Elaborately manufacturing an electrochemical aptasensor based on gold nanoparticle/COF composites for amplified detection performance
Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward impregnation-reduction method. This composite not only owns outstanding stability, rich π functional sites, superior electroconductibility, high surface area...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 8; no. 47; pp. 16984 - 16991 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward impregnation-reduction method. This composite not only owns outstanding stability, rich π functional sites, superior electroconductibility, high surface area, and well-ordered porous structures, but also possesses relatively strong non-covalent affinity toward aptamers, synergistically resulting in the establishment of highly efficient electrochemical aptasensors for detecting analytes. Ciprofloxacin (CIP), for instance, is selected and investigated as a research model to estimate the feasibility and superiority of Au@COF-based aptasensors. The as-made Au@COF-based aptasensor exhibits awesome sensing performance with the lowest limit of detection of 2.34 fg mL
−1
(7.06 fM) in a concentration range from 1.0 × 10
−5
to 0.5 ng mL
−1
as determined by analyzing electrochemical impedance signals, which is approximately attributed to numerous aptamer strands on the surface of COFs
via
strong π-π stacking interaction and the contribution of electrical conductivity from trapped Au nanoparticles. Concurrently, the fabricated aptasensor reveals excellent repeatability, circularity, selectivity, and stability as well as precise detection capability in a variety of real samples. This strategy provides a workable concept for developing and synthesizing of metal nanoparticle-built-in COF composites and their aptasensors in the extended electrochemical detection field.
An electrochemical aptasensor based on Au@COF is designed and fabricated with excellent electrochemical detection performance. |
---|---|
AbstractList | Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward impregnation-reduction method. This composite not only owns outstanding stability, rich π functional sites, superior electroconductibility, high surface area, and well-ordered porous structures, but also possesses relatively strong non-covalent affinity toward aptamers, synergistically resulting in the establishment of highly efficient electrochemical aptasensors for detecting analytes. Ciprofloxacin (CIP), for instance, is selected and investigated as a research model to estimate the feasibility and superiority of Au@COF-based aptasensors. The as-made Au@COF-based aptasensor exhibits awesome sensing performance with the lowest limit of detection of 2.34 fg mL
−1
(7.06 fM) in a concentration range from 1.0 × 10
−5
to 0.5 ng mL
−1
as determined by analyzing electrochemical impedance signals, which is approximately attributed to numerous aptamer strands on the surface of COFs
via
strong π-π stacking interaction and the contribution of electrical conductivity from trapped Au nanoparticles. Concurrently, the fabricated aptasensor reveals excellent repeatability, circularity, selectivity, and stability as well as precise detection capability in a variety of real samples. This strategy provides a workable concept for developing and synthesizing of metal nanoparticle-built-in COF composites and their aptasensors in the extended electrochemical detection field.
An electrochemical aptasensor based on Au@COF is designed and fabricated with excellent electrochemical detection performance. Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward impregnation-reduction method. This composite not only owns outstanding stability, rich π functional sites, superior electroconductibility, high surface area, and well-ordered porous structures, but also possesses relatively strong non-covalent affinity toward aptamers, synergistically resulting in the establishment of highly efficient electrochemical aptasensors for detecting analytes. Ciprofloxacin (CIP), for instance, is selected and investigated as a research model to estimate the feasibility and superiority of Au@COF-based aptasensors. The as-made Au@COF-based aptasensor exhibits awesome sensing performance with the lowest limit of detection of 2.34 fg mL −1 (7.06 fM) in a concentration range from 1.0 × 10 −5 to 0.5 ng mL −1 as determined by analyzing electrochemical impedance signals, which is approximately attributed to numerous aptamer strands on the surface of COFs via strong π–π stacking interaction and the contribution of electrical conductivity from trapped Au nanoparticles. Concurrently, the fabricated aptasensor reveals excellent repeatability, circularity, selectivity, and stability as well as precise detection capability in a variety of real samples. This strategy provides a workable concept for developing and synthesizing of metal nanoparticle-built-in COF composites and their aptasensors in the extended electrochemical detection field. Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward impregnation-reduction method. This composite not only owns outstanding stability, rich π functional sites, superior electroconductibility, high surface area, and well-ordered porous structures, but also possesses relatively strong non-covalent affinity toward aptamers, synergistically resulting in the establishment of highly efficient electrochemical aptasensors for detecting analytes. Ciprofloxacin (CIP), for instance, is selected and investigated as a research model to estimate the feasibility and superiority of Au@COF-based aptasensors. The as-made Au@COF-based aptasensor exhibits awesome sensing performance with the lowest limit of detection of 2.34 fg mL−1 (7.06 fM) in a concentration range from 1.0 × 10−5 to 0.5 ng mL−1 as determined by analyzing electrochemical impedance signals, which is approximately attributed to numerous aptamer strands on the surface of COFs via strong π–π stacking interaction and the contribution of electrical conductivity from trapped Au nanoparticles. Concurrently, the fabricated aptasensor reveals excellent repeatability, circularity, selectivity, and stability as well as precise detection capability in a variety of real samples. This strategy provides a workable concept for developing and synthesizing of metal nanoparticle-built-in COF composites and their aptasensors in the extended electrochemical detection field. |
Author | Yuan, Rongrong Zhang, Wen-Wen He, Hongming Zhu, Qian-Qian Zhang, Han-Wen |
AuthorAffiliation | Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Jilin Jianzhu University College of Chemistry Department of Materials Science and Engineering |
AuthorAffiliation_xml | – name: Jilin Jianzhu University – name: Tianjin Normal University – name: Tianjin Key Laboratory of Structure and Performance for Functional Molecules – name: College of Chemistry – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Qian-Qian surname: Zhu fullname: Zhu, Qian-Qian – sequence: 2 givenname: Wen-Wen surname: Zhang fullname: Zhang, Wen-Wen – sequence: 3 givenname: Han-Wen surname: Zhang fullname: Zhang, Han-Wen – sequence: 4 givenname: Rongrong surname: Yuan fullname: Yuan, Rongrong – sequence: 5 givenname: Hongming surname: He fullname: He, Hongming |
BookMark | eNptkcFqHDEMhk1IIWmaS-8FQ2-FbWyPx7NzDNskLQRySc-DrJFTB489tb2HPEDfu063JFCqiwT6fv1CesuOY4rE2HspPkvRjRezqCi0EgqO2KkSvdgMfaePX2plTth5KY-ixVaarRlP2a-rADZlqBSe-AJx7wDrPvv4wCFyCoQ1J_xBi0cIHNYKhWJJmdtWzDxF_pDCzCPEtEKuHgNd7O6uOaZlTcVXKtw1GpY1eOebYqbaZvomXCm3VvNEesfeOAiFzv_mM_b9-up-93Vze3fzbXd5u8FObutGdyjRGuN6rWEQ1khltbWjMm4g6wxpgTgPqtegUArVzzjYQaBTQFvbue6MfTzMXXP6uadSp8e0z7FZTkoPYpRmlH2jxIHCnErJ5Cb0FZ53rhl8mKSYnu89fRH3uz_3vmyST_9I1uwXyE__hz8c4FzwhXt9XvcbKtiPfw |
CitedBy_id | crossref_primary_10_1016_j_foodchem_2023_136801 crossref_primary_10_1039_D1DT02360H crossref_primary_10_1016_j_jfca_2023_105644 crossref_primary_10_1039_D1TA06006F crossref_primary_10_1002_slct_202405539 crossref_primary_10_1021_acssensors_3c00269 crossref_primary_10_1016_j_jssc_2022_123614 crossref_primary_10_1002_elan_12017 crossref_primary_10_1016_j_inoche_2023_111641 crossref_primary_10_1038_s41598_023_35848_4 crossref_primary_10_6023_A22070339 crossref_primary_10_1016_j_jcis_2023_03_151 crossref_primary_10_2139_ssrn_4092997 crossref_primary_10_1016_j_microc_2025_113096 crossref_primary_10_1002_cjoc_202100831 crossref_primary_10_1016_j_saa_2023_122581 crossref_primary_10_1007_s11581_022_04835_6 crossref_primary_10_1002_bit_28718 crossref_primary_10_1007_s11694_023_01880_1 crossref_primary_10_1016_j_talanta_2024_127306 crossref_primary_10_1039_D1TC02143E crossref_primary_10_1016_j_biotechadv_2023_108156 crossref_primary_10_1016_j_cej_2025_159603 crossref_primary_10_1016_j_snb_2022_132205 crossref_primary_10_1039_D3NR05797F crossref_primary_10_1007_s11356_024_35852_9 crossref_primary_10_1039_D1TC00319D crossref_primary_10_1016_j_talanta_2023_125557 crossref_primary_10_1002_EXP_20220144 crossref_primary_10_1016_j_aca_2021_339191 crossref_primary_10_1016_j_diamond_2023_110088 crossref_primary_10_3390_s23042008 crossref_primary_10_1039_D2QI01919A crossref_primary_10_1016_j_cej_2022_134594 crossref_primary_10_1002_pol_20220683 crossref_primary_10_1016_j_apsusc_2021_151556 crossref_primary_10_1021_acs_inorgchem_1c00952 crossref_primary_10_3390_chemosensors10100407 crossref_primary_10_1002_slct_202301828 crossref_primary_10_1016_j_apsusc_2021_150307 crossref_primary_10_1016_j_est_2023_109405 crossref_primary_10_1016_j_molliq_2022_118895 crossref_primary_10_1016_j_micromeso_2022_111742 crossref_primary_10_1021_acsami_1c23320 crossref_primary_10_3390_s22072754 crossref_primary_10_3390_s22103684 crossref_primary_10_1016_j_micromeso_2022_112099 crossref_primary_10_1021_jacs_3c04657 crossref_primary_10_1039_D1TC01506K crossref_primary_10_1016_j_microc_2023_109242 crossref_primary_10_1016_j_talanta_2024_127174 crossref_primary_10_1016_S1872_2067_23_64580_2 crossref_primary_10_1016_j_ccr_2021_213989 crossref_primary_10_1016_j_talanta_2023_125134 |
Cites_doi | 10.1016/j.bios.2018.08.036 10.1016/j.bios.2019.02.040 10.1039/C9CS00299E 10.1016/j.snb.2018.03.155 10.1016/j.apsusc.2019.03.148 10.1039/C5AY03410H 10.1021/ic201608j 10.1038/nchem.2352 10.1016/j.aca.2014.05.020 10.1016/j.saa.2008.03.024 10.1016/j.jhazmat.2010.03.110 10.1128/JCM.41.7.3273-3283.2003 10.1016/j.talanta.2015.01.035 10.1039/c0nr00947d 10.1021/acsapm.9b00297 10.1016/j.bios.2018.11.047 10.1016/j.apsusc.2020.147342 10.1039/C9NJ03511G 10.1016/j.talanta.2017.06.040 10.1039/c2cs35157a 10.1016/j.apsusc.2019.03.271 10.1149/2.0641508jes 10.1016/j.carbon.2019.12.051 10.1039/C5RA19861E 10.1093/jac/45.5.583 10.1016/j.bios.2019.01.009 10.1016/j.snb.2016.06.066 10.1016/j.snb.2020.128090 10.1002/anie.201904291 10.1016/j.apsusc.2019.05.146 10.1021/ac202878q 10.1021/acsami.5b09145 10.1002/jrs.5071 10.1126/science.1120411 10.1016/j.aquaculture.2010.08.008 10.1021/cs400492w 10.1021/acsami.9b05689 10.1021/acsami.5b07337 10.1016/j.apsusc.2019.05.255 10.1080/09205063.2018.1457417 10.1016/j.addr.2018.04.007 10.1016/j.bios.2019.111846 10.1016/j.scitotenv.2005.10.007 10.2165/00003088-198900161-00010 10.1126/science.aal1585 10.1016/j.apsusc.2020.145628 10.1021/acsami.9b14795 10.1016/j.bioelechem.2017.07.004 10.1016/j.aca.2019.07.062 10.1016/j.bios.2018.04.026 10.1016/j.apsusc.2019.143889 10.1016/j.foodchem.2016.11.017 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/d0tc04202a |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 16991 |
ExternalDocumentID | 10_1039_D0TC04202A d0tc04202a |
GroupedDBID | 0-7 0R 4.4 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RIG RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c318t-43c1cb66f544a70b612b4bb926f7ebf6e40ccd7254a2c1025dc7b70cf2ae8b3f3 |
ISSN | 2050-7526 |
IngestDate | Sun Jun 29 15:54:22 EDT 2025 Tue Jul 01 04:26:22 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Sat Jan 08 03:48:06 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-43c1cb66f544a70b612b4bb926f7ebf6e40ccd7254a2c1025dc7b70cf2ae8b3f3 |
Notes | Electronic supplementary information (ESI) available: TGA, FT-IR, XPS, TEM, EIS, CV, and so on. See DOI 10.1039/d0tc04202a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5535-8825 |
PQID | 2470916915 |
PQPubID | 2047521 |
PageCount | 8 |
ParticipantIDs | rsc_primary_d0tc04202a crossref_primary_10_1039_D0TC04202A proquest_journals_2470916915 crossref_citationtrail_10_1039_D0TC04202A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-21 |
PublicationDateYYYYMMDD | 2020-12-21 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Chen (D0TC04202A-(cit21)/*[position()=1]) 2020; 59 Côté (D0TC04202A-(cit20)/*[position()=1]) 2005; 310 Brown (D0TC04202A-(cit3)/*[position()=1]) 2006; 366 Li (D0TC04202A-(cit7)/*[position()=1]) 2008; 71 Zhang (D0TC04202A-(cit37)/*[position()=1]) 2019; 1 Zhang (D0TC04202A-(cit27)/*[position()=1]) 2019; 129 Hu (D0TC04202A-(cit41)/*[position()=1]) 2019; 489 Rapini (D0TC04202A-(cit13)/*[position()=1]) 2017; 118 Yan (D0TC04202A-(cit26)/*[position()=1]) 2019; 126 Zinner (D0TC04202A-(cit2)/*[position()=1]) 1989; 16 Benvidi (D0TC04202A-(cit39)/*[position()=1]) 2015; 137 Zuccato (D0TC04202A-(cit4)/*[position()=1]) 2010; 179 Santos (D0TC04202A-(cit44)/*[position()=1]) 2017; 174 Xu (D0TC04202A-(cit31)/*[position()=1]) 2015; 7 Preethika (D0TC04202A-(cit42)/*[position()=1]) 2019; 488 Hurtle (D0TC04202A-(cit8)/*[position()=1]) 2003; 41 Bogdanović (D0TC04202A-(cit30)/*[position()=1]) 2015; 7 Liu (D0TC04202A-(cit33)/*[position()=1]) 2013; 3 Matsunaga (D0TC04202A-(cit53)/*[position()=1]) 2020; 159 Feng (D0TC04202A-(cit19)/*[position()=1]) 2012; 41 Yang (D0TC04202A-(cit16)/*[position()=1]) 2018; 112 Pestova (D0TC04202A-(cit1)/*[position()=1]) 2000; 45 Hu (D0TC04202A-(cit9)/*[position()=1]) 2010; 310 Shan (D0TC04202A-(cit52)/*[position()=1]) 2016; 237 Kimmel (D0TC04202A-(cit10)/*[position()=1]) 2012; 84 Sari (D0TC04202A-(cit5)/*[position()=1]) 2018; 29 Abdel-Galeil (D0TC04202A-(cit47)/*[position()=1]) 2015; 162 Li (D0TC04202A-(cit28)/*[position()=1]) 2019; 40 Idisi (D0TC04202A-(cit29)/*[position()=1]) 2019; 483 Xu (D0TC04202A-(cit14)/*[position()=1]) 2020; 512 Rothlisberger (D0TC04202A-(cit12)/*[position()=1]) 2018; 134 Zhang (D0TC04202A-(cit18)/*[position()=1]) 2020; 150 Xu (D0TC04202A-(cit43)/*[position()=1]) 2019; 11 Diercks (D0TC04202A-(cit22)/*[position()=1]) 2017; 355 Li (D0TC04202A-(cit35)/*[position()=1]) 2020; 314 He (D0TC04202A-(cit17)/*[position()=1]) 2020; 531 Shang (D0TC04202A-(cit32)/*[position()=1]) 2011; 3 Hu (D0TC04202A-(cit46)/*[position()=1]) 2018; 268 Liu (D0TC04202A-(cit25)/*[position()=1]) 2019; 48 Kingsley (D0TC04202A-(cit45)/*[position()=1]) 2016; 6 Bagheri (D0TC04202A-(cit50)/*[position()=1]) 2016; 8 Yuan (D0TC04202A-(cit34)/*[position()=1]) 2011; 50 Zuo (D0TC04202A-(cit36)/*[position()=1]) 2019; 11 Gayen (D0TC04202A-(cit49)/*[position()=1]) 2016; 8 Li (D0TC04202A-(cit6)/*[position()=1]) 2017; 48 Zhou (D0TC04202A-(cit38)/*[position()=1]) 2019; 498 Zhang (D0TC04202A-(cit48)/*[position()=1]) 2014; 835 Hoyos-Arbelaez (D0TC04202A-(cit11)/*[position()=1]) 2017; 221 Wang (D0TC04202A-(cit40)/*[position()=1]) 2019; 481 Jalal (D0TC04202A-(cit51)/*[position()=1]) 2019; 833 Chen (D0TC04202A-(cit54)/*[position()=1]) 2019; 43 Yang (D0TC04202A-(cit15)/*[position()=1]) 2018; 120 Wang (D0TC04202A-(cit23)/*[position()=1]) 2019; 132 Cao (D0TC04202A-(cit24)/*[position()=1]) 2019; 1082 |
References_xml | – volume: 120 start-page: 85 year: 2018 ident: D0TC04202A-(cit15)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.08.036 – volume: 132 start-page: 8 year: 2019 ident: D0TC04202A-(cit23)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.02.040 – volume: 48 start-page: 5266 year: 2019 ident: D0TC04202A-(cit25)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00299E – volume: 268 start-page: 278 year: 2018 ident: D0TC04202A-(cit46)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.03.155 – volume: 481 start-page: 505 year: 2019 ident: D0TC04202A-(cit40)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.148 – volume: 8 start-page: 3383 year: 2016 ident: D0TC04202A-(cit50)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/C5AY03410H – volume: 50 start-page: 11069 year: 2011 ident: D0TC04202A-(cit34)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic201608j – volume: 7 start-page: 905 year: 2015 ident: D0TC04202A-(cit31)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2352 – volume: 835 start-page: 29 year: 2014 ident: D0TC04202A-(cit48)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2014.05.020 – volume: 71 start-page: 1204 year: 2008 ident: D0TC04202A-(cit7)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2008.03.024 – volume: 179 start-page: 1042 year: 2010 ident: D0TC04202A-(cit4)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.03.110 – volume: 41 start-page: 3273 year: 2003 ident: D0TC04202A-(cit8)/*[position()=1] publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.41.7.3273-3283.2003 – volume: 137 start-page: 80 year: 2015 ident: D0TC04202A-(cit39)/*[position()=1] publication-title: Talanta doi: 10.1016/j.talanta.2015.01.035 – volume: 3 start-page: 2009 year: 2011 ident: D0TC04202A-(cit32)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c0nr00947d – volume: 1 start-page: 1524 year: 2019 ident: D0TC04202A-(cit37)/*[position()=1] publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b00297 – volume: 126 start-page: 734 year: 2019 ident: D0TC04202A-(cit26)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.11.047 – volume: 531 start-page: 147342 year: 2020 ident: D0TC04202A-(cit17)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147342 – volume: 43 start-page: 15169 year: 2019 ident: D0TC04202A-(cit54)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C9NJ03511G – volume: 174 start-page: 610 year: 2017 ident: D0TC04202A-(cit44)/*[position()=1] publication-title: Talanta doi: 10.1016/j.talanta.2017.06.040 – volume: 41 start-page: 6010 year: 2012 ident: D0TC04202A-(cit19)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35157a – volume: 483 start-page: 106 year: 2019 ident: D0TC04202A-(cit29)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.271 – volume: 162 start-page: H541 year: 2015 ident: D0TC04202A-(cit47)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0641508jes – volume: 159 start-page: 247 year: 2020 ident: D0TC04202A-(cit53)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2019.12.051 – volume: 6 start-page: 15101 year: 2016 ident: D0TC04202A-(cit45)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA19861E – volume: 45 start-page: 583 year: 2000 ident: D0TC04202A-(cit1)/*[position()=1] publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/45.5.583 – volume: 129 start-page: 64 year: 2019 ident: D0TC04202A-(cit27)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.01.009 – volume: 237 start-page: 75 year: 2016 ident: D0TC04202A-(cit52)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.06.066 – volume: 314 start-page: 128090 year: 2020 ident: D0TC04202A-(cit35)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2020.128090 – volume: 59 start-page: 5050 year: 2020 ident: D0TC04202A-(cit21)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904291 – volume: 489 start-page: 13 year: 2019 ident: D0TC04202A-(cit41)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.146 – volume: 84 start-page: 685 year: 2012 ident: D0TC04202A-(cit10)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac202878q – volume: 7 start-page: 28393 year: 2015 ident: D0TC04202A-(cit30)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09145 – volume: 48 start-page: 525 year: 2017 ident: D0TC04202A-(cit6)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.5071 – volume: 310 start-page: 1166 year: 2005 ident: D0TC04202A-(cit20)/*[position()=1] publication-title: Science doi: 10.1126/science.1120411 – volume: 310 start-page: 8 year: 2010 ident: D0TC04202A-(cit9)/*[position()=1] publication-title: Aquaculture doi: 10.1016/j.aquaculture.2010.08.008 – volume: 3 start-page: 2768 year: 2013 ident: D0TC04202A-(cit33)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs400492w – volume: 11 start-page: 17894 year: 2019 ident: D0TC04202A-(cit43)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05689 – volume: 8 start-page: 1615 year: 2016 ident: D0TC04202A-(cit49)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07337 – volume: 488 start-page: 503 year: 2019 ident: D0TC04202A-(cit42)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.255 – volume: 29 start-page: 1302 year: 2018 ident: D0TC04202A-(cit5)/*[position()=1] publication-title: J. Biomater. Sci., Polym. Ed. doi: 10.1080/09205063.2018.1457417 – volume: 134 start-page: 3 year: 2018 ident: D0TC04202A-(cit12)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2018.04.007 – volume: 833 start-page: 281 year: 2019 ident: D0TC04202A-(cit51)/*[position()=1] publication-title: J. Electrochem. Soc. – volume: 150 start-page: 111846 year: 2020 ident: D0TC04202A-(cit18)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111846 – volume: 40 start-page: 439 year: 2019 ident: D0TC04202A-(cit28)/*[position()=1] publication-title: Chem. Res. Chin. Univ. – volume: 366 start-page: 772 year: 2006 ident: D0TC04202A-(cit3)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.10.007 – volume: 16 start-page: 59 year: 1989 ident: D0TC04202A-(cit2)/*[position()=1] publication-title: Pharmacokinet. doi: 10.2165/00003088-198900161-00010 – volume: 355 start-page: eaal1585 year: 2017 ident: D0TC04202A-(cit22)/*[position()=1] publication-title: Science doi: 10.1126/science.aal1585 – volume: 512 start-page: 145628 year: 2020 ident: D0TC04202A-(cit14)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145628 – volume: 11 start-page: 39201 year: 2019 ident: D0TC04202A-(cit36)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14795 – volume: 118 start-page: 47 year: 2017 ident: D0TC04202A-(cit13)/*[position()=1] publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2017.07.004 – volume: 1082 start-page: 176 year: 2019 ident: D0TC04202A-(cit24)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.07.062 – volume: 112 start-page: 186 year: 2018 ident: D0TC04202A-(cit16)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.04.026 – volume: 498 start-page: 143889 year: 2019 ident: D0TC04202A-(cit38)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143889 – volume: 221 start-page: 1371 year: 2017 ident: D0TC04202A-(cit11)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.11.017 |
SSID | ssj0000816869 |
Score | 2.4865775 |
Snippet | Gold (Au) nanoparticle-embedded covalent organic frameworks (namely Au@COFs) were ingeniously designed and prepared by using a straightforward... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16984 |
SubjectTerms | Composite materials Electrical resistivity Electrochemical analysis Gold Nanoparticles Selectivity |
Title | Elaborately manufacturing an electrochemical aptasensor based on gold nanoparticle/COF composites for amplified detection performance |
URI | https://www.proquest.com/docview/2470916915 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lrZDggKBQEShoJbigyK29Xr-OVUgVEA9VStVysvblXCInapwD3Pmx_AtmH147TZEKF8uZeDeK5_Ps7HjmG4TeCXhkBFc8iEWcwgYlCQMuGAkKyQsh86qgJt7x5Ws6vaSfrpPrweB3L2tp0_AT8fPOupL_0SrIQK-6SvYfNOsnBQGcg37hCBqG4710PHEqVIsfOg11o6sU2rLDkWtwIzwjwKqBFate6_RMOJH6NcF8uZCjmtWwc7aza7rcb-cm0Vxnc6m1zbLUaeeVdlalapRtLr7qKg7-4uCCL2xvwki0XeVORmNbINR-o2dfrhpPWdDryiOVMWJdZHujh14AnIOLHqZ9xPtK1cGV2pVP2Zb8-8a9-VrWc_iheT_sQUwKia2lttaRaFhlCXE82n2Zi4468573UGzJPZ2tjtLCdqdzCz98to3DdlaVMNakrB_C2RhMXEg8L2tH3X1rSfWJjuYVf1yU3dg9dEBgRwMm-eBsMvv42QcETQcU04LR_7WWTjcuTrsJth2oble0d9O2rDGu0ewJeuxUjs8shJ6igaoP0aMe0-UhemAyjcX6GfrVAy3eAi1mNb4FWtyBFhvQ4mWNNWhxH7SnAFncQRYDqLCHLPaQxT3IPkeX55PZeBq4XiCBgFWnCWgsIsHTtEooZVnIwTHnlPOCpFWmeJUqGgohM5JQRgQ4zYkUGc9CURGmch5X8RHar5e1eoFwEgvBZRrxmDKqOMtzrkLJOElBzqJoiN63N7gUjihf92tZlLvaHKK3_tqVpYe586rjVk-lMx_rktAMfPW0iJIhOgLd-fEybIQZx17ea_ZX6GH3gByj_eZmo16Dp9zwNw5jfwC8IMak |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elaborately+manufacturing+an+electrochemical+aptasensor+based+on+gold+nanoparticle%2FCOF+composites+for+amplified+detection+performance&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Zhu%2C+Qian-Qian&rft.au=Zhang%2C+Wen-Wen&rft.au=Zhang%2C+Han-Wen&rft.au=Yuan%2C+Rongrong&rft.date=2020-12-21&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=8&rft.issue=47&rft.spage=16984&rft.epage=16991&rft_id=info:doi/10.1039%2FD0TC04202A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0TC04202A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |