Crystal structure of nickel manganese-layered double hydroxide@cobaltosic oxides on nickel foam towards high-performance supercapacitors
Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein, the three-dimensional crystal structure NiMn LDH@Co 3 O 4 composites on Ni foam with different feeding Ni/Mn molar ratios were well-designed...
Saved in:
Published in | CrystEngComm Vol. 21; no. 3; pp. 47 - 477 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1466-8033 1466-8033 |
DOI | 10.1039/c8ce01861h |
Cover
Loading…
Abstract | Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein, the three-dimensional crystal structure NiMn LDH@Co
3
O
4
composites on Ni foam with different feeding Ni/Mn molar ratios were well-designed with hydrothermal, calcination and co-deposition methods, wherein urea hydrolysis supplied the alkali and carbonate ions. The electrochemical properties of the produced electrode materials were analyzed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests using 6 M KOH electrolyte. Indeed, the optimal feeding Ni/Mn molar ratio was determined to be 3 : 1. The resulting electrodes exhibited maximum specific capacitance (607.9 F g
−1
at 0.5 A g
−1
), respectable rate capability and excellent cycling stability with less than 3% loss of capacitance after 1000 cycles, which could be ascribed to the well-designed core-shell architecture and ultrathin nanosheets structure of LDH. As for practical application, the asymmetric supercapacitor assembled using NiMn LDH@Co
3
O
4
as the positive electrode and activated graphene (AG) as the negative electrode was also evaluated, which demonstrated a high energy density of 26.49 W h kg
−1
at the power density of 350 W kg
−1
. The findings suggest that the three-dimensional crystal structure NiMn LDH@Co
3
O
4
composites have potential application as promising electrode materials for energy storage devices or other applications.
Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. |
---|---|
AbstractList | Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein, the three-dimensional crystal structure NiMn LDH@Co
3
O
4
composites on Ni foam with different feeding Ni/Mn molar ratios were well-designed with hydrothermal, calcination and co-deposition methods, wherein urea hydrolysis supplied the alkali and carbonate ions. The electrochemical properties of the produced electrode materials were analyzed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests using 6 M KOH electrolyte. Indeed, the optimal feeding Ni/Mn molar ratio was determined to be 3 : 1. The resulting electrodes exhibited maximum specific capacitance (607.9 F g
−1
at 0.5 A g
−1
), respectable rate capability and excellent cycling stability with less than 3% loss of capacitance after 1000 cycles, which could be ascribed to the well-designed core–shell architecture and ultrathin nanosheets structure of LDH. As for practical application, the asymmetric supercapacitor assembled using NiMn LDH@Co
3
O
4
as the positive electrode and activated graphene (AG) as the negative electrode was also evaluated, which demonstrated a high energy density of 26.49 W h kg
−1
at the power density of 350 W kg
−1
. The findings suggest that the three-dimensional crystal structure NiMn LDH@Co
3
O
4
composites have potential application as promising electrode materials for energy storage devices or other applications. Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein, the three-dimensional crystal structure NiMn LDH@Co3O4 composites on Ni foam with different feeding Ni/Mn molar ratios were well-designed with hydrothermal, calcination and co-deposition methods, wherein urea hydrolysis supplied the alkali and carbonate ions. The electrochemical properties of the produced electrode materials were analyzed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests using 6 M KOH electrolyte. Indeed, the optimal feeding Ni/Mn molar ratio was determined to be 3 : 1. The resulting electrodes exhibited maximum specific capacitance (607.9 F g−1 at 0.5 A g−1), respectable rate capability and excellent cycling stability with less than 3% loss of capacitance after 1000 cycles, which could be ascribed to the well-designed core–shell architecture and ultrathin nanosheets structure of LDH. As for practical application, the asymmetric supercapacitor assembled using NiMn LDH@Co3O4 as the positive electrode and activated graphene (AG) as the negative electrode was also evaluated, which demonstrated a high energy density of 26.49 W h kg−1 at the power density of 350 W kg−1. The findings suggest that the three-dimensional crystal structure NiMn LDH@Co3O4 composites have potential application as promising electrode materials for energy storage devices or other applications. Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein, the three-dimensional crystal structure NiMn LDH@Co 3 O 4 composites on Ni foam with different feeding Ni/Mn molar ratios were well-designed with hydrothermal, calcination and co-deposition methods, wherein urea hydrolysis supplied the alkali and carbonate ions. The electrochemical properties of the produced electrode materials were analyzed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests using 6 M KOH electrolyte. Indeed, the optimal feeding Ni/Mn molar ratio was determined to be 3 : 1. The resulting electrodes exhibited maximum specific capacitance (607.9 F g −1 at 0.5 A g −1 ), respectable rate capability and excellent cycling stability with less than 3% loss of capacitance after 1000 cycles, which could be ascribed to the well-designed core-shell architecture and ultrathin nanosheets structure of LDH. As for practical application, the asymmetric supercapacitor assembled using NiMn LDH@Co 3 O 4 as the positive electrode and activated graphene (AG) as the negative electrode was also evaluated, which demonstrated a high energy density of 26.49 W h kg −1 at the power density of 350 W kg −1 . The findings suggest that the three-dimensional crystal structure NiMn LDH@Co 3 O 4 composites have potential application as promising electrode materials for energy storage devices or other applications. Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. |
Author | Li, Shaochun Liu, Xiaoying Jiang, Deyi Peng, Huihua Dong, Fan Zhang, Yuxin Jing, Chuan Chen, Jie Dong, Biqin |
AuthorAffiliation | State Key Laboratory of Coal Mine Disaster Dynamics and Control College of Environment and Resources Qingdao University of Technology Institute of Fundamental and Frontier Sciences State Key Laboratory of Mechanical Transmissions College of Resources and Environmental Science Shenzhen University University of Electronic Science and Technology of China Chongqing University Chongqing Technology and Business University Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering Research Center for Environmental Science & Technology Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education College of Materials Science and Engineering School of civil Engineering |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Coal Mine Disaster Dynamics and Control – sequence: 0 name: Qingdao University of Technology – sequence: 0 name: College of Resources and Environmental Science – sequence: 0 name: Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education – sequence: 0 name: College of Materials Science and Engineering – sequence: 0 name: University of Electronic Science and Technology of China – sequence: 0 name: State Key Laboratory of Mechanical Transmissions – sequence: 0 name: Shenzhen University – sequence: 0 name: Research Center for Environmental Science & Technology – sequence: 0 name: School of civil Engineering – sequence: 0 name: College of Environment and Resources – sequence: 0 name: Chongqing Technology and Business University – sequence: 0 name: Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering – sequence: 0 name: Chongqing University – sequence: 0 name: Institute of Fundamental and Frontier Sciences |
Author_xml | – sequence: 1 givenname: Huihua surname: Peng fullname: Peng, Huihua – sequence: 2 givenname: Chuan surname: Jing fullname: Jing, Chuan – sequence: 3 givenname: Jie surname: Chen fullname: Chen, Jie – sequence: 4 givenname: Deyi surname: Jiang fullname: Jiang, Deyi – sequence: 5 givenname: Xiaoying surname: Liu fullname: Liu, Xiaoying – sequence: 6 givenname: Biqin surname: Dong fullname: Dong, Biqin – sequence: 7 givenname: Fan surname: Dong fullname: Dong, Fan – sequence: 8 givenname: Shaochun surname: Li fullname: Li, Shaochun – sequence: 9 givenname: Yuxin surname: Zhang fullname: Zhang, Yuxin |
BookMark | eNptkU1P3DAQhq0KJNiFC_dKlnpDCvXE-fDeqKJtQVqJC_fImYzZ0Gy8jB3B_gN-dgPbQoU4zYee9x3NzEwcDH4gIc5AXYDSi-9okBSYAtZfxDFkRZEYpfXBf_mRmIVwrxRkAOpYPFe8C9H2MkQeMY5M0js5dPibermxw50dKFDS2x0xtbL1Y9OTXO9a9k9dS5foG9tHHzqUr40g_fBP7rzdyOgfLbdBrru7dbIldp4nWyQZxqlCu7XYRc_hRBw62wc6_Rvn4vbn8ra6SlY3v66rH6sENZiYZNrkRuEihSYHnVKTlakplGlUZnKFTQmuBHCoGtKpK7FYODK5RlNgmptWz8W3ve2W_cNIIdb3fuRhmlinUBRlnqYLmKjzPYXsQ2By9Za7jeVdDap-OXRdmWr5euirCVYf4GkjGzs_RLZd_7nk617CAd-s33-n_wCtPY7L |
CitedBy_id | crossref_primary_10_1016_j_est_2021_103003 crossref_primary_10_1016_j_seta_2023_103376 crossref_primary_10_1039_C9DT02227A crossref_primary_10_1016_j_est_2020_101583 crossref_primary_10_1021_acssuschemeng_1c05056 crossref_primary_10_1166_jnn_2021_18460 crossref_primary_10_1016_j_jpowsour_2022_231065 crossref_primary_10_1016_j_apsusc_2019_143700 crossref_primary_10_1039_D0DT00438C crossref_primary_10_1039_D0TA02939D crossref_primary_10_1021_acsami_2c13873 crossref_primary_10_1039_C9CE01443H crossref_primary_10_1016_j_cej_2019_122640 crossref_primary_10_1016_j_mtener_2020_100412 crossref_primary_10_1016_j_est_2022_106445 crossref_primary_10_1039_C9CE01169B crossref_primary_10_1039_D1AY00495F crossref_primary_10_1039_D0DT00251H crossref_primary_10_1039_D1QM00222H crossref_primary_10_1016_j_fub_2025_100025 crossref_primary_10_1016_j_jallcom_2021_163023 crossref_primary_10_1016_j_jpowsour_2020_228609 crossref_primary_10_1016_j_vacuum_2024_113437 crossref_primary_10_1002_chem_202402269 crossref_primary_10_1088_1361_6528_ab51c6 crossref_primary_10_1016_j_cej_2019_122490 crossref_primary_10_1016_j_jcis_2024_12_061 crossref_primary_10_1007_s11581_019_03265_1 crossref_primary_10_3390_nano12224079 crossref_primary_10_1016_j_jechem_2019_09_027 crossref_primary_10_1016_j_inoche_2020_108371 crossref_primary_10_1016_j_solidstatesciences_2019_105941 crossref_primary_10_1016_j_ceramint_2019_05_149 crossref_primary_10_1016_j_rinp_2019_102831 crossref_primary_10_1016_j_jcis_2020_01_086 crossref_primary_10_1016_j_jpowsour_2025_236465 crossref_primary_10_1016_j_est_2022_106171 crossref_primary_10_1007_s11581_023_05031_w crossref_primary_10_1039_C9NJ02513H crossref_primary_10_1002_celc_201900687 crossref_primary_10_1002_smtd_202301167 crossref_primary_10_1016_j_electacta_2019_04_021 crossref_primary_10_1016_j_matlet_2019_126505 crossref_primary_10_1016_j_jcis_2020_02_018 crossref_primary_10_1002_eem2_12116 crossref_primary_10_1039_D1SE00636C crossref_primary_10_1016_j_est_2022_104834 crossref_primary_10_1039_C9RA01341E crossref_primary_10_1039_C9CE01575B crossref_primary_10_1016_j_est_2019_100968 crossref_primary_10_1016_j_arabjc_2020_06_036 crossref_primary_10_1016_j_jallcom_2021_163125 crossref_primary_10_1016_j_vacuum_2022_110914 crossref_primary_10_1039_D1MA00474C crossref_primary_10_1016_j_apcatb_2020_119510 crossref_primary_10_1016_j_ccr_2023_215494 crossref_primary_10_1016_j_rechem_2024_102009 crossref_primary_10_1039_C9NJ00038K crossref_primary_10_1016_j_electacta_2022_139845 crossref_primary_10_1039_C9TA08527K crossref_primary_10_1016_j_ijhydene_2021_06_231 crossref_primary_10_1007_s10800_020_01473_6 crossref_primary_10_1039_C9CE01252D crossref_primary_10_1002_er_8535 crossref_primary_10_1039_D1TA08303A |
Cites_doi | 10.1039/c1ra00771h 10.1021/nn305750s 10.1021/am4012484 10.1126/science.1158736 10.1038/nature11475 10.1002/advs.201700687 10.1021/acsami.6b10638 10.1016/j.cej.2018.02.032 10.1016/j.jpowsour.2018.10.046 10.1021/acs.jpcc.6b07708 10.1002/aenm.201703329 10.1039/C4TA02380C 10.1016/j.corsci.2018.04.027 10.1021/jp408021m 10.1039/C5TA05523G 10.1016/j.jcis.2018.10.072 10.1016/j.apsusc.2015.12.039 10.1021/nl102203s 10.1039/c8ce01607k 10.1002/smll.201402222 10.1016/j.ceramint.2013.07.127 10.1007/s10008-006-0155-6 10.1002/ange.201605102 10.1016/j.matchemphys.2008.07.114 10.1039/C6CE02462A 10.1021/nn301454q 10.1021/jp0479522 10.1039/C8TA07869F 10.1039/c3ta10954b 10.1016/j.electacta.2016.02.080 10.1002/adfm.201303638 10.1002/cssc.201801439 10.1021/cm9018309 10.1039/C5CC08744A 10.1038/nmat2297 10.1002/adma.201100058 10.1039/C8TA08263D 10.1038/nenergy.2016.138 10.1016/j.cej.2017.12.055 10.1016/j.nanoen.2014.05.002 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/c8ce01861h |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 477 |
ExternalDocumentID | 10_1039_C8CE01861H c8ce01861h |
GroupedDBID | -JG 0-7 0R~ 29F 5GY 6J9 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 E3Z EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF CITATION R56 7U5 8FD L7M |
ID | FETCH-LOGICAL-c318t-438580c921b5132eb4728608b04850cb71f711fc0be32f7c69fe853c86c258d3 |
ISSN | 1466-8033 |
IngestDate | Sun Jun 29 15:34:36 EDT 2025 Thu Apr 24 22:54:20 EDT 2025 Tue Jul 01 02:21:02 EDT 2025 Tue Dec 17 21:00:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c318t-438580c921b5132eb4728608b04850cb71f711fc0be32f7c69fe853c86c258d3 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/c8ce01861h ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4621-2722 0000-0003-2890-9964 0000-0003-4698-5645 |
PQID | 2166752291 |
PQPubID | 2047491 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1039_C8CE01861H proquest_journals_2166752291 rsc_primary_c8ce01861h crossref_primary_10_1039_C8CE01861H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhou (C8CE01861H-(cit36)/*[position()=1]) 2010; 22 Chen (C8CE01861H-(cit11)/*[position()=1]) 2016; 8 Chu (C8CE01861H-(cit1)/*[position()=1]) 2012; 488 Yu (C8CE01861H-(cit12)/*[position()=1]) 1999 Wang (C8CE01861H-(cit40)/*[position()=1]) 2013; 5 Liu (C8CE01861H-(cit23)/*[position()=1]) 2011; 23 Lin (C8CE01861H-(cit3)/*[position()=1]) 2018; 336 Chen (C8CE01861H-(cit17)/*[position()=1]) 2016; 120 Xia (C8CE01861H-(cit24)/*[position()=1]) 2012; 6 Huang (C8CE01861H-(cit8)/*[position()=1]) 2015; 3 Lei (C8CE01861H-(cit30)/*[position()=1]) 2009; 113 Lin (C8CE01861H-(cit4)/*[position()=1]) 2018 Lin (C8CE01861H-(cit26)/*[position()=1]) 2018; 6 Chen (C8CE01861H-(cit5)/*[position()=1]) 2016; 1 Gu (C8CE01861H-(cit29)/*[position()=1]) 2013; 1 Quan (C8CE01861H-(cit41)/*[position()=1]) 2016; 52 Liang (C8CE01861H-(cit7)/*[position()=1]) 2018; 8 Zeng (C8CE01861H-(cit21)/*[position()=1]) 2014; 40 Wang (C8CE01861H-(cit25)/*[position()=1]) 2014; 2 Lin (C8CE01861H-(cit9)/*[position()=1]) 2018; 407 Liao (C8CE01861H-(cit39)/*[position()=1]) 2013; 562 Chen (C8CE01861H-(cit27)/*[position()=1]) 2017; 19 Xia (C8CE01861H-(cit18)/*[position()=1]) 2012; 2 Guo (C8CE01861H-(cit28)/*[position()=1]) 2016; 194 Wei (C8CE01861H-(cit34)/*[position()=1]) 2013; 108 Simon (C8CE01861H-(cit2)/*[position()=1]) 2008; 7 Lu (C8CE01861H-(cit6)/*[position()=1]) 2016; 128 Li (C8CE01861H-(cit33)/*[position()=1]) 2016; 363 Sun (C8CE01861H-(cit31)/*[position()=1]) 2014; 118 Wekesa (C8CE01861H-(cit35)/*[position()=1]) 2011; 2 Liu (C8CE01861H-(cit15)/*[position()=1]) 2015; 11 Kim (C8CE01861H-(cit20)/*[position()=1]) 2010; 10 Lin (C8CE01861H-(cit10)/*[position()=1]) 2018; 5 Jing (C8CE01861H-(cit43)/*[position()=1]) 2018 Guo (C8CE01861H-(cit22)/*[position()=1]) 2018 Xu (C8CE01861H-(cit37)/*[position()=1]) 2007; 11 Choi (C8CE01861H-(cit42)/*[position()=1]) 2014; 7 Miller (C8CE01861H-(cit14)/*[position()=1]) 2008; 321 Wei (C8CE01861H-(cit13)/*[position()=1]) 2018; 341 Ning (C8CE01861H-(cit38)/*[position()=1]) 2014; 7 Jing (C8CE01861H-(cit19)/*[position()=1]) 2018 Wei (C8CE01861H-(cit16)/*[position()=1]) 2018; 11 Zhao (C8CE01861H-(cit32)/*[position()=1]) 2014; 24 |
References_xml | – issn: 1999 publication-title: Electrochemical Supercapacitors doi: Yu Davies Chen – volume: 2 start-page: 1835 year: 2012 ident: C8CE01861H-(cit18)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c1ra00771h – volume: 7 start-page: 2453 year: 2014 ident: C8CE01861H-(cit42)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn305750s – volume: 5 start-page: 6255 year: 2013 ident: C8CE01861H-(cit40)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4012484 – volume: 321 start-page: 651 year: 2008 ident: C8CE01861H-(cit14)/*[position()=1] publication-title: Science doi: 10.1126/science.1158736 – volume: 488 start-page: 294 year: 2012 ident: C8CE01861H-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature11475 – volume: 5 start-page: 1700687 year: 2018 ident: C8CE01861H-(cit10)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201700687 – volume: 2 start-page: 34 year: 2011 ident: C8CE01861H-(cit35)/*[position()=1] publication-title: Int. J. Chem. Res. – volume: 8 start-page: 29522 year: 2016 ident: C8CE01861H-(cit11)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10638 – volume: 341 start-page: 618 year: 2018 ident: C8CE01861H-(cit13)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.02.032 – volume-title: Electrochemical Supercapacitors year: 1999 ident: C8CE01861H-(cit12)/*[position()=1] – volume: 407 start-page: 6 year: 2018 ident: C8CE01861H-(cit9)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.046 – volume: 120 start-page: 20077 year: 2016 ident: C8CE01861H-(cit17)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b07708 – volume: 8 start-page: 1703329 year: 2018 ident: C8CE01861H-(cit7)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703329 – volume: 2 start-page: 12968 year: 2014 ident: C8CE01861H-(cit25)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02380C – year: 2018 ident: C8CE01861H-(cit43)/*[position()=1] publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.04.027 – volume: 118 start-page: 2263 year: 2014 ident: C8CE01861H-(cit31)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp408021m – volume: 3 start-page: 21380 year: 2015 ident: C8CE01861H-(cit8)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05523G – year: 2018 ident: C8CE01861H-(cit4)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.10.072 – volume: 363 start-page: 381 year: 2016 ident: C8CE01861H-(cit33)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.12.039 – volume: 562 start-page: 106 year: 2013 ident: C8CE01861H-(cit39)/*[position()=1] publication-title: ChemInform – volume: 10 start-page: 4099 year: 2010 ident: C8CE01861H-(cit20)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl102203s – year: 2018 ident: C8CE01861H-(cit19)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/c8ce01607k – volume: 11 start-page: 2182 year: 2015 ident: C8CE01861H-(cit15)/*[position()=1] publication-title: Small doi: 10.1002/smll.201402222 – volume: 40 start-page: 2115 year: 2014 ident: C8CE01861H-(cit21)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.07.127 – volume: 11 start-page: 372 year: 2007 ident: C8CE01861H-(cit37)/*[position()=1] publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-006-0155-6 – volume: 128 start-page: 10604 year: 2016 ident: C8CE01861H-(cit6)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201605102 – volume: 113 start-page: 445 year: 2009 ident: C8CE01861H-(cit30)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.07.114 – volume: 19 start-page: 1230 year: 2017 ident: C8CE01861H-(cit27)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C6CE02462A – volume: 6 start-page: 5531 year: 2012 ident: C8CE01861H-(cit24)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn301454q – volume: 108 start-page: 18547 year: 2013 ident: C8CE01861H-(cit34)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0479522 – year: 2018 ident: C8CE01861H-(cit22)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07869F – volume: 1 start-page: 10655 year: 2013 ident: C8CE01861H-(cit29)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10954b – volume: 194 start-page: 179 year: 2016 ident: C8CE01861H-(cit28)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.02.080 – volume: 24 start-page: 2938 year: 2014 ident: C8CE01861H-(cit32)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303638 – volume: 11 start-page: 3167 year: 2018 ident: C8CE01861H-(cit16)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201801439 – volume: 22 start-page: 1015 year: 2010 ident: C8CE01861H-(cit36)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm9018309 – volume: 52 start-page: 3694 year: 2016 ident: C8CE01861H-(cit41)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC08744A – volume: 7 start-page: 845 year: 2008 ident: C8CE01861H-(cit2)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 23 start-page: 2076 year: 2011 ident: C8CE01861H-(cit23)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201100058 – volume: 6 start-page: 19151 year: 2018 ident: C8CE01861H-(cit26)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08263D – volume: 1 start-page: 16138 year: 2016 ident: C8CE01861H-(cit5)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.138 – volume: 336 start-page: 562 year: 2018 ident: C8CE01861H-(cit3)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.055 – volume: 7 start-page: 134 year: 2014 ident: C8CE01861H-(cit38)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.05.002 |
SSID | ssj0014110 |
Score | 2.5033703 |
Snippet | Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 47 |
SubjectTerms | Capacitance Cobalt oxides Composite materials Crystal structure Cycles Electrochemical analysis Electrochemical impedance spectroscopy Electrode materials Electrodes Energy storage Flux density Graphene Hydroxides Lithium Manganese Metal foams Nickel Stability tests Supercapacitors |
Title | Crystal structure of nickel manganese-layered double hydroxide@cobaltosic oxides on nickel foam towards high-performance supercapacitors |
URI | https://www.proquest.com/docview/2166752291 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QscEK8VhQVZAg6oyhI7zuvGKhSVFXAq0t6q2rG3kbrJqk0kur9gj_xkxrHzoO1h4RK1lm1F-T7PjD2eGYTeKSXdIGXMiYM4chhVgcPVgjn-AowRj3s0pToa-fuPYPqTXVz6l4PB796tparkZ-L2YFzJ_6AKbYCrjpL9B2TbSaEBfgO-8ASE4XkvjJP1dlOagI_KuAL0tYwMFuZKX0u9Wujyks5qsdUFOcdpUekwqeU2XRe_slS-Z67Q2UDKApAa102178BOoIrFNVim-lbtZqyzGjs3vSCDTQX_BGhakel6PX0bt36rSX6lY086yWtkyrTKllWrCS5sQZUE2lqSJk28SCa7fvZU-7PcZv1zCisHjVBlgU56bBJenMkDbVYSm1hpyzivJ1aZKS5iNTQzhV_2hL_r6dypSZRMXBIFZNqpuMatv6P52vuItSfei-fd2CN0TGHj4Q7R8flk9vVb65lixGS4aN6_SXnrxR-70X8bOd3O5WjdlJWpzZfZY_TI7jvwuSHREzSQ-VP0sJeN8hm6s3TCLZ1wobBhA96jEzZ0wi2dPnVkwoZMuMib4ZpM2JIJ75IJ75DpOZp9mcySqWMLdTgCVELpMO1ddkVMCfeJRyVnIY0CN-KgHnxX8JCokBAlXC49qkIRxEqCmSiiQFA_Sr0TNMyLXL5AmDGQFGCyK5dy5nuUpyArRMgUUTA5USP0ofmwc2GT2OtaKqv5PoQj9Lbte2NStxzsddrgM7dLezOnJICNNKUxGaETwKwdLyIh63HLl_ea_RV6oNeCObM7RUPAT74GK7bkbyyx_gCwI6Jv |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+structure+of+nickel+manganese-layered+double+hydroxide%40cobaltosic+oxides+on+nickel+foam+towards+high-performance+supercapacitors&rft.jtitle=CrystEngComm&rft.au=Peng%2C+Huihua&rft.au=Jing%2C+Chuan&rft.au=Chen%2C+Jie&rft.au=Jiang%2C+Deyi&rft.date=2019&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=21&rft.issue=3&rft.spage=470&rft.epage=477&rft_id=info:doi/10.1039%2FC8CE01861H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8CE01861H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |