007_s40799_022_00589_y
crossref_primary_10_1016_j_ijimpeng_2023_104548
crossref_primary_10_1016_j_tws_2020_106866
crossref_primary_10_1016_j_matdes_2023_111600
crossref_primary_10_1002_pc_26934
crossref_primary_10_3390_ma14164731
crossref_primary_10_1007_s00158_024_03743_9
crossref_primary_10_1016_j_tws_2019_106494
crossref_primary_10_1177_00219983221124204
crossref_primary_10_3390_su15043437
crossref_primary_10_1080_0305215X_2018_1486401
crossref_primary_10_3390_ma17164024
crossref_primary_10_1007_s00707_018_2342_9
crossref_primary_10_1007_s40430_019_1646_6
crossref_primary_10_1016_j_ijimpeng_2019_103327
crossref_primary_10_1016_j_compstruct_2020_113081
Cites_doi 10.1016/0025-5416(87)90496-4
10.1016/j.compscitech.2007.12.007
10.1016/j.compstruct.2016.09.071
10.4271/982279
10.1016/j.ijimpeng.2008.03.002
10.1016/j.compositesb.2016.08.038
10.1177/1099636206056888
10.1016/j.ijmecsci.2017.02.027
10.1016/j.compstruct.2014.06.005
10.1016/j.ijimpeng.2011.12.002
10.1007/s10443-005-1125-3
10.1016/j.commatsci.2008.09.017
10.1177/1099636215603047
10.1016/j.compstruct.2013.10.034
10.1016/j.compstruct.2012.11.031
10.1016/j.compstruct.2006.08.030
10.1016/j.compstruct.2009.11.014
10.1016/j.compstruct.2015.02.039
10.1016/j.ijimpeng.2016.01.012
10.1177/1099636207067134
10.1007/s00158-016-1592-1
10.1016/j.ijsolstr.2005.06.003
10.1016/j.compstruct.2016.06.059
10.1016/j.matdes.2013.04.086
10.1016/j.compstruct.2016.09.054
10.1016/j.ijimpeng.2014.07.019
10.1016/j.finel.2016.04.003
10.1016/S0263-8231(99)00026-9
10.1016/j.compstruct.2013.06.010
10.1016/j.compstruct.2007.10.016
10.1007/s00158-016-1579-y
10.1007/s10853-006-0373-4
10.1016/j.marstruc.2012.11.002
10.1016/j.ijimpeng.2004.09.001
10.4271/2015-36-0219
10.1016/j.ijimpeng.2016.05.013
10.1016/j.ijimpeng.2015.09.003
10.1016/j.ijimpeng.2013.10.004
10.1016/j.compstruct.2012.10.037
10.1016/S0734-743X(97)00004-3
10.1177/0021998310371541
10.1016/j.matdes.2017.07.057
10.1016/j.compositesb.2014.07.015
10.1016/j.compstruct.2014.11.034
10.1016/j.compositesa.2015.09.017
10.1177/1099636212445057
10.1016/j.ijimpeng.2008.12.004
10.1016/j.compstruct.2016.09.009
10.1016/S0266-3538(00)00023-3
10.1016/j.ijimpeng.2007.11.003
10.1016/j.compstruct.2013.02.010
10.1016/j.compstruct.2015.07.058
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruct.2017.09.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1085
EndPage 124
ExternalDocumentID 10_1016_j_compstruct_2017_09_025
S0263822317317348
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
SSH
WUQ
ID FETCH-LOGICAL-c318t-665d595c8ce587050b3165d3f914cd0d1fde55d6cf3d4f08509d26a8c895a00f3
IEDL.DBID .~1
ISSN 0263-8223
IngestDate Tue Jul 01 03:52:28 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Fri Feb 23 02:28:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Honeycomb core
Sandwich panel
Digital image correlation (DIC)
Indentation tests
Failure modes
Crashworthiness
Finite element
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-665d595c8ce587050b3165d3f914cd0d1fde55d6cf3d4f08509d26a8c895a00f3
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_compstruct_2017_09_025
crossref_citationtrail_10_1016_j_compstruct_2017_09_025
elsevier_sciencedirect_doi_10_1016_j_compstruct_2017_09_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-15
PublicationDateYYYYMMDD 2018-01-15
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Composite structures
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Heimbs (b0110) 2009; 45
Zhang, Qin, Xiang, Wang (b0065) 2016; 153
Crupi, Epasto, Guglielmino (b0245) 2012; 43
Hou, Shu, Zhao, Liu, Han, Li (b0130) 2015; 126
Zhu, Chai (b0085) 2013; 101
Wang (b0020) 2009; 36
Zhou, Guan, Cantwell (b0150) 2013; 97
Hou, Zhao, Ren, Han, Li (b0115) 2013; 51
Aminanda, Castanié, Barrau, Thevenet (b0235) 2005; 12
Paik, Thayamballi, Kim (b0190) 1999; 35
Triantafillou (b0045) 1987
Zhu, Zhao, Lu, Gad (b0220) 2009; 36
Manes, Gilioli, Sbarufatti, Giglio (b0265) 2013; 99
Sun, Pang, Fang, Li, Li (b0290) 2017; 124–125
Hou, Ren, Dong, Han (b0075) 2012; 14
Yang, Wang, Zhou, Zhang, Tong, Liang (b0025) 2015; 132
Kaman, Solmaz, Turan (b0035) 2010; 44
Elnasri, Zhao (b0060) 2016; 96
Wen, Reddy, Reid, Soden (b0180) 1998; 141–143
Sun, Zhang, Fang, Li, Li (b0295) 2017; 55
Liu, Zhu, Li, Zhou, Wu, Ma (b0155) 2014; 116
Fang, Sun, Qiu, Kim, Li (b0300) 2017; 55
Gunes, Arslan (b0205) 2015; 18
Crupi, Epasto, Guglielmino (b0230) 2013; 30
Zhou, Hill, Hookham (b0250) 2007; 9
Ávila (b0140) 2007; 81
Li, Zhang, Wang, Wu, Zhao (b0010) 2014; 108
Lu, Yu (b0015) 2003
Menna, Zinno, Asprone, Prota (b0090) 2013; 106
Zhang, Jiang, Fei, Wu (b0195) 2016; 117–118
Ruan, Lu, Wong (b0005) 2010; 92
Gibson, Ashby (b0040) 1999
Gunes, Arslan, Apalak, Reddy (b0280) 2014
Zhang, Cheng, Liu, Li, Zhang, Hou (b0120) 2016; 105
Triantafillou, Gibson (b0050) 1987; 95
Seemann, Krause (b0100) 2017; 159
Liu, Xiang, Kan (b0160) 2015; 79
Mohan, Yip, Sridhar, Seow (b0055) 2007; 42
Foo, Seah, Chai (b0200) 2008; 85
Haber D. Lightweight materials for automotive applications: a review, SAE Technical Paper, 2015.
Gobessi M, Arnold W. The application of bonded aluminum sandwich construction technology to achieve a lightweight, low cost automotive structure, SAE Technical Paper, 1998.
Yahaya, Ruan, Lu, Dargusch (b0070) 2015; 75
Seah, Chai, Foo (b0185) 2006; 220
Zhu, Zhao, Lu, Wang (b0215) 2008; 35
Wu, Jiang (b0240) 1997; 19
Boonkong, Shen, Guan, Cantwell (b0125) 2016; 93
Zhou (b0255) 2006; 8
Liu, Wang, Guan (b0105) 2015; 121
He, Liu, Tao, Xie, Liu, Zhang (b0030) 2016; 158
Chai, Zhu (b0270) 2011; 225
Niewenhuis, Wells (b0165) 2003
Yamashita, Gotoh (b0225) 2005; 32
Apetre, Sankar, Ambur (b0145) 2006; 43
Sun, Huo, Chen, Li (b0080) 2017; 133
Gilioli, Sbarufatti, Manes, Giglio (b0095) 2014; 67
Foo, Chai, Seah (b0210) 2008; 68
Sun, Xu, Li, Li (b0275) 2014; 64
A. Version, 6.13, Analysis User’s Manual, Dassault Systemes Simulia Corp., Providence, RI, 2013.
Wu, Zheng, Sun, Liu, Sun, Li (b0305) 2016; 88
Baba (b0135) 2017; 159
Lee, Tsotsis (b0260) 2000; 60
Zhu (10.1016/j.compstruct.2017.09.025_b0085) 2013; 101
Zhang (10.1016/j.compstruct.2017.09.025_b0120) 2016; 105
Hou (10.1016/j.compstruct.2017.09.025_b0115) 2013; 51
Zhang (10.1016/j.compstruct.2017.09.025_b0195) 2016; 117–118
Heimbs (10.1016/j.compstruct.2017.09.025_b0110) 2009; 45
10.1016/j.compstruct.2017.09.025_b0170
Zhou (10.1016/j.compstruct.2017.09.025_b0150) 2013; 97
Foo (10.1016/j.compstruct.2017.09.025_b0200) 2008; 85
Baba (10.1016/j.compstruct.2017.09.025_b0135) 2017; 159
10.1016/j.compstruct.2017.09.025_b0175
Yahaya (10.1016/j.compstruct.2017.09.025_b0070) 2015; 75
Sun (10.1016/j.compstruct.2017.09.025_b0295) 2017; 55
Liu (10.1016/j.compstruct.2017.09.025_b0155) 2014; 116
Aminanda (10.1016/j.compstruct.2017.09.025_b0235) 2005; 12
Triantafillou (10.1016/j.compstruct.2017.09.025_b0045) 1987
Foo (10.1016/j.compstruct.2017.09.025_b0210) 2008; 68
Mohan (10.1016/j.compstruct.2017.09.025_b0055) 2007; 42
Crupi (10.1016/j.compstruct.2017.09.025_b0245) 2012; 43
Zhou (10.1016/j.compstruct.2017.09.025_b0255) 2006; 8
Gilioli (10.1016/j.compstruct.2017.09.025_b0095) 2014; 67
Gunes (10.1016/j.compstruct.2017.09.025_b0280) 2014
Kaman (10.1016/j.compstruct.2017.09.025_b0035) 2010; 44
Hou (10.1016/j.compstruct.2017.09.025_b0130) 2015; 126
Wen (10.1016/j.compstruct.2017.09.025_b0180) 1998; 141–143
10.1016/j.compstruct.2017.09.025_b0285
Chai (10.1016/j.compstruct.2017.09.025_b0270) 2011; 225
Lee (10.1016/j.compstruct.2017.09.025_b0260) 2000; 60
Yamashita (10.1016/j.compstruct.2017.09.025_b0225) 2005; 32
Lu (10.1016/j.compstruct.2017.09.025_b0015) 2003
Ávila (10.1016/j.compstruct.2017.09.025_b0140) 2007; 81
Sun (10.1016/j.compstruct.2017.09.025_b0290) 2017; 124–125
Zhu (10.1016/j.compstruct.2017.09.025_b0220) 2009; 36
Liu (10.1016/j.compstruct.2017.09.025_b0160) 2015; 79
Seemann (10.1016/j.compstruct.2017.09.025_b0100) 2017; 159
Triantafillou (10.1016/j.compstruct.2017.09.025_b0050) 1987; 95
Hou (10.1016/j.compstruct.2017.09.025_b0075) 2012; 14
Ruan (10.1016/j.compstruct.2017.09.025_b0005) 2010; 92
Zhang (10.1016/j.compstruct.2017.09.025_b0065) 2016; 153
Elnasri (10.1016/j.compstruct.2017.09.025_b0060) 2016; 96
Menna (10.1016/j.compstruct.2017.09.025_b0090) 2013; 106
Gunes (10.1016/j.compstruct.2017.09.025_b0205) 2015; 18
Li (10.1016/j.compstruct.2017.09.025_b0010) 2014; 108
Zhu (10.1016/j.compstruct.2017.09.025_b0215) 2008; 35
He (10.1016/j.compstruct.2017.09.025_b0030) 2016; 158
Sun (10.1016/j.compstruct.2017.09.025_b0275) 2014; 64
Apetre (10.1016/j.compstruct.2017.09.025_b0145) 2006; 43
Boonkong (10.1016/j.compstruct.2017.09.025_b0125) 2016; 93
Sun (10.1016/j.compstruct.2017.09.025_b0080) 2017; 133
Manes (10.1016/j.compstruct.2017.09.025_b0265) 2013; 99
Wu (10.1016/j.compstruct.2017.09.025_b0305) 2016; 88
Fang (10.1016/j.compstruct.2017.09.025_b0300) 2017; 55
Paik (10.1016/j.compstruct.2017.09.025_b0190) 1999; 35
Gibson (10.1016/j.compstruct.2017.09.025_b0040) 1999
Crupi (10.1016/j.compstruct.2017.09.025_b0230) 2013; 30
Niewenhuis (10.1016/j.compstruct.2017.09.025_b0165) 2003
Wang (10.1016/j.compstruct.2017.09.025_b0020) 2009; 36
Liu (10.1016/j.compstruct.2017.09.025_b0105) 2015; 121
Yang (10.1016/j.compstruct.2017.09.025_b0025) 2015; 132
Wu (10.1016/j.compstruct.2017.09.025_b0240) 1997; 19
Zhou (10.1016/j.compstruct.2017.09.025_b0250) 2007; 9
Seah (10.1016/j.compstruct.2017.09.025_b0185) 2006; 220
References_xml – volume: 36
  start-page: 110
  year: 2009
  end-page: 114
  ident: b0020
  article-title: Impact behavior and energy absorption of paper honeycomb sandwich panels
  publication-title: Int J Impact Eng
– volume: 117–118
  start-page: 21
  year: 2016
  end-page: 30
  ident: b0195
  article-title: Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact
  publication-title: Finite Elem Anal Des
– volume: 18
  start-page: 95
  year: 2015
  end-page: 112
  ident: b0205
  article-title: Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures
  publication-title: J Sandwich Struct Mater
– volume: 45
  start-page: 205
  year: 2009
  end-page: 216
  ident: b0110
  article-title: Virtual testing of sandwich core structures using dynamic finite element simulations
  publication-title: Comput Mater Sci
– volume: 81
  start-page: 323
  year: 2007
  end-page: 330
  ident: b0140
  article-title: Failure mode investigation of sandwich beams with functionally graded core
  publication-title: Compos Struct
– volume: 8
  start-page: 55
  year: 2006
  end-page: 90
  ident: b0255
  article-title: Damage characteristics of composite honeycomb sandwich panels in bending under quasi-static loading
  publication-title: J Sandwich Struct Mater
– year: 1987
  ident: b0045
  article-title: Failure mode maps and minimum weight design for structural sandwich beams with rigid foam cores
– volume: 14
  start-page: 655
  year: 2012
  end-page: 678
  ident: b0075
  article-title: Crashworthiness optimization design of honeycomb sandwich panel based on factor screening
  publication-title: J Sandwich Struct Mater
– volume: 9
  start-page: 309
  year: 2007
  end-page: 342
  ident: b0250
  article-title: Investigation of parameters governing the damage and energy absorption characteristics of honeycomb sandwich panels
  publication-title: J Sandwich Struct Mater
– volume: 75
  start-page: 100
  year: 2015
  end-page: 109
  ident: b0070
  article-title: Response of aluminium honeycomb sandwich panels subjected to foam projectile impact – An experimental study
  publication-title: Int J Impact Eng
– volume: 19
  start-page: 439
  year: 1997
  end-page: 456
  ident: b0240
  article-title: Axial crush of metallic honeycombs
  publication-title: Int J Impact Eng
– volume: 79
  start-page: 146
  year: 2015
  end-page: 154
  ident: b0160
  article-title: The effect of temperature on the bending properties and failure mechanism of composite truss core sandwich structures
  publication-title: Compos A Appl Sci Manuf
– volume: 32
  start-page: 618
  year: 2005
  end-page: 630
  ident: b0225
  article-title: Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment
  publication-title: Int J Impact Eng
– volume: 99
  start-page: 8
  year: 2013
  end-page: 18
  ident: b0265
  article-title: Experimental and numerical investigations of low velocity impact on sandwich panels
  publication-title: Compos Struct
– reference: Haber D. Lightweight materials for automotive applications: a review, SAE Technical Paper, 2015.
– volume: 35
  start-page: 937
  year: 2008
  end-page: 951
  ident: b0215
  article-title: Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations
  publication-title: Int J Impact Eng
– reference: A. Version, 6.13, Analysis User’s Manual, Dassault Systemes Simulia Corp., Providence, RI, 2013.
– volume: 132
  start-page: 1129
  year: 2015
  end-page: 1140
  ident: b0025
  article-title: Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet
  publication-title: Compos Struct
– volume: 121
  start-page: 304
  year: 2015
  end-page: 314
  ident: b0105
  article-title: Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading
  publication-title: Compos Struct
– year: 2003
  ident: b0015
  article-title: Energy absorption of structures and materials
– volume: 97
  start-page: 370
  year: 2013
  end-page: 377
  ident: b0150
  article-title: The impact response of graded foam sandwich structures
  publication-title: Compos Struct
– volume: 64
  start-page: 62
  year: 2014
  end-page: 74
  ident: b0275
  article-title: Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness
  publication-title: Int J Impact Eng
– volume: 126
  start-page: 371
  year: 2015
  end-page: 385
  ident: b0130
  article-title: Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading
  publication-title: Compos Struct
– volume: 44
  start-page: 2819
  year: 2010
  end-page: 2831
  ident: b0035
  article-title: Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels
  publication-title: J Compos Mater
– volume: 43
  start-page: 2479
  year: 2006
  end-page: 2496
  ident: b0145
  article-title: Low-velocity impact response of sandwich beams with functionally graded core
  publication-title: Int J Solids Struct
– volume: 159
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0135
  article-title: Curved sandwich composites with layer-wise graded cores under impact loads
  publication-title: Compos Struct
– volume: 106
  start-page: 326
  year: 2013
  end-page: 339
  ident: b0090
  article-title: Numerical assessment of the impact behavior of honeycomb sandwich structures
  publication-title: Compos Struct
– volume: 67
  start-page: 313
  year: 2014
  end-page: 325
  ident: b0095
  article-title: Compression after impact test (CAI) on NOMEX™ honeycomb sandwich panels with thin aluminum skins
  publication-title: Compos B Eng
– volume: 116
  start-page: 670
  year: 2014
  end-page: 681
  ident: b0155
  article-title: Experimental study on the low velocity impact responses of all-composite pyramidal truss core sandwich panel after high temperature exposure
  publication-title: Compos Struct
– year: 1999
  ident: b0040
  article-title: Cellular solids: structure and properties
– volume: 124–125
  start-page: 145
  year: 2017
  end-page: 157
  ident: b0290
  article-title: Parameterization of criss-cross configurations for multiobjective crashworthiness optimization
  publication-title: Int J Mech Sci
– volume: 96
  start-page: 50
  year: 2016
  end-page: 60
  ident: b0060
  article-title: Impact perforation of sandwich panels with aluminum foam core: A numerical and analytical study
  publication-title: Int J Impact Eng
– volume: 108
  start-page: 1001
  year: 2014
  end-page: 1008
  ident: b0010
  article-title: Dynamic behavior of aluminum honeycomb sandwich panels under air blast: Experiment and numerical analysis
  publication-title: Compos Struct
– volume: 159
  start-page: 702
  year: 2017
  end-page: 718
  ident: b0100
  article-title: Numerical modelling of Nomex honeycomb sandwich cores at meso-scale level
  publication-title: Compos Struct
– volume: 12
  start-page: 213
  year: 2005
  end-page: 227
  ident: b0235
  article-title: Experimental Analysis and Modeling of the Crushing of Honeycomb Cores
  publication-title: Appl Compos Mater
– volume: 42
  start-page: 3714
  year: 2007
  end-page: 3723
  ident: b0055
  article-title: Effect of face sheet material on the indentation response of metallic foams
  publication-title: J Mater Sci
– volume: 36
  start-page: 687
  year: 2009
  end-page: 699
  ident: b0220
  article-title: A numerical simulation of the blast impact of square metallic sandwich panels
  publication-title: Int J Impact Eng
– volume: 141–143
  start-page: 501
  year: 1998
  end-page: 552
  ident: b0180
  article-title: Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading
  publication-title: Key Eng Mater
– volume: 35
  start-page: 205
  year: 1999
  end-page: 231
  ident: b0190
  article-title: The strength characteristics of aluminum honeycomb sandwich panels
  publication-title: Thin-walled Struct
– volume: 55
  start-page: 1091
  year: 2017
  end-page: 1119
  ident: b0300
  article-title: On design optimization for structural crashworthiness and its state of the art
  publication-title: Struct Multidisciplinary Optim
– volume: 92
  start-page: 2039
  year: 2010
  end-page: 2046
  ident: b0005
  article-title: Quasi-static indentation tests on aluminium foam sandwich panels
  publication-title: Compos Struct
– volume: 133
  start-page: 154
  year: 2017
  end-page: 168
  ident: b0080
  article-title: Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression
  publication-title: Mater Des
– reference: Gobessi M, Arnold W. The application of bonded aluminum sandwich construction technology to achieve a lightweight, low cost automotive structure, SAE Technical Paper, 1998.
– volume: 55
  start-page: 1899
  year: 2017
  end-page: 1916
  ident: b0295
  article-title: Multi-objective and multi-case reliability-based design optimization for tailor rolled blank (TRB) structures
  publication-title: Struct Multidisciplinary Optim
– volume: 153
  start-page: 614
  year: 2016
  end-page: 623
  ident: b0065
  article-title: Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact
  publication-title: Compos Struct
– volume: 101
  start-page: 204
  year: 2013
  end-page: 214
  ident: b0085
  article-title: Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact
  publication-title: Compos Struct
– volume: 220
  start-page: 53
  year: 2006
  end-page: 66
  ident: b0185
  article-title: Quasi-static and low-velocity impact failure of aluminium honeycomb sandwich panels, proceedings of the institution of mechanical engineers
  publication-title: Part L: J Mater: Des Appl
– volume: 158
  start-page: 30
  year: 2016
  end-page: 43
  ident: b0030
  article-title: Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures
  publication-title: Compos Struct
– volume: 30
  start-page: 74
  year: 2013
  end-page: 96
  ident: b0230
  article-title: Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam
  publication-title: Marine Struct
– volume: 85
  start-page: 20
  year: 2008
  end-page: 28
  ident: b0200
  article-title: Low-velocity impact failure of aluminium honeycomb sandwich panels
  publication-title: Compos Struct
– volume: 68
  start-page: 1348
  year: 2008
  end-page: 1356
  ident: b0210
  article-title: A model to predict low-velocity impact response and damage in sandwich composites
  publication-title: Compos Sci Technol
– volume: 95
  start-page: 37
  year: 1987
  end-page: 53
  ident: b0050
  article-title: Failure mode maps for foam core sandwich beams
  publication-title: Mater Sci Eng
– volume: 93
  start-page: 28
  year: 2016
  end-page: 38
  ident: b0125
  article-title: The low velocity impact response of curvilinear-core sandwich structures
  publication-title: Int J Impact Eng
– year: 2014
  ident: b0280
  article-title: Numerical investigations on the ballistic performance of honeycomb sandwich structures reinforced by functionally graded plates
  publication-title: 13th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials, Sao Paulo, Brazil
– year: 2003
  ident: b0165
  article-title: The automotive industry and the environment
– volume: 225
  start-page: 207
  year: 2011
  end-page: 230
  ident: b0270
  article-title: A review of low-velocity impact on sandwich structures
  publication-title: Proc Inst Mech Eng, Part L: J Mater Des Appl
– volume: 105
  start-page: 67
  year: 2016
  end-page: 81
  ident: b0120
  article-title: Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading
  publication-title: Compos B Eng
– volume: 51
  start-page: 1071
  year: 2013
  end-page: 1084
  ident: b0115
  article-title: Crashworthiness optimization of corrugated sandwich panels
  publication-title: Mater Des
– volume: 88
  start-page: 102
  year: 2016
  end-page: 117
  ident: b0305
  article-title: On design of multi-cell thin-wall structures for crashworthiness
  publication-title: Int J Impact Eng
– volume: 60
  start-page: 1147
  year: 2000
  end-page: 1159
  ident: b0260
  article-title: Indentation failure behavior of honeycomb sandwich panels
  publication-title: Compos Sci Technol
– volume: 43
  start-page: 6
  year: 2012
  end-page: 15
  ident: b0245
  article-title: Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading
  publication-title: Int J Impact Eng
– volume: 141–143
  start-page: 501
  year: 1998
  ident: 10.1016/j.compstruct.2017.09.025_b0180
  article-title: Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading
  publication-title: Key Eng Mater
– year: 2003
  ident: 10.1016/j.compstruct.2017.09.025_b0165
– volume: 95
  start-page: 37
  year: 1987
  ident: 10.1016/j.compstruct.2017.09.025_b0050
  article-title: Failure mode maps for foam core sandwich beams
  publication-title: Mater Sci Eng
  doi: 10.1016/0025-5416(87)90496-4
– volume: 68
  start-page: 1348
  issue: 6
  year: 2008
  ident: 10.1016/j.compstruct.2017.09.025_b0210
  article-title: A model to predict low-velocity impact response and damage in sandwich composites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2007.12.007
– volume: 159
  start-page: 702
  year: 2017
  ident: 10.1016/j.compstruct.2017.09.025_b0100
  article-title: Numerical modelling of Nomex honeycomb sandwich cores at meso-scale level
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.09.071
– ident: 10.1016/j.compstruct.2017.09.025_b0175
  doi: 10.4271/982279
– volume: 36
  start-page: 110
  issue: 1
  year: 2009
  ident: 10.1016/j.compstruct.2017.09.025_b0020
  article-title: Impact behavior and energy absorption of paper honeycomb sandwich panels
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2008.03.002
– volume: 105
  start-page: 67
  year: 2016
  ident: 10.1016/j.compstruct.2017.09.025_b0120
  article-title: Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2016.08.038
– volume: 8
  start-page: 55
  issue: 1
  year: 2006
  ident: 10.1016/j.compstruct.2017.09.025_b0255
  article-title: Damage characteristics of composite honeycomb sandwich panels in bending under quasi-static loading
  publication-title: J Sandwich Struct Mater
  doi: 10.1177/1099636206056888
– volume: 124–125
  start-page: 145
  year: 2017
  ident: 10.1016/j.compstruct.2017.09.025_b0290
  article-title: Parameterization of criss-cross configurations for multiobjective crashworthiness optimization
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2017.02.027
– volume: 116
  start-page: 670
  year: 2014
  ident: 10.1016/j.compstruct.2017.09.025_b0155
  article-title: Experimental study on the low velocity impact responses of all-composite pyramidal truss core sandwich panel after high temperature exposure
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2014.06.005
– volume: 43
  start-page: 6
  year: 2012
  ident: 10.1016/j.compstruct.2017.09.025_b0245
  article-title: Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2011.12.002
– volume: 12
  start-page: 213
  issue: 3–4
  year: 2005
  ident: 10.1016/j.compstruct.2017.09.025_b0235
  article-title: Experimental Analysis and Modeling of the Crushing of Honeycomb Cores
  publication-title: Appl Compos Mater
  doi: 10.1007/s10443-005-1125-3
– volume: 45
  start-page: 205
  issue: 2
  year: 2009
  ident: 10.1016/j.compstruct.2017.09.025_b0110
  article-title: Virtual testing of sandwich core structures using dynamic finite element simulations
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2008.09.017
– volume: 18
  start-page: 95
  issue: 1
  year: 2015
  ident: 10.1016/j.compstruct.2017.09.025_b0205
  article-title: Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures
  publication-title: J Sandwich Struct Mater
  doi: 10.1177/1099636215603047
– year: 2014
  ident: 10.1016/j.compstruct.2017.09.025_b0280
  article-title: Numerical investigations on the ballistic performance of honeycomb sandwich structures reinforced by functionally graded plates
– volume: 108
  start-page: 1001
  year: 2014
  ident: 10.1016/j.compstruct.2017.09.025_b0010
  article-title: Dynamic behavior of aluminum honeycomb sandwich panels under air blast: Experiment and numerical analysis
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.10.034
– volume: 99
  start-page: 8
  year: 2013
  ident: 10.1016/j.compstruct.2017.09.025_b0265
  article-title: Experimental and numerical investigations of low velocity impact on sandwich panels
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.11.031
– year: 1999
  ident: 10.1016/j.compstruct.2017.09.025_b0040
– volume: 81
  start-page: 323
  issue: 3
  year: 2007
  ident: 10.1016/j.compstruct.2017.09.025_b0140
  article-title: Failure mode investigation of sandwich beams with functionally graded core
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2006.08.030
– volume: 92
  start-page: 2039
  issue: 9
  year: 2010
  ident: 10.1016/j.compstruct.2017.09.025_b0005
  article-title: Quasi-static indentation tests on aluminium foam sandwich panels
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2009.11.014
– volume: 126
  start-page: 371
  year: 2015
  ident: 10.1016/j.compstruct.2017.09.025_b0130
  article-title: Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.02.039
– volume: 93
  start-page: 28
  year: 2016
  ident: 10.1016/j.compstruct.2017.09.025_b0125
  article-title: The low velocity impact response of curvilinear-core sandwich structures
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2016.01.012
– volume: 9
  start-page: 309
  issue: 4
  year: 2007
  ident: 10.1016/j.compstruct.2017.09.025_b0250
  article-title: Investigation of parameters governing the damage and energy absorption characteristics of honeycomb sandwich panels
  publication-title: J Sandwich Struct Mater
  doi: 10.1177/1099636207067134
– volume: 55
  start-page: 1899
  issue: 5
  year: 2017
  ident: 10.1016/j.compstruct.2017.09.025_b0295
  article-title: Multi-objective and multi-case reliability-based design optimization for tailor rolled blank (TRB) structures
  publication-title: Struct Multidisciplinary Optim
  doi: 10.1007/s00158-016-1592-1
– volume: 43
  start-page: 2479
  issue: 9
  year: 2006
  ident: 10.1016/j.compstruct.2017.09.025_b0145
  article-title: Low-velocity impact response of sandwich beams with functionally graded core
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2005.06.003
– volume: 153
  start-page: 614
  year: 2016
  ident: 10.1016/j.compstruct.2017.09.025_b0065
  article-title: Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.06.059
– volume: 225
  start-page: 207
  issue: 4
  year: 2011
  ident: 10.1016/j.compstruct.2017.09.025_b0270
  article-title: A review of low-velocity impact on sandwich structures
  publication-title: Proc Inst Mech Eng, Part L: J Mater Des Appl
– volume: 220
  start-page: 53
  issue: 2
  year: 2006
  ident: 10.1016/j.compstruct.2017.09.025_b0185
  article-title: Quasi-static and low-velocity impact failure of aluminium honeycomb sandwich panels, proceedings of the institution of mechanical engineers
  publication-title: Part L: J Mater: Des Appl
– year: 2003
  ident: 10.1016/j.compstruct.2017.09.025_b0015
– volume: 51
  start-page: 1071
  year: 2013
  ident: 10.1016/j.compstruct.2017.09.025_b0115
  article-title: Crashworthiness optimization of corrugated sandwich panels
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.04.086
– volume: 159
  start-page: 1
  year: 2017
  ident: 10.1016/j.compstruct.2017.09.025_b0135
  article-title: Curved sandwich composites with layer-wise graded cores under impact loads
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.09.054
– volume: 75
  start-page: 100
  year: 2015
  ident: 10.1016/j.compstruct.2017.09.025_b0070
  article-title: Response of aluminium honeycomb sandwich panels subjected to foam projectile impact – An experimental study
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2014.07.019
– volume: 117–118
  start-page: 21
  year: 2016
  ident: 10.1016/j.compstruct.2017.09.025_b0195
  article-title: Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2016.04.003
– volume: 35
  start-page: 205
  issue: 3
  year: 1999
  ident: 10.1016/j.compstruct.2017.09.025_b0190
  article-title: The strength characteristics of aluminum honeycomb sandwich panels
  publication-title: Thin-walled Struct
  doi: 10.1016/S0263-8231(99)00026-9
– volume: 106
  start-page: 326
  year: 2013
  ident: 10.1016/j.compstruct.2017.09.025_b0090
  article-title: Numerical assessment of the impact behavior of honeycomb sandwich structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.06.010
– volume: 85
  start-page: 20
  issue: 1
  year: 2008
  ident: 10.1016/j.compstruct.2017.09.025_b0200
  article-title: Low-velocity impact failure of aluminium honeycomb sandwich panels
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2007.10.016
– volume: 55
  start-page: 1091
  issue: 3
  year: 2017
  ident: 10.1016/j.compstruct.2017.09.025_b0300
  article-title: On design optimization for structural crashworthiness and its state of the art
  publication-title: Struct Multidisciplinary Optim
  doi: 10.1007/s00158-016-1579-y
– volume: 42
  start-page: 3714
  issue: 11
  year: 2007
  ident: 10.1016/j.compstruct.2017.09.025_b0055
  article-title: Effect of face sheet material on the indentation response of metallic foams
  publication-title: J Mater Sci
  doi: 10.1007/s10853-006-0373-4
– volume: 30
  start-page: 74
  year: 2013
  ident: 10.1016/j.compstruct.2017.09.025_b0230
  article-title: Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam
  publication-title: Marine Struct
  doi: 10.1016/j.marstruc.2012.11.002
– volume: 32
  start-page: 618
  issue: 1–4
  year: 2005
  ident: 10.1016/j.compstruct.2017.09.025_b0225
  article-title: Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2004.09.001
– ident: 10.1016/j.compstruct.2017.09.025_b0170
  doi: 10.4271/2015-36-0219
– volume: 96
  start-page: 50
  year: 2016
  ident: 10.1016/j.compstruct.2017.09.025_b0060
  article-title: Impact perforation of sandwich panels with aluminum foam core: A numerical and analytical study
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2016.05.013
– volume: 88
  start-page: 102
  year: 2016
  ident: 10.1016/j.compstruct.2017.09.025_b0305
  article-title: On design of multi-cell thin-wall structures for crashworthiness
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2015.09.003
– volume: 64
  start-page: 62
  year: 2014
  ident: 10.1016/j.compstruct.2017.09.025_b0275
  article-title: Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2013.10.004
– year: 1987
  ident: 10.1016/j.compstruct.2017.09.025_b0045
– volume: 97
  start-page: 370
  year: 2013
  ident: 10.1016/j.compstruct.2017.09.025_b0150
  article-title: The impact response of graded foam sandwich structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.10.037
– volume: 19
  start-page: 439
  issue: 5–6
  year: 1997
  ident: 10.1016/j.compstruct.2017.09.025_b0240
  article-title: Axial crush of metallic honeycombs
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(97)00004-3
– ident: 10.1016/j.compstruct.2017.09.025_b0285
– volume: 44
  start-page: 2819
  issue: 24
  year: 2010
  ident: 10.1016/j.compstruct.2017.09.025_b0035
  article-title: Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels
  publication-title: J Compos Mater
  doi: 10.1177/0021998310371541
– volume: 133
  start-page: 154
  year: 2017
  ident: 10.1016/j.compstruct.2017.09.025_b0080
  article-title: Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.07.057
– volume: 67
  start-page: 313
  year: 2014
  ident: 10.1016/j.compstruct.2017.09.025_b0095
  article-title: Compression after impact test (CAI) on NOMEX™ honeycomb sandwich panels with thin aluminum skins
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2014.07.015
– volume: 121
  start-page: 304
  year: 2015
  ident: 10.1016/j.compstruct.2017.09.025_b0105
  article-title: Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2014.11.034
– volume: 79
  start-page: 146
  year: 2015
  ident: 10.1016/j.compstruct.2017.09.025_b0160
  article-title: The effect of temperature on the bending properties and failure mechanism of composite truss core sandwich structures
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2015.09.017
– volume: 14
  start-page: 655
  issue: 6
  year: 2012
  ident: 10.1016/j.compstruct.2017.09.025_b0075
  article-title: Crashworthiness optimization design of honeycomb sandwich panel based on factor screening
  publication-title: J Sandwich Struct Mater
  doi: 10.1177/1099636212445057
– volume: 36
  start-page: 687
  issue: 5
  year: 2009
  ident: 10.1016/j.compstruct.2017.09.025_b0220
  article-title: A numerical simulation of the blast impact of square metallic sandwich panels
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2008.12.004
– volume: 158
  start-page: 30
  year: 2016
  ident: 10.1016/j.compstruct.2017.09.025_b0030
  article-title: Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.09.009
– volume: 60
  start-page: 1147
  issue: 8
  year: 2000
  ident: 10.1016/j.compstruct.2017.09.025_b0260
  article-title: Indentation failure behavior of honeycomb sandwich panels
  publication-title: Compos Sci Technol
  doi: 10.1016/S0266-3538(00)00023-3
– volume: 35
  start-page: 937
  issue: 8
  year: 2008
  ident: 10.1016/j.compstruct.2017.09.025_b0215
  article-title: Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2007.11.003
– volume: 101
  start-page: 204
  year: 2013
  ident: 10.1016/j.compstruct.2017.09.025_b0085
  article-title: Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.02.010
– volume: 132
  start-page: 1129
  year: 2015
  ident: 10.1016/j.compstruct.2017.09.025_b0025
  article-title: Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.07.058
SSID ssj0008411
Score 2.5657184
Snippet Aluminum sandwich panels with honeycomb core have been widely used as energy absorption structure in lightweight design. This study aimed to characterize the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110
SubjectTerms Crashworthiness
Digital image correlation (DIC)
Failure modes
Finite element
Honeycomb core
Indentation tests
Sandwich panel
Title Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels
URI https://dx.doi.org/10.1016/j.compstruct.2017.09.025
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GDl4jWuWJm3wNMbGVNxFB7uV5aNsMrLBJuLFv92XpnUTBAWhl4T32sdr8l7S_vJ7CF0zxa2hlpNEK0tiqQSRwiaEakPbSsGazvjvHY9DMRjF92M-rqFudRbGwyrL2B9iehGty55W6c3WcjZrPcHugUF6gwTor9gf-I3jxI_ym48NzCONixq8Xph46RLNEzBeHrYdeFo9yCspGE990eyfUtRW2ukfoP1yvYg7waRDVLPuCO1tsQgeI9fbYunHE2ewew3_YeZ4FWCCeOGw50UM54xcIbQsgO2hrb_TNuNFjqcLZ9_BcoVXIP0201MMgQPMPEGjfu-5OyBlGQWiYcKuiRDccMl1qi2H2ckjxSh0sVzSWJvI0NxYzo3QOTNx7inspGmLSapTySdRlLNTVHfwzDOERWJSzQTcpT3xZdOVTZjVuZS5gX2iMA2UVJ7LdMkx7ktdzLMKTPaSbXyeeZ9nkczA5w1EvzSXgWfjDzq31cvJvo2ZDNLBr9rn_9K-QLvQ8jhAQvklqoOAvYLlyVo1i_HXRDudu4fB8BMoveqL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe1AP4hPrcw9elyZNdpPFUymV1j4uWuht6T6CFUkLVsR_72w2rRUEBSGXbGaSZbI7M5t8-w3ATaSYNaFlNNHK0lgoTgW3CQ21CZtKYU5n3PeO4Yh3x_H9hE0q0F7thXGwytL3e59eeOuypVFas7GYzRoPuHqIMLxhAHRHnG5BzbFTsSrUWr1-d7R2yGlclOF18tQplIAeD_NyyG1P1epwXklBeurqZv8UpTYiz90-7JUpI2n5Xh1AxeaHsLtBJHgEeWeDqJ9Mc0PyN_8r5oW8eqQgmefEUSP6rUZ5IbQosO3-XH9nbibzjDzNc_uBPVfkFaXfZ_qJoO_Abh7D-K7z2O7SspIC1Thnl5RzZphgOtWW4QRlgYpCbIoyEcbaBCbMjGXMcJ1FJs4ci50wTT5NdSrYNAiy6ASqOT7zFAhPTKojjndpTl3ldGWTyOpMiMzgUpGbOiQry0ld0oy7ahcvcoUne5ZfNpfO5jIQEm1eh3CtufBUG3_QuV29HPlt2EiMCL9qn_1L-xq2u4_DgRz0Rv1z2MErDhZIQ3YBVRS2l5itLNVVORo_ASon7Tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+numerical+studies+on+indentation+and+perforation+characteristics+of+honeycomb+sandwich+panels&rft.jtitle=Composite+structures&rft.au=Sun%2C+Guangyong&rft.au=Chen%2C+Dongdong&rft.au=Huo%2C+Xintao&rft.au=Zheng%2C+Gang&rft.date=2018-01-15&rft.pub=Elsevier+Ltd&rft.issn=0263-8223&rft.eissn=1879-1085&rft.volume=184&rft.spage=110&rft.epage=124&rft_id=info:doi/10.1016%2Fj.compstruct.2017.09.025&rft.externalDocID=S0263822317317348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon