Model Predictive Path Following Control without terminal constraints for holonomic mobile robots
In this paper, a model predictive path following control (MPFC) for holonomic mobile robots is considered. The MPFC is aimed to control a mobile robot to follow a geometric path, where the time evolution of the path parameterization is not fixed a priori. Instead, the time evolution is considered as...
Saved in:
Published in | Control engineering practice Vol. 132; p. 105406 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0967-0661 1873-6939 |
DOI | 10.1016/j.conengprac.2022.105406 |
Cover
Abstract | In this paper, a model predictive path following control (MPFC) for holonomic mobile robots is considered. The MPFC is aimed to control a mobile robot to follow a geometric path, where the time evolution of the path parameterization is not fixed a priori. Instead, the time evolution is considered as an extra degree of freedom of the controller. Contrary to previous works, in this study, the closed-loop asymptotic stability of holonomic mobile robots under MPFC without terminal constraints or costs is rigorously proven and a stabilizing-horizon length is calculated. The analysis is based on verifying the cost-controllability assumption by deriving an upper bound of the MPFC value function with a finite prediction horizon. Then, using this bound, the length of a stabilizing prediction horizon is calculated. The analysis is performed in the discrete time settings and theoretical results are verified with numerical simulations as well as implementations on an actual mobile robot.
[Display omitted]
•Closed-loop asymptotic stability of holonomic mobile robots under MPFC is rigorously proven.•Stability proof is based on verifying the cost-controllability assumption by deriving an upper bound of the MPFC value function with a finite prediction-horizon.•Numerical and experimental verification of the theoritical findings. |
---|---|
AbstractList | In this paper, a model predictive path following control (MPFC) for holonomic mobile robots is considered. The MPFC is aimed to control a mobile robot to follow a geometric path, where the time evolution of the path parameterization is not fixed a priori. Instead, the time evolution is considered as an extra degree of freedom of the controller. Contrary to previous works, in this study, the closed-loop asymptotic stability of holonomic mobile robots under MPFC without terminal constraints or costs is rigorously proven and a stabilizing-horizon length is calculated. The analysis is based on verifying the cost-controllability assumption by deriving an upper bound of the MPFC value function with a finite prediction horizon. Then, using this bound, the length of a stabilizing prediction horizon is calculated. The analysis is performed in the discrete time settings and theoretical results are verified with numerical simulations as well as implementations on an actual mobile robot.
[Display omitted]
•Closed-loop asymptotic stability of holonomic mobile robots under MPFC is rigorously proven.•Stability proof is based on verifying the cost-controllability assumption by deriving an upper bound of the MPFC value function with a finite prediction-horizon.•Numerical and experimental verification of the theoritical findings. |
ArticleNumber | 105406 |
Author | Melek, William Mehrez, Mohamed W. Jeon, Soo Cenerini, Joseph Han, Jeong-woo |
Author_xml | – sequence: 1 givenname: Joseph surname: Cenerini fullname: Cenerini, Joseph email: jpvcener@uwaterloo.ca – sequence: 2 givenname: Mohamed W. orcidid: 0000-0003-3119-1404 surname: Mehrez fullname: Mehrez, Mohamed W. email: mohamed.said@uwaterloo.ca – sequence: 3 givenname: Jeong-woo orcidid: 0000-0003-3091-7605 surname: Han fullname: Han, Jeong-woo email: jeong-woo.han@uwaterloo.ca – sequence: 4 givenname: Soo surname: Jeon fullname: Jeon, Soo email: soojeon@uwaterloo.ca – sequence: 5 givenname: William surname: Melek fullname: Melek, William email: william.melek@uwaterloo.ca |
BookMark | eNqNkM9KAzEQh4NUsK2-Q15ga9J0s7sXQYtVoWIPeo7Z_GlTspmSxBbf3i0VBC96Gmbg983MN0KDAMEghCmZUEL59Xai-kFY76JUkymZTvtxOSP8DA1pXbGCN6wZoCFpeFUQzukFGqW0JX20aegQvT-DNh6votFOZbc3eCXzBi_Aezi4sMZzCDmCxweXN_CRcTaxc0F63K9NOUoXcsIWIt6AhwCdU7iD1nmDI7SQ0yU6t9Inc_Vdx-htcf86fyyWLw9P89tloRitc8GqUk7pjDeckJbStqwqVuu21NzS0hjVN9oSq0gjpTXaylJxy1RbMc010xUbo5sTV0VIKRorlMsyu-P50nlBiTj6Elvx40scfYmTrx5Q_wLsoutk_PxP9O4UNf2De2eiSMqZoHqn0agsNLi_IV9GrpFh |
CitedBy_id | crossref_primary_10_1016_j_conengprac_2024_106155 crossref_primary_10_3390_agriculture13040871 crossref_primary_10_1016_j_oceaneng_2024_117737 crossref_primary_10_1109_TCYB_2024_3351476 crossref_primary_10_3390_automation5030020 crossref_primary_10_3390_jmse11061111 crossref_primary_10_1002_rnc_7449 crossref_primary_10_3390_s23156875 crossref_primary_10_1007_s11768_024_00224_8 crossref_primary_10_1109_LRA_2024_3432354 crossref_primary_10_1016_j_conengprac_2024_105913 crossref_primary_10_1016_j_oceaneng_2024_119076 |
Cites_doi | 10.1016/j.automatica.2007.06.030 10.1007/s11071-014-1549-0 10.1109/ICRA.2019.8794047 10.1016/j.automatica.2010.01.009 10.3182/20060906-3-IT-2910.00022 10.1016/j.sysconle.2014.08.002 10.1016/j.ifacol.2017.08.907 10.1109/TCST.2015.2488589 10.1109/CDC.2009.5399744 10.1177/027836499301200104 10.1016/S0098-1354(02)00158-8 10.15598/aeee.v13i1.1228 10.1007/s12532-018-0139-4 10.1109/CDC.2010.5717042 10.1137/070707853 10.1137/070682125 10.1109/TCST.2013.2280464 10.1016/j.conengprac.2020.104693 10.1007/s10107-004-0559-y 10.3182/20080706-5-KR-1001.00907 10.1016/j.ifacol.2019.08.112 10.1016/j.robot.2020.103468 10.1137/090758696 10.3182/20110828-6-IT-1002.01260 10.1109/CACSD-CCA-ISIC.2006.4776652 10.1016/j.automatica.2003.10.010 10.1016/S1474-6670(17)46893-5 10.1007/978-3-540-85640-5_14 10.1109/TCST.2016.2601624 10.1016/j.ifacol.2021.08.535 10.1109/TCST.2002.804120 10.1109/TAC.2015.2466911 10.1016/j.robot.2003.10.003 10.1109/TAC.2004.841924 10.5772/55738 10.1109/TIE.2018.2874617 10.1016/S1474-6670(17)37061-1 10.1016/j.automatica.2017.04.038 10.1007/s12555-012-0028-y 10.3390/a14080248 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conengprac.2022.105406 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-6939 |
ExternalDocumentID | 10_1016_j_conengprac_2022_105406 S0967066122002374 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c318t-375a21469600b11b57738db5d6f15eec38ddf0fc09aafedfa5c6f3cb73d6d3d73 |
IEDL.DBID | AIKHN |
ISSN | 0967-0661 |
IngestDate | Thu Apr 24 22:57:01 EDT 2025 Tue Jul 01 00:39:08 EDT 2025 Fri Feb 23 02:38:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Model predictive control Holonomic mobile robot Stability analysis Path following control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-375a21469600b11b57738db5d6f15eec38ddf0fc09aafedfa5c6f3cb73d6d3d73 |
ORCID | 0000-0003-3091-7605 0000-0003-3119-1404 |
ParticipantIDs | crossref_citationtrail_10_1016_j_conengprac_2022_105406 crossref_primary_10_1016_j_conengprac_2022_105406 elsevier_sciencedirect_doi_10_1016_j_conengprac_2022_105406 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | Control engineering practice |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fnadi, Du, Plumet, Benamar (b20) 2021; 107 Kanjanawanishkul, Zell (b31) 2009 Rawlings, Mayne, Diehl (b43) 2017 Coron, Grüne, Worthmann (b9) 2019 Daoud, Mehrez, Rayside, Melek (b11) 2022 Al-Hiddabi, McClamroch (b4) 2002; 10 Raff, T., Huber, S., Nagy, Z. K., & Allgöwer, F. (2006). Nonlinear Model Predictive Control of a Four Tank System: An Experimental Stability Study. In Yang, Kang, Sukkarieh (b52) 2013; 11 Wächter, Biegler (b49) 2006; 106 Andersson, Gillis, Horn, Rawlings, Diehl (b5) 2019; 1 Böck, Kugi (b7) 2014; 22 Faulwasser, T., Kern, B., & Findeisen, R. (2009). Model predictive path-following for constrained nonlinear systems. In Faulwasser, Weber, Zometa, Findeisen (b19) 2017; 25 (pp. 6137–6142). (pp. 237–242). Leineweber, Bauer, Bock, Schlöder (b34) 2003; 27 Worthmann, Mehrez, Zanon, Mann, Gosine, Diehl (b51) 2016; 24 Aguiar, Hespanha, Kokotovic (b2) 2005; 50 Faulwasser, Matschek, Zometa, Findeisen (b17) 2013 Li, Zell (b36) 2009; 24 LNEE Lam, D., Manzie, C., & Good, M. (2010). Model predictive contouring control. In Cui, Huang, Liu, Liu, Sun (b10) 2014; 78 Skjetne, Fossen, Kokotović (b48) 2004; 40 Faulwasser (b14) 2013 Samson, C. (1992). Path following and time-varying feedback stabilization of a wheeled mobile robot. In Nielsen, Fulford, Maggiore (b40) 2010; 46 (pp. 8642–8647). Worthmann, Mehrez, Mann, Gosine, Pannek (b50) 2017; 82 Faulwasser, Findeisen (b15) 2016; 61 Fnadi, Alexandre dit Sandretto (b22) 2021; 14 Fnadi, M., Plumet, F., & Benamar, F. (2019). Nonlinear Tire Cornering Stiffness Observer for a Double Steering Off-Road Mobile Robot. In Lévine (b35) 2009 Lam, Manzie, Good (b33) 2011; 44 Huang, Tsai (b27) 2008; 41 Rußwurm, Esterhuizen, Worthmann, Streif (b46) 2021; 54 Mehrez, Worthmann, Cenerini, Osman, Melek, Jeon (b37) 2020 Rucco, Aguiar, Pereira, de Sousa (b45) 2016 Mehrez, Worthmann, Mann, Gosine, Faulwasser (b38) 2017; 50 Aguiar, Hespanha, Kokotović (b3) 2008; 44 Faulwasser, Mehrez, Worthmann (b18) 2021 Kalmár-Nagy, D’Andrea, Ganguly (b28) 2004; 46 (pp. 7529–7534). Kanjanawanishkul (b30) 2015; 13 Grüne, Pannek, Seehafer, Worthmann (b25) 2010; 48 Nielsen, Maggiore (b41) 2008; 47 Mercy, Jacquod, Herzog, Pipeleers (b39) 2019; 66 Hauser, Hindman (b26) 1995; 28 Boccia, Grüne, Worthmann (b6) 2014; 72 Kang, Kim, Hyun, Park (b29) 2013; 10 Conceição, Moreira, Costa (b8) 2006; 39 (p. 1). Grüne, Pannek (b24) 2017 Encarnação, Pascoal, Arcak (b12) 2000; 33 Grüne (b23) 2009; 48 Fan, Gijbels (b13) 1996 Achtelik (b1) 2010 Ritschel, Schrödel (b44) 2019; 52 10.1016/j.conengprac.2022.105406_b21 Rußwurm (10.1016/j.conengprac.2022.105406_b46) 2021; 54 Skjetne (10.1016/j.conengprac.2022.105406_b48) 2004; 40 Encarnação (10.1016/j.conengprac.2022.105406_b12) 2000; 33 Böck (10.1016/j.conengprac.2022.105406_b7) 2014; 22 Hauser (10.1016/j.conengprac.2022.105406_b26) 1995; 28 Wächter (10.1016/j.conengprac.2022.105406_b49) 2006; 106 Yang (10.1016/j.conengprac.2022.105406_b52) 2013; 11 Huang (10.1016/j.conengprac.2022.105406_b27) 2008; 41 10.1016/j.conengprac.2022.105406_b32 Kang (10.1016/j.conengprac.2022.105406_b29) 2013; 10 Kalmár-Nagy (10.1016/j.conengprac.2022.105406_b28) 2004; 46 Mehrez (10.1016/j.conengprac.2022.105406_b37) 2020 Li (10.1016/j.conengprac.2022.105406_b36) 2009; 24 LNEE Grüne (10.1016/j.conengprac.2022.105406_b25) 2010; 48 Worthmann (10.1016/j.conengprac.2022.105406_b51) 2016; 24 Fnadi (10.1016/j.conengprac.2022.105406_b20) 2021; 107 Grüne (10.1016/j.conengprac.2022.105406_b23) 2009; 48 Leineweber (10.1016/j.conengprac.2022.105406_b34) 2003; 27 Lévine (10.1016/j.conengprac.2022.105406_b35) 2009 Rawlings (10.1016/j.conengprac.2022.105406_b43) 2017 Nielsen (10.1016/j.conengprac.2022.105406_b41) 2008; 47 Faulwasser (10.1016/j.conengprac.2022.105406_b19) 2017; 25 Ritschel (10.1016/j.conengprac.2022.105406_b44) 2019; 52 Andersson (10.1016/j.conengprac.2022.105406_b5) 2019; 1 Kanjanawanishkul (10.1016/j.conengprac.2022.105406_b30) 2015; 13 10.1016/j.conengprac.2022.105406_b47 Aguiar (10.1016/j.conengprac.2022.105406_b2) 2005; 50 Conceição (10.1016/j.conengprac.2022.105406_b8) 2006; 39 10.1016/j.conengprac.2022.105406_b42 Aguiar (10.1016/j.conengprac.2022.105406_b3) 2008; 44 Coron (10.1016/j.conengprac.2022.105406_b9) 2019 Faulwasser (10.1016/j.conengprac.2022.105406_b18) 2021 Faulwasser (10.1016/j.conengprac.2022.105406_b14) 2013 Daoud (10.1016/j.conengprac.2022.105406_b11) 2022 Lam (10.1016/j.conengprac.2022.105406_b33) 2011; 44 Worthmann (10.1016/j.conengprac.2022.105406_b50) 2017; 82 10.1016/j.conengprac.2022.105406_b16 Cui (10.1016/j.conengprac.2022.105406_b10) 2014; 78 Faulwasser (10.1016/j.conengprac.2022.105406_b17) 2013 Faulwasser (10.1016/j.conengprac.2022.105406_b15) 2016; 61 Rucco (10.1016/j.conengprac.2022.105406_b45) 2016 Boccia (10.1016/j.conengprac.2022.105406_b6) 2014; 72 Al-Hiddabi (10.1016/j.conengprac.2022.105406_b4) 2002; 10 Fnadi (10.1016/j.conengprac.2022.105406_b22) 2021; 14 Fan (10.1016/j.conengprac.2022.105406_b13) 1996 Grüne (10.1016/j.conengprac.2022.105406_b24) 2017 Kanjanawanishkul (10.1016/j.conengprac.2022.105406_b31) 2009 Mehrez (10.1016/j.conengprac.2022.105406_b38) 2017; 50 Nielsen (10.1016/j.conengprac.2022.105406_b40) 2010; 46 Mercy (10.1016/j.conengprac.2022.105406_b39) 2019; 66 Achtelik (10.1016/j.conengprac.2022.105406_b1) 2010 |
References_xml | – volume: 24 start-page: 1394 year: 2016 end-page: 1406 ident: b51 article-title: Model predictive control of nonholonomic mobile robots without stabilizing constraints and costs publication-title: IEEE Transactions on Control Systems Technology – volume: 48 start-page: 4938 year: 2010 end-page: 4962 ident: b25 article-title: Analysis of unconstrained nonlinear MPC schemes with time varying control horizon publication-title: SIAM Journal on Control and Optimization – volume: 78 start-page: 1811 year: 2014 end-page: 1826 ident: b10 article-title: Adaptive tracking control of wheeled mobile robots with unknown longitudinal and lateral slipping parameters publication-title: Nonlinear Dynamics – volume: 24 LNEE start-page: 181 year: 2009 end-page: 193 ident: b36 article-title: Motion control of an omnidirectional mobile robot publication-title: Lecture Notes in Electrical Engineering – volume: 27 start-page: 157 year: 2003 end-page: 166 ident: b34 article-title: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: Theoretical aspects publication-title: Computers & Chemical Engineering – volume: 10 start-page: 780 year: 2002 end-page: 792 ident: b4 article-title: Tracking and maneuver regulation control for nonlinear nonminimum phase systems: Application to flight control publication-title: IEEE Transactions on Control Systems Technology – volume: 46 start-page: 47 year: 2004 end-page: 64 ident: b28 article-title: Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle publication-title: Robotics and Autonomous Systems – start-page: 3341 year: 2009 end-page: 3346 ident: b31 article-title: Path following for an omnidirectional mobile robot based on model predictive control publication-title: 2009 IEEE international conference on robotics and automation – volume: 47 start-page: 2227 year: 2008 end-page: 2250 ident: b41 article-title: On local transverse feedback linearization publication-title: SIAM Journal on Control and Optimization – reference: (pp. 237–242). – volume: 50 start-page: 234 year: 2005 end-page: 239 ident: b2 article-title: Path-following for nonminimum phase systems removes performance limitations publication-title: IEEE Transactions on Automatic Control – reference: Lam, D., Manzie, C., & Good, M. (2010). Model predictive contouring control. In – volume: 46 start-page: 585 year: 2010 end-page: 590 ident: b40 article-title: Path following using transverse feedback linearization: Application to a Maglev positioning system publication-title: Automatica – reference: Faulwasser, T., Kern, B., & Findeisen, R. (2009). Model predictive path-following for constrained nonlinear systems. In – year: 2009 ident: b35 publication-title: Analysis and control of nonlinear systems: a flatness-based approach – volume: 13 start-page: 54 year: 2015 end-page: 63 ident: b30 article-title: MPC-based path following control of an omnidirectional mobile robot with consideration of robot constraints publication-title: Advances in Electrical and Electronic Engineering – volume: 106 start-page: 25 year: 2006 end-page: 57 ident: b49 article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming publication-title: Mathematical Programming – volume: 1 start-page: 1 year: 2019 end-page: 36 ident: b5 article-title: CasADi — A software framework for nonlinear optimization and optimal control publication-title: Mathematical Programming Computation – reference: (pp. 6137–6142). – volume: 10 start-page: 155 year: 2013 ident: b29 article-title: Generalized extended state observer approach to robust tracking control for wheeled mobile robot with skidding and slipping publication-title: International Journal of Advanced Robotic Systems – volume: 11 start-page: 65 year: 2013 end-page: 74 ident: b52 article-title: Adaptive nonlinear model predictive path-following control for a fixed-wing unmanned aerial vehicle publication-title: International Journal of Control, Automation and Systems – year: 2019 ident: b9 article-title: Model predictive control, cost controllability, and homogeneity – volume: 54 start-page: 133 year: 2021 end-page: 138 ident: b46 article-title: On MPC without terminal conditions for dynamic non-holonomic robots publication-title: IFAC-PapersOnLine – start-page: 1 year: 2022 end-page: 13 ident: b11 article-title: Simultaneous feasible local planning and path-following control for autonomous driving publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 33 start-page: 117 year: 2000 end-page: 122 ident: b12 article-title: Path following for autonomous marine craft publication-title: IFAC Proceedings Volumes – reference: Fnadi, M., Plumet, F., & Benamar, F. (2019). Nonlinear Tire Cornering Stiffness Observer for a Double Steering Off-Road Mobile Robot. In – volume: 44 start-page: 598 year: 2008 end-page: 610 ident: b3 article-title: Performance limitations in reference tracking and path following for nonlinear systems publication-title: Automatica – reference: (p. 1). – volume: 61 start-page: 1026 year: 2016 end-page: 1039 ident: b15 article-title: Nonlinear model predictive control for constrained output path following publication-title: IEEE Transactions on Automatic Control – reference: Samson, C. (1992). Path following and time-varying feedback stabilization of a wheeled mobile robot. In – volume: 22 start-page: 1461 year: 2014 end-page: 1473 ident: b7 article-title: Real-time nonlinear model predictive path-following control of a laboratory tower crane publication-title: IEEE Transactions on Control Systems Technology – start-page: 1 year: 2021 end-page: 26 ident: b18 article-title: Predictive path following control without terminal constraints publication-title: Recent advances in model predictive control: theory, algorithms, and applications – volume: 107 year: 2021 ident: b20 article-title: Constrained model predictive control for dynamic path tracking of a bi-steerable rover on slippery grounds publication-title: Control Engineering Practice – reference: Raff, T., Huber, S., Nagy, Z. K., & Allgöwer, F. (2006). Nonlinear Model Predictive Control of a Four Tank System: An Experimental Stability Study. In – volume: 41 start-page: 5383 year: 2008 end-page: 5388 ident: b27 article-title: Adaptive trajectory tracking and stabilization for omnidirectional mobile robot with dynamic effect and uncertainties publication-title: IFAC Proceedings Volumes – year: 2020 ident: b37 article-title: Model predictive control without terminal constraints or costs for holonomic mobile robots publication-title: Robotics and Autonomous Systems – start-page: 623 year: 2016 end-page: 634 ident: b45 article-title: A predictive path-following approach for fixed-wing unmanned aerial vehicles in presence of wind disturbances publication-title: Robot 2015: second Iberian robotics conference – year: 2013 ident: b14 article-title: Optimization-based solutions to constrained trajectory-tracking and path-following problems – volume: 50 start-page: 9852 year: 2017 end-page: 9857 ident: b38 article-title: Predictive path following of mobile robots without terminal stabilizing constraints publication-title: IFAC-PapersOnLine – volume: 28 start-page: 595 year: 1995 end-page: 600 ident: b26 article-title: Maneuver regulation from trajectory tracking: Feedback linearizable systems* publication-title: IFAC Proceedings Volumes – volume: 52 start-page: 350 year: 2019 end-page: 355 ident: b44 article-title: Nonlinear model predictive path-following control for highly automated driving publication-title: IFAC-PapersOnLine – year: 1996 ident: b13 article-title: Local polynomial modelling and its applications: monographs on statistics and applied probability, vol. 66 – year: 2010 ident: b1 article-title: vicon_bridge – volume: 72 start-page: 14 year: 2014 end-page: 21 ident: b6 article-title: Stability and feasibility of state constrained MPC without stabilizing terminal constraints publication-title: Systems & Control Letters – reference: (pp. 7529–7534). – year: 2017 ident: b43 article-title: Model predictive control: theory, computation, and design – volume: 66 start-page: 6098 year: 2019 end-page: 6107 ident: b39 article-title: Spline-based trajectory generation for CNC machines publication-title: IEEE Transactions on Industrial Electronics – volume: 82 start-page: 243 year: 2017 end-page: 250 ident: b50 article-title: Interaction of open and closed loop control in MPC publication-title: Automatica – volume: 25 start-page: 1505 year: 2017 end-page: 1511 ident: b19 article-title: Implementation of nonlinear model predictive path-following control for an industrial robot publication-title: IEEE Transactions on Control Systems Technology – volume: 40 start-page: 373 year: 2004 end-page: 383 ident: b48 article-title: Robust output maneuvering for a class of nonlinear systems publication-title: Automatica – volume: 14 year: 2021 ident: b22 article-title: Experimental validation of a guaranteed nonlinear model predictive control publication-title: Algorithms – volume: 44 start-page: 10325 year: 2011 end-page: 10330 ident: b33 article-title: Application of model predictive contouring control to an X-Y table publication-title: IFAC Proceedings Volumes – start-page: 128 year: 2013 end-page: 133 ident: b17 article-title: Predictive path-following control: Concept and implementation for an industrial robot publication-title: 2013 IEEE international conference on control applications – volume: 39 start-page: 121 year: 2006 end-page: 125 ident: b8 article-title: Trajectory tracking for omni-directional mobile robots based on restrictions of the motor’s velocities publication-title: IFAC Proceedings Volumes – reference: (pp. 8642–8647). – start-page: 45 year: 2017 end-page: 69 ident: b24 article-title: Nonlinear model predictive control publication-title: Nonlinear model predictive control: theory and algorithms – volume: 48 start-page: 1206 year: 2009 end-page: 1228 ident: b23 article-title: Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems publication-title: SIAM Journal on Control and Optimization – volume: 44 start-page: 598 issue: 3 year: 2008 ident: 10.1016/j.conengprac.2022.105406_b3 article-title: Performance limitations in reference tracking and path following for nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2007.06.030 – volume: 78 start-page: 1811 issue: 3 year: 2014 ident: 10.1016/j.conengprac.2022.105406_b10 article-title: Adaptive tracking control of wheeled mobile robots with unknown longitudinal and lateral slipping parameters publication-title: Nonlinear Dynamics doi: 10.1007/s11071-014-1549-0 – year: 2019 ident: 10.1016/j.conengprac.2022.105406_b9 – ident: 10.1016/j.conengprac.2022.105406_b21 doi: 10.1109/ICRA.2019.8794047 – volume: 46 start-page: 585 issue: 3 year: 2010 ident: 10.1016/j.conengprac.2022.105406_b40 article-title: Path following using transverse feedback linearization: Application to a Maglev positioning system publication-title: Automatica doi: 10.1016/j.automatica.2010.01.009 – volume: 39 start-page: 121 issue: 15 year: 2006 ident: 10.1016/j.conengprac.2022.105406_b8 article-title: Trajectory tracking for omni-directional mobile robots based on restrictions of the motor’s velocities publication-title: IFAC Proceedings Volumes doi: 10.3182/20060906-3-IT-2910.00022 – volume: 72 start-page: 14 issue: 8 year: 2014 ident: 10.1016/j.conengprac.2022.105406_b6 article-title: Stability and feasibility of state constrained MPC without stabilizing terminal constraints publication-title: Systems & Control Letters doi: 10.1016/j.sysconle.2014.08.002 – start-page: 623 year: 2016 ident: 10.1016/j.conengprac.2022.105406_b45 article-title: A predictive path-following approach for fixed-wing unmanned aerial vehicles in presence of wind disturbances – volume: 50 start-page: 9852 issue: 1 year: 2017 ident: 10.1016/j.conengprac.2022.105406_b38 article-title: Predictive path following of mobile robots without terminal stabilizing constraints publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.907 – volume: 24 start-page: 1394 issue: 4 year: 2016 ident: 10.1016/j.conengprac.2022.105406_b51 article-title: Model predictive control of nonholonomic mobile robots without stabilizing constraints and costs publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2015.2488589 – start-page: 1 year: 2021 ident: 10.1016/j.conengprac.2022.105406_b18 article-title: Predictive path following control without terminal constraints – ident: 10.1016/j.conengprac.2022.105406_b16 doi: 10.1109/CDC.2009.5399744 – ident: 10.1016/j.conengprac.2022.105406_b47 doi: 10.1177/027836499301200104 – volume: 27 start-page: 157 issue: 2 year: 2003 ident: 10.1016/j.conengprac.2022.105406_b34 article-title: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: Theoretical aspects publication-title: Computers & Chemical Engineering doi: 10.1016/S0098-1354(02)00158-8 – volume: 13 start-page: 54 issue: 1 year: 2015 ident: 10.1016/j.conengprac.2022.105406_b30 article-title: MPC-based path following control of an omnidirectional mobile robot with consideration of robot constraints publication-title: Advances in Electrical and Electronic Engineering doi: 10.15598/aeee.v13i1.1228 – volume: 1 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.conengprac.2022.105406_b5 article-title: CasADi — A software framework for nonlinear optimization and optimal control publication-title: Mathematical Programming Computation doi: 10.1007/s12532-018-0139-4 – ident: 10.1016/j.conengprac.2022.105406_b32 doi: 10.1109/CDC.2010.5717042 – volume: 48 start-page: 1206 issue: 2 year: 2009 ident: 10.1016/j.conengprac.2022.105406_b23 article-title: Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems publication-title: SIAM Journal on Control and Optimization doi: 10.1137/070707853 – volume: 47 start-page: 2227 issue: 5 year: 2008 ident: 10.1016/j.conengprac.2022.105406_b41 article-title: On local transverse feedback linearization publication-title: SIAM Journal on Control and Optimization doi: 10.1137/070682125 – start-page: 45 year: 2017 ident: 10.1016/j.conengprac.2022.105406_b24 article-title: Nonlinear model predictive control – year: 2017 ident: 10.1016/j.conengprac.2022.105406_b43 – volume: 22 start-page: 1461 issue: 4 year: 2014 ident: 10.1016/j.conengprac.2022.105406_b7 article-title: Real-time nonlinear model predictive path-following control of a laboratory tower crane publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2013.2280464 – volume: 107 year: 2021 ident: 10.1016/j.conengprac.2022.105406_b20 article-title: Constrained model predictive control for dynamic path tracking of a bi-steerable rover on slippery grounds publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2020.104693 – volume: 106 start-page: 25 issue: 1 year: 2006 ident: 10.1016/j.conengprac.2022.105406_b49 article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming publication-title: Mathematical Programming doi: 10.1007/s10107-004-0559-y – start-page: 1 year: 2022 ident: 10.1016/j.conengprac.2022.105406_b11 article-title: Simultaneous feasible local planning and path-following control for autonomous driving publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 3341 year: 2009 ident: 10.1016/j.conengprac.2022.105406_b31 article-title: Path following for an omnidirectional mobile robot based on model predictive control – volume: 41 start-page: 5383 issue: 2 year: 2008 ident: 10.1016/j.conengprac.2022.105406_b27 article-title: Adaptive trajectory tracking and stabilization for omnidirectional mobile robot with dynamic effect and uncertainties publication-title: IFAC Proceedings Volumes doi: 10.3182/20080706-5-KR-1001.00907 – volume: 52 start-page: 350 issue: 8 year: 2019 ident: 10.1016/j.conengprac.2022.105406_b44 article-title: Nonlinear model predictive path-following control for highly automated driving publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.08.112 – year: 2020 ident: 10.1016/j.conengprac.2022.105406_b37 article-title: Model predictive control without terminal constraints or costs for holonomic mobile robots publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2020.103468 – volume: 48 start-page: 4938 issue: 8 year: 2010 ident: 10.1016/j.conengprac.2022.105406_b25 article-title: Analysis of unconstrained nonlinear MPC schemes with time varying control horizon publication-title: SIAM Journal on Control and Optimization doi: 10.1137/090758696 – volume: 44 start-page: 10325 issue: 1 year: 2011 ident: 10.1016/j.conengprac.2022.105406_b33 article-title: Application of model predictive contouring control to an X-Y table publication-title: IFAC Proceedings Volumes doi: 10.3182/20110828-6-IT-1002.01260 – start-page: 128 year: 2013 ident: 10.1016/j.conengprac.2022.105406_b17 article-title: Predictive path-following control: Concept and implementation for an industrial robot – ident: 10.1016/j.conengprac.2022.105406_b42 doi: 10.1109/CACSD-CCA-ISIC.2006.4776652 – volume: 40 start-page: 373 issue: 3 year: 2004 ident: 10.1016/j.conengprac.2022.105406_b48 article-title: Robust output maneuvering for a class of nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2003.10.010 – volume: 28 start-page: 595 issue: 14 year: 1995 ident: 10.1016/j.conengprac.2022.105406_b26 article-title: Maneuver regulation from trajectory tracking: Feedback linearizable systems* publication-title: IFAC Proceedings Volumes doi: 10.1016/S1474-6670(17)46893-5 – year: 1996 ident: 10.1016/j.conengprac.2022.105406_b13 – volume: 24 LNEE start-page: 181 year: 2009 ident: 10.1016/j.conengprac.2022.105406_b36 article-title: Motion control of an omnidirectional mobile robot publication-title: Lecture Notes in Electrical Engineering doi: 10.1007/978-3-540-85640-5_14 – year: 2013 ident: 10.1016/j.conengprac.2022.105406_b14 – volume: 25 start-page: 1505 issue: 4 year: 2017 ident: 10.1016/j.conengprac.2022.105406_b19 article-title: Implementation of nonlinear model predictive path-following control for an industrial robot publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2016.2601624 – volume: 54 start-page: 133 issue: 6 year: 2021 ident: 10.1016/j.conengprac.2022.105406_b46 article-title: On MPC without terminal conditions for dynamic non-holonomic robots publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.08.535 – volume: 10 start-page: 780 issue: 6 year: 2002 ident: 10.1016/j.conengprac.2022.105406_b4 article-title: Tracking and maneuver regulation control for nonlinear nonminimum phase systems: Application to flight control publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2002.804120 – year: 2009 ident: 10.1016/j.conengprac.2022.105406_b35 – volume: 61 start-page: 1026 issue: 4 year: 2016 ident: 10.1016/j.conengprac.2022.105406_b15 article-title: Nonlinear model predictive control for constrained output path following publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2015.2466911 – volume: 46 start-page: 47 issue: 1 year: 2004 ident: 10.1016/j.conengprac.2022.105406_b28 article-title: Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2003.10.003 – volume: 50 start-page: 234 issue: 2 year: 2005 ident: 10.1016/j.conengprac.2022.105406_b2 article-title: Path-following for nonminimum phase systems removes performance limitations publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2004.841924 – volume: 10 start-page: 155 issue: 3 year: 2013 ident: 10.1016/j.conengprac.2022.105406_b29 article-title: Generalized extended state observer approach to robust tracking control for wheeled mobile robot with skidding and slipping publication-title: International Journal of Advanced Robotic Systems doi: 10.5772/55738 – volume: 66 start-page: 6098 issue: 8 year: 2019 ident: 10.1016/j.conengprac.2022.105406_b39 article-title: Spline-based trajectory generation for CNC machines publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2018.2874617 – volume: 33 start-page: 117 issue: 21 year: 2000 ident: 10.1016/j.conengprac.2022.105406_b12 article-title: Path following for autonomous marine craft publication-title: IFAC Proceedings Volumes doi: 10.1016/S1474-6670(17)37061-1 – volume: 82 start-page: 243 year: 2017 ident: 10.1016/j.conengprac.2022.105406_b50 article-title: Interaction of open and closed loop control in MPC publication-title: Automatica doi: 10.1016/j.automatica.2017.04.038 – volume: 11 start-page: 65 issue: 1 year: 2013 ident: 10.1016/j.conengprac.2022.105406_b52 article-title: Adaptive nonlinear model predictive path-following control for a fixed-wing unmanned aerial vehicle publication-title: International Journal of Control, Automation and Systems doi: 10.1007/s12555-012-0028-y – volume: 14 issue: 8 year: 2021 ident: 10.1016/j.conengprac.2022.105406_b22 article-title: Experimental validation of a guaranteed nonlinear model predictive control publication-title: Algorithms doi: 10.3390/a14080248 – year: 2010 ident: 10.1016/j.conengprac.2022.105406_b1 |
SSID | ssj0016991 |
Score | 2.447079 |
Snippet | In this paper, a model predictive path following control (MPFC) for holonomic mobile robots is considered. The MPFC is aimed to control a mobile robot to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105406 |
SubjectTerms | Holonomic mobile robot Model predictive control Path following control Stability analysis |
Title | Model Predictive Path Following Control without terminal constraints for holonomic mobile robots |
URI | https://dx.doi.org/10.1016/j.conengprac.2022.105406 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB76uOhBfGJ9lD14re0m2aTBUymWqlAKWugt7m4SqdSmtCne_O3OdDe1gqDgMWEnLLO788h-Mx_AlSupVbaWeNJk2KCW5g3VdhQaQw_dNbFMGpTvwO-PvPuxGJegW9TCEKzS2n5j09fW2r5pWm0255NJ8xGD7wAdJncIZ-AGXhmqjhv6ogLVzt1Df7C5TPBDQ5yH46ngnltAj4F5YdaZzF6oJAmTRcch3luP6I9-8lJbnqe3D3s2ZGQdM6sDKCWzQ9jdaiR4BM9EaTZlwwVdu5ABY0OM7FgPFzl7xxGsaxDpjH67ZqucWQzMlGmKD4kmIl8yjF8ZGcN1pTJ7yxRaDLbIVJYvj2HUu33q9huWO6Gh8ZTmaDeEJM5uTFBainMlAtR7rETsp1wkicaHOG2luhVKmSZxKoX2U1erwI392I0D9wQqM1TNKTDX0Yo7KpVcBZ4WWin8uJPodihkG_PbGgSFriJtG4vTxKdRgSB7jb60HJGWI6PlGvCN5Nw01_iDzE2xHNG3jRKhD_hV-uxf0uewQ2zzBoJ2AZV8sUouMSbJVR3K1x-8bnfeJ4HV5AU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4QD-rB-DPizx68Tui2riyeDJGgIiEREm617TaDQUZgxJt_u-_RDTEx0cTjlr2leW2_97p9732EXHoKW2UbBTtNhQ62NHd03dUAhj6Ea1SZtCzfTtDq-_cDPiiRRlELg7TKHPstpi_QOr9Tzb1ZnQyH1SdIvgUETOYiz8AT_hpZ97knkNd39bHkebAgtLJ58DSW27OczmNJXnDmjMcvWJAER0XXRdVbH8WPfopRK3GnuUO284SR3tgx7ZJSPN4jWyttBPfJMwqajWh3ij9dEL5oF_I62oQpTt_hCdqwfHSKH13TeUZzBsyIGswOUSQim1HIXilC4aJOmb6lGvCCTlOdZrMD0m_e9hotJ1dOcAzs0QxQgytU7IbjSU0zprkAr0eaR0HCeBwbuIiSWmJqoVJJHCWKmyDxjBZeFEReJLxDUh6Da44I9VyjmasTxbTwDTdaw8vd2NRDrupwuq0QUfhKmrytOA58JAv-2Kv88rJEL0vr5QphS8uJba3xB5vrYjrkt2UiIQL8an38L-sLstHqPbZl-67zcEI2UXfektFOSTmbzuMzyE4yfb5YfZ90wOTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Predictive+Path+Following+Control+without+terminal+constraints+for+holonomic+mobile+robots&rft.jtitle=Control+engineering+practice&rft.au=Cenerini%2C+Joseph&rft.au=Mehrez%2C+Mohamed+W.&rft.au=Han%2C+Jeong-woo&rft.au=Jeon%2C+Soo&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=132&rft_id=info:doi/10.1016%2Fj.conengprac.2022.105406&rft.externalDocID=S0967066122002374 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |