Simultaneous cyclic deracemisation and stereoinversion of alcohols using orthogonal biocatalytic oxidation and reduction reactions

We developed a concurrent cyclic deracemisation approach for secondary alcohols that combines a non-stereospecific oxidation step and a stereoselective reduction step using two mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase ( Te SADH) that exhibit various extents of...

Full description

Saved in:
Bibliographic Details
Published inCatalysis science & technology Vol. 1; no. 24; pp. 8213 - 8218
Main Authors Nafiu, Sodiq A, Takahashi, Masateru, Takahashi, Etsuko, Hamdan, Samir M, Musa, Musa M
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We developed a concurrent cyclic deracemisation approach for secondary alcohols that combines a non-stereospecific oxidation step and a stereoselective reduction step using two mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase ( Te SADH) that exhibit various extents of stereoselectivities. In this approach, W110G Te SADH, a sparingly stereoselective mutant, performs the non-stereospecific oxidation step and W110V/G198D Te SADH performs the stereoselective reduction step. The use of orthogonal cofactor regeneration systems allowed for the spontaneous operation of these mutants. ( S )-Configured alcohols were obtained in moderate ee's from their racemates using this strategy. To our knowledge, this report provides the first example of a fully enzymatic cyclic deracemisation with a stereoselective reduction step (CD-RS) for alcohols. This approach was further improved into a deracemisation strategy via stereoinversion using concurrent ( R )-selective I86A Te SADH-catalysed oxidation that leaves ( S )-alcohols untouched and W110V/G198D Te SADH-catalysed stereoselective reduction of the resultant ketone intermediates into the corresponding ( S )-configured alcohols. The latter strategy enabled quantitative production of ( S )-1-phenylethanol in >99% ee from its racemate. Overall, we show the superiority of the stereoinversion deracemisation approach for alcohols when compared with cyclic deracemisation, which is mainly due to the elimination of futile cycles in the former. We developed a concurrent cyclic deracemisation approach for secondary alcohols that combines a non-stereospecific oxidation step and a stereoselective reduction step using two mutants of Te SADH that exhibit various extents of stereoselectivities.
AbstractList We developed a concurrent cyclic deracemisation approach for secondary alcohols that combines a non-stereospecific oxidation step and a stereoselective reduction step using two mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase (TeSADH) that exhibit various extents of stereoselectivities. In this approach, W110G TeSADH, a sparingly stereoselective mutant, performs the non-stereospecific oxidation step and W110V/G198D TeSADH performs the stereoselective reduction step. The use of orthogonal cofactor regeneration systems allowed for the spontaneous operation of these mutants. (S)-Configured alcohols were obtained in moderate ee's from their racemates using this strategy. To our knowledge, this report provides the first example of a fully enzymatic cyclic deracemisation with a stereoselective reduction step (CD-RS) for alcohols. This approach was further improved into a deracemisation strategy via stereoinversion using concurrent (R)-selective I86A TeSADH-catalysed oxidation that leaves (S)-alcohols untouched and W110V/G198D TeSADH-catalysed stereoselective reduction of the resultant ketone intermediates into the corresponding (S)-configured alcohols. The latter strategy enabled quantitative production of (S)-1-phenylethanol in >99% ee from its racemate. Overall, we show the superiority of the stereoinversion deracemisation approach for alcohols when compared with cyclic deracemisation, which is mainly due to the elimination of futile cycles in the former.
We developed a concurrent cyclic deracemisation approach for secondary alcohols that combines a non-stereospecific oxidation step and a stereoselective reduction step using two mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase ( Te SADH) that exhibit various extents of stereoselectivities. In this approach, W110G Te SADH, a sparingly stereoselective mutant, performs the non-stereospecific oxidation step and W110V/G198D Te SADH performs the stereoselective reduction step. The use of orthogonal cofactor regeneration systems allowed for the spontaneous operation of these mutants. ( S )-Configured alcohols were obtained in moderate ee's from their racemates using this strategy. To our knowledge, this report provides the first example of a fully enzymatic cyclic deracemisation with a stereoselective reduction step (CD-RS) for alcohols. This approach was further improved into a deracemisation strategy via stereoinversion using concurrent ( R )-selective I86A Te SADH-catalysed oxidation that leaves ( S )-alcohols untouched and W110V/G198D Te SADH-catalysed stereoselective reduction of the resultant ketone intermediates into the corresponding ( S )-configured alcohols. The latter strategy enabled quantitative production of ( S )-1-phenylethanol in >99% ee from its racemate. Overall, we show the superiority of the stereoinversion deracemisation approach for alcohols when compared with cyclic deracemisation, which is mainly due to the elimination of futile cycles in the former.
We developed a concurrent cyclic deracemisation approach for secondary alcohols that combines a non-stereospecific oxidation step and a stereoselective reduction step using two mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase ( Te SADH) that exhibit various extents of stereoselectivities. In this approach, W110G Te SADH, a sparingly stereoselective mutant, performs the non-stereospecific oxidation step and W110V/G198D Te SADH performs the stereoselective reduction step. The use of orthogonal cofactor regeneration systems allowed for the spontaneous operation of these mutants. ( S )-Configured alcohols were obtained in moderate ee's from their racemates using this strategy. To our knowledge, this report provides the first example of a fully enzymatic cyclic deracemisation with a stereoselective reduction step (CD-RS) for alcohols. This approach was further improved into a deracemisation strategy via stereoinversion using concurrent ( R )-selective I86A Te SADH-catalysed oxidation that leaves ( S )-alcohols untouched and W110V/G198D Te SADH-catalysed stereoselective reduction of the resultant ketone intermediates into the corresponding ( S )-configured alcohols. The latter strategy enabled quantitative production of ( S )-1-phenylethanol in >99% ee from its racemate. Overall, we show the superiority of the stereoinversion deracemisation approach for alcohols when compared with cyclic deracemisation, which is mainly due to the elimination of futile cycles in the former. We developed a concurrent cyclic deracemisation approach for secondary alcohols that combines a non-stereospecific oxidation step and a stereoselective reduction step using two mutants of Te SADH that exhibit various extents of stereoselectivities.
Author Takahashi, Etsuko
Takahashi, Masateru
Musa, Musa M
Hamdan, Samir M
Nafiu, Sodiq A
AuthorAffiliation Department of Chemistry
Division of Biological and Environmental Sciences and Engineering
King Fahd University of Petroleum and Minerals
King Abdullah University of Science and Technology
AuthorAffiliation_xml – name: King Abdullah University of Science and Technology
– name: Department of Chemistry
– name: Division of Biological and Environmental Sciences and Engineering
– name: King Fahd University of Petroleum and Minerals
Author_xml – sequence: 1
  givenname: Sodiq A
  surname: Nafiu
  fullname: Nafiu, Sodiq A
– sequence: 2
  givenname: Masateru
  surname: Takahashi
  fullname: Takahashi, Masateru
– sequence: 3
  givenname: Etsuko
  surname: Takahashi
  fullname: Takahashi, Etsuko
– sequence: 4
  givenname: Samir M
  surname: Hamdan
  fullname: Hamdan, Samir M
– sequence: 5
  givenname: Musa M
  surname: Musa
  fullname: Musa, Musa M
BookMark eNpFkctLAzEQxoNUsNZevAsBb8Lq5LG72aPU-oCCB_XgackmaZuyTWqyK-7Vv9xtK-1c5sGPj5lvztHAeWcQuiRwS4AVdxpUBySl3JygIQXOE55nZHCoU3aGxjGuoA9eEBB0iH7f7LqtG-mMbyNWnaqtwtoEqczaRtlY77B0GsfGBOOt-zYhbmd-jmWt_NLXEbfRugX2oVn6hXeyxpX1Sjay7ppezP9YfdQJRrdq1wUjd0W8QKdzWUcz_s8j9PE4fZ88J7PXp5fJ_SxRjIgmYYTwQtKCZwJyWXHI-3sVGJhXhnKpeQ4sA64zmWaVoikphBBEgE4rkWmgbISu97qb4L9aE5ty5dvQ7xtLyrNCsDxPoadu9pQKPsZg5uUm2LUMXUmg3NpcPsDkc2fztIev9nCI6sAd38D-AF1Cff0
CitedBy_id crossref_primary_10_1002_cbic_202100043
crossref_primary_10_1016_j_ijbiomac_2024_132238
crossref_primary_10_1002_slct_202103178
crossref_primary_10_1016_j_cogsc_2021_100548
crossref_primary_10_1039_D2CY00145D
crossref_primary_10_1002_anie_202107570
crossref_primary_10_1002_ange_202107570
Cites_doi 10.1016/j.cbpa.2004.02.005
10.1016/j.tet.2011.11.014
10.1007/s10295-014-1558-5
10.1002/adsc.201500316
10.1039/C5RA18532G
10.1002/3527608184
10.1039/c3cs60175g
10.1002/ejoc.202000728
10.1016/j.molcatb.2008.07.011
10.1021/cs501457v
10.1039/C9CY01539F
10.1021/ja804816a
10.1039/C4OB00794H
10.1007/s00253-007-1002-0
10.1016/j.molcatb.2014.08.018
10.1016/j.molcatb.2014.09.016
10.1002/adsc.200606158
10.1039/c3cc46240d
10.1039/c0cc02813d
10.1002/chem.200701643
10.1016/j.jbiotec.2012.03.015
10.1002/cctc.200900033
10.1002/cctc.201600160
10.1021/jacs.5b01031
10.3109/10242422.2011.615925
10.1002/cctc.201300409
10.1128/AEM.54.2.460-465.1988
10.1002/ejoc.200900935
10.1016/j.tetasy.2012.09.014
10.1002/cctc.201701092
10.1002/cctc.201500816
10.1002/ejoc.201800569
10.1002/cctc.201601618
10.2174/2213346102666150120221227
10.1016/j.molcatb.2016.04.003
10.1039/c4gc00066h
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/d0cy01524e
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2044-4761
EndPage 8218
ExternalDocumentID 10_1039_D0CY01524E
d0cy01524e
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
ECGLT
EE0
EF-
HZ
H~N
J3I
JG
O-G
O9-
OK1
R7E
R7G
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
-JG
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACAYK
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
EBS
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c318t-31149a2946807ab407d0cc0e0fbe24ad4703604d6a56bc2519888180d5b86d023
ISSN 2044-4753
IngestDate Thu Oct 10 16:55:06 EDT 2024
Fri Aug 23 00:51:30 EDT 2024
Sat Jan 08 03:48:09 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-31149a2946807ab407d0cc0e0fbe24ad4703604d6a56bc2519888180d5b86d023
Notes 10.1039/d0cy01524e
Electronic supplementary information (ESI) available: General remarks, GC and GC-MS analysis methods, and GC chromatograms. See DOI
ORCID 0000-0001-8191-6077
PQID 2469837750
PQPubID 2047527
PageCount 6
ParticipantIDs proquest_journals_2469837750
rsc_primary_d0cy01524e
crossref_primary_10_1039_D0CY01524E
PublicationCentury 2000
PublicationDate 2020-12-21
PublicationDateYYYYMMDD 2020-12-21
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Catalysis science & technology
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Kroutil (D0CY01524E-(cit1)/*[position()=1]) 2004; 8
Eliel (D0CY01524E-(cit6)/*[position()=1]) 2001
Thompson (D0CY01524E-(cit18)/*[position()=1]) 2017; 9
Applegate (D0CY01524E-(cit5d)/*[position()=1]) 2015; 357
Li (D0CY01524E-(cit8i)/*[position()=1]) 2016; 129
Liese (D0CY01524E-(cit3)/*[position()=1]) 2006
Bryant (D0CY01524E-(cit15)/*[position()=1]) 1988; 54
Goldberg (D0CY01524E-(cit2)/*[position()=1]) 2007; 76
Saravanan (D0CY01524E-(cit8b)/*[position()=1]) 2012; 23
Nafiu (D0CY01524E-(cit16b)/*[position()=1]) 2020
Kedziora (D0CY01524E-(cit12a)/*[position()=1]) 2014; 16
Karume (D0CY01524E-(cit16a)/*[position()=1]) 2016; 8
Musa (D0CY01524E-(cit5a)/*[position()=1]) 2019; 9
Venkataraman (D0CY01524E-(cit8a)/*[position()=1]) 2015; 42
Magallanes-Noguera (D0CY01524E-(cit10)/*[position()=1]) 2012; 160
Lee (D0CY01524E-(cit5f)/*[position()=1]) 2010
Kaliaperumal (D0CY01524E-(cit8f)/*[position()=1]) 2011; 29
Palmera (D0CY01524E-(cit8e)/*[position()=1]) 2014; 110
Xue (D0CY01524E-(cit8g)/*[position()=1]) 2013; 49
Liardo (D0CY01524E-(cit12c)/*[position()=1]) 2018
Paul (D0CY01524E-(cit8h)/*[position()=1]) 2013; 5
Voss (D0CY01524E-(cit9)/*[position()=1]) 2008; 130
Gruber (D0CY01524E-(cit7)/*[position()=1]) 2006; 348
Sivakumari (D0CY01524E-(cit8j)/*[position()=1]) 2015; 5
Mutti (D0CY01524E-(cit13)/*[position()=1]) 2010; 46
Méndez-Sánchez (D0CY01524E-(cit12b)/*[position()=1]) 2015; 7
Bornscheuer (D0CY01524E-(cit4)/*[position()=1]) 2006
Cazetta (D0CY01524E-(cit8c)/*[position()=1]) 2014; 109
Nealon (D0CY01524E-(cit14)/*[position()=1]) 2015; 5
Patel (D0CY01524E-(cit17)/*[position()=1]) 2014; 12
Verho (D0CY01524E-(cit5c)/*[position()=1]) 2015; 137
Diaz-Rodriguez (D0CY01524E-(cit5b)/*[position()=1]) 2015; 2
Steinreiber (D0CY01524E-(cit5g)/*[position()=1]) 2008; 14
Bsharat (D0CY01524E-(cit20)/*[position()=1]) 2017; 9
Rachwalski (D0CY01524E-(cit5e)/*[position()=1]) 2013; 42
Tanaka (D0CY01524E-(cit11)/*[position()=1]) 2009; 57
Musa (D0CY01524E-(cit19)/*[position()=1]) 2009; 1
Fragnelli (D0CY01524E-(cit8d)/*[position()=1]) 2012; 68
References_xml – issn: 2006
  publication-title: Hydrolases in Organic Synthesis
  doi: Bornscheuer Kazlauskas
– issn: 2006
  publication-title: Industrial Biotransformation
  doi: Liese Seelbach Wandrey
– issn: 2001
  end-page: p 277-287
  publication-title: Basic Organic Stereochemistry
  doi: Eliel Wilen Doley
– volume: 8
  start-page: 120
  year: 2004
  ident: D0CY01524E-(cit1)/*[position()=1]
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2004.02.005
  contributor:
    fullname: Kroutil
– volume: 68
  start-page: 523
  year: 2012
  ident: D0CY01524E-(cit8d)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2011.11.014
  contributor:
    fullname: Fragnelli
– volume: 42
  start-page: 173
  year: 2015
  ident: D0CY01524E-(cit8a)/*[position()=1]
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-014-1558-5
  contributor:
    fullname: Venkataraman
– volume: 357
  start-page: 1619
  year: 2015
  ident: D0CY01524E-(cit5d)/*[position()=1]
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201500316
  contributor:
    fullname: Applegate
– volume: 5
  start-page: 91594
  year: 2015
  ident: D0CY01524E-(cit8j)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA18532G
  contributor:
    fullname: Sivakumari
– volume-title: Industrial Biotransformation
  year: 2006
  ident: D0CY01524E-(cit3)/*[position()=1]
  doi: 10.1002/3527608184
  contributor:
    fullname: Liese
– volume: 42
  start-page: 9268
  year: 2013
  ident: D0CY01524E-(cit5e)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60175g
  contributor:
    fullname: Rachwalski
– volume-title: Hydrolases in Organic Synthesis
  year: 2006
  ident: D0CY01524E-(cit4)/*[position()=1]
  contributor:
    fullname: Bornscheuer
– start-page: 4750
  year: 2020
  ident: D0CY01524E-(cit16b)/*[position()=1]
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.202000728
  contributor:
    fullname: Nafiu
– volume: 57
  start-page: 317
  year: 2009
  ident: D0CY01524E-(cit11)/*[position()=1]
  publication-title: J. Mol. Catal. B: Enzym.
  doi: 10.1016/j.molcatb.2008.07.011
  contributor:
    fullname: Tanaka
– volume: 5
  start-page: 2100
  year: 2015
  ident: D0CY01524E-(cit14)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs501457v
  contributor:
    fullname: Nealon
– volume: 9
  start-page: 5487
  year: 2019
  ident: D0CY01524E-(cit5a)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY01539F
  contributor:
    fullname: Musa
– volume: 130
  start-page: 13969
  year: 2008
  ident: D0CY01524E-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804816a
  contributor:
    fullname: Voss
– volume: 12
  start-page: 5905
  year: 2014
  ident: D0CY01524E-(cit17)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C4OB00794H
  contributor:
    fullname: Patel
– volume: 76
  start-page: 237
  year: 2007
  ident: D0CY01524E-(cit2)/*[position()=1]
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-007-1002-0
  contributor:
    fullname: Goldberg
– volume: 109
  start-page: 178
  year: 2014
  ident: D0CY01524E-(cit8c)/*[position()=1]
  publication-title: J. Mol. Catal. B: Enzym.
  doi: 10.1016/j.molcatb.2014.08.018
  contributor:
    fullname: Cazetta
– volume: 110
  start-page: 117
  year: 2014
  ident: D0CY01524E-(cit8e)/*[position()=1]
  publication-title: J. Mol. Catal. B: Enzym.
  doi: 10.1016/j.molcatb.2014.09.016
  contributor:
    fullname: Palmera
– volume: 348
  start-page: 1789
  year: 2006
  ident: D0CY01524E-(cit7)/*[position()=1]
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200606158
  contributor:
    fullname: Gruber
– volume: 49
  start-page: 10706
  year: 2013
  ident: D0CY01524E-(cit8g)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc46240d
  contributor:
    fullname: Xue
– volume-title: Basic Organic Stereochemistry
  year: 2001
  ident: D0CY01524E-(cit6)/*[position()=1]
  contributor:
    fullname: Eliel
– volume: 46
  start-page: 8046
  year: 2010
  ident: D0CY01524E-(cit13)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc02813d
  contributor:
    fullname: Mutti
– volume: 14
  start-page: 8060
  year: 2008
  ident: D0CY01524E-(cit5g)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200701643
  contributor:
    fullname: Steinreiber
– volume: 160
  start-page: 189
  year: 2012
  ident: D0CY01524E-(cit10)/*[position()=1]
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2012.03.015
  contributor:
    fullname: Magallanes-Noguera
– volume: 1
  start-page: 89
  year: 2009
  ident: D0CY01524E-(cit19)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.200900033
  contributor:
    fullname: Musa
– volume: 8
  start-page: 1459
  year: 2016
  ident: D0CY01524E-(cit16a)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201600160
  contributor:
    fullname: Karume
– volume: 137
  start-page: 3996
  year: 2015
  ident: D0CY01524E-(cit5c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01031
  contributor:
    fullname: Verho
– volume: 29
  start-page: 262
  year: 2011
  ident: D0CY01524E-(cit8f)/*[position()=1]
  publication-title: Biocatal. Biotransform.
  doi: 10.3109/10242422.2011.615925
  contributor:
    fullname: Kaliaperumal
– volume: 5
  start-page: 3875
  year: 2013
  ident: D0CY01524E-(cit8h)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201300409
  contributor:
    fullname: Paul
– volume: 54
  start-page: 460
  year: 1988
  ident: D0CY01524E-(cit15)/*[position()=1]
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.54.2.460-465.1988
  contributor:
    fullname: Bryant
– start-page: 999
  year: 2010
  ident: D0CY01524E-(cit5f)/*[position()=1]
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.200900935
  contributor:
    fullname: Lee
– volume: 23
  start-page: 1360
  year: 2012
  ident: D0CY01524E-(cit8b)/*[position()=1]
  publication-title: Tetrahedron: Asymmetry
  doi: 10.1016/j.tetasy.2012.09.014
  contributor:
    fullname: Saravanan
– volume: 9
  start-page: 3833
  year: 2017
  ident: D0CY01524E-(cit18)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201701092
  contributor:
    fullname: Thompson
– volume: 7
  start-page: 4016
  year: 2015
  ident: D0CY01524E-(cit12b)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500816
  contributor:
    fullname: Méndez-Sánchez
– start-page: 3031
  year: 2018
  ident: D0CY01524E-(cit12c)/*[position()=1]
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201800569
  contributor:
    fullname: Liardo
– volume: 9
  start-page: 1487
  year: 2017
  ident: D0CY01524E-(cit20)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201601618
  contributor:
    fullname: Bsharat
– volume: 2
  start-page: 192
  year: 2015
  ident: D0CY01524E-(cit5b)/*[position()=1]
  publication-title: Curr. Green Chem.
  doi: 10.2174/2213346102666150120221227
  contributor:
    fullname: Diaz-Rodriguez
– volume: 129
  start-page: 21
  year: 2016
  ident: D0CY01524E-(cit8i)/*[position()=1]
  publication-title: J. Mol. Catal. B: Enzym.
  doi: 10.1016/j.molcatb.2016.04.003
  contributor:
    fullname: Li
– volume: 16
  start-page: 2448
  year: 2014
  ident: D0CY01524E-(cit12a)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/c4gc00066h
  contributor:
    fullname: Kedziora
SSID ssj0000491082
Score 2.3558319
Snippet We developed a concurrent cyclic deracemisation approach for secondary alcohols that combines a non-stereospecific oxidation step and a stereoselective...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 8213
SubjectTerms Alcohol
Alcohol dehydrogenase
Chemical reduction
Oxidation
Regeneration
Stereoselectivity
Strategy
Title Simultaneous cyclic deracemisation and stereoinversion of alcohols using orthogonal biocatalytic oxidation and reduction reactions
URI https://www.proquest.com/docview/2469837750
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW22wNcEF8VCwVZgluV4jjO17EsCxWovbAV5RQ5toOiigSyCWI58jf4s4ztxElpkYBLtGtrraznxTN-Gb9B6FlKBeMCHkAI3nMPPHThpSryPVWAs5RCithUbzg5jY7P2Jvz8Hw2-znJWura_FB8v_Zcyf9YFdrArvqU7D9Y1g0KDfAZ7AtXsDBc_8rG70qdD8grpfNYxVZowWqtpCl0ETdrWcOLw9ypuqy-Wm7MvPq3lXE3B53hCvTLm_qjIQXzsjaUzlYrudbfSjmO02iZV_MNIk0xMn1O6KDtBU6Gs0IaVu0V7v6UF2VnWNdall9GMnXNL_T5MlNl-OCEwx9QTXdt56rddBf1hHyXPY3LP5VNz-_2TAY1WSH2eLRd8ChhzGOxFQ8-VNM2K9juVuwJMCmbLL8J9YOpK6d2bb_iJkigVVYlEVuIhihTozN0KYpj5w7apXEahnO0e_T2xev3jsKDzZVPTDkyd-eDAG6QPh8HuBzyjPuYnWYoMmOCmfVtdKvfheAjC6k7aKaqu-jGcij-dw_9mEILW2jhy9DCAAn8G7RwXeABWthAC4_QwlNoYQctM46DFnbQuo_OXq3Wy2OvL9fhCXAMLXhz2G1zmrIoITHPGYlhCgRRpMgVZVwyrfVGmIx4GOVCn5hOEq00IMM8iSTEjntoXtWVeoAwK7SsJYNQk4bMj3UuZRL5UiidOFAEaoGeDjOafbaqLJnJpgjS7CVZfjDzvlqg_WGys_6p3WRUl0wNYgiUF2gPDOB-P9rr4Z86HqGbI2730bxtOvUYYtI2f9Jj4xfFIpSs
link.rule.ids 315,786,790,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+cyclic+deracemisation+and+stereoinversion+of+alcohols+using+orthogonal+biocatalytic+oxidation+and+reduction+reactions&rft.jtitle=Catalysis+science+%26+technology&rft.au=Nafiu%2C+Sodiq+A&rft.au=Takahashi%2C+Masateru&rft.au=Takahashi%2C+Etsuko&rft.au=Hamdan%2C+Samir+M&rft.date=2020-12-21&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=1&rft.issue=24&rft.spage=8213&rft.epage=8218&rft_id=info:doi/10.1039%2Fd0cy01524e&rft.externalDocID=d0cy01524e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon