SPH simulation of floating structures with moorings
The open-source code DualSPHysics is applied to simulate the interaction of sea waves with floating offshore structures, which are typically moored to the seabed, such as vessels, boats, floating breakwaters and wave energy converters (WECs). The goal is to develop a numerical tool that allows the s...
Saved in:
Published in | Coastal engineering (Amsterdam) Vol. 153; p. 103560 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-3839 1872-7379 |
DOI | 10.1016/j.coastaleng.2019.103560 |
Cover
Loading…
Abstract | The open-source code DualSPHysics is applied to simulate the interaction of sea waves with floating offshore structures, which are typically moored to the seabed, such as vessels, boats, floating breakwaters and wave energy converters (WECs). The goal is to develop a numerical tool that allows the study of the survivability of floating moored devices under highly energetic sea states, obtaining the optimum mooring layout to increase lifetime. The moorings are modelled by coupling DualSPHysics with MoorDyn, a lumped-mass mooring dynamics model. MoorDyn represents mooring line behaviour subject to axial elasticity, hydrodynamic forces in quiescent water, and vertical contact forces with the seabed. Calculated mooring tensions at the fairlead are added as external forces in order to compute the resulting response and motions of the floating structures in DualSPHysics. The coupled model has been validated against data from scale model tests generated during the experimental campaigns for the European MaRINET2 EsflOWC project. In order to evaluate the accuracy of the coupling implementation with the lumped-mass mooring model, free-surface elevation, motions of the floater and mooring tensions are numerically computed and compared to experimental data. Overall, the results demonstrate the accuracy of the coupling between DualSPHysics and MoorDyn to simulate the motion of a moored floating structure under the action of regular waves. Going forward, this modelling approach can be employed to simulate more complex floating structures such as floating wind turbines, buoys, WECs, offshore platforms, etc.
•DualSPHysics and MoorDyn are coupled to simulate floating moored devices.•Motions of the floating structure and mooring tensions are in agreement with experimental data.•The proposed model will allow the study of the survivability of structures under extreme wave conditions. |
---|---|
AbstractList | The open-source code DualSPHysics is applied to simulate the interaction of sea waves with floating offshore structures, which are typically moored to the seabed, such as vessels, boats, floating breakwaters and wave energy converters (WECs). The goal is to develop a numerical tool that allows the study of the survivability of floating moored devices under highly energetic sea states, obtaining the optimum mooring layout to increase lifetime. The moorings are modelled by coupling DualSPHysics with MoorDyn, a lumped-mass mooring dynamics model. MoorDyn represents mooring line behaviour subject to axial elasticity, hydrodynamic forces in quiescent water, and vertical contact forces with the seabed. Calculated mooring tensions at the fairlead are added as external forces in order to compute the resulting response and motions of the floating structures in DualSPHysics. The coupled model has been validated against data from scale model tests generated during the experimental campaigns for the European MaRINET2 EsflOWC project. In order to evaluate the accuracy of the coupling implementation with the lumped-mass mooring model, free-surface elevation, motions of the floater and mooring tensions are numerically computed and compared to experimental data. Overall, the results demonstrate the accuracy of the coupling between DualSPHysics and MoorDyn to simulate the motion of a moored floating structure under the action of regular waves. Going forward, this modelling approach can be employed to simulate more complex floating structures such as floating wind turbines, buoys, WECs, offshore platforms, etc.
•DualSPHysics and MoorDyn are coupled to simulate floating moored devices.•Motions of the floating structure and mooring tensions are in agreement with experimental data.•The proposed model will allow the study of the survivability of structures under extreme wave conditions. |
ArticleNumber | 103560 |
Author | Stratigaki, Vasiliki Hall, Matthew Wu, Minghao Altomare, Corrado Crespo, Alejandro J.C. Troch, Peter Gómez-Gesteira, Moncho Domínguez, José M. Cappietti, Lorenzo |
Author_xml | – sequence: 1 givenname: José M. orcidid: 0000-0002-2586-5081 surname: Domínguez fullname: Domínguez, José M. organization: Environmental Physics Laboratory, Universidade de Vigo, Campus As Lagoas s/n, 32004, Ourense, Spain – sequence: 2 givenname: Alejandro J.C. orcidid: 0000-0003-3384-5061 surname: Crespo fullname: Crespo, Alejandro J.C. email: alexbexe@uvigo.es organization: Environmental Physics Laboratory, Universidade de Vigo, Campus As Lagoas s/n, 32004, Ourense, Spain – sequence: 3 givenname: Matthew orcidid: 0000-0002-0398-8320 surname: Hall fullname: Hall, Matthew organization: Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada – sequence: 4 givenname: Corrado orcidid: 0000-0001-8817-0431 surname: Altomare fullname: Altomare, Corrado organization: Flanders Hydraulic Research, Berchemlei 115, 2140, Antwerp, Belgium – sequence: 5 givenname: Minghao surname: Wu fullname: Wu, Minghao organization: Department of Civil Engineering, Ghent University, Technologiepark 904, 9052, Ghent, Belgium – sequence: 6 givenname: Vasiliki orcidid: 0000-0002-4898-5692 surname: Stratigaki fullname: Stratigaki, Vasiliki organization: Department of Civil Engineering, Ghent University, Technologiepark 904, 9052, Ghent, Belgium – sequence: 7 givenname: Peter orcidid: 0000-0003-3274-0874 surname: Troch fullname: Troch, Peter organization: Department of Civil Engineering, Ghent University, Technologiepark 904, 9052, Ghent, Belgium – sequence: 8 givenname: Lorenzo orcidid: 0000-0002-3957-5763 surname: Cappietti fullname: Cappietti, Lorenzo organization: Department of Civil and Environmental Engineering, University of Florence, Florence, Italy – sequence: 9 givenname: Moncho surname: Gómez-Gesteira fullname: Gómez-Gesteira, Moncho organization: Environmental Physics Laboratory, Universidade de Vigo, Campus As Lagoas s/n, 32004, Ourense, Spain |
BookMark | eNqNkN1KAzEQhYNUsK2-Q15ga6bZ_OyNoEWtUFBQr0M2m9SU7UaSVPHtTa0geKNzM8OBczjzTdBoCINFCAOZAQF-vpmZoFPWvR3WszmBpsiUcXKExiDFvBJUNCM0JlTIikranKBJShtShks2RvTxYYmT3-56nX0YcHDY9aHcwxqnHHcm76JN-N3nF7wNIRY9naJjp_tkz773FD3fXD8tltXq_vZucbmqDAWZK8ah5tq1uquZBqYdF1JwVzvBm1ZzSQl3HQOAtqG0AyOgFrYl2thO8JoROkUXh1wTQ0rROmV8_qqZo_a9AqL2CNRG_SBQewTqgKAEyF8Br9Fvdfz4j_XqYLXlwTdvo0rG26F089GarLrg_w75BF5Ofws |
CitedBy_id | crossref_primary_10_1016_j_renene_2023_01_081 crossref_primary_10_1016_j_oceaneng_2022_113442 crossref_primary_10_1016_j_oceaneng_2023_115469 crossref_primary_10_1016_j_oceaneng_2022_113320 crossref_primary_10_1016_j_coastaleng_2023_104315 crossref_primary_10_1016_j_oceaneng_2024_117522 crossref_primary_10_3390_jmse9030244 crossref_primary_10_3390_jmse8030159 crossref_primary_10_1016_j_apenergy_2024_124202 crossref_primary_10_1016_j_oceaneng_2022_110849 crossref_primary_10_1016_j_apor_2024_103885 crossref_primary_10_3390_en14030760 crossref_primary_10_1016_j_oceaneng_2024_119677 crossref_primary_10_3390_jmse13010142 crossref_primary_10_1080_21664250_2021_1991608 crossref_primary_10_1007_s40571_020_00386_7 crossref_primary_10_1115_1_4056522 crossref_primary_10_3390_jmse10081116 crossref_primary_10_1063_5_0231193 crossref_primary_10_1007_s11440_020_01131_3 crossref_primary_10_1016_j_marstruc_2023_103516 crossref_primary_10_1063_5_0142249 crossref_primary_10_1016_j_oceaneng_2023_115077 crossref_primary_10_1016_j_oceaneng_2024_117874 crossref_primary_10_1016_j_enconman_2020_112677 crossref_primary_10_1016_j_energy_2022_123641 crossref_primary_10_1007_s40571_022_00468_8 crossref_primary_10_1016_j_cpc_2022_108581 crossref_primary_10_1016_j_oceaneng_2023_115906 crossref_primary_10_1016_j_apor_2021_102938 crossref_primary_10_3390_w13202847 crossref_primary_10_1016_j_oceaneng_2021_110077 crossref_primary_10_3390_w13030384 crossref_primary_10_1016_j_apor_2025_104441 crossref_primary_10_3390_en15113993 crossref_primary_10_37394_232013_2024_19_15 crossref_primary_10_1016_j_coastaleng_2023_104333 crossref_primary_10_1007_s40571_021_00404_2 crossref_primary_10_1016_j_envres_2024_119191 crossref_primary_10_2208_jscejoe_78_2_I_169 crossref_primary_10_21712_lajer_2024_v11_n2_p119_134 crossref_primary_10_1016_j_apor_2021_102652 crossref_primary_10_3390_w13152133 crossref_primary_10_1186_s43251_020_00022_7 crossref_primary_10_1016_j_apenergy_2022_118629 crossref_primary_10_1002_eqe_3904 crossref_primary_10_3390_en15020502 crossref_primary_10_1016_j_apor_2023_103832 crossref_primary_10_1063_5_0235249 crossref_primary_10_1016_j_oceaneng_2024_119785 crossref_primary_10_1002_ese3_1957 crossref_primary_10_1016_j_cpc_2020_107157 crossref_primary_10_1016_j_oceaneng_2024_119148 crossref_primary_10_1007_s13344_023_0010_x crossref_primary_10_1016_j_jfluidstructs_2025_104273 crossref_primary_10_1016_j_ijnaoe_2022_100467 crossref_primary_10_3390_jmse8110905 crossref_primary_10_1016_j_joes_2022_03_010 crossref_primary_10_3390_jmse9090983 crossref_primary_10_3390_w12113189 crossref_primary_10_3390_jmse8100826 crossref_primary_10_1016_j_apor_2024_104146 crossref_primary_10_1680_jencm_19_00038 crossref_primary_10_1016_j_engstruct_2020_111349 crossref_primary_10_1016_j_coastaleng_2022_104230 crossref_primary_10_1016_j_enganabound_2023_09_019 crossref_primary_10_1016_j_oceaneng_2025_120622 crossref_primary_10_1016_j_jfluidstructs_2020_103210 crossref_primary_10_1016_j_rser_2023_114092 crossref_primary_10_3390_en15218276 crossref_primary_10_1016_j_oceaneng_2023_115419 crossref_primary_10_1016_j_marstruc_2024_103731 crossref_primary_10_1016_j_apor_2024_104151 crossref_primary_10_1016_j_renene_2020_10_012 crossref_primary_10_1016_j_oceaneng_2024_117037 crossref_primary_10_1108_WJE_07_2021_0445 crossref_primary_10_3390_jmse11040700 crossref_primary_10_1007_s40571_021_00451_9 crossref_primary_10_1016_j_coastaleng_2021_104066 crossref_primary_10_3390_math11234838 crossref_primary_10_1016_j_ijnaoe_2023_100544 crossref_primary_10_1115_1_4052477 crossref_primary_10_1016_j_oceaneng_2022_112819 crossref_primary_10_1007_s40571_021_00429_7 crossref_primary_10_1016_j_oceaneng_2020_107475 crossref_primary_10_3389_fmars_2022_853452 crossref_primary_10_3390_w15223892 crossref_primary_10_1016_j_coastaleng_2020_103687 crossref_primary_10_1016_j_coastaleng_2024_104658 crossref_primary_10_3390_jmse12071195 crossref_primary_10_1016_j_apor_2021_102734 crossref_primary_10_1016_j_oceaneng_2024_117102 crossref_primary_10_3390_w13040429 crossref_primary_10_1111_mice_12651 crossref_primary_10_3390_en15093251 crossref_primary_10_1016_j_apor_2021_102730 crossref_primary_10_1098_rsos_231453 crossref_primary_10_1016_j_oceaneng_2024_119215 crossref_primary_10_1016_j_oceaneng_2024_118403 crossref_primary_10_1016_j_apenergy_2024_124508 crossref_primary_10_59887_fpg_kx4r_pr4d_fba8 crossref_primary_10_3390_jmse9040417 crossref_primary_10_1017_S1446181123000160 crossref_primary_10_1002_fld_4894 crossref_primary_10_1016_j_oceaneng_2024_117697 crossref_primary_10_1186_s43251_024_00130_8 crossref_primary_10_1016_j_apor_2023_103757 crossref_primary_10_1016_j_oceaneng_2025_120353 crossref_primary_10_1007_s13344_023_0030_6 crossref_primary_10_1016_j_oceaneng_2025_120479 crossref_primary_10_1016_j_apor_2022_103210 crossref_primary_10_1016_j_jcp_2022_111312 crossref_primary_10_1016_j_oceaneng_2022_112878 crossref_primary_10_1007_s11269_022_03180_7 crossref_primary_10_1155_2023_2743309 |
Cites_doi | 10.1016/j.apor.2017.02.005 10.1002/we.1669 10.3390/en11030641 10.1016/j.coastaleng.2012.06.002 10.1016/j.apenergy.2017.07.138 10.1016/j.cpc.2008.12.004 10.1061/(ASCE)0733-950X(2003)129:6(250) 10.1016/j.coastaleng.2018.05.003 10.1016/j.jfluidstructs.2013.05.010 10.1016/j.jcp.2016.12.005 10.1002/fld.4031 10.1061/(ASCE)WW.1943-5460.0000225 10.1016/j.coastaleng.2017.05.001 10.1016/j.oceaneng.2015.05.035 10.1080/00221686.2010.9641242 10.1017/S0022112098003280 10.1016/j.ijome.2016.05.003 10.1007/s40722-016-0061-7 10.1016/j.jfluidstructs.2018.06.012 10.1016/S1369-9350(00)00002-X 10.1080/21664250.2018.1436243 10.1016/j.cpc.2014.10.004 10.1007/s42241-018-0010-0 10.1016/j.coastaleng.2017.06.006 10.1016/j.compstruc.2013.10.011 10.1016/j.rser.2019.05.025 10.1016/S0045-7825(96)01078-X 10.1016/j.coastaleng.2014.11.001 10.1016/j.oceaneng.2016.02.027 10.1016/j.envsoft.2018.02.003 10.3390/en10050666 10.1080/00221686.2015.1119209 10.1016/j.coastaleng.2018.04.021 10.1016/j.cpc.2017.11.016 10.1016/j.apor.2014.12.003 10.1016/j.coastaleng.2018.07.007 10.1007/BF02123482 10.1016/j.compfluid.2018.11.012 10.1146/annurev.aa.30.090192.002551 10.1016/j.coastaleng.2017.06.004 10.1142/S0578563417500103 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.coastaleng.2019.103560 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7379 |
ExternalDocumentID | 10_1016_j_coastaleng_2019_103560 S0378383918305581 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 6TS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFYP ABLST ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE J1W JJJVA KCYFY KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSJ SST SSZ T5K TN5 WUQ XJT XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c318t-56146afbad45a15af67876f4f769ba68306fd5111b933d1c7147eb0aced764503 |
IEDL.DBID | .~1 |
ISSN | 0378-3839 |
IngestDate | Tue Jul 01 00:25:27 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Fri Feb 23 02:49:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Smoothed particle hydrodynamics Floating bodies Meshless methods DualSPHysics Moorings Numerical modelling MoorDyn |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-56146afbad45a15af67876f4f769ba68306fd5111b933d1c7147eb0aced764503 |
ORCID | 0000-0002-2586-5081 0000-0001-8817-0431 0000-0002-3957-5763 0000-0003-3384-5061 0000-0002-0398-8320 0000-0003-3274-0874 0000-0002-4898-5692 |
ParticipantIDs | crossref_citationtrail_10_1016_j_coastaleng_2019_103560 crossref_primary_10_1016_j_coastaleng_2019_103560 elsevier_sciencedirect_doi_10_1016_j_coastaleng_2019_103560 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationTitle | Coastal engineering (Amsterdam) |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Khayyer, Gotoh, Shimizu (bib31) 2017; 332 Ikari, Gotoh (bib28) 2009 Molteni, Colagrossi (bib36) 2009; 180 Rota-Roselli, Vernengo, Altomare, Brizzolara, Bonfiglio, Guercio (bib43) 2018; 103 Randolph, Quiggin (bib41) 2009 St-Germain, Nistor, Townsend, Shibayama (bib47) 2014; 140 Zheng, Shao, Khayyer, Duan, Ma, Liao (bib56) 2017; 59 Verbrugghe, Domínguez, Crespo, Altomare, Stratigaki, Troch, Kortenhaus (bib48) 2018; 138 Palm, Eskilsson, Moura Paredes, Bergdahl (bib40) 2016; 16 Sun, Colagrossi, Marrone, Antuono, Zhang (bib46) 2018; 224 Wendland (bib51) 1995; 4 Higuera, Lara, Losada (bib27) 2013; 71 Monaghan, Cas, Kos, Hallworth (bib38) 1999; 379 Ren, He, Dong, Wen (bib42) 2015; 50 Monaghan (bib37) 1992; 30 Violeau, Rogers (bib49) 2016; 54 Altomare, Domínguez, Crespo, González-Cao, Suzuki, Gómez-Gesteira, Troch (bib3) 2017; 127 Gómez-Gesteira, Rogers, Dalrymple, Crespo (bib20) 2010; 48 Khayyer, Gotoh, Shimizu, Gotoh, Falahaty, Shao (bib32) 2018; 140 Canelas, Domínguez, Crespo, Gómez-Gesteira, Ferreira (bib8) 2015; 78 Leimkuhler, Reich, Skeel (bib33) 1996 Devolver, Stratigaki, Troch, Rauwoens (bib14) 2018; 11 Meringolo, Marrone, Colagrossi, Liu (bib35) 2019; 179 Altomare, Crespo, Domínguez, Gómez-Gesteira, Suzuki, Verwaest (bib2) 2015; 96 Bouscasse, Colagrossi, Marrone, Antuono (bib7) 2013; 42 Hall, Buckham, Crawford (bib26) 2014; 17 Meringolo, Liu, Wang, Colagrossi (bib34) 2019; 140 Domínguez, Crespo, Cercós-Pita, Fourtakas, Rogers, Vacondio (bib16) 2015 Crespo, Domínguez, Rogers, Gómez-Gesteira, Longshaw, Canelas, Vacondio, Barreiro, García-Feal (bib10) 2015; 187 Altomare, Crespo, Rogers, Domínguez, Gironella, Gómez-Gesteira (bib1) 2014; 130 Journeé, Adegeest (bib30) 2003 Hall (bib24) 2018 Ikari, Gotoh, Khayyer (bib29) 2011 Zhang, Crespo, Altomare, Domínguez, Marzeddu, Shang, Gómez-Gesteira (bib55) 2018; 30 Davidson, Ringwood (bib13) 2017; 10 Gotoh, Khayyer (bib21) 2018; 60 Elhanafi, Macfarlane, Fleming, Leong (bib17) 2017; 205 Wu, Stratigaki, Verbrugghe, Troch, Altomare, Crespo, Kisacik, Cappietti, Domínguez, Hall, Gómez-Gesteira, Stansby, Canelas, Ferreira (bib52) 2018 Crespo, Altomare, Domínguez, González-Cao, Gómez-Gesteira (bib11) 2017; 126 Gu, Stansby, Stallard, Carpintero Moreno (bib22) 2018; 82 Dewey (bib15) 1999; 1 Faltinsen (bib18) 1993 Rudman, Cleary (bib44) 2016; 115 Barreiro, Crespo, Domínguez, García-Feal, Zabala, Gómez-Gesteira (bib5) 2016; 2 Zabala, Henriques, Blanco, Gomez, Gato, Bidaguren, Falcão, Amezaga, Gomez (bib54) 2019; 111 Ardianti, Mutsuda, Kawawaki, Doi, Fukuhara (bib4) 2017; 64 Crespo, Domínguez, Gómez-Gesteira, Hall, Altomare, Wu, Verbrugghe, Stratigaki, Troch, Kisacik, Simonetti, Cappietti, Canelas, Ferreira, Stansby (bib12) 2018 Hall (bib23) 2017 Hall, Goupee (bib25) 2015; 104 Monaghan, Kos, Issa (bib39) 2003; 129 Xu, Lin (bib53) 2017; 127 Sirnivas, Yu, Hall, Bosma (bib45) 2016 Ferri, Palm (bib19) 2015 Vissio, Passione, Hall (bib50) 2015 Crespo, Gómez-Gesteira, Dalrymple (bib9) 2007; 5 Belytschko, Krongauz, Organ, Fleming, Krysl (bib6) 1996; 139 Journeé (10.1016/j.coastaleng.2019.103560_bib30) 2003 Ardianti (10.1016/j.coastaleng.2019.103560_bib4) 2017; 64 Hall (10.1016/j.coastaleng.2019.103560_bib24) 2018 Vissio (10.1016/j.coastaleng.2019.103560_bib50) 2015 Barreiro (10.1016/j.coastaleng.2019.103560_bib5) 2016; 2 Dewey (10.1016/j.coastaleng.2019.103560_bib15) 1999; 1 Leimkuhler (10.1016/j.coastaleng.2019.103560_bib33) 1996 Wendland (10.1016/j.coastaleng.2019.103560_bib51) 1995; 4 Khayyer (10.1016/j.coastaleng.2019.103560_bib32) 2018; 140 Higuera (10.1016/j.coastaleng.2019.103560_bib27) 2013; 71 Zheng (10.1016/j.coastaleng.2019.103560_bib56) 2017; 59 Belytschko (10.1016/j.coastaleng.2019.103560_bib6) 1996; 139 Gotoh (10.1016/j.coastaleng.2019.103560_bib21) 2018; 60 Altomare (10.1016/j.coastaleng.2019.103560_bib1) 2014; 130 Altomare (10.1016/j.coastaleng.2019.103560_bib3) 2017; 127 Crespo (10.1016/j.coastaleng.2019.103560_bib11) 2017; 126 Ferri (10.1016/j.coastaleng.2019.103560_bib19) 2015 Davidson (10.1016/j.coastaleng.2019.103560_bib13) 2017; 10 Randolph (10.1016/j.coastaleng.2019.103560_bib41) 2009 Ren (10.1016/j.coastaleng.2019.103560_bib42) 2015; 50 Zabala (10.1016/j.coastaleng.2019.103560_bib54) 2019; 111 Faltinsen (10.1016/j.coastaleng.2019.103560_bib18) 1993 Ikari (10.1016/j.coastaleng.2019.103560_bib29) 2011 Wu (10.1016/j.coastaleng.2019.103560_bib52) 2018 Sirnivas (10.1016/j.coastaleng.2019.103560_bib45) 2016 Violeau (10.1016/j.coastaleng.2019.103560_bib49) 2016; 54 Rota-Roselli (10.1016/j.coastaleng.2019.103560_bib43) 2018; 103 Monaghan (10.1016/j.coastaleng.2019.103560_bib38) 1999; 379 Palm (10.1016/j.coastaleng.2019.103560_bib40) 2016; 16 Verbrugghe (10.1016/j.coastaleng.2019.103560_bib48) 2018; 138 Elhanafi (10.1016/j.coastaleng.2019.103560_bib17) 2017; 205 Khayyer (10.1016/j.coastaleng.2019.103560_bib31) 2017; 332 Meringolo (10.1016/j.coastaleng.2019.103560_bib34) 2019; 140 Crespo (10.1016/j.coastaleng.2019.103560_bib12) 2018 Bouscasse (10.1016/j.coastaleng.2019.103560_bib7) 2013; 42 Devolver (10.1016/j.coastaleng.2019.103560_bib14) 2018; 11 Xu (10.1016/j.coastaleng.2019.103560_bib53) 2017; 127 Zhang (10.1016/j.coastaleng.2019.103560_bib55) 2018; 30 Hall (10.1016/j.coastaleng.2019.103560_bib25) 2015; 104 Gu (10.1016/j.coastaleng.2019.103560_bib22) 2018; 82 Altomare (10.1016/j.coastaleng.2019.103560_bib2) 2015; 96 Hall (10.1016/j.coastaleng.2019.103560_bib23) 2017 Crespo (10.1016/j.coastaleng.2019.103560_bib10) 2015; 187 Ikari (10.1016/j.coastaleng.2019.103560_bib28) 2009 Hall (10.1016/j.coastaleng.2019.103560_bib26) 2014; 17 Crespo (10.1016/j.coastaleng.2019.103560_bib9) 2007; 5 Monaghan (10.1016/j.coastaleng.2019.103560_bib37) 1992; 30 Rudman (10.1016/j.coastaleng.2019.103560_bib44) 2016; 115 Sun (10.1016/j.coastaleng.2019.103560_bib46) 2018; 224 Molteni (10.1016/j.coastaleng.2019.103560_bib36) 2009; 180 Monaghan (10.1016/j.coastaleng.2019.103560_bib39) 2003; 129 Meringolo (10.1016/j.coastaleng.2019.103560_bib35) 2019; 179 Canelas (10.1016/j.coastaleng.2019.103560_bib8) 2015; 78 St-Germain (10.1016/j.coastaleng.2019.103560_bib47) 2014; 140 Gómez-Gesteira (10.1016/j.coastaleng.2019.103560_bib20) 2010; 48 Domínguez (10.1016/j.coastaleng.2019.103560_bib16) 2015 |
References_xml | – volume: 111 start-page: 535 year: 2019 end-page: 549 ident: bib54 article-title: Wave-induced real-fluid effects in marine energy converters: review and application to OWC devices publication-title: Renew. Sustain. Energy Rev. – year: 2003 ident: bib30 article-title: Theoretical Manual of Strip Theory Program SEAWAY for Windows, Report 1370 – volume: 332 start-page: 236 year: 2017 end-page: 256 ident: bib31 article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context publication-title: J. Comput. Phys. – volume: 48 start-page: 6 year: 2010 end-page: 27 ident: bib20 article-title: State-of-the-art of classical SPH for free-surface flows publication-title: J. Hydraul. Res. – year: 1996 ident: bib33 article-title: Integration Methods for Molecular Dynamic IMA Volume in Mathematics and its Application – volume: 140 start-page: 66 year: 2014 end-page: 81 ident: bib47 article-title: Smoothed-particle hydrodynamics numerical modeling of structures impacted by tsunami bores publication-title: J. Waterw. Port, Coast. Ocean Eng. – volume: 139 start-page: 3 year: 1996 end-page: 47 ident: bib6 article-title: Meshless methods: an overview and recent developments publication-title: Comput. Methods Appl. Mech. Eng. – year: 2015 ident: bib19 article-title: Implementation of a Dynamic Mooring Solver (MOODY) into a Wave to Wire Model of a Simple WEC – volume: 4 start-page: 389 year: 1995 end-page: 396 ident: bib51 article-title: Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. – volume: 127 start-page: 68 year: 2017 end-page: 79 ident: bib53 article-title: A new two-step projection method in an ISPH model for free surface flow computations publication-title: Coast. Eng. – volume: 104 start-page: 590 year: 2015 end-page: 603 ident: bib25 article-title: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data publication-title: Ocean Eng. – volume: 11 start-page: 641 year: 2018 ident: bib14 article-title: CFD simulations of floating point Absorber wave energy converter arrays subjected to regular waves publication-title: Energies – start-page: 308 year: 2011 end-page: 317 ident: bib29 article-title: Numerical simulation on moored floating body in wave by imposed MPS method publication-title: Proceedings of the 6th International Conference Coastal Structures – volume: 140 start-page: 355 year: 2019 end-page: 370 ident: bib34 article-title: Energy balance during generation, propagation and absorption of gravity waves through the δ-LES-SPH model publication-title: Coast. Eng. – volume: 115 start-page: 168 year: 2016 end-page: 181 ident: bib44 article-title: The influence of mooring system in rogue wave impact on an offshore platform publication-title: Ocean Eng. – volume: 82 start-page: 343 year: 2018 end-page: 356 ident: bib22 article-title: Drag, added mass and radiation damping of oscillating vertical cylindrical bodies in heave and surge in still water publication-title: J. Fluids Struct. – volume: 30 start-page: 543 year: 1992 end-page: 574 ident: bib37 article-title: Smoothed particle hydrodynamics publication-title: Annu. Rev. Astron. Astrophys. – volume: 187 start-page: 204 year: 2015 end-page: 216 ident: bib10 article-title: DualSPHysics: open-source parallel CFD solver on smoothed particle hydrodynamics (SPH) publication-title: Comput. Phys. Commun. – volume: 50 start-page: 1 year: 2015 end-page: 12 ident: bib42 article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method publication-title: Appl. Ocean Res. – volume: 129 start-page: 250 year: 2003 end-page: 259 ident: bib39 article-title: Fluid motion generated by impact publication-title: J. Waterw. Port, Coast. Ocean Eng. – year: 2009 ident: bib41 article-title: Non-linear hysteretic seabed model for catenary pipeline contact publication-title: Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering – year: 2018 ident: bib52 article-title: Experimental study of motion and mooring behavior of floating oscillating water column wave energy converter publication-title: Proceedings of the COASTLAB 2018, Santander, Spain – volume: 5 start-page: 173 year: 2007 end-page: 184 ident: bib9 article-title: Boundary conditions generated by dynamic particles in SPH methods publication-title: Comput. Mater. Continua (CMC): Comput. Mater. Continua (CMC) – year: 1993 ident: bib18 article-title: Sea Loads on Ships and Offshore Structures – volume: 60 start-page: 79 year: 2018 end-page: 103 ident: bib21 article-title: On the state-of-the-art of particle methods for coastal and ocean engineering publication-title: Coast Eng. J. – volume: 130 start-page: 34 year: 2014 end-page: 45 ident: bib1 article-title: Numerical modelling of armour block sea breakwater with Smoothed Particle Hydrodynamics publication-title: Comput. Struct. – volume: 2 start-page: 381 year: 2016 end-page: 396 ident: bib5 article-title: Quasi-Static Mooring solver implemented in SPH publication-title: J. Ocean Eng. Mar. Energy – year: 2015 ident: bib50 article-title: Expanding ISWEC modelling with a lumped-mass mooring line model publication-title: European Wave and Tidal Energy Conference – volume: 30 start-page: 99 year: 2018 end-page: 105 ident: bib55 article-title: DualSPHysics: a numerical tool to simulate real breakwaters publication-title: J. Hydrodyn. – volume: 138 start-page: 184 year: 2018 end-page: 198 ident: bib48 article-title: Coupling methodology for smoothed particle hydrodynamics modelling of non-linear wave-structure interactions publication-title: Coast. Eng. – volume: 224 start-page: 63 year: 2018 end-page: 80 ident: bib46 article-title: Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows publication-title: Comput. Phys. Commun. – volume: 78 start-page: 581 year: 2015 end-page: 593 ident: bib8 article-title: A Smooth Particle Hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics publication-title: Int. J. Numer. Methods Fluids – year: 2015 ident: bib16 article-title: Evaluation of reliability and efficiency of different boundary conditions in an SPH code publication-title: Proceedings of the 10th SPHERIC International Workshop – volume: 140 start-page: 1 year: 2018 end-page: 22 ident: bib32 article-title: Development of a projection-based SPH method for numerical wave flume with porous media of variable porosity publication-title: Coast. Eng. – volume: 16 start-page: 83 year: 2016 end-page: 99 ident: bib40 article-title: Coupled mooring analysis for floating wave energy converters using CFD: formulation and validation publication-title: Int. J. Mar. Energy – year: 2018 ident: bib12 article-title: Survivability of floating moored offshore structures studied with DualSPHysics publication-title: Proceedings of the 13th SPHERIC International Workshop – start-page: 371 year: 2009 end-page: 375 ident: bib28 article-title: Lagrangian particle method for tracking of buoy moored by chain publication-title: Proceedings of ISOPE-2009 – volume: 59 start-page: 1750010 year: 2017 ident: bib56 article-title: Corrected first-order derivative ISPH in water wave simulations publication-title: Coast Eng. J. – volume: 71 start-page: 119 year: 2013 end-page: 134 ident: bib27 article-title: Simulating coastal engineering processes with OpenFOAM® publication-title: Coast. Eng. – volume: 96 start-page: 1 year: 2015 end-page: 12 ident: bib2 article-title: Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures publication-title: Coast. Eng. – volume: 1 start-page: 103 year: 1999 end-page: 157 ident: bib15 article-title: Mooring desing & dynamics-a matlab ® package for designing and analyzing oceanographic moorings publication-title: Mar. Model. – volume: 126 start-page: 11 year: 2017 end-page: 16 ident: bib11 article-title: Towards simulating floating offshore oscillating water column converters with smoothed particle hydrodynamics publication-title: Coast. Eng. – year: 2017 ident: bib23 article-title: Efficient modelling of seabed friction and multi-floater mooring systems in MoorDyn publication-title: Proceedings of the 12th European Wave and Tidal Energy Conference – year: 2016 ident: bib45 article-title: Coupled mooring analysis for the WEC-sim wave energy converter design tool publication-title: Proceedings of the 35th International Conference on Ocean, Offshore and Arctic Engineering – volume: 379 start-page: 39 year: 1999 end-page: 70 ident: bib38 article-title: Gravity currents descending a ramp in a stratified tank publication-title: J. Fluid Mech. – volume: 179 start-page: 334 year: 2019 end-page: 355 ident: bib35 article-title: A dynamic delta-SPH model: how to get rid of diffusive parameter tuning publication-title: Comput. Fluid – volume: 54 start-page: 1 year: 2016 end-page: 26 ident: bib49 article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future publication-title: J. Hydraul. Res. – year: 2018 ident: bib24 article-title: MoorDyn User's Guide – volume: 10 start-page: 666 year: 2017 ident: bib13 article-title: Mathematical modelling of mooring systems for wave energy converters—a review publication-title: Energies – volume: 17 start-page: 1835 year: 2014 end-page: 1853 ident: bib26 article-title: Evaluating the importance of mooring line model fidelity in floating offshore wind turbine simulations publication-title: Wind Energy – volume: 127 start-page: 37 year: 2017 end-page: 54 ident: bib3 article-title: Long-crested wave generation and absorption for SPH-based DualSPHysics model publication-title: Coast. Eng. – volume: 103 start-page: 62 year: 2018 end-page: 73 ident: bib43 article-title: Ensuring numerical stability of wave propagation by tuning model parameters using genetic algorithms and response surface methods publication-title: Environ. Model. Softw – volume: 42 start-page: 112 year: 2013 end-page: 129 ident: bib7 article-title: Nonlinear water wave interaction with floating bodies in SPH publication-title: J. Fluids Struct. – volume: 205 start-page: 369 year: 2017 end-page: 390 ident: bib17 article-title: Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter publication-title: Appl. Energy – volume: 64 start-page: 70 year: 2017 end-page: 85 ident: bib4 article-title: Characteristic of tsunami force acting on shelter with mooring publication-title: Appl. Ocean Res. – volume: 180 start-page: 861 year: 2009 end-page: 872 ident: bib36 article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH publication-title: Comput. Phys. Commun. – year: 2015 ident: 10.1016/j.coastaleng.2019.103560_bib50 article-title: Expanding ISWEC modelling with a lumped-mass mooring line model – volume: 64 start-page: 70 year: 2017 ident: 10.1016/j.coastaleng.2019.103560_bib4 article-title: Characteristic of tsunami force acting on shelter with mooring publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2017.02.005 – volume: 17 start-page: 1835 issue: 12 year: 2014 ident: 10.1016/j.coastaleng.2019.103560_bib26 article-title: Evaluating the importance of mooring line model fidelity in floating offshore wind turbine simulations publication-title: Wind Energy doi: 10.1002/we.1669 – volume: 11 start-page: 641 issue: 3 year: 2018 ident: 10.1016/j.coastaleng.2019.103560_bib14 article-title: CFD simulations of floating point Absorber wave energy converter arrays subjected to regular waves publication-title: Energies doi: 10.3390/en11030641 – volume: 71 start-page: 119 year: 2013 ident: 10.1016/j.coastaleng.2019.103560_bib27 article-title: Simulating coastal engineering processes with OpenFOAM® publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2012.06.002 – volume: 5 start-page: 173 issue: 3 year: 2007 ident: 10.1016/j.coastaleng.2019.103560_bib9 article-title: Boundary conditions generated by dynamic particles in SPH methods publication-title: Comput. Mater. Continua (CMC): Comput. Mater. Continua (CMC) – volume: 205 start-page: 369 year: 2017 ident: 10.1016/j.coastaleng.2019.103560_bib17 article-title: Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.07.138 – volume: 180 start-page: 861 issue: 6 year: 2009 ident: 10.1016/j.coastaleng.2019.103560_bib36 article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.12.004 – volume: 129 start-page: 250 year: 2003 ident: 10.1016/j.coastaleng.2019.103560_bib39 article-title: Fluid motion generated by impact publication-title: J. Waterw. Port, Coast. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(2003)129:6(250) – volume: 140 start-page: 1 year: 2018 ident: 10.1016/j.coastaleng.2019.103560_bib32 article-title: Development of a projection-based SPH method for numerical wave flume with porous media of variable porosity publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2018.05.003 – volume: 42 start-page: 112 year: 2013 ident: 10.1016/j.coastaleng.2019.103560_bib7 article-title: Nonlinear water wave interaction with floating bodies in SPH publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2013.05.010 – volume: 332 start-page: 236 year: 2017 ident: 10.1016/j.coastaleng.2019.103560_bib31 article-title: Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.12.005 – volume: 78 start-page: 581 year: 2015 ident: 10.1016/j.coastaleng.2019.103560_bib8 article-title: A Smooth Particle Hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.4031 – volume: 140 start-page: 66 year: 2014 ident: 10.1016/j.coastaleng.2019.103560_bib47 article-title: Smoothed-particle hydrodynamics numerical modeling of structures impacted by tsunami bores publication-title: J. Waterw. Port, Coast. Ocean Eng. doi: 10.1061/(ASCE)WW.1943-5460.0000225 – volume: 126 start-page: 11 year: 2017 ident: 10.1016/j.coastaleng.2019.103560_bib11 article-title: Towards simulating floating offshore oscillating water column converters with smoothed particle hydrodynamics publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2017.05.001 – volume: 104 start-page: 590 year: 2015 ident: 10.1016/j.coastaleng.2019.103560_bib25 article-title: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.05.035 – volume: 48 start-page: 6 year: 2010 ident: 10.1016/j.coastaleng.2019.103560_bib20 article-title: State-of-the-art of classical SPH for free-surface flows publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2010.9641242 – volume: 379 start-page: 39 year: 1999 ident: 10.1016/j.coastaleng.2019.103560_bib38 article-title: Gravity currents descending a ramp in a stratified tank publication-title: J. Fluid Mech. doi: 10.1017/S0022112098003280 – start-page: 308 year: 2011 ident: 10.1016/j.coastaleng.2019.103560_bib29 article-title: Numerical simulation on moored floating body in wave by imposed MPS method – volume: 16 start-page: 83 year: 2016 ident: 10.1016/j.coastaleng.2019.103560_bib40 article-title: Coupled mooring analysis for floating wave energy converters using CFD: formulation and validation publication-title: Int. J. Mar. Energy doi: 10.1016/j.ijome.2016.05.003 – volume: 2 start-page: 381 issue: 3 year: 2016 ident: 10.1016/j.coastaleng.2019.103560_bib5 article-title: Quasi-Static Mooring solver implemented in SPH publication-title: J. Ocean Eng. Mar. Energy doi: 10.1007/s40722-016-0061-7 – volume: 82 start-page: 343 year: 2018 ident: 10.1016/j.coastaleng.2019.103560_bib22 article-title: Drag, added mass and radiation damping of oscillating vertical cylindrical bodies in heave and surge in still water publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2018.06.012 – volume: 1 start-page: 103 year: 1999 ident: 10.1016/j.coastaleng.2019.103560_bib15 article-title: Mooring desing & dynamics-a matlab ® package for designing and analyzing oceanographic moorings publication-title: Mar. Model. doi: 10.1016/S1369-9350(00)00002-X – year: 1993 ident: 10.1016/j.coastaleng.2019.103560_bib18 – volume: 60 start-page: 79 year: 2018 ident: 10.1016/j.coastaleng.2019.103560_bib21 article-title: On the state-of-the-art of particle methods for coastal and ocean engineering publication-title: Coast Eng. J. doi: 10.1080/21664250.2018.1436243 – year: 2016 ident: 10.1016/j.coastaleng.2019.103560_bib45 article-title: Coupled mooring analysis for the WEC-sim wave energy converter design tool – volume: 187 start-page: 204 year: 2015 ident: 10.1016/j.coastaleng.2019.103560_bib10 article-title: DualSPHysics: open-source parallel CFD solver on smoothed particle hydrodynamics (SPH) publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.10.004 – volume: 30 start-page: 99 issue: 1 year: 2018 ident: 10.1016/j.coastaleng.2019.103560_bib55 article-title: DualSPHysics: a numerical tool to simulate real breakwaters publication-title: J. Hydrodyn. doi: 10.1007/s42241-018-0010-0 – year: 2003 ident: 10.1016/j.coastaleng.2019.103560_bib30 – volume: 127 start-page: 68 year: 2017 ident: 10.1016/j.coastaleng.2019.103560_bib53 article-title: A new two-step projection method in an ISPH model for free surface flow computations publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2017.06.006 – year: 2018 ident: 10.1016/j.coastaleng.2019.103560_bib12 article-title: Survivability of floating moored offshore structures studied with DualSPHysics – year: 2015 ident: 10.1016/j.coastaleng.2019.103560_bib16 article-title: Evaluation of reliability and efficiency of different boundary conditions in an SPH code – volume: 130 start-page: 34 year: 2014 ident: 10.1016/j.coastaleng.2019.103560_bib1 article-title: Numerical modelling of armour block sea breakwater with Smoothed Particle Hydrodynamics publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2013.10.011 – volume: 111 start-page: 535 year: 2019 ident: 10.1016/j.coastaleng.2019.103560_bib54 article-title: Wave-induced real-fluid effects in marine energy converters: review and application to OWC devices publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.05.025 – start-page: 371 year: 2009 ident: 10.1016/j.coastaleng.2019.103560_bib28 article-title: Lagrangian particle method for tracking of buoy moored by chain – year: 2017 ident: 10.1016/j.coastaleng.2019.103560_bib23 article-title: Efficient modelling of seabed friction and multi-floater mooring systems in MoorDyn – volume: 139 start-page: 3 issue: 1–4 year: 1996 ident: 10.1016/j.coastaleng.2019.103560_bib6 article-title: Meshless methods: an overview and recent developments publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(96)01078-X – year: 1996 ident: 10.1016/j.coastaleng.2019.103560_bib33 – year: 2018 ident: 10.1016/j.coastaleng.2019.103560_bib52 article-title: Experimental study of motion and mooring behavior of floating oscillating water column wave energy converter – volume: 96 start-page: 1 year: 2015 ident: 10.1016/j.coastaleng.2019.103560_bib2 article-title: Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2014.11.001 – volume: 115 start-page: 168 year: 2016 ident: 10.1016/j.coastaleng.2019.103560_bib44 article-title: The influence of mooring system in rogue wave impact on an offshore platform publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.02.027 – volume: 103 start-page: 62 year: 2018 ident: 10.1016/j.coastaleng.2019.103560_bib43 article-title: Ensuring numerical stability of wave propagation by tuning model parameters using genetic algorithms and response surface methods publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2018.02.003 – volume: 10 start-page: 666 issue: 5 year: 2017 ident: 10.1016/j.coastaleng.2019.103560_bib13 article-title: Mathematical modelling of mooring systems for wave energy converters—a review publication-title: Energies doi: 10.3390/en10050666 – volume: 54 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.coastaleng.2019.103560_bib49 article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2015.1119209 – year: 2009 ident: 10.1016/j.coastaleng.2019.103560_bib41 article-title: Non-linear hysteretic seabed model for catenary pipeline contact – volume: 138 start-page: 184 year: 2018 ident: 10.1016/j.coastaleng.2019.103560_bib48 article-title: Coupling methodology for smoothed particle hydrodynamics modelling of non-linear wave-structure interactions publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2018.04.021 – volume: 224 start-page: 63 year: 2018 ident: 10.1016/j.coastaleng.2019.103560_bib46 article-title: Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2017.11.016 – volume: 50 start-page: 1 year: 2015 ident: 10.1016/j.coastaleng.2019.103560_bib42 article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2014.12.003 – volume: 140 start-page: 355 year: 2019 ident: 10.1016/j.coastaleng.2019.103560_bib34 article-title: Energy balance during generation, propagation and absorption of gravity waves through the δ-LES-SPH model publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2018.07.007 – volume: 4 start-page: 389 issue: 1 year: 1995 ident: 10.1016/j.coastaleng.2019.103560_bib51 article-title: Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. doi: 10.1007/BF02123482 – volume: 179 start-page: 334 year: 2019 ident: 10.1016/j.coastaleng.2019.103560_bib35 article-title: A dynamic delta-SPH model: how to get rid of diffusive parameter tuning publication-title: Comput. Fluid doi: 10.1016/j.compfluid.2018.11.012 – volume: 30 start-page: 543 year: 1992 ident: 10.1016/j.coastaleng.2019.103560_bib37 article-title: Smoothed particle hydrodynamics publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev.aa.30.090192.002551 – year: 2015 ident: 10.1016/j.coastaleng.2019.103560_bib19 – volume: 127 start-page: 37 year: 2017 ident: 10.1016/j.coastaleng.2019.103560_bib3 article-title: Long-crested wave generation and absorption for SPH-based DualSPHysics model publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2017.06.004 – year: 2018 ident: 10.1016/j.coastaleng.2019.103560_bib24 – volume: 59 start-page: 1750010 issue: 01 year: 2017 ident: 10.1016/j.coastaleng.2019.103560_bib56 article-title: Corrected first-order derivative ISPH in water wave simulations publication-title: Coast Eng. J. doi: 10.1142/S0578563417500103 |
SSID | ssj0000685 |
Score | 2.5878463 |
Snippet | The open-source code DualSPHysics is applied to simulate the interaction of sea waves with floating offshore structures, which are typically moored to the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103560 |
SubjectTerms | DualSPHysics Floating bodies Meshless methods MoorDyn Moorings Numerical modelling Smoothed particle hydrodynamics |
Title | SPH simulation of floating structures with moorings |
URI | https://dx.doi.org/10.1016/j.coastaleng.2019.103560 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-Sg5eY7Psq4unUizxVYq10FvYTbJQaZtC69Xf7kyy0QqCgqeQsAPJt7szs-Gbbwi5EpLZyER56DpOwAHFmNAYxULKqFXOUi1yrB1-Gsh4zO8nYtIgvboWBmmV3vdXPr301v5J26PZXk6n7VHEVAfOVxoWZSREWX7NuUL9_Ot3uuGNy7acODjE0Z7NU3G80sJADoYtS5DkpbECXZRilT-EqI2w098nez5fDLrVKx2QRr44JLsbKoJHhI2GcbCazn0jrqBwgZsVBvnMQSUP-wZn6gD_uAbzoiTcrY7JuH_70otD3wshTGHXrUMU7JTGWZNxYagwDoKMko47JbU1EiCQLoPkiVrNWEZTRbnKYRYARiW5iNgJ2VoUi_wUPp9JnTILcYlqrnQHtiDkMFFqhUhtJl2TqPrzk9QLhWO_illSM8Jeky_gEgQuqYBrEvppuazEMv5gc1MjnHyb-AR8-q_WZ_-yPic7eFeVFl6QLZiS_BJyjLVtlYuoRba7vefHIV7vHuLBB-Om0sQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba8IwFA6iD9sexq7MXfuw12JDmsSwJ5FJnRcGKvgWkrYBh1pB9_930qSbg8EGe217IPmSnHNSvvMdhB4pIzpSUR6atqFwQVEqVIqTEBOsudFY0NzWDo_GLJnFL3M6r6FuVQtjaZXe9zufXnpr_6Tl0WxtFovWJCK8DfcrAZsyotSWXzesOhVs9kanP0jGew657Mxpvw-tgSf0OJpXWihIw2zXEsvzErYInZZ6lT9Eqb3I0ztBxz5lDDpuVKeolq_P0NGekOA5IpPXJNguVr4XV1CYwCwLZSnNgVOIfYdrdWB_ugarouTcbS_QrPc87Sahb4cQpnDwdqHV7GTKaJXFVGGqDMQZzkxsOBNaMUCBmQzyJ6wFIRlOOY55DgsBSHIW04hcovq6WOdXMH3CREo0hCYsYi7acAohjYlSTWmqM2aaiFfTl6nXCrctK5ayIoW9yS_gpAVOOuCaCH9abpxexh9sniqE5be1l-DWf7W-_pf1AzpIpqOhHPbHgxt0aN-4SsNbVIflye8g5djpe7-lPgCQEtPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPH+simulation+of+floating+structures+with+moorings&rft.jtitle=Coastal+engineering+%28Amsterdam%29&rft.au=Dom%C3%ADnguez%2C+Jos%C3%A9+M.&rft.au=Crespo%2C+Alejandro+J.C.&rft.au=Hall%2C+Matthew&rft.au=Altomare%2C+Corrado&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=0378-3839&rft.eissn=1872-7379&rft.volume=153&rft_id=info:doi/10.1016%2Fj.coastaleng.2019.103560&rft.externalDocID=S0378383918305581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3839&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3839&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3839&client=summon |