Crystal structure of nickel manganese-layered double hydroxide@cobaltosic oxides on nickel foam towards high-performance supercapacitors

Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein, the three-dimensional crystal structure NiMn LDH@Co 3 O 4 composites on Ni foam with different feeding Ni/Mn molar ratios were well-designed...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 21; no. 3; pp. 47 - 477
Main Authors Peng, Huihua, Jing, Chuan, Chen, Jie, Jiang, Deyi, Liu, Xiaoying, Dong, Biqin, Dong, Fan, Li, Shaochun, Zhang, Yuxin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text
ISSN1466-8033
1466-8033
DOI10.1039/c8ce01861h

Cover

Loading…
Abstract Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein, the three-dimensional crystal structure NiMn LDH@Co 3 O 4 composites on Ni foam with different feeding Ni/Mn molar ratios were well-designed with hydrothermal, calcination and co-deposition methods, wherein urea hydrolysis supplied the alkali and carbonate ions. The electrochemical properties of the produced electrode materials were analyzed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests using 6 M KOH electrolyte. Indeed, the optimal feeding Ni/Mn molar ratio was determined to be 3 : 1. The resulting electrodes exhibited maximum specific capacitance (607.9 F g −1 at 0.5 A g −1 ), respectable rate capability and excellent cycling stability with less than 3% loss of capacitance after 1000 cycles, which could be ascribed to the well-designed core-shell architecture and ultrathin nanosheets structure of LDH. As for practical application, the asymmetric supercapacitor assembled using NiMn LDH@Co 3 O 4 as the positive electrode and activated graphene (AG) as the negative electrode was also evaluated, which demonstrated a high energy density of 26.49 W h kg −1 at the power density of 350 W kg −1 . The findings suggest that the three-dimensional crystal structure NiMn LDH@Co 3 O 4 composites have potential application as promising electrode materials for energy storage devices or other applications. Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors.
AbstractList Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein, the three-dimensional crystal structure NiMn LDH@Co 3 O 4 composites on Ni foam with different feeding Ni/Mn molar ratios were well-designed with hydrothermal, calcination and co-deposition methods, wherein urea hydrolysis supplied the alkali and carbonate ions. The electrochemical properties of the produced electrode materials were analyzed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests using 6 M KOH electrolyte. Indeed, the optimal feeding Ni/Mn molar ratio was determined to be 3 : 1. The resulting electrodes exhibited maximum specific capacitance (607.9 F g −1 at 0.5 A g −1 ), respectable rate capability and excellent cycling stability with less than 3% loss of capacitance after 1000 cycles, which could be ascribed to the well-designed core–shell architecture and ultrathin nanosheets structure of LDH. As for practical application, the asymmetric supercapacitor assembled using NiMn LDH@Co 3 O 4 as the positive electrode and activated graphene (AG) as the negative electrode was also evaluated, which demonstrated a high energy density of 26.49 W h kg −1 at the power density of 350 W kg −1 . The findings suggest that the three-dimensional crystal structure NiMn LDH@Co 3 O 4 composites have potential application as promising electrode materials for energy storage devices or other applications.
Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein, the three-dimensional crystal structure NiMn LDH@Co3O4 composites on Ni foam with different feeding Ni/Mn molar ratios were well-designed with hydrothermal, calcination and co-deposition methods, wherein urea hydrolysis supplied the alkali and carbonate ions. The electrochemical properties of the produced electrode materials were analyzed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests using 6 M KOH electrolyte. Indeed, the optimal feeding Ni/Mn molar ratio was determined to be 3 : 1. The resulting electrodes exhibited maximum specific capacitance (607.9 F g−1 at 0.5 A g−1), respectable rate capability and excellent cycling stability with less than 3% loss of capacitance after 1000 cycles, which could be ascribed to the well-designed core–shell architecture and ultrathin nanosheets structure of LDH. As for practical application, the asymmetric supercapacitor assembled using NiMn LDH@Co3O4 as the positive electrode and activated graphene (AG) as the negative electrode was also evaluated, which demonstrated a high energy density of 26.49 W h kg−1 at the power density of 350 W kg−1. The findings suggest that the three-dimensional crystal structure NiMn LDH@Co3O4 composites have potential application as promising electrode materials for energy storage devices or other applications.
Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein, the three-dimensional crystal structure NiMn LDH@Co 3 O 4 composites on Ni foam with different feeding Ni/Mn molar ratios were well-designed with hydrothermal, calcination and co-deposition methods, wherein urea hydrolysis supplied the alkali and carbonate ions. The electrochemical properties of the produced electrode materials were analyzed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests using 6 M KOH electrolyte. Indeed, the optimal feeding Ni/Mn molar ratio was determined to be 3 : 1. The resulting electrodes exhibited maximum specific capacitance (607.9 F g −1 at 0.5 A g −1 ), respectable rate capability and excellent cycling stability with less than 3% loss of capacitance after 1000 cycles, which could be ascribed to the well-designed core-shell architecture and ultrathin nanosheets structure of LDH. As for practical application, the asymmetric supercapacitor assembled using NiMn LDH@Co 3 O 4 as the positive electrode and activated graphene (AG) as the negative electrode was also evaluated, which demonstrated a high energy density of 26.49 W h kg −1 at the power density of 350 W kg −1 . The findings suggest that the three-dimensional crystal structure NiMn LDH@Co 3 O 4 composites have potential application as promising electrode materials for energy storage devices or other applications. Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors.
Author Li, Shaochun
Liu, Xiaoying
Jiang, Deyi
Peng, Huihua
Dong, Fan
Zhang, Yuxin
Jing, Chuan
Chen, Jie
Dong, Biqin
AuthorAffiliation State Key Laboratory of Coal Mine Disaster Dynamics and Control
College of Environment and Resources
Qingdao University of Technology
Institute of Fundamental and Frontier Sciences
State Key Laboratory of Mechanical Transmissions
College of Resources and Environmental Science
Shenzhen University
University of Electronic Science and Technology of China
Chongqing University
Chongqing Technology and Business University
Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering
Research Center for Environmental Science & Technology
Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education
College of Materials Science and Engineering
School of civil Engineering
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Coal Mine Disaster Dynamics and Control
– sequence: 0
  name: Qingdao University of Technology
– sequence: 0
  name: College of Resources and Environmental Science
– sequence: 0
  name: Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education
– sequence: 0
  name: College of Materials Science and Engineering
– sequence: 0
  name: University of Electronic Science and Technology of China
– sequence: 0
  name: State Key Laboratory of Mechanical Transmissions
– sequence: 0
  name: Shenzhen University
– sequence: 0
  name: Research Center for Environmental Science & Technology
– sequence: 0
  name: School of civil Engineering
– sequence: 0
  name: College of Environment and Resources
– sequence: 0
  name: Chongqing Technology and Business University
– sequence: 0
  name: Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering
– sequence: 0
  name: Chongqing University
– sequence: 0
  name: Institute of Fundamental and Frontier Sciences
Author_xml – sequence: 1
  givenname: Huihua
  surname: Peng
  fullname: Peng, Huihua
– sequence: 2
  givenname: Chuan
  surname: Jing
  fullname: Jing, Chuan
– sequence: 3
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
– sequence: 4
  givenname: Deyi
  surname: Jiang
  fullname: Jiang, Deyi
– sequence: 5
  givenname: Xiaoying
  surname: Liu
  fullname: Liu, Xiaoying
– sequence: 6
  givenname: Biqin
  surname: Dong
  fullname: Dong, Biqin
– sequence: 7
  givenname: Fan
  surname: Dong
  fullname: Dong, Fan
– sequence: 8
  givenname: Shaochun
  surname: Li
  fullname: Li, Shaochun
– sequence: 9
  givenname: Yuxin
  surname: Zhang
  fullname: Zhang, Yuxin
BookMark eNptkU1P3DAQhq0KJNiFC_dKlnpDCvXE-fDeqKJtQVqJC_fImYzZ0Gy8jB3B_gN-dgPbQoU4zYee9x3NzEwcDH4gIc5AXYDSi-9okBSYAtZfxDFkRZEYpfXBf_mRmIVwrxRkAOpYPFe8C9H2MkQeMY5M0js5dPibermxw50dKFDS2x0xtbL1Y9OTXO9a9k9dS5foG9tHHzqUr40g_fBP7rzdyOgfLbdBrru7dbIldp4nWyQZxqlCu7XYRc_hRBw62wc6_Rvn4vbn8ra6SlY3v66rH6sENZiYZNrkRuEihSYHnVKTlakplGlUZnKFTQmuBHCoGtKpK7FYODK5RlNgmptWz8W3ve2W_cNIIdb3fuRhmlinUBRlnqYLmKjzPYXsQ2By9Za7jeVdDap-OXRdmWr5euirCVYf4GkjGzs_RLZd_7nk617CAd-s33-n_wCtPY7L
CitedBy_id crossref_primary_10_1016_j_est_2021_103003
crossref_primary_10_1016_j_seta_2023_103376
crossref_primary_10_1039_C9DT02227A
crossref_primary_10_1016_j_est_2020_101583
crossref_primary_10_1021_acssuschemeng_1c05056
crossref_primary_10_1166_jnn_2021_18460
crossref_primary_10_1016_j_jpowsour_2022_231065
crossref_primary_10_1016_j_apsusc_2019_143700
crossref_primary_10_1039_D0DT00438C
crossref_primary_10_1039_D0TA02939D
crossref_primary_10_1021_acsami_2c13873
crossref_primary_10_1039_C9CE01443H
crossref_primary_10_1016_j_cej_2019_122640
crossref_primary_10_1016_j_mtener_2020_100412
crossref_primary_10_1016_j_est_2022_106445
crossref_primary_10_1039_C9CE01169B
crossref_primary_10_1039_D1AY00495F
crossref_primary_10_1039_D0DT00251H
crossref_primary_10_1039_D1QM00222H
crossref_primary_10_1016_j_fub_2025_100025
crossref_primary_10_1016_j_jallcom_2021_163023
crossref_primary_10_1016_j_jpowsour_2020_228609
crossref_primary_10_1016_j_vacuum_2024_113437
crossref_primary_10_1002_chem_202402269
crossref_primary_10_1088_1361_6528_ab51c6
crossref_primary_10_1016_j_cej_2019_122490
crossref_primary_10_1016_j_jcis_2024_12_061
crossref_primary_10_1007_s11581_019_03265_1
crossref_primary_10_3390_nano12224079
crossref_primary_10_1016_j_jechem_2019_09_027
crossref_primary_10_1016_j_inoche_2020_108371
crossref_primary_10_1016_j_solidstatesciences_2019_105941
crossref_primary_10_1016_j_ceramint_2019_05_149
crossref_primary_10_1016_j_rinp_2019_102831
crossref_primary_10_1016_j_jcis_2020_01_086
crossref_primary_10_1016_j_jpowsour_2025_236465
crossref_primary_10_1016_j_est_2022_106171
crossref_primary_10_1007_s11581_023_05031_w
crossref_primary_10_1039_C9NJ02513H
crossref_primary_10_1002_celc_201900687
crossref_primary_10_1002_smtd_202301167
crossref_primary_10_1016_j_electacta_2019_04_021
crossref_primary_10_1016_j_matlet_2019_126505
crossref_primary_10_1016_j_jcis_2020_02_018
crossref_primary_10_1002_eem2_12116
crossref_primary_10_1039_D1SE00636C
crossref_primary_10_1016_j_est_2022_104834
crossref_primary_10_1039_C9RA01341E
crossref_primary_10_1039_C9CE01575B
crossref_primary_10_1016_j_est_2019_100968
crossref_primary_10_1016_j_arabjc_2020_06_036
crossref_primary_10_1016_j_jallcom_2021_163125
crossref_primary_10_1016_j_vacuum_2022_110914
crossref_primary_10_1039_D1MA00474C
crossref_primary_10_1016_j_apcatb_2020_119510
crossref_primary_10_1016_j_ccr_2023_215494
crossref_primary_10_1016_j_rechem_2024_102009
crossref_primary_10_1039_C9NJ00038K
crossref_primary_10_1016_j_electacta_2022_139845
crossref_primary_10_1039_C9TA08527K
crossref_primary_10_1016_j_ijhydene_2021_06_231
crossref_primary_10_1007_s10800_020_01473_6
crossref_primary_10_1039_C9CE01252D
crossref_primary_10_1002_er_8535
crossref_primary_10_1039_D1TA08303A
Cites_doi 10.1039/c1ra00771h
10.1021/nn305750s
10.1021/am4012484
10.1126/science.1158736
10.1038/nature11475
10.1002/advs.201700687
10.1021/acsami.6b10638
10.1016/j.cej.2018.02.032
10.1016/j.jpowsour.2018.10.046
10.1021/acs.jpcc.6b07708
10.1002/aenm.201703329
10.1039/C4TA02380C
10.1016/j.corsci.2018.04.027
10.1021/jp408021m
10.1039/C5TA05523G
10.1016/j.jcis.2018.10.072
10.1016/j.apsusc.2015.12.039
10.1021/nl102203s
10.1039/c8ce01607k
10.1002/smll.201402222
10.1016/j.ceramint.2013.07.127
10.1007/s10008-006-0155-6
10.1002/ange.201605102
10.1016/j.matchemphys.2008.07.114
10.1039/C6CE02462A
10.1021/nn301454q
10.1021/jp0479522
10.1039/C8TA07869F
10.1039/c3ta10954b
10.1016/j.electacta.2016.02.080
10.1002/adfm.201303638
10.1002/cssc.201801439
10.1021/cm9018309
10.1039/C5CC08744A
10.1038/nmat2297
10.1002/adma.201100058
10.1039/C8TA08263D
10.1038/nenergy.2016.138
10.1016/j.cej.2017.12.055
10.1016/j.nanoen.2014.05.002
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/c8ce01861h
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 477
ExternalDocumentID 10_1039_C8CE01861H
c8ce01861h
GroupedDBID -JG
0-7
0R~
29F
5GY
6J9
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
E3Z
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
CITATION
R56
7U5
8FD
L7M
ID FETCH-LOGICAL-c318t-438580c921b5132eb4728608b04850cb71f711fc0be32f7c69fe853c86c258d3
ISSN 1466-8033
IngestDate Sun Jun 29 15:34:36 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Tue Jul 01 02:21:02 EDT 2025
Tue Dec 17 21:00:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-438580c921b5132eb4728608b04850cb71f711fc0be32f7c69fe853c86c258d3
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c8ce01861h
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4621-2722
0000-0003-2890-9964
0000-0003-4698-5645
PQID 2166752291
PQPubID 2047491
PageCount 8
ParticipantIDs crossref_citationtrail_10_1039_C8CE01861H
proquest_journals_2166752291
rsc_primary_c8ce01861h
crossref_primary_10_1039_C8CE01861H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhou (C8CE01861H-(cit36)/*[position()=1]) 2010; 22
Chen (C8CE01861H-(cit11)/*[position()=1]) 2016; 8
Chu (C8CE01861H-(cit1)/*[position()=1]) 2012; 488
Yu (C8CE01861H-(cit12)/*[position()=1]) 1999
Wang (C8CE01861H-(cit40)/*[position()=1]) 2013; 5
Liu (C8CE01861H-(cit23)/*[position()=1]) 2011; 23
Lin (C8CE01861H-(cit3)/*[position()=1]) 2018; 336
Chen (C8CE01861H-(cit17)/*[position()=1]) 2016; 120
Xia (C8CE01861H-(cit24)/*[position()=1]) 2012; 6
Huang (C8CE01861H-(cit8)/*[position()=1]) 2015; 3
Lei (C8CE01861H-(cit30)/*[position()=1]) 2009; 113
Lin (C8CE01861H-(cit4)/*[position()=1]) 2018
Lin (C8CE01861H-(cit26)/*[position()=1]) 2018; 6
Chen (C8CE01861H-(cit5)/*[position()=1]) 2016; 1
Gu (C8CE01861H-(cit29)/*[position()=1]) 2013; 1
Quan (C8CE01861H-(cit41)/*[position()=1]) 2016; 52
Liang (C8CE01861H-(cit7)/*[position()=1]) 2018; 8
Zeng (C8CE01861H-(cit21)/*[position()=1]) 2014; 40
Wang (C8CE01861H-(cit25)/*[position()=1]) 2014; 2
Lin (C8CE01861H-(cit9)/*[position()=1]) 2018; 407
Liao (C8CE01861H-(cit39)/*[position()=1]) 2013; 562
Chen (C8CE01861H-(cit27)/*[position()=1]) 2017; 19
Xia (C8CE01861H-(cit18)/*[position()=1]) 2012; 2
Guo (C8CE01861H-(cit28)/*[position()=1]) 2016; 194
Wei (C8CE01861H-(cit34)/*[position()=1]) 2013; 108
Simon (C8CE01861H-(cit2)/*[position()=1]) 2008; 7
Lu (C8CE01861H-(cit6)/*[position()=1]) 2016; 128
Li (C8CE01861H-(cit33)/*[position()=1]) 2016; 363
Sun (C8CE01861H-(cit31)/*[position()=1]) 2014; 118
Wekesa (C8CE01861H-(cit35)/*[position()=1]) 2011; 2
Liu (C8CE01861H-(cit15)/*[position()=1]) 2015; 11
Kim (C8CE01861H-(cit20)/*[position()=1]) 2010; 10
Lin (C8CE01861H-(cit10)/*[position()=1]) 2018; 5
Jing (C8CE01861H-(cit43)/*[position()=1]) 2018
Guo (C8CE01861H-(cit22)/*[position()=1]) 2018
Xu (C8CE01861H-(cit37)/*[position()=1]) 2007; 11
Choi (C8CE01861H-(cit42)/*[position()=1]) 2014; 7
Miller (C8CE01861H-(cit14)/*[position()=1]) 2008; 321
Wei (C8CE01861H-(cit13)/*[position()=1]) 2018; 341
Ning (C8CE01861H-(cit38)/*[position()=1]) 2014; 7
Jing (C8CE01861H-(cit19)/*[position()=1]) 2018
Wei (C8CE01861H-(cit16)/*[position()=1]) 2018; 11
Zhao (C8CE01861H-(cit32)/*[position()=1]) 2014; 24
References_xml – issn: 1999
  publication-title: Electrochemical Supercapacitors
  doi: Yu Davies Chen
– volume: 2
  start-page: 1835
  year: 2012
  ident: C8CE01861H-(cit18)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c1ra00771h
– volume: 7
  start-page: 2453
  year: 2014
  ident: C8CE01861H-(cit42)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn305750s
– volume: 5
  start-page: 6255
  year: 2013
  ident: C8CE01861H-(cit40)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4012484
– volume: 321
  start-page: 651
  year: 2008
  ident: C8CE01861H-(cit14)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1158736
– volume: 488
  start-page: 294
  year: 2012
  ident: C8CE01861H-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 5
  start-page: 1700687
  year: 2018
  ident: C8CE01861H-(cit10)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700687
– volume: 2
  start-page: 34
  year: 2011
  ident: C8CE01861H-(cit35)/*[position()=1]
  publication-title: Int. J. Chem. Res.
– volume: 8
  start-page: 29522
  year: 2016
  ident: C8CE01861H-(cit11)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10638
– volume: 341
  start-page: 618
  year: 2018
  ident: C8CE01861H-(cit13)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.02.032
– volume-title: Electrochemical Supercapacitors
  year: 1999
  ident: C8CE01861H-(cit12)/*[position()=1]
– volume: 407
  start-page: 6
  year: 2018
  ident: C8CE01861H-(cit9)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.046
– volume: 120
  start-page: 20077
  year: 2016
  ident: C8CE01861H-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b07708
– volume: 8
  start-page: 1703329
  year: 2018
  ident: C8CE01861H-(cit7)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703329
– volume: 2
  start-page: 12968
  year: 2014
  ident: C8CE01861H-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02380C
– year: 2018
  ident: C8CE01861H-(cit43)/*[position()=1]
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2018.04.027
– volume: 118
  start-page: 2263
  year: 2014
  ident: C8CE01861H-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp408021m
– volume: 3
  start-page: 21380
  year: 2015
  ident: C8CE01861H-(cit8)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05523G
– year: 2018
  ident: C8CE01861H-(cit4)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.10.072
– volume: 363
  start-page: 381
  year: 2016
  ident: C8CE01861H-(cit33)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.12.039
– volume: 562
  start-page: 106
  year: 2013
  ident: C8CE01861H-(cit39)/*[position()=1]
  publication-title: ChemInform
– volume: 10
  start-page: 4099
  year: 2010
  ident: C8CE01861H-(cit20)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl102203s
– year: 2018
  ident: C8CE01861H-(cit19)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c8ce01607k
– volume: 11
  start-page: 2182
  year: 2015
  ident: C8CE01861H-(cit15)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201402222
– volume: 40
  start-page: 2115
  year: 2014
  ident: C8CE01861H-(cit21)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.07.127
– volume: 11
  start-page: 372
  year: 2007
  ident: C8CE01861H-(cit37)/*[position()=1]
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-006-0155-6
– volume: 128
  start-page: 10604
  year: 2016
  ident: C8CE01861H-(cit6)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201605102
– volume: 113
  start-page: 445
  year: 2009
  ident: C8CE01861H-(cit30)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2008.07.114
– volume: 19
  start-page: 1230
  year: 2017
  ident: C8CE01861H-(cit27)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C6CE02462A
– volume: 6
  start-page: 5531
  year: 2012
  ident: C8CE01861H-(cit24)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn301454q
– volume: 108
  start-page: 18547
  year: 2013
  ident: C8CE01861H-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0479522
– year: 2018
  ident: C8CE01861H-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07869F
– volume: 1
  start-page: 10655
  year: 2013
  ident: C8CE01861H-(cit29)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10954b
– volume: 194
  start-page: 179
  year: 2016
  ident: C8CE01861H-(cit28)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.02.080
– volume: 24
  start-page: 2938
  year: 2014
  ident: C8CE01861H-(cit32)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303638
– volume: 11
  start-page: 3167
  year: 2018
  ident: C8CE01861H-(cit16)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801439
– volume: 22
  start-page: 1015
  year: 2010
  ident: C8CE01861H-(cit36)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm9018309
– volume: 52
  start-page: 3694
  year: 2016
  ident: C8CE01861H-(cit41)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08744A
– volume: 7
  start-page: 845
  year: 2008
  ident: C8CE01861H-(cit2)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 23
  start-page: 2076
  year: 2011
  ident: C8CE01861H-(cit23)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100058
– volume: 6
  start-page: 19151
  year: 2018
  ident: C8CE01861H-(cit26)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08263D
– volume: 1
  start-page: 16138
  year: 2016
  ident: C8CE01861H-(cit5)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.138
– volume: 336
  start-page: 562
  year: 2018
  ident: C8CE01861H-(cit3)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.055
– volume: 7
  start-page: 134
  year: 2014
  ident: C8CE01861H-(cit38)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.05.002
SSID ssj0014110
Score 2.5033703
Snippet Rational design of the crystal structures of electrode materials is considered as an important strategy to construct high-performance supercapacitors. Herein,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47
SubjectTerms Capacitance
Cobalt oxides
Composite materials
Crystal structure
Cycles
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrode materials
Electrodes
Energy storage
Flux density
Graphene
Hydroxides
Lithium
Manganese
Metal foams
Nickel
Stability tests
Supercapacitors
Title Crystal structure of nickel manganese-layered double hydroxide@cobaltosic oxides on nickel foam towards high-performance supercapacitors
URI https://www.proquest.com/docview/2166752291
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QscEK8VhQVZAg6oyhI7zuvGKhSVFXAq0t6q2rG3kbrJqk0kur9gj_xkxrHzoO1h4RK1lm1F-T7PjD2eGYTeKSXdIGXMiYM4chhVgcPVgjn-AowRj3s0pToa-fuPYPqTXVz6l4PB796tparkZ-L2YFzJ_6AKbYCrjpL9B2TbSaEBfgO-8ASE4XkvjJP1dlOagI_KuAL0tYwMFuZKX0u9Wujyks5qsdUFOcdpUekwqeU2XRe_slS-Z67Q2UDKApAa102178BOoIrFNVim-lbtZqyzGjs3vSCDTQX_BGhakel6PX0bt36rSX6lY086yWtkyrTKllWrCS5sQZUE2lqSJk28SCa7fvZU-7PcZv1zCisHjVBlgU56bBJenMkDbVYSm1hpyzivJ1aZKS5iNTQzhV_2hL_r6dypSZRMXBIFZNqpuMatv6P52vuItSfei-fd2CN0TGHj4Q7R8flk9vVb65lixGS4aN6_SXnrxR-70X8bOd3O5WjdlJWpzZfZY_TI7jvwuSHREzSQ-VP0sJeN8hm6s3TCLZ1wobBhA96jEzZ0wi2dPnVkwoZMuMib4ZpM2JIJ75IJ75DpOZp9mcySqWMLdTgCVELpMO1ddkVMCfeJRyVnIY0CN-KgHnxX8JCokBAlXC49qkIRxEqCmSiiQFA_Sr0TNMyLXL5AmDGQFGCyK5dy5nuUpyArRMgUUTA5USP0ofmwc2GT2OtaKqv5PoQj9Lbte2NStxzsddrgM7dLezOnJICNNKUxGaETwKwdLyIh63HLl_ea_RV6oNeCObM7RUPAT74GK7bkbyyx_gCwI6Jv
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+structure+of+nickel+manganese-layered+double+hydroxide%40cobaltosic+oxides+on+nickel+foam+towards+high-performance+supercapacitors&rft.jtitle=CrystEngComm&rft.au=Peng%2C+Huihua&rft.au=Jing%2C+Chuan&rft.au=Chen%2C+Jie&rft.au=Jiang%2C+Deyi&rft.date=2019&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=21&rft.issue=3&rft.spage=470&rft.epage=477&rft_id=info:doi/10.1039%2FC8CE01861H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8CE01861H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon