Stochastic MPC with offline uncertainty sampling

For discrete-time linear systems subject to multiplicative disturbance described by random variables, we develop a sampling-based Stochastic Model Predictive Control algorithm. Unlike earlier results employing a scenario approximation, we propose an offline sampling approach in the design phase inst...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 81; pp. 176 - 183
Main Authors Lorenzen, Matthias, Dabbene, Fabrizio, Tempo, Roberto, Allgöwer, Frank
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2017
Subjects
Online AccessGet full text
ISSN0005-1098
1873-2836
DOI10.1016/j.automatica.2017.03.031

Cover

Abstract For discrete-time linear systems subject to multiplicative disturbance described by random variables, we develop a sampling-based Stochastic Model Predictive Control algorithm. Unlike earlier results employing a scenario approximation, we propose an offline sampling approach in the design phase instead of online scenario generation. The paper highlights the structural difference between online and offline sampling and provides rigorous bounds on the number of samples needed to guarantee chance constraint satisfaction. The approach does not only significantly speed up the online computation, but furthermore allows to suitably tighten the constraints to guarantee robust recursive feasibility when bounds on the uncertain variables are provided. Under mild assumptions, asymptotic stability of the origin can be established.
AbstractList For discrete-time linear systems subject to multiplicative disturbance described by random variables, we develop a sampling-based Stochastic Model Predictive Control algorithm. Unlike earlier results employing a scenario approximation, we propose an offline sampling approach in the design phase instead of online scenario generation. The paper highlights the structural difference between online and offline sampling and provides rigorous bounds on the number of samples needed to guarantee chance constraint satisfaction. The approach does not only significantly speed up the online computation, but furthermore allows to suitably tighten the constraints to guarantee robust recursive feasibility when bounds on the uncertain variables are provided. Under mild assumptions, asymptotic stability of the origin can be established.
Author Lorenzen, Matthias
Tempo, Roberto
Allgöwer, Frank
Dabbene, Fabrizio
Author_xml – sequence: 1
  givenname: Matthias
  surname: Lorenzen
  fullname: Lorenzen, Matthias
  email: matthias.lorenzen@ist.uni-stuttgart.de
  organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Germany
– sequence: 2
  givenname: Fabrizio
  surname: Dabbene
  fullname: Dabbene, Fabrizio
  email: fabrizio.dabbene@ieiit.cnr.it
  organization: CNR-IEIIT, Politecnico di Torino, Italy
– sequence: 3
  givenname: Roberto
  surname: Tempo
  fullname: Tempo, Roberto
  email: roberto.tempo@polito.it
  organization: CNR-IEIIT, Politecnico di Torino, Italy
– sequence: 4
  givenname: Frank
  surname: Allgöwer
  fullname: Allgöwer, Frank
  email: frank.allgower@ist.uni-stuttgart.de
  organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Germany
BookMark eNqNkNtKAzEQhoNUsFXfYV9g10yyh_RG0OIJKgrqdchOEpvSbkqSKn17UyoI3igMDDPM_8E3EzIa_GAIKYBWQKG9WFZqm_xaJYeqYhS6ivJccETGIDpeMsHbERlTSpsS6FSckEmMyzzWINiY0JfkcaFijhePz7Pi06VF4a1ducEU2wFNSMoNaVdEtd7k5fsZObZqFc35dz8lb7c3r7P7cv509zC7mpfIQaSSMzRCcVtjjaxnTd_3CExPNQreMLC6r5G20Pact8CVtlxMNUOs24Z1XdPwUyIOXAw-xmCs3AS3VmEngcq9uVzKH3O5N5eU54IcvfwVRZfymR9SUG71H8D1AWCy4IczQUZ0Jj9Du2AwSe3d35AvfU9-VQ
CitedBy_id crossref_primary_10_1049_cth2_12070
crossref_primary_10_1007_s11071_022_07592_3
crossref_primary_10_1002_rnc_3912
crossref_primary_10_1016_j_isatra_2019_01_013
crossref_primary_10_1016_j_jfranklin_2022_02_004
crossref_primary_10_1016_j_automatica_2023_111146
crossref_primary_10_9746_jcmsi_11_14
crossref_primary_10_1016_j_ifacol_2020_12_362
crossref_primary_10_1098_rsta_2020_0371
crossref_primary_10_1016_j_automatica_2020_109402
crossref_primary_10_1109_TCST_2018_2879938
crossref_primary_10_1016_j_automatica_2018_03_010
crossref_primary_10_1146_annurev_control_060117_105215
crossref_primary_10_1109_TAC_2023_3321375
crossref_primary_10_1016_j_automatica_2022_110807
crossref_primary_10_1109_ACCESS_2022_3160709
crossref_primary_10_1109_TAC_2021_3056356
crossref_primary_10_1016_j_ifacol_2023_10_1641
crossref_primary_10_1109_ACCESS_2021_3098169
crossref_primary_10_1109_OJCSYS_2023_3291596
crossref_primary_10_1080_00207721_2023_2268234
crossref_primary_10_1109_TCST_2023_3291556
crossref_primary_10_1109_LCSYS_2019_2918763
crossref_primary_10_1016_j_ifacol_2022_09_041
crossref_primary_10_1016_j_jfranklin_2023_05_012
crossref_primary_10_1109_LCSYS_2022_3182643
crossref_primary_10_1109_LCSYS_2018_2845546
crossref_primary_10_1109_TSTE_2024_3512997
crossref_primary_10_1016_j_automatica_2019_108702
crossref_primary_10_1016_j_ifacol_2022_09_334
crossref_primary_10_1016_j_automatica_2021_110108
crossref_primary_10_1146_annurev_control_090419_075625
crossref_primary_10_1016_j_ins_2018_05_021
crossref_primary_10_1109_TAC_2016_2625048
crossref_primary_10_1109_LCSYS_2019_2949194
crossref_primary_10_1109_LCSYS_2024_3445723
crossref_primary_10_1002_rnc_5696
crossref_primary_10_1515_auto_2021_0025
crossref_primary_10_1109_TSMC_2024_3444039
Cites_doi 10.1137/07069821X
10.1016/j.automatica.2014.11.004
10.3182/20140824-6-ZA-1003.00696
10.1016/j.automatica.2014.10.128
10.1137/120878719
10.1109/CDC.2015.7402994
10.1109/TAC.2008.2010886
10.1016/j.sysconle.2007.11.003
10.1109/CDC.2014.7040135
10.1109/TAC.2006.875041
10.1109/ACC.2015.7170855
10.1016/j.jprocont.2016.03.005
10.1109/ECC.2014.6862498
10.1016/j.automatica.2013.02.060
10.1016/j.automatica.2014.10.035
10.23919/ECC.2013.6669862
10.1109/TAC.2016.2625048
10.1007/s10957-010-9754-6
10.1109/TAC.2009.2031207
10.1137/090773490
10.1109/ACC.2014.6858851
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2017.03.031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
EndPage 183
ExternalDocumentID 10_1016_j_automatica_2017_03_031
S0005109817301619
GrantInformation_xml – fundername: German Research Foundation (DFG)
  grantid: EXC 310/2
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: CNR Joint International Lab COOPS
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c318t-32ce8a3f4c4c2b25bbbc12d9dc83521fdb4c0616b33613adf389d2cc465277553
IEDL.DBID AIKHN
ISSN 0005-1098
IngestDate Thu Apr 24 23:11:27 EDT 2025
Tue Jul 01 00:43:48 EDT 2025
Fri Feb 23 02:23:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Receding horizon control
Stochastic control
Stochastic model predictive control
Data-based control
Control of constrained systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-32ce8a3f4c4c2b25bbbc12d9dc83521fdb4c0616b33613adf389d2cc465277553
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_automatica_2017_03_031
crossref_citationtrail_10_1016_j_automatica_2017_03_031
elsevier_sciencedirect_doi_10_1016_j_automatica_2017_03_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2017
2017-07-00
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationTitle Automatica (Oxford)
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mesbah, A., Streif, S., Findeisen, R., & Braatz, R.D. (2014). Stochastic nonlinear model predictive control with probabilistic constraints. In
Herceg, M., Kvasnica, M., Jones, C.N., & Morari, M. (2013). Multi-parametric toolbox 3.0. In
(pp. 2413–2419).
Farina, Giulioni, Scattolini (br000060) 2016; 44
Lorenzen, M., Allgöwer, F., Dabbene, F., & Tempo, R. (2015b). Scenario-based stochastic MPC with guaranteed recursive feasibility. In
Alamo, Tempo, Luque, Ramirez (br000010) 2015; 52
Blanchini, Miani (br000020) 2015
Fleming, J., Cannon, M., & Kouvaritakis, B. (2014). Stochastic tube MPC for LPV systems with probabilistic set inclusion conditions. In
Primbs, Sung (br000110) 2009; 54
Zhang, X., Grammatico, S., Schildbach, G., Goulart, P., & Lygeros, J. (2014). On the sample size of randomized MPC for chance-constrained systems with application to building climate control. In
Lorenzen, Dabbene, Tempo, Allgöwer (br000095) 2017
Tempo, Calafiore, Dabbene (br000125) 2013
Kerrigan (br000075) 2000
Calafiore (br000030) 2010; 20
(pp. 4783–4788).
Kouvaritakis, Cannon (br000080) 2016
(pp. 478–783).
Campi, Garatti (br000050) 2011; 148
Boyd, El Ghaoui, Feron, Balakrishnan (br000025) 1994
Calafiore, Fagiano (br000040) 2013; 49
Deori, L., Garatti, S., & Prandini, M. (2014). Computational approaches to robust model predictive control: A comparative analysis. In
(pp. 10820–10825).
Alamo, Tempo, Ramírez, Camacho (br000015) 2008; 57
Schildbach, Fagiano, Morari (br000120) 2013; 23
Campi, Garatti (br000045) 2008; 19
Alamo, Tempo, Camacho (br000005) 2009; 54
Calafiore, Campi (br000035) 2006; 51
Lorenzen, M., Allgöwer, F., Dabbene, F., & Tempo, R. (2015a). An improved constraint-tightening approach for stochastic MPC. In
(pp. 502–510).
Mayne (br000100) 2014; 50
Schildbach, Fagiano, Frei, Morari (br000115) 2014; 50
(pp. 4958–4963).
(pp. 944–949).
Alamo (10.1016/j.automatica.2017.03.031_br000005) 2009; 54
Tempo (10.1016/j.automatica.2017.03.031_br000125) 2013
Alamo (10.1016/j.automatica.2017.03.031_br000015) 2008; 57
Calafiore (10.1016/j.automatica.2017.03.031_br000040) 2013; 49
Blanchini (10.1016/j.automatica.2017.03.031_br000020) 2015
Alamo (10.1016/j.automatica.2017.03.031_br000010) 2015; 52
Kerrigan (10.1016/j.automatica.2017.03.031_br000075) 2000
Schildbach (10.1016/j.automatica.2017.03.031_br000115) 2014; 50
10.1016/j.automatica.2017.03.031_br000065
Boyd (10.1016/j.automatica.2017.03.031_br000025) 1994
Campi (10.1016/j.automatica.2017.03.031_br000050) 2011; 148
10.1016/j.automatica.2017.03.031_br000085
Lorenzen (10.1016/j.automatica.2017.03.031_br000095) 2017
Calafiore (10.1016/j.automatica.2017.03.031_br000035) 2006; 51
Campi (10.1016/j.automatica.2017.03.031_br000045) 2008; 19
10.1016/j.automatica.2017.03.031_br000105
10.1016/j.automatica.2017.03.031_br000055
Farina (10.1016/j.automatica.2017.03.031_br000060) 2016; 44
Primbs (10.1016/j.automatica.2017.03.031_br000110) 2009; 54
10.1016/j.automatica.2017.03.031_br000130
Kouvaritakis (10.1016/j.automatica.2017.03.031_br000080) 2016
Calafiore (10.1016/j.automatica.2017.03.031_br000030) 2010; 20
10.1016/j.automatica.2017.03.031_br000070
Mayne (10.1016/j.automatica.2017.03.031_br000100) 2014; 50
10.1016/j.automatica.2017.03.031_br000090
Schildbach (10.1016/j.automatica.2017.03.031_br000120) 2013; 23
References_xml – volume: 20
  start-page: 3427
  year: 2010
  end-page: 3464
  ident: br000030
  article-title: Random convex programs
  publication-title: SIAM Journal on Optimization
– year: 2000
  ident: br000075
  article-title: Robust constraint satisfaction: Invariant sets and predictive control
– reference: Deori, L., Garatti, S., & Prandini, M. (2014). Computational approaches to robust model predictive control: A comparative analysis. In
– year: 2016
  ident: br000080
  article-title: Model predictive control: Classical, robust and stochastic
– reference: Zhang, X., Grammatico, S., Schildbach, G., Goulart, P., & Lygeros, J. (2014). On the sample size of randomized MPC for chance-constrained systems with application to building climate control. In
– volume: 57
  start-page: 474
  year: 2008
  end-page: 481
  ident: br000015
  article-title: A new vertex result for robustness problems with interval matrix uncertainty
  publication-title: Systems & Control Letters
– volume: 50
  start-page: 2967
  year: 2014
  end-page: 2986
  ident: br000100
  article-title: Model predictive control: Recent developments and future promise
  publication-title: Automatica
– reference: Herceg, M., Kvasnica, M., Jones, C.N., & Morari, M. (2013). Multi-parametric toolbox 3.0. In
– reference: (pp. 2413–2419).
– year: 1994
  ident: br000025
  article-title: Linear matrix inequalities in system and control theory, Vol. 15
– reference: (pp. 4783–4788).
– reference: Fleming, J., Cannon, M., & Kouvaritakis, B. (2014). Stochastic tube MPC for LPV systems with probabilistic set inclusion conditions. In
– volume: 52
  start-page: 160
  year: 2015
  end-page: 172
  ident: br000010
  article-title: Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms
  publication-title: Automatica
– volume: 54
  start-page: 2545
  year: 2009
  end-page: 2559
  ident: br000005
  article-title: Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems
  publication-title: IEEE Transactions on Automatic Control
– reference: (pp. 478–783).
– volume: 23
  start-page: 2479
  year: 2013
  end-page: 2501
  ident: br000120
  article-title: Randomized solutions to convex programs with multiple chance constraints
  publication-title: SIAM Journal on Optimization
– volume: 148
  start-page: 257
  year: 2011
  end-page: 280
  ident: br000050
  article-title: A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality
  publication-title: Journal of Optimization Theory and Applications
– volume: 54
  start-page: 221
  year: 2009
  end-page: 230
  ident: br000110
  article-title: Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise
  publication-title: IEEE Transactions on Automatic Control
– year: 2013
  ident: br000125
  article-title: Randomized algorithms for analysis and control of uncertain systems: With applications
– reference: Lorenzen, M., Allgöwer, F., Dabbene, F., & Tempo, R. (2015a). An improved constraint-tightening approach for stochastic MPC. In
– reference: Lorenzen, M., Allgöwer, F., Dabbene, F., & Tempo, R. (2015b). Scenario-based stochastic MPC with guaranteed recursive feasibility. In
– year: 2015
  ident: br000020
  publication-title: Set-theoretic methods in control
– reference: (pp. 944–949).
– volume: 49
  start-page: 1861
  year: 2013
  end-page: 1866
  ident: br000040
  article-title: Stochastic model predictive control of LPV systems via scenario optimization
  publication-title: Automatica
– volume: 19
  start-page: 1211
  year: 2008
  end-page: 1230
  ident: br000045
  article-title: The exact feasibility of randomized solutions of uncertain convex programs
  publication-title: SIAM Journal on Optimization
– volume: 44
  start-page: 53
  year: 2016
  end-page: 67
  ident: br000060
  article-title: Stochastic linear model predictive control with chance constraints - a review
  publication-title: Journal of Process Control
– year: 2017
  ident: br000095
  article-title: Constraint-tightening and stability in stochastic model predictive control
  publication-title: IEEE Transactions on Automatic Control
– reference: (pp. 502–510).
– volume: 51
  start-page: 742
  year: 2006
  end-page: 753
  ident: br000035
  article-title: The scenario approach to robust control design
  publication-title: IEEE Transactions on Automatic Control
– reference: Mesbah, A., Streif, S., Findeisen, R., & Braatz, R.D. (2014). Stochastic nonlinear model predictive control with probabilistic constraints. In
– reference: (pp. 4958–4963).
– volume: 50
  start-page: 3009
  year: 2014
  end-page: 3018
  ident: br000115
  article-title: The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations
  publication-title: Automatica
– reference: , (pp. 10820–10825).
– year: 2000
  ident: 10.1016/j.automatica.2017.03.031_br000075
– volume: 19
  start-page: 1211
  issue: 3
  year: 2008
  ident: 10.1016/j.automatica.2017.03.031_br000045
  article-title: The exact feasibility of randomized solutions of uncertain convex programs
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/07069821X
– volume: 52
  start-page: 160
  year: 2015
  ident: 10.1016/j.automatica.2017.03.031_br000010
  article-title: Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.11.004
– ident: 10.1016/j.automatica.2017.03.031_br000055
  doi: 10.3182/20140824-6-ZA-1003.00696
– volume: 50
  start-page: 2967
  issue: 12
  year: 2014
  ident: 10.1016/j.automatica.2017.03.031_br000100
  article-title: Model predictive control: Recent developments and future promise
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.128
– volume: 23
  start-page: 2479
  issue: 4
  year: 2013
  ident: 10.1016/j.automatica.2017.03.031_br000120
  article-title: Randomized solutions to convex programs with multiple chance constraints
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/120878719
– ident: 10.1016/j.automatica.2017.03.031_br000090
  doi: 10.1109/CDC.2015.7402994
– volume: 54
  start-page: 221
  issue: 2
  year: 2009
  ident: 10.1016/j.automatica.2017.03.031_br000110
  article-title: Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2008.2010886
– volume: 57
  start-page: 474
  issue: 6
  year: 2008
  ident: 10.1016/j.automatica.2017.03.031_br000015
  article-title: A new vertex result for robustness problems with interval matrix uncertainty
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2007.11.003
– ident: 10.1016/j.automatica.2017.03.031_br000065
  doi: 10.1109/CDC.2014.7040135
– volume: 51
  start-page: 742
  issue: 5
  year: 2006
  ident: 10.1016/j.automatica.2017.03.031_br000035
  article-title: The scenario approach to robust control design
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2006.875041
– year: 1994
  ident: 10.1016/j.automatica.2017.03.031_br000025
– ident: 10.1016/j.automatica.2017.03.031_br000085
  doi: 10.1109/ACC.2015.7170855
– volume: 44
  start-page: 53
  year: 2016
  ident: 10.1016/j.automatica.2017.03.031_br000060
  article-title: Stochastic linear model predictive control with chance constraints - a review
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2016.03.005
– year: 2015
  ident: 10.1016/j.automatica.2017.03.031_br000020
– ident: 10.1016/j.automatica.2017.03.031_br000130
  doi: 10.1109/ECC.2014.6862498
– volume: 49
  start-page: 1861
  issue: 6
  year: 2013
  ident: 10.1016/j.automatica.2017.03.031_br000040
  article-title: Stochastic model predictive control of LPV systems via scenario optimization
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.02.060
– year: 2013
  ident: 10.1016/j.automatica.2017.03.031_br000125
– volume: 50
  start-page: 3009
  issue: 12
  year: 2014
  ident: 10.1016/j.automatica.2017.03.031_br000115
  article-title: The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.035
– ident: 10.1016/j.automatica.2017.03.031_br000070
  doi: 10.23919/ECC.2013.6669862
– year: 2017
  ident: 10.1016/j.automatica.2017.03.031_br000095
  article-title: Constraint-tightening and stability in stochastic model predictive control
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2625048
– year: 2016
  ident: 10.1016/j.automatica.2017.03.031_br000080
– volume: 148
  start-page: 257
  issue: 2
  year: 2011
  ident: 10.1016/j.automatica.2017.03.031_br000050
  article-title: A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-010-9754-6
– volume: 54
  start-page: 2545
  issue: 11
  year: 2009
  ident: 10.1016/j.automatica.2017.03.031_br000005
  article-title: Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2009.2031207
– volume: 20
  start-page: 3427
  issue: 6
  year: 2010
  ident: 10.1016/j.automatica.2017.03.031_br000030
  article-title: Random convex programs
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/090773490
– ident: 10.1016/j.automatica.2017.03.031_br000105
  doi: 10.1109/ACC.2014.6858851
SSID ssj0004182
Score 2.4698377
Snippet For discrete-time linear systems subject to multiplicative disturbance described by random variables, we develop a sampling-based Stochastic Model Predictive...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 176
SubjectTerms Control of constrained systems
Data-based control
Receding horizon control
Stochastic control
Stochastic model predictive control
Title Stochastic MPC with offline uncertainty sampling
URI https://dx.doi.org/10.1016/j.automatica.2017.03.031
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9zu-hB_MT5MXrwWtckTZrgaQzHVDYEHexW8tHoRNah3cGLf7tJm7oJgoLQSwoPmteX93skv_cLAOeES6Jt9IYiikVoV6IOJdM0ZBoarXiS6fJEdzSmw0l8MyXTBujXvTCOVulzf5XTy2zt33S9N7uL2cz1-LqA4gy6IKVO-rOFMKekCVq969vheNUeCVklGl6KbnLmCT0VzUssi7wUR3UiRDApFU8x_Bml1pBnsAO2fckY9Kqv2gWNbL4HttaEBPdBdF_k6kk4zeVgdNcP3O5qkBvjasjAIld17l-8B2_CMcjnjwdgMrh66A9DfxdCqOyqK0KMVMYENrGKFZKISCkVRJpr5Uoo61cZKwvNVGJsAVpoYwsRjZSKKUFJQgg-BM15Ps-O3Nyp4BE1VBti4TvjUPDYMJUIlkghUBsk9dxT5YXC3X0VL2nNCHtOV15LndfSCNsHtgH8slxUYhl_sLms3Zt--_Gpzem_Wh__y_oEbLpRxb49Bc3idZmd2RqjkB2wcfEBOz6SPgFvDtIN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwGA1DH9QH8Yrz2gdf65bm0gSfZDimbkNwg72FXBqdSDu0e_DF327Si5sgKAh9avmg-frlO4fm5ASAc8IVMa56Q9nGMnQz0YSKGRoyA63RPE5MsaI7GNLeGN9OyKQBOvVeGC-rrHp_2dOLbl3daVXZbM2mU7_H1xcUZ9AXKfXWn6uYoNjr-i4-FjoPDFlpGV5YbnJWyXlKkZec51lhjeotiGBc-J0i-DNGLeFOdwtsVoQxuCrfaRs0knQHbCzZCO6C9kOe6SfpHZeDwX0n8P9Wg8xazyADh1vlqn_-HrxJrx9PH_fAuHs96vTC6iSEULs5l4co0gmTyGKNdaQiopTSMDLcaE-gXFYV1g6YqULIwbM01tEQE2mNKYnimBC0D1bSLE0O_Nip5G1qqbHEgXfCoeTYMh1LFispoyaI67ELXdmE-9MqXkStB3sWi6wJnzXRRu6CTQC_ImelVcYfYi7r9Ipvn124jv5r9OG_os_AWm806Iv-zfDuCKz7J6UO9xis5K_z5MSxjVydFtX0CTMD0tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+MPC+with+offline+uncertainty+sampling&rft.jtitle=Automatica+%28Oxford%29&rft.au=Lorenzen%2C+Matthias&rft.au=Dabbene%2C+Fabrizio&rft.au=Tempo%2C+Roberto&rft.au=Allg%C3%B6wer%2C+Frank&rft.date=2017-07-01&rft.issn=0005-1098&rft.volume=81&rft.spage=176&rft.epage=183&rft_id=info:doi/10.1016%2Fj.automatica.2017.03.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2017_03_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon