Automatic classifier selection for non-experts

Choosing a suitable classifier for a given dataset is an important part of developing a pattern recognition system. Since a large variety of classification algorithms are proposed in literature, non-experts do not know which method should be used in order to obtain good classification results on the...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 17; no. 1; pp. 83 - 96
Main Authors Reif, Matthias, Shafait, Faisal, Goldstein, Markus, Breuel, Thomas, Dengel, Andreas
Format Journal Article
LanguageEnglish
Published London Springer London 01.02.2014
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Choosing a suitable classifier for a given dataset is an important part of developing a pattern recognition system. Since a large variety of classification algorithms are proposed in literature, non-experts do not know which method should be used in order to obtain good classification results on their data. Meta-learning tries to address this problem by recommending promising classifiers based on meta-features computed from a given dataset. In this paper, we empirically evaluate five different categories of state-of-the-art meta-features for their suitability in predicting classification accuracies of several widely used classifiers (including Support Vector Machines, Neural Networks, Random Forests, Decision Trees, and Logistic Regression). Based on the evaluation results, we have developed the first open source meta-learning system that is capable of accurately predicting accuracies of target classifiers. The user provides a dataset as input and gets an automatically created high-performance ready-to-use pattern recognition system in a few simple steps. A user study of the system with non-experts showed that the users were able to develop more accurate pattern recognition systems in significantly less development time when using our system as compared to using a state-of-the-art data mining software.
AbstractList Choosing a suitable classifier for a given dataset is an important part of developing a pattern recognition system. Since a large variety of classification algorithms are proposed in literature, non-experts do not know which method should be used in order to obtain good classification results on their data. Meta-learning tries to address this problem by recommending promising classifiers based on meta-features computed from a given dataset. In this paper, we empirically evaluate five different categories of state-of-the-art meta-features for their suitability in predicting classification accuracies of several widely used classifiers (including Support Vector Machines, Neural Networks, Random Forests, Decision Trees, and Logistic Regression). Based on the evaluation results, we have developed the first open source meta-learning system that is capable of accurately predicting accuracies of target classifiers. The user provides a dataset as input and gets an automatically created high-performance ready-to-use pattern recognition system in a few simple steps. A user study of the system with non-experts showed that the users were able to develop more accurate pattern recognition systems in significantly less development time when using our system as compared to using a state-of-the-art data mining software.
Author Goldstein, Markus
Reif, Matthias
Dengel, Andreas
Breuel, Thomas
Shafait, Faisal
Author_xml – sequence: 1
  givenname: Matthias
  surname: Reif
  fullname: Reif, Matthias
  email: matthias.reif@dfki.de
  organization: German Research Center for Artificial Intelligence (DFKI)
– sequence: 2
  givenname: Faisal
  surname: Shafait
  fullname: Shafait, Faisal
  organization: German Research Center for Artificial Intelligence (DFKI)
– sequence: 3
  givenname: Markus
  surname: Goldstein
  fullname: Goldstein, Markus
  organization: German Research Center for Artificial Intelligence (DFKI)
– sequence: 4
  givenname: Thomas
  surname: Breuel
  fullname: Breuel, Thomas
  organization: Department of Computer Science, University of Kaiserslautern
– sequence: 5
  givenname: Andreas
  surname: Dengel
  fullname: Dengel, Andreas
  organization: German Research Center for Artificial Intelligence (DFKI)
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28188813$$DView record in Pascal Francis
BookMark eNp9kE1LAzEQhoNUsK3-AG978ZiayexH9liKWqHgRcFbyIaJpGx3S7IF7a83ZaUHD73MzOF9ZphnxiZd3xFj9yAWIET1GFPNcy5AciGV4McrNoUckVdF8Tk5zzncsFmMWyEQUaopWywPQ78zg7eZbU2M3nkKWaSW7OD7LnN9yNIpTt97CkO8ZdfOtJHu_vqcfTw_va_WfPP28rpabrhFUAPPSUokqkoLhK5WytWuhqIBKKnCojSQU2mkwkYWspYlYmVtI2vXCANYGpyzh3Hv3kRrWhdMZ33U--B3JvxoqUApBZhyMOZs6GMM5M4REPokRo9idBKjT2L0MTHVP8b6wZy-HYLx7UVSjmRMV7ovCnrbH0KXRFyAfgGEVHj8
CitedBy_id crossref_primary_10_3233_IDA_205494
crossref_primary_10_1016_j_knosys_2017_06_024
crossref_primary_10_1007_s10994_023_06359_0
crossref_primary_10_1016_j_asoc_2022_109969
crossref_primary_10_1145_3418228
crossref_primary_10_1109_ACCESS_2023_3273530
crossref_primary_10_1016_j_eswa_2021_115589
crossref_primary_10_1186_s40537_023_00687_7
crossref_primary_10_1016_j_softx_2021_100919
crossref_primary_10_1007_s10044_015_0503_1
crossref_primary_10_1016_j_eswa_2021_114694
crossref_primary_10_1007_s10044_016_0583_6
crossref_primary_10_1109_TNNLS_2021_3130896
crossref_primary_10_1007_s10618_024_01002_5
crossref_primary_10_1007_s10462_013_9406_y
crossref_primary_10_1109_ACCESS_2024_3365586
crossref_primary_10_1007_s13042_016_0571_6
crossref_primary_10_1007_s12599_021_00708_w
crossref_primary_10_1108_JM2_03_2021_0065
crossref_primary_10_1109_ACCESS_2020_2964726
crossref_primary_10_1016_j_neucom_2016_08_013
crossref_primary_10_1016_j_knosys_2018_07_015
crossref_primary_10_1016_j_ifacol_2021_08_174
crossref_primary_10_1016_j_compbiomed_2021_104903
crossref_primary_10_1016_j_knosys_2021_108101
crossref_primary_10_3233_JIFS_169141
crossref_primary_10_1109_ACCESS_2021_3099689
crossref_primary_10_3233_IDA_194803
crossref_primary_10_1016_j_eswa_2016_11_034
crossref_primary_10_1109_ACCESS_2020_2980798
crossref_primary_10_1007_s10994_017_5683_z
crossref_primary_10_1145_3360601
crossref_primary_10_3233_JIFS_161062
crossref_primary_10_1007_s10994_017_5629_5
crossref_primary_10_1007_s10845_024_02479_z
crossref_primary_10_1186_s13677_023_00542_3
crossref_primary_10_1016_j_knosys_2021_106933
crossref_primary_10_32604_cmes_2025_058566
crossref_primary_10_1016_j_patcog_2022_108671
crossref_primary_10_1109_ACCESS_2024_3524908
crossref_primary_10_3389_fonc_2022_893424
crossref_primary_10_1016_j_datak_2019_101727
crossref_primary_10_1016_j_ssci_2021_105315
crossref_primary_10_1016_j_ins_2014_12_044
crossref_primary_10_1016_j_iot_2021_100432
crossref_primary_10_1007_s00170_022_08761_9
crossref_primary_10_1016_j_eswa_2017_01_013
crossref_primary_10_4018_IJERTCS_2019100102
crossref_primary_10_1016_j_tbench_2024_100150
crossref_primary_10_1371_journal_pone_0312768
crossref_primary_10_1186_s40537_022_00612_4
crossref_primary_10_1007_s10618_021_00737_9
crossref_primary_10_1016_j_ins_2019_06_005
crossref_primary_10_1016_j_cl_2018_07_002
crossref_primary_10_1109_TNNLS_2024_3366615
crossref_primary_10_1016_j_eswa_2023_119944
crossref_primary_10_1016_j_jpse_2024_100244
crossref_primary_10_1016_j_patcog_2013_10_009
Cites_doi 10.1007/978-3-540-48247-5_52
10.1016/j.patrec.2011.04.010
10.1007/3-540-44795-4_3
10.1162/neco.1996.8.7.1341
10.1145/1150402.1150531
10.1109/ICMLA.2005.65
10.1080/08839519508945477
10.1016/B978-1-55860-335-6.50023-4
10.1007/3-540-45357-1_26
10.1023/A:1021713901879
10.1007/978-3-540-87656-4_57
10.1007/3-540-45372-5_32
10.1007/3-540-36182-0_14
10.1007/3-540-60428-6_16
10.1109/34.809107
10.1016/S0065-2458(08)60520-3
10.1007/978-3-642-20980-2_9
10.1016/j.asoc.2004.12.002
10.1080/01621459.1989.10478752
10.1023/A:1010933404324
ContentType Journal Article
Copyright Springer-Verlag London Limited 2012
2015 INIST-CNRS
Copyright_xml – notice: Springer-Verlag London Limited 2012
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s10044-012-0280-z
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 96
ExternalDocumentID 28188813
10_1007_s10044_012_0280_z
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IQODW
ID FETCH-LOGICAL-c318t-4e223ee76c1e3f988f9f915b116e7356a14e6a283b252926337ccb29fb0a136a3
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Wed Apr 02 07:27:33 EDT 2025
Tue Jul 01 01:15:13 EDT 2025
Thu Apr 24 22:59:38 EDT 2025
Fri Feb 21 02:29:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Regression
Classifier recommendation
Classifier selection
Meta-features
Meta-learning
Landmarking
High performance
Data analysis
Automatic classification
Automatic selection
Metadata
Pattern recognition
Data mining
Open source software
Recommendation
Open systems
Learning algorithm
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-4e223ee76c1e3f988f9f915b116e7356a14e6a283b252926337ccb29fb0a136a3
PageCount 14
ParticipantIDs pascalfrancis_primary_28188813
crossref_primary_10_1007_s10044_012_0280_z
crossref_citationtrail_10_1007_s10044_012_0280_z
springer_journals_10_1007_s10044_012_0280_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2014
Publisher Springer London
Springer
Publisher_xml – name: Springer London
– name: Springer
References Quinlan R (2002) Data mining tools see5 and c5.0. http://www.rulequest.com/see5-info.html
Chang CC, Lin CJ LIBSVM: a library for support vector machines (2001). Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm
BreimanLRandom forestsMach Learn20014553210.1023/A:10109334043241007.68152
Asuncion A, Newman D UCI machine learning repository (2007) http://www.ics.uci.edu/~mlearn/MLRepository.html University of California, Irvine, School of Information and Computer Sciences
Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) Yale: Rapid prototyping for complex data mining tasks. In: Ungar L, Craven M, Gunopulos D, Eliassi-Rad T (eds.) KDD ’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA, pp 935–940
Piatetsky-Shapiro G (2010) Data mining / analytic tools used poll http://www.kdnuggets.com/polls/2010/data-mining-analytics-tools.html
Giraud-Carrier C (2005) The data mining advisor: meta-learning at the service of practitioners. In: Proceedings of the fourth international conference on machine learning and applications, 2005, pp 113–119
KingRDFengCSutherlandAStatlog: comparison of classification algorithms on large real-world problemsAppl Artif Intell19959328933310.1080/08839519508945477
Quinlan JR (1992) Learning with continuous classes. In Proceedings AI’92, pp. 343–348
QiaoZZhouLHuangJZSparse linear discriminant analysis with applications to high dimensional low sample size dataIAENG Int J Appl Math200939148601229.620862493149
Todorovski L, Brazdil P, Soares C (2000) Report on the experiments with feature selection in meta-level learning. In: Proceedings of the PKDD-00 Workshop on Data Mining, Decision Support, Meta-Learning and ILP, pp 27–39
Hilario M, Nguyen P, Do H, Woznica A, Kalousis A (2011) Ontology-based meta-mining of knowledge discovery workflows. In: Jankowski N, Duch W, Grąbczewski K (eds.) Meta-Learning in Computational Intelligence, Studies in Computational Intelligence, vol. 358, Springer Heidelberg, pp 273–315
Michie D, Spiegelhalter D, Taylor C (1994) Machine Learning, Neural & Statistical Classification. Ellis Horwood, Chichester
RendellLChoHEmpirical learning as a function of concept characterMach Learn19905267298
WolpertDHThe lack of a priori distinctions between learning algorithmsNeural Comput.1996871341139010.1162/neco.1996.8.7.1341
Bensusan H, Giraud-Carrier C (2000) Casa batló is in passeig de gràcia or how landmark performances can describe tasks. In: Proceedings of the ECML-00 workshop on meta-learning: building automatic advice strategies for model selection and method combination, pp. 29–46
Bensusan H, Giraud-Carrier CG (2000) Discovering task neighbourhoods through landmark learning performances. In: PKDD ’00: Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, Springer-Verlag, London, UK, pp 325–330
Kietz JU, Serban F, Bernstein A, Fischer S (2010) Data mining workflow templates for intelligent discovery assistance and auto-experimentation. In: Proceedings of the ECML/PKDD-10 Workshop on Third Generation Data Mining: Towards Service-Oriented Knowledge Discovery, pp 1–12
BrazdilPSoaresCda CostaJPRanking learning algorithms: Using IBL and meta-learning on accuracy and time resultsMach Learn200350325127710.1023/A:10217139018791033.68082
Kalousis A, Hilario M (2001) Feature selection for meta-learning. In: Cheung D, Williams G, Li Q (eds.) Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol. 2035, Springer Heidelberg, pp 222–233
Köpf C, Taylor C, Keller J (2000) Meta-analysis: from data characterisation for meta-learning to meta-regression. In: Proceedings of the PKDD-00 Workshop on Data Mining, Decision Support, Meta-Learning and ILP
Bensusan H, Giraud-Carrier C, Kennedy C (2000) A higher-order approach to meta-learning. In: Proceedings of the ECML’2000 workshop on meta-learning: building automatic advice strategies for model selection and method combination, pp. 109–117
Segrera S, Pinho J, Moreno M (2008) Information-theoretic measures for meta-learning. In: Corchado E, Abraham A, Pedrycz W (eds.) Hybrid Artificial Intelligence Systems, Lecture Notes in Computer Science, vol. 5271, Springer, Heidelberg, pp 458–465
FriedmanJHRegularized discriminant analysisJ Am Stat Assoc19898440516517510.1080/01621459.1989.10478752
Fürnkranz J, Petrak J (2001) An evaluation of landmarking variants. In: C. Giraud-Carrier, N. Lavrač, S. Moyle, B. Kavšek (eds.) Proceedings of the ECML/PKDD workshop on integrating aspects of data mining, decision support and meta-learning (IDDM-2001), Freiburg, Germany, pp 57–68
Peng Y, Flach P, Soares C, Brazdil P (2002) Improved dataset characterisation for meta-learning. In: S. Lange, K. Satoh, C. Smith (eds.) Discovery Science, Lecture Notes in Computer Science, vol. 2534, Springer, Heidelberg, pp 193–208
Bensusan H, Kalousis A (2001) Estimating the predictive accuracy of a classifier. In: De Raedt L, Flach P (eds.) Machine Learning: ECML 2001, Lecture Notes in Computer Science, vol. 2167 Springer, Berlin, pp 25–36
Gama J, Brazdil P (1995) Characterization of classification algorithms. In: C. Pinto-Ferreira, N. Mamede (eds.) Progress in artificial intelligence, Lecture Notes in Computer Science, vol. 990, Springer Heidelberg, pp 189–200
Pfahringer B, Bensusan H, Giraud-Carrier C (2000) Meta-learning by landmarking various learning algorithms. In: In Proceedings of the Seventeenth international conference on machine learning, Morgan Kaufmann, pp 743–750
Abdelmessih SD, Shafait F, Reif M, Goldstein M (2010) Landmarking for meta-learning using RapidMiner. In: RapidMiner community meeting and conference
Engels R, Theusinger C (1998) Using a data metric for preprocessing advice for data mining applications. In: Proceedings of the European Conference on artificial intelligence (ECAI-98, Wiley, pp 430–434
FraschJVLodwichAShafaitFBreuelTMA bayes-true data generator for evaluation of supervised and unsupervised learning methodsPattern Recogn Lett201132111523153110.1016/j.patrec.2011.04.010
John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem. In: International Conference on machine learning, Morgan Kaufmann, pp 121–129
SohnSYMeta analysis of classification algorithms for pattern recognitionIEEE Trans Pattern Anal Mach Intell199921111137114410.1109/34.809107
CortesCVapnikVSupport-vector networksMach Learn19952032732970831.68098
Esprit project METAL (#26.357): A meta-learning assistant for providing user support in data mining and machine learning (1999–2002). http://www.ofai.at/research/impml/metal
Quinlan JR Cubist. http://www.rulequest.com/cubist-info.html
Lindner G, Studer R (1999) Ast: support for algorithm selection with a cbr approach. In: Recent Advances in Meta-Learning and Future Work, pp 418–423
Vlachos P StatLib datasets archive (1998) http://lib.stat.cmu.edu Department of Statistics, Carnegie Mellon University
AliSSmithKAOn learning algorithm selection for classificationApplied Soft Comput2006611913810.1016/j.asoc.2004.12.002
Brazdil PB, Soares C (2000) Zoomed ranking: Selection of classification algorithms based on relevant performance information. In: Proceedings of principles of data mining and knowledge discovery, 4th European conference (PKDD-2000). Springer, pp 126–135
RiceJRThe algorithm selection problemAdv Comput19761565118
280_CR9
JV Frasch (280_CR14) 2011; 32
JR Rice (280_CR37) 1976; 15
280_CR7
280_CR6
280_CR5
280_CR4
SY Sohn (280_CR39) 1999; 21
L Breiman (280_CR10) 2001; 45
P Brazdil (280_CR8) 2003; 50
280_CR17
280_CR18
DH Wolpert (280_CR42) 1996; 8
280_CR16
280_CR38
S Ali (280_CR2) 2006; 6
280_CR19
280_CR3
280_CR31
280_CR1
280_CR30
280_CR13
280_CR35
280_CR11
280_CR33
C Cortes (280_CR12) 1995; 20
280_CR34
RD King (280_CR23) 1995; 9
L Rendell (280_CR36) 1990; 5
280_CR28
280_CR29
280_CR26
280_CR27
280_CR20
JH Friedman (280_CR15) 1989; 84
280_CR21
280_CR40
280_CR41
280_CR24
Z Qiao (280_CR32) 2009; 39
280_CR25
280_CR22
References_xml – reference: Bensusan H, Giraud-Carrier C, Kennedy C (2000) A higher-order approach to meta-learning. In: Proceedings of the ECML’2000 workshop on meta-learning: building automatic advice strategies for model selection and method combination, pp. 109–117
– reference: FraschJVLodwichAShafaitFBreuelTMA bayes-true data generator for evaluation of supervised and unsupervised learning methodsPattern Recogn Lett201132111523153110.1016/j.patrec.2011.04.010
– reference: Bensusan H, Giraud-Carrier C (2000) Casa batló is in passeig de gràcia or how landmark performances can describe tasks. In: Proceedings of the ECML-00 workshop on meta-learning: building automatic advice strategies for model selection and method combination, pp. 29–46
– reference: Fürnkranz J, Petrak J (2001) An evaluation of landmarking variants. In: C. Giraud-Carrier, N. Lavrač, S. Moyle, B. Kavšek (eds.) Proceedings of the ECML/PKDD workshop on integrating aspects of data mining, decision support and meta-learning (IDDM-2001), Freiburg, Germany, pp 57–68
– reference: Peng Y, Flach P, Soares C, Brazdil P (2002) Improved dataset characterisation for meta-learning. In: S. Lange, K. Satoh, C. Smith (eds.) Discovery Science, Lecture Notes in Computer Science, vol. 2534, Springer, Heidelberg, pp 193–208
– reference: Brazdil PB, Soares C (2000) Zoomed ranking: Selection of classification algorithms based on relevant performance information. In: Proceedings of principles of data mining and knowledge discovery, 4th European conference (PKDD-2000). Springer, pp 126–135
– reference: Pfahringer B, Bensusan H, Giraud-Carrier C (2000) Meta-learning by landmarking various learning algorithms. In: In Proceedings of the Seventeenth international conference on machine learning, Morgan Kaufmann, pp 743–750
– reference: Bensusan H, Kalousis A (2001) Estimating the predictive accuracy of a classifier. In: De Raedt L, Flach P (eds.) Machine Learning: ECML 2001, Lecture Notes in Computer Science, vol. 2167 Springer, Berlin, pp 25–36
– reference: Gama J, Brazdil P (1995) Characterization of classification algorithms. In: C. Pinto-Ferreira, N. Mamede (eds.) Progress in artificial intelligence, Lecture Notes in Computer Science, vol. 990, Springer Heidelberg, pp 189–200
– reference: AliSSmithKAOn learning algorithm selection for classificationApplied Soft Comput2006611913810.1016/j.asoc.2004.12.002
– reference: Engels R, Theusinger C (1998) Using a data metric for preprocessing advice for data mining applications. In: Proceedings of the European Conference on artificial intelligence (ECAI-98, Wiley, pp 430–434
– reference: Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) Yale: Rapid prototyping for complex data mining tasks. In: Ungar L, Craven M, Gunopulos D, Eliassi-Rad T (eds.) KDD ’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA, pp 935–940
– reference: Asuncion A, Newman D UCI machine learning repository (2007) http://www.ics.uci.edu/~mlearn/MLRepository.html University of California, Irvine, School of Information and Computer Sciences
– reference: Esprit project METAL (#26.357): A meta-learning assistant for providing user support in data mining and machine learning (1999–2002). http://www.ofai.at/research/impml/metal/
– reference: Vlachos P StatLib datasets archive (1998) http://lib.stat.cmu.edu Department of Statistics, Carnegie Mellon University
– reference: RiceJRThe algorithm selection problemAdv Comput19761565118
– reference: Todorovski L, Brazdil P, Soares C (2000) Report on the experiments with feature selection in meta-level learning. In: Proceedings of the PKDD-00 Workshop on Data Mining, Decision Support, Meta-Learning and ILP, pp 27–39
– reference: Bensusan H, Giraud-Carrier CG (2000) Discovering task neighbourhoods through landmark learning performances. In: PKDD ’00: Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, Springer-Verlag, London, UK, pp 325–330
– reference: Michie D, Spiegelhalter D, Taylor C (1994) Machine Learning, Neural & Statistical Classification. Ellis Horwood, Chichester
– reference: Quinlan JR Cubist. http://www.rulequest.com/cubist-info.html
– reference: CortesCVapnikVSupport-vector networksMach Learn19952032732970831.68098
– reference: Piatetsky-Shapiro G (2010) Data mining / analytic tools used poll http://www.kdnuggets.com/polls/2010/data-mining-analytics-tools.html
– reference: Kalousis A, Hilario M (2001) Feature selection for meta-learning. In: Cheung D, Williams G, Li Q (eds.) Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol. 2035, Springer Heidelberg, pp 222–233
– reference: Lindner G, Studer R (1999) Ast: support for algorithm selection with a cbr approach. In: Recent Advances in Meta-Learning and Future Work, pp 418–423
– reference: WolpertDHThe lack of a priori distinctions between learning algorithmsNeural Comput.1996871341139010.1162/neco.1996.8.7.1341
– reference: RendellLChoHEmpirical learning as a function of concept characterMach Learn19905267298
– reference: Hilario M, Nguyen P, Do H, Woznica A, Kalousis A (2011) Ontology-based meta-mining of knowledge discovery workflows. In: Jankowski N, Duch W, Grąbczewski K (eds.) Meta-Learning in Computational Intelligence, Studies in Computational Intelligence, vol. 358, Springer Heidelberg, pp 273–315
– reference: QiaoZZhouLHuangJZSparse linear discriminant analysis with applications to high dimensional low sample size dataIAENG Int J Appl Math200939148601229.620862493149
– reference: KingRDFengCSutherlandAStatlog: comparison of classification algorithms on large real-world problemsAppl Artif Intell19959328933310.1080/08839519508945477
– reference: Köpf C, Taylor C, Keller J (2000) Meta-analysis: from data characterisation for meta-learning to meta-regression. In: Proceedings of the PKDD-00 Workshop on Data Mining, Decision Support, Meta-Learning and ILP
– reference: Quinlan JR (1992) Learning with continuous classes. In Proceedings AI’92, pp. 343–348
– reference: Giraud-Carrier C (2005) The data mining advisor: meta-learning at the service of practitioners. In: Proceedings of the fourth international conference on machine learning and applications, 2005, pp 113–119
– reference: John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem. In: International Conference on machine learning, Morgan Kaufmann, pp 121–129
– reference: BrazdilPSoaresCda CostaJPRanking learning algorithms: Using IBL and meta-learning on accuracy and time resultsMach Learn200350325127710.1023/A:10217139018791033.68082
– reference: BreimanLRandom forestsMach Learn20014553210.1023/A:10109334043241007.68152
– reference: Chang CC, Lin CJ LIBSVM: a library for support vector machines (2001). Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm
– reference: Segrera S, Pinho J, Moreno M (2008) Information-theoretic measures for meta-learning. In: Corchado E, Abraham A, Pedrycz W (eds.) Hybrid Artificial Intelligence Systems, Lecture Notes in Computer Science, vol. 5271, Springer, Heidelberg, pp 458–465
– reference: SohnSYMeta analysis of classification algorithms for pattern recognitionIEEE Trans Pattern Anal Mach Intell199921111137114410.1109/34.809107
– reference: FriedmanJHRegularized discriminant analysisJ Am Stat Assoc19898440516517510.1080/01621459.1989.10478752
– reference: Quinlan R (2002) Data mining tools see5 and c5.0. http://www.rulequest.com/see5-info.html
– reference: Abdelmessih SD, Shafait F, Reif M, Goldstein M (2010) Landmarking for meta-learning using RapidMiner. In: RapidMiner community meeting and conference
– reference: Kietz JU, Serban F, Bernstein A, Fischer S (2010) Data mining workflow templates for intelligent discovery assistance and auto-experimentation. In: Proceedings of the ECML/PKDD-10 Workshop on Third Generation Data Mining: Towards Service-Oriented Knowledge Discovery, pp 1–12
– ident: 280_CR40
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 280_CR12
  publication-title: Mach Learn
– ident: 280_CR13
– ident: 280_CR1
– ident: 280_CR25
  doi: 10.1007/978-3-540-48247-5_52
– volume: 39
  start-page: 48
  issue: 1
  year: 2009
  ident: 280_CR32
  publication-title: IAENG Int J Appl Math
– volume: 32
  start-page: 1523
  issue: 11
  year: 2011
  ident: 280_CR14
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2011.04.010
– ident: 280_CR3
– ident: 280_CR34
– ident: 280_CR7
  doi: 10.1007/3-540-44795-4_3
– ident: 280_CR5
– ident: 280_CR11
– volume: 8
  start-page: 1341
  issue: 7
  year: 1996
  ident: 280_CR42
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.7.1341
– ident: 280_CR28
  doi: 10.1145/1150402.1150531
– ident: 280_CR18
  doi: 10.1109/ICMLA.2005.65
– ident: 280_CR9
– volume: 9
  start-page: 289
  issue: 3
  year: 1995
  ident: 280_CR23
  publication-title: Appl Artif Intell
  doi: 10.1080/08839519508945477
– ident: 280_CR20
  doi: 10.1016/B978-1-55860-335-6.50023-4
– ident: 280_CR21
  doi: 10.1007/3-540-45357-1_26
– ident: 280_CR31
– ident: 280_CR33
– volume: 50
  start-page: 251
  issue: 3
  year: 2003
  ident: 280_CR8
  publication-title: Mach Learn
  doi: 10.1023/A:1021713901879
– ident: 280_CR27
– ident: 280_CR38
  doi: 10.1007/978-3-540-87656-4_57
– ident: 280_CR6
  doi: 10.1007/3-540-45372-5_32
– ident: 280_CR29
  doi: 10.1007/3-540-36182-0_14
– ident: 280_CR16
– ident: 280_CR41
– ident: 280_CR17
  doi: 10.1007/3-540-60428-6_16
– volume: 21
  start-page: 1137
  issue: 11
  year: 1999
  ident: 280_CR39
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.809107
– ident: 280_CR35
– ident: 280_CR4
– ident: 280_CR30
– volume: 15
  start-page: 65
  year: 1976
  ident: 280_CR37
  publication-title: Adv Comput
  doi: 10.1016/S0065-2458(08)60520-3
– ident: 280_CR19
  doi: 10.1007/978-3-642-20980-2_9
– ident: 280_CR24
– ident: 280_CR26
– ident: 280_CR22
– volume: 6
  start-page: 119
  year: 2006
  ident: 280_CR2
  publication-title: Applied Soft Comput
  doi: 10.1016/j.asoc.2004.12.002
– volume: 5
  start-page: 267
  year: 1990
  ident: 280_CR36
  publication-title: Mach Learn
– volume: 84
  start-page: 165
  issue: 405
  year: 1989
  ident: 280_CR15
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1989.10478752
– volume: 45
  start-page: 5
  year: 2001
  ident: 280_CR10
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
SSID ssj0033328
Score 2.38161
Snippet Choosing a suitable classifier for a given dataset is an important part of developing a pattern recognition system. Since a large variety of classification...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 83
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer Science
Computer science; control theory; systems
Data processing. List processing. Character string processing
Exact sciences and technology
Memory organisation. Data processing
Pattern Recognition
Software
Theoretical Advances
Theoretical computing
Title Automatic classifier selection for non-experts
URI https://link.springer.com/article/10.1007/s10044-012-0280-z
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXgTxLdZH2YMnJbJJNtnNcZHWoujJQj0tSZqAIFrc7aW_3snuplp8gNeQZGGSyXyzM_MNQufKcm5dIrEyQvu_VQpLag0onraxcIIY6quR7x_EaJzcTvikreMuQ7Z7CEnWL_WXYrc48RkTFPtwIF6soy73rjtc4jHNw_PLGKsbqgIOYDjlCQmhzJ-2WDFGmzNVglxc09DiW2S0NjjDHbTVIsUob452F63Z1z203aLGqNXJEoZCY4Ywto-u8nn1VnOxRsaj42cHxi8q65Y3cA4RANUI3H5c0_tX5QEaDweP1yPcNkbABlSwwokFo25tKgyxzMksc9JJwjUhwqaMC0USKxQAB005lVQwlhqjqXQ6VoQJxQ5RB75ij1DEnNUiS4iZZoCMvP80tVakilATc8VlD8VBQoVpWcN984qX4pPv2Au1AKEWXqjFooculktmDWXGX5P7K2JfrvAsVVlGWA9dhnMoWvUqf9_u-F-zT9AG4J-kScI-RZ3qfW7PAGNUuo-6-c3T3aBf360Px-zJOg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aDwriW6yPugdPSmTz3M2xiKVq21MLvS3ZNAFBtLjbS3-9k-2mWnyA15BkYSaT-bLz-BC60lYI67jC2sjc_63SWFFrwPByG0sniaG-Grk_kN0RfxyLcV3HXYRs9xCSrG7qL8VuMfcZExT7cCCer6MNwAKpz-Ma0Xa4fhljFaEq4ACGE8FJCGX-tMWKM9qe6gLk4haEFt8io5XD6eyhnRopRu2FavfRmn09QLs1aoxqmyxgKBAzhLFDdNuelW9VL9bIeHT87MD5RUVFeQN6iACoRvDsx1V7_7I4QqPO_fCui2tiBGzABEvMLTh1axNpiGVOpalTThGREyJtwoTUhFupATjkVFBFJWOJMTlVLo81YVKzY9SAr9gTFDFnc5lyYiYpICP_fppYKxNNqImFFqqJ4iChzNRdwz15xUv22e_YCzUDoWZeqNm8ia6XS6aLlhl_TW6tiH25wnepSlPCmugm6CGrzav4fbvTf82-RJvdYb-X9R4GT2doC7AQXyRkn6NG-T6zF4A3yrxVna8PFuzKmQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5aQQRxF-tS5-BJiU7WmRyLWupWPFjobUjSBARpizO99NebzEyqxQW8hizwkpf3zbyX7wPgTBrGjKUCSs2V_1slocBGO8dTJuaWI439a-SnHu_26f2ADWqd0zxUu4eUZPWmwbM0jYqrydBefXn4FlNfPYGhTw3C2TJYcbcx8se6j9vhKiaElOKqDhMQmDCKQlrzpykWAtP6RObORrYSt_iWJS2DT2cLbNSoMWpX27wNlsxoB2zWCDKq_TN3TUGkIbTtgsv2tBiXvKyR9kj51bpAGOWl_I3bk8iB1mg0HsGS6r_I90C_c_ty3YW1SALUzh0LSI0L8MYkXCNDrEhTK6xATCHETUIYl4gaLh2IUJhhgTkhidYKC6tiiQiXZB803CrmAETEGsVTivQwdSjJf0sNjeGJRFjHTDLRBHGwUKZrBnEvZPGWfXIfe6NmzqiZN2o2a4Lz-ZBJRZ_xV-fWgtnnIzxjVZoi0gQXYR-y2tXy36c7_FfvU7D6fNPJHu96D0dgzcEiWtVmH4NG8T41Jw56FKpVHq8PFFHO1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+classifier+selection+for+non-experts&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Reif%2C+Matthias&rft.au=Shafait%2C+Faisal&rft.au=Goldstein%2C+Markus&rft.au=Breuel%2C+Thomas&rft.date=2014-02-01&rft.pub=Springer+London&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=17&rft.issue=1&rft.spage=83&rft.epage=96&rft_id=info:doi/10.1007%2Fs10044-012-0280-z&rft.externalDocID=10_1007_s10044_012_0280_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon