Elaborately manufacturing an electrochemical aptasensor based on gold nanoparticle/COF composites for amplified detection performance

Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward impregnation-reduction method. This composite not only owns outstanding stability, rich π functional sites, superior electroconductibility, high surface area...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 8; no. 47; pp. 16984 - 16991
Main Authors Zhu, Qian-Qian, Zhang, Wen-Wen, Zhang, Han-Wen, Yuan, Rongrong, He, Hongming
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward impregnation-reduction method. This composite not only owns outstanding stability, rich π functional sites, superior electroconductibility, high surface area, and well-ordered porous structures, but also possesses relatively strong non-covalent affinity toward aptamers, synergistically resulting in the establishment of highly efficient electrochemical aptasensors for detecting analytes. Ciprofloxacin (CIP), for instance, is selected and investigated as a research model to estimate the feasibility and superiority of Au@COF-based aptasensors. The as-made Au@COF-based aptasensor exhibits awesome sensing performance with the lowest limit of detection of 2.34 fg mL −1 (7.06 fM) in a concentration range from 1.0 × 10 −5 to 0.5 ng mL −1 as determined by analyzing electrochemical impedance signals, which is approximately attributed to numerous aptamer strands on the surface of COFs via strong π-π stacking interaction and the contribution of electrical conductivity from trapped Au nanoparticles. Concurrently, the fabricated aptasensor reveals excellent repeatability, circularity, selectivity, and stability as well as precise detection capability in a variety of real samples. This strategy provides a workable concept for developing and synthesizing of metal nanoparticle-built-in COF composites and their aptasensors in the extended electrochemical detection field. An electrochemical aptasensor based on Au@COF is designed and fabricated with excellent electrochemical detection performance.
AbstractList Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward impregnation-reduction method. This composite not only owns outstanding stability, rich π functional sites, superior electroconductibility, high surface area, and well-ordered porous structures, but also possesses relatively strong non-covalent affinity toward aptamers, synergistically resulting in the establishment of highly efficient electrochemical aptasensors for detecting analytes. Ciprofloxacin (CIP), for instance, is selected and investigated as a research model to estimate the feasibility and superiority of Au@COF-based aptasensors. The as-made Au@COF-based aptasensor exhibits awesome sensing performance with the lowest limit of detection of 2.34 fg mL −1 (7.06 fM) in a concentration range from 1.0 × 10 −5 to 0.5 ng mL −1 as determined by analyzing electrochemical impedance signals, which is approximately attributed to numerous aptamer strands on the surface of COFs via strong π-π stacking interaction and the contribution of electrical conductivity from trapped Au nanoparticles. Concurrently, the fabricated aptasensor reveals excellent repeatability, circularity, selectivity, and stability as well as precise detection capability in a variety of real samples. This strategy provides a workable concept for developing and synthesizing of metal nanoparticle-built-in COF composites and their aptasensors in the extended electrochemical detection field. An electrochemical aptasensor based on Au@COF is designed and fabricated with excellent electrochemical detection performance.
Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward impregnation-reduction method. This composite not only owns outstanding stability, rich π functional sites, superior electroconductibility, high surface area, and well-ordered porous structures, but also possesses relatively strong non-covalent affinity toward aptamers, synergistically resulting in the establishment of highly efficient electrochemical aptasensors for detecting analytes. Ciprofloxacin (CIP), for instance, is selected and investigated as a research model to estimate the feasibility and superiority of Au@COF-based aptasensors. The as-made Au@COF-based aptasensor exhibits awesome sensing performance with the lowest limit of detection of 2.34 fg mL −1 (7.06 fM) in a concentration range from 1.0 × 10 −5 to 0.5 ng mL −1 as determined by analyzing electrochemical impedance signals, which is approximately attributed to numerous aptamer strands on the surface of COFs via strong π–π stacking interaction and the contribution of electrical conductivity from trapped Au nanoparticles. Concurrently, the fabricated aptasensor reveals excellent repeatability, circularity, selectivity, and stability as well as precise detection capability in a variety of real samples. This strategy provides a workable concept for developing and synthesizing of metal nanoparticle-built-in COF composites and their aptasensors in the extended electrochemical detection field.
Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward impregnation-reduction method. This composite not only owns outstanding stability, rich π functional sites, superior electroconductibility, high surface area, and well-ordered porous structures, but also possesses relatively strong non-covalent affinity toward aptamers, synergistically resulting in the establishment of highly efficient electrochemical aptasensors for detecting analytes. Ciprofloxacin (CIP), for instance, is selected and investigated as a research model to estimate the feasibility and superiority of Au@COF-based aptasensors. The as-made Au@COF-based aptasensor exhibits awesome sensing performance with the lowest limit of detection of 2.34 fg mL−1 (7.06 fM) in a concentration range from 1.0 × 10−5 to 0.5 ng mL−1 as determined by analyzing electrochemical impedance signals, which is approximately attributed to numerous aptamer strands on the surface of COFs via strong π–π stacking interaction and the contribution of electrical conductivity from trapped Au nanoparticles. Concurrently, the fabricated aptasensor reveals excellent repeatability, circularity, selectivity, and stability as well as precise detection capability in a variety of real samples. This strategy provides a workable concept for developing and synthesizing of metal nanoparticle-built-in COF composites and their aptasensors in the extended electrochemical detection field.
Author Yuan, Rongrong
Zhang, Wen-Wen
He, Hongming
Zhu, Qian-Qian
Zhang, Han-Wen
AuthorAffiliation Tianjin Key Laboratory of Structure and Performance for Functional Molecules
Tianjin Normal University
Jilin Jianzhu University
College of Chemistry
Department of Materials Science and Engineering
AuthorAffiliation_xml – name: Jilin Jianzhu University
– name: Tianjin Normal University
– name: Tianjin Key Laboratory of Structure and Performance for Functional Molecules
– name: College of Chemistry
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Qian-Qian
  surname: Zhu
  fullname: Zhu, Qian-Qian
– sequence: 2
  givenname: Wen-Wen
  surname: Zhang
  fullname: Zhang, Wen-Wen
– sequence: 3
  givenname: Han-Wen
  surname: Zhang
  fullname: Zhang, Han-Wen
– sequence: 4
  givenname: Rongrong
  surname: Yuan
  fullname: Yuan, Rongrong
– sequence: 5
  givenname: Hongming
  surname: He
  fullname: He, Hongming
BookMark eNptkcFqHDEMhk1IIWmaS-8FQ2-FbWyPx7NzDNskLQRySc-DrJFTB489tb2HPEDfu063JFCqiwT6fv1CesuOY4rE2HspPkvRjRezqCi0EgqO2KkSvdgMfaePX2plTth5KY-ixVaarRlP2a-rADZlqBSe-AJx7wDrPvv4wCFyCoQ1J_xBi0cIHNYKhWJJmdtWzDxF_pDCzCPEtEKuHgNd7O6uOaZlTcVXKtw1GpY1eOebYqbaZvomXCm3VvNEesfeOAiFzv_mM_b9-up-93Vze3fzbXd5u8FObutGdyjRGuN6rWEQ1khltbWjMm4g6wxpgTgPqtegUArVzzjYQaBTQFvbue6MfTzMXXP6uadSp8e0z7FZTkoPYpRmlH2jxIHCnErJ5Cb0FZ53rhl8mKSYnu89fRH3uz_3vmyST_9I1uwXyE__hz8c4FzwhXt9XvcbKtiPfw
CitedBy_id crossref_primary_10_1016_j_foodchem_2023_136801
crossref_primary_10_1039_D1DT02360H
crossref_primary_10_1016_j_jfca_2023_105644
crossref_primary_10_1039_D1TA06006F
crossref_primary_10_1002_slct_202405539
crossref_primary_10_1021_acssensors_3c00269
crossref_primary_10_1016_j_jssc_2022_123614
crossref_primary_10_1002_elan_12017
crossref_primary_10_1016_j_inoche_2023_111641
crossref_primary_10_1038_s41598_023_35848_4
crossref_primary_10_6023_A22070339
crossref_primary_10_1016_j_jcis_2023_03_151
crossref_primary_10_2139_ssrn_4092997
crossref_primary_10_1016_j_microc_2025_113096
crossref_primary_10_1002_cjoc_202100831
crossref_primary_10_1016_j_saa_2023_122581
crossref_primary_10_1007_s11581_022_04835_6
crossref_primary_10_1002_bit_28718
crossref_primary_10_1007_s11694_023_01880_1
crossref_primary_10_1016_j_talanta_2024_127306
crossref_primary_10_1039_D1TC02143E
crossref_primary_10_1016_j_biotechadv_2023_108156
crossref_primary_10_1016_j_cej_2025_159603
crossref_primary_10_1016_j_snb_2022_132205
crossref_primary_10_1039_D3NR05797F
crossref_primary_10_1007_s11356_024_35852_9
crossref_primary_10_1039_D1TC00319D
crossref_primary_10_1016_j_talanta_2023_125557
crossref_primary_10_1002_EXP_20220144
crossref_primary_10_1016_j_aca_2021_339191
crossref_primary_10_1016_j_diamond_2023_110088
crossref_primary_10_3390_s23042008
crossref_primary_10_1039_D2QI01919A
crossref_primary_10_1016_j_cej_2022_134594
crossref_primary_10_1002_pol_20220683
crossref_primary_10_1016_j_apsusc_2021_151556
crossref_primary_10_1021_acs_inorgchem_1c00952
crossref_primary_10_3390_chemosensors10100407
crossref_primary_10_1002_slct_202301828
crossref_primary_10_1016_j_apsusc_2021_150307
crossref_primary_10_1016_j_est_2023_109405
crossref_primary_10_1016_j_molliq_2022_118895
crossref_primary_10_1016_j_micromeso_2022_111742
crossref_primary_10_1021_acsami_1c23320
crossref_primary_10_3390_s22072754
crossref_primary_10_3390_s22103684
crossref_primary_10_1016_j_micromeso_2022_112099
crossref_primary_10_1021_jacs_3c04657
crossref_primary_10_1039_D1TC01506K
crossref_primary_10_1016_j_microc_2023_109242
crossref_primary_10_1016_j_talanta_2024_127174
crossref_primary_10_1016_S1872_2067_23_64580_2
crossref_primary_10_1016_j_ccr_2021_213989
crossref_primary_10_1016_j_talanta_2023_125134
Cites_doi 10.1016/j.bios.2018.08.036
10.1016/j.bios.2019.02.040
10.1039/C9CS00299E
10.1016/j.snb.2018.03.155
10.1016/j.apsusc.2019.03.148
10.1039/C5AY03410H
10.1021/ic201608j
10.1038/nchem.2352
10.1016/j.aca.2014.05.020
10.1016/j.saa.2008.03.024
10.1016/j.jhazmat.2010.03.110
10.1128/JCM.41.7.3273-3283.2003
10.1016/j.talanta.2015.01.035
10.1039/c0nr00947d
10.1021/acsapm.9b00297
10.1016/j.bios.2018.11.047
10.1016/j.apsusc.2020.147342
10.1039/C9NJ03511G
10.1016/j.talanta.2017.06.040
10.1039/c2cs35157a
10.1016/j.apsusc.2019.03.271
10.1149/2.0641508jes
10.1016/j.carbon.2019.12.051
10.1039/C5RA19861E
10.1093/jac/45.5.583
10.1016/j.bios.2019.01.009
10.1016/j.snb.2016.06.066
10.1016/j.snb.2020.128090
10.1002/anie.201904291
10.1016/j.apsusc.2019.05.146
10.1021/ac202878q
10.1021/acsami.5b09145
10.1002/jrs.5071
10.1126/science.1120411
10.1016/j.aquaculture.2010.08.008
10.1021/cs400492w
10.1021/acsami.9b05689
10.1021/acsami.5b07337
10.1016/j.apsusc.2019.05.255
10.1080/09205063.2018.1457417
10.1016/j.addr.2018.04.007
10.1016/j.bios.2019.111846
10.1016/j.scitotenv.2005.10.007
10.2165/00003088-198900161-00010
10.1126/science.aal1585
10.1016/j.apsusc.2020.145628
10.1021/acsami.9b14795
10.1016/j.bioelechem.2017.07.004
10.1016/j.aca.2019.07.062
10.1016/j.bios.2018.04.026
10.1016/j.apsusc.2019.143889
10.1016/j.foodchem.2016.11.017
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d0tc04202a
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 16991
ExternalDocumentID 10_1039_D0TC04202A
d0tc04202a
GroupedDBID 0-7
0R
4.4
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c318t-43c1cb66f544a70b612b4bb926f7ebf6e40ccd7254a2c1025dc7b70cf2ae8b3f3
ISSN 2050-7526
IngestDate Sun Jun 29 15:54:22 EDT 2025
Tue Jul 01 04:26:22 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Sat Jan 08 03:48:06 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-43c1cb66f544a70b612b4bb926f7ebf6e40ccd7254a2c1025dc7b70cf2ae8b3f3
Notes Electronic supplementary information (ESI) available: TGA, FT-IR, XPS, TEM, EIS, CV, and so on. See DOI
10.1039/d0tc04202a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5535-8825
PQID 2470916915
PQPubID 2047521
PageCount 8
ParticipantIDs rsc_primary_d0tc04202a
crossref_primary_10_1039_D0TC04202A
proquest_journals_2470916915
crossref_citationtrail_10_1039_D0TC04202A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-21
PublicationDateYYYYMMDD 2020-12-21
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chen (D0TC04202A-(cit21)/*[position()=1]) 2020; 59
Côté (D0TC04202A-(cit20)/*[position()=1]) 2005; 310
Brown (D0TC04202A-(cit3)/*[position()=1]) 2006; 366
Li (D0TC04202A-(cit7)/*[position()=1]) 2008; 71
Zhang (D0TC04202A-(cit37)/*[position()=1]) 2019; 1
Zhang (D0TC04202A-(cit27)/*[position()=1]) 2019; 129
Hu (D0TC04202A-(cit41)/*[position()=1]) 2019; 489
Rapini (D0TC04202A-(cit13)/*[position()=1]) 2017; 118
Yan (D0TC04202A-(cit26)/*[position()=1]) 2019; 126
Zinner (D0TC04202A-(cit2)/*[position()=1]) 1989; 16
Benvidi (D0TC04202A-(cit39)/*[position()=1]) 2015; 137
Zuccato (D0TC04202A-(cit4)/*[position()=1]) 2010; 179
Santos (D0TC04202A-(cit44)/*[position()=1]) 2017; 174
Xu (D0TC04202A-(cit31)/*[position()=1]) 2015; 7
Preethika (D0TC04202A-(cit42)/*[position()=1]) 2019; 488
Hurtle (D0TC04202A-(cit8)/*[position()=1]) 2003; 41
Bogdanović (D0TC04202A-(cit30)/*[position()=1]) 2015; 7
Liu (D0TC04202A-(cit33)/*[position()=1]) 2013; 3
Matsunaga (D0TC04202A-(cit53)/*[position()=1]) 2020; 159
Feng (D0TC04202A-(cit19)/*[position()=1]) 2012; 41
Yang (D0TC04202A-(cit16)/*[position()=1]) 2018; 112
Pestova (D0TC04202A-(cit1)/*[position()=1]) 2000; 45
Hu (D0TC04202A-(cit9)/*[position()=1]) 2010; 310
Shan (D0TC04202A-(cit52)/*[position()=1]) 2016; 237
Kimmel (D0TC04202A-(cit10)/*[position()=1]) 2012; 84
Sari (D0TC04202A-(cit5)/*[position()=1]) 2018; 29
Abdel-Galeil (D0TC04202A-(cit47)/*[position()=1]) 2015; 162
Li (D0TC04202A-(cit28)/*[position()=1]) 2019; 40
Idisi (D0TC04202A-(cit29)/*[position()=1]) 2019; 483
Xu (D0TC04202A-(cit14)/*[position()=1]) 2020; 512
Rothlisberger (D0TC04202A-(cit12)/*[position()=1]) 2018; 134
Zhang (D0TC04202A-(cit18)/*[position()=1]) 2020; 150
Xu (D0TC04202A-(cit43)/*[position()=1]) 2019; 11
Diercks (D0TC04202A-(cit22)/*[position()=1]) 2017; 355
Li (D0TC04202A-(cit35)/*[position()=1]) 2020; 314
He (D0TC04202A-(cit17)/*[position()=1]) 2020; 531
Shang (D0TC04202A-(cit32)/*[position()=1]) 2011; 3
Hu (D0TC04202A-(cit46)/*[position()=1]) 2018; 268
Liu (D0TC04202A-(cit25)/*[position()=1]) 2019; 48
Kingsley (D0TC04202A-(cit45)/*[position()=1]) 2016; 6
Bagheri (D0TC04202A-(cit50)/*[position()=1]) 2016; 8
Yuan (D0TC04202A-(cit34)/*[position()=1]) 2011; 50
Zuo (D0TC04202A-(cit36)/*[position()=1]) 2019; 11
Gayen (D0TC04202A-(cit49)/*[position()=1]) 2016; 8
Li (D0TC04202A-(cit6)/*[position()=1]) 2017; 48
Zhou (D0TC04202A-(cit38)/*[position()=1]) 2019; 498
Zhang (D0TC04202A-(cit48)/*[position()=1]) 2014; 835
Hoyos-Arbelaez (D0TC04202A-(cit11)/*[position()=1]) 2017; 221
Wang (D0TC04202A-(cit40)/*[position()=1]) 2019; 481
Jalal (D0TC04202A-(cit51)/*[position()=1]) 2019; 833
Chen (D0TC04202A-(cit54)/*[position()=1]) 2019; 43
Yang (D0TC04202A-(cit15)/*[position()=1]) 2018; 120
Wang (D0TC04202A-(cit23)/*[position()=1]) 2019; 132
Cao (D0TC04202A-(cit24)/*[position()=1]) 2019; 1082
References_xml – volume: 120
  start-page: 85
  year: 2018
  ident: D0TC04202A-(cit15)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.08.036
– volume: 132
  start-page: 8
  year: 2019
  ident: D0TC04202A-(cit23)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.02.040
– volume: 48
  start-page: 5266
  year: 2019
  ident: D0TC04202A-(cit25)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00299E
– volume: 268
  start-page: 278
  year: 2018
  ident: D0TC04202A-(cit46)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.03.155
– volume: 481
  start-page: 505
  year: 2019
  ident: D0TC04202A-(cit40)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.148
– volume: 8
  start-page: 3383
  year: 2016
  ident: D0TC04202A-(cit50)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C5AY03410H
– volume: 50
  start-page: 11069
  year: 2011
  ident: D0TC04202A-(cit34)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic201608j
– volume: 7
  start-page: 905
  year: 2015
  ident: D0TC04202A-(cit31)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2352
– volume: 835
  start-page: 29
  year: 2014
  ident: D0TC04202A-(cit48)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.05.020
– volume: 71
  start-page: 1204
  year: 2008
  ident: D0TC04202A-(cit7)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2008.03.024
– volume: 179
  start-page: 1042
  year: 2010
  ident: D0TC04202A-(cit4)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.03.110
– volume: 41
  start-page: 3273
  year: 2003
  ident: D0TC04202A-(cit8)/*[position()=1]
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.41.7.3273-3283.2003
– volume: 137
  start-page: 80
  year: 2015
  ident: D0TC04202A-(cit39)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2015.01.035
– volume: 3
  start-page: 2009
  year: 2011
  ident: D0TC04202A-(cit32)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c0nr00947d
– volume: 1
  start-page: 1524
  year: 2019
  ident: D0TC04202A-(cit37)/*[position()=1]
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.9b00297
– volume: 126
  start-page: 734
  year: 2019
  ident: D0TC04202A-(cit26)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.11.047
– volume: 531
  start-page: 147342
  year: 2020
  ident: D0TC04202A-(cit17)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147342
– volume: 43
  start-page: 15169
  year: 2019
  ident: D0TC04202A-(cit54)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ03511G
– volume: 174
  start-page: 610
  year: 2017
  ident: D0TC04202A-(cit44)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2017.06.040
– volume: 41
  start-page: 6010
  year: 2012
  ident: D0TC04202A-(cit19)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35157a
– volume: 483
  start-page: 106
  year: 2019
  ident: D0TC04202A-(cit29)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.271
– volume: 162
  start-page: H541
  year: 2015
  ident: D0TC04202A-(cit47)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0641508jes
– volume: 159
  start-page: 247
  year: 2020
  ident: D0TC04202A-(cit53)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.12.051
– volume: 6
  start-page: 15101
  year: 2016
  ident: D0TC04202A-(cit45)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA19861E
– volume: 45
  start-page: 583
  year: 2000
  ident: D0TC04202A-(cit1)/*[position()=1]
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/45.5.583
– volume: 129
  start-page: 64
  year: 2019
  ident: D0TC04202A-(cit27)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.01.009
– volume: 237
  start-page: 75
  year: 2016
  ident: D0TC04202A-(cit52)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.06.066
– volume: 314
  start-page: 128090
  year: 2020
  ident: D0TC04202A-(cit35)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2020.128090
– volume: 59
  start-page: 5050
  year: 2020
  ident: D0TC04202A-(cit21)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904291
– volume: 489
  start-page: 13
  year: 2019
  ident: D0TC04202A-(cit41)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.146
– volume: 84
  start-page: 685
  year: 2012
  ident: D0TC04202A-(cit10)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac202878q
– volume: 7
  start-page: 28393
  year: 2015
  ident: D0TC04202A-(cit30)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09145
– volume: 48
  start-page: 525
  year: 2017
  ident: D0TC04202A-(cit6)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.5071
– volume: 310
  start-page: 1166
  year: 2005
  ident: D0TC04202A-(cit20)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 310
  start-page: 8
  year: 2010
  ident: D0TC04202A-(cit9)/*[position()=1]
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2010.08.008
– volume: 3
  start-page: 2768
  year: 2013
  ident: D0TC04202A-(cit33)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs400492w
– volume: 11
  start-page: 17894
  year: 2019
  ident: D0TC04202A-(cit43)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05689
– volume: 8
  start-page: 1615
  year: 2016
  ident: D0TC04202A-(cit49)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07337
– volume: 488
  start-page: 503
  year: 2019
  ident: D0TC04202A-(cit42)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.255
– volume: 29
  start-page: 1302
  year: 2018
  ident: D0TC04202A-(cit5)/*[position()=1]
  publication-title: J. Biomater. Sci., Polym. Ed.
  doi: 10.1080/09205063.2018.1457417
– volume: 134
  start-page: 3
  year: 2018
  ident: D0TC04202A-(cit12)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2018.04.007
– volume: 833
  start-page: 281
  year: 2019
  ident: D0TC04202A-(cit51)/*[position()=1]
  publication-title: J. Electrochem. Soc.
– volume: 150
  start-page: 111846
  year: 2020
  ident: D0TC04202A-(cit18)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111846
– volume: 40
  start-page: 439
  year: 2019
  ident: D0TC04202A-(cit28)/*[position()=1]
  publication-title: Chem. Res. Chin. Univ.
– volume: 366
  start-page: 772
  year: 2006
  ident: D0TC04202A-(cit3)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.10.007
– volume: 16
  start-page: 59
  year: 1989
  ident: D0TC04202A-(cit2)/*[position()=1]
  publication-title: Pharmacokinet.
  doi: 10.2165/00003088-198900161-00010
– volume: 355
  start-page: eaal1585
  year: 2017
  ident: D0TC04202A-(cit22)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 512
  start-page: 145628
  year: 2020
  ident: D0TC04202A-(cit14)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145628
– volume: 11
  start-page: 39201
  year: 2019
  ident: D0TC04202A-(cit36)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14795
– volume: 118
  start-page: 47
  year: 2017
  ident: D0TC04202A-(cit13)/*[position()=1]
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2017.07.004
– volume: 1082
  start-page: 176
  year: 2019
  ident: D0TC04202A-(cit24)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.07.062
– volume: 112
  start-page: 186
  year: 2018
  ident: D0TC04202A-(cit16)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.04.026
– volume: 498
  start-page: 143889
  year: 2019
  ident: D0TC04202A-(cit38)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143889
– volume: 221
  start-page: 1371
  year: 2017
  ident: D0TC04202A-(cit11)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2016.11.017
SSID ssj0000816869
Score 2.4865775
Snippet Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16984
SubjectTerms Composite materials
Electrical resistivity
Electrochemical analysis
Gold
Nanoparticles
Selectivity
Title Elaborately manufacturing an electrochemical aptasensor based on gold nanoparticle/COF composites for amplified detection performance
URI https://www.proquest.com/docview/2470916915
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lrZDggKBQEShoJbigyK29Xr-OVUgVEA9VStVysvblXCInapwD3Pmx_AtmH147TZEKF8uZeDeK5_Ps7HjmG4TeCXhkBFc8iEWcwgYlCQMuGAkKyQsh86qgJt7x5Ws6vaSfrpPrweB3L2tp0_AT8fPOupL_0SrIQK-6SvYfNOsnBQGcg37hCBqG4710PHEqVIsfOg11o6sU2rLDkWtwIzwjwKqBFate6_RMOJH6NcF8uZCjmtWwc7aza7rcb-cm0Vxnc6m1zbLUaeeVdlalapRtLr7qKg7-4uCCL2xvwki0XeVORmNbINR-o2dfrhpPWdDryiOVMWJdZHujh14AnIOLHqZ9xPtK1cGV2pVP2Zb8-8a9-VrWc_iheT_sQUwKia2lttaRaFhlCXE82n2Zi4468573UGzJPZ2tjtLCdqdzCz98to3DdlaVMNakrB_C2RhMXEg8L2tH3X1rSfWJjuYVf1yU3dg9dEBgRwMm-eBsMvv42QcETQcU04LR_7WWTjcuTrsJth2oble0d9O2rDGu0ewJeuxUjs8shJ6igaoP0aMe0-UhemAyjcX6GfrVAy3eAi1mNb4FWtyBFhvQ4mWNNWhxH7SnAFncQRYDqLCHLPaQxT3IPkeX55PZeBq4XiCBgFWnCWgsIsHTtEooZVnIwTHnlPOCpFWmeJUqGgohM5JQRgQ4zYkUGc9CURGmch5X8RHar5e1eoFwEgvBZRrxmDKqOMtzrkLJOElBzqJoiN63N7gUjihf92tZlLvaHKK3_tqVpYe586rjVk-lMx_rktAMfPW0iJIhOgLd-fEybIQZx17ea_ZX6GH3gByj_eZmo16Dp9zwNw5jfwC8IMak
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elaborately+manufacturing+an+electrochemical+aptasensor+based+on+gold+nanoparticle%2FCOF+composites+for+amplified+detection+performance&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Zhu%2C+Qian-Qian&rft.au=Zhang%2C+Wen-Wen&rft.au=Zhang%2C+Han-Wen&rft.au=Yuan%2C+Rongrong&rft.date=2020-12-21&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=8&rft.issue=47&rft.spage=16984&rft.epage=16991&rft_id=info:doi/10.1039%2FD0TC04202A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0TC04202A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon