Causative label flip attack detection with data complexity measures
A causative attack which manipulates training samples to mislead learning is a common attack scenario. Current countermeasures reduce the influence of the attack to a classifier with the loss of generalization ability. Therefore, the collected samples should be analyzed carefully. Most countermeasur...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 12; no. 1; pp. 103 - 116 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A causative attack which manipulates training samples to mislead learning is a common attack scenario. Current countermeasures reduce the influence of the attack to a classifier with the loss of generalization ability. Therefore, the collected samples should be analyzed carefully. Most countermeasures of current causative attack focus on data sanitization and robust classifier design. To our best knowledge, there is no work to determinate whether a given dataset is contaminated by a causative attack. In this study, we formulate a causative attack detection as a 2-class classification problem in which a sample represents a dataset quantified by data complexity measures, which describe the geometrical characteristics of data. As geometrical natures of a dataset are changed by a causative attack, we believe data complexity measures provide useful information for causative attack detection. Furthermore, a two-step secure classification model is proposed to demonstrate how the proposed causative attack detection improves the robustness of learning. Either a robust or traditional learning method is used according to the existence of causative attack. Experimental results illustrate that data complexity measures separate untainted datasets from attacked ones clearly, and confirm the promising performance of the proposed methods in terms of accuracy and robustness. The results consistently suggest that data complexity measures provide the crucial information to detect causative attack, and are useful to increase the robustness of learning. |
---|---|
AbstractList | A causative attack which manipulates training samples to mislead learning is a common attack scenario. Current countermeasures reduce the influence of the attack to a classifier with the loss of generalization ability. Therefore, the collected samples should be analyzed carefully. Most countermeasures of current causative attack focus on data sanitization and robust classifier design. To our best knowledge, there is no work to determinate whether a given dataset is contaminated by a causative attack. In this study, we formulate a causative attack detection as a 2-class classification problem in which a sample represents a dataset quantified by data complexity measures, which describe the geometrical characteristics of data. As geometrical natures of a dataset are changed by a causative attack, we believe data complexity measures provide useful information for causative attack detection. Furthermore, a two-step secure classification model is proposed to demonstrate how the proposed causative attack detection improves the robustness of learning. Either a robust or traditional learning method is used according to the existence of causative attack. Experimental results illustrate that data complexity measures separate untainted datasets from attacked ones clearly, and confirm the promising performance of the proposed methods in terms of accuracy and robustness. The results consistently suggest that data complexity measures provide the crucial information to detect causative attack, and are useful to increase the robustness of learning. |
Author | Hu, Xian Ng, Wing W. Y. He, Zhimin Yeung, Daniel S. Chan, Patrick P. K. Tsang, Eric C. C. |
Author_xml | – sequence: 1 givenname: Patrick P. K. surname: Chan fullname: Chan, Patrick P. K. organization: School of Computer Science and Engineering, South China University of Technology – sequence: 2 givenname: Zhimin surname: He fullname: He, Zhimin email: zhmihe@gmail.com organization: School of Electronic and Information Engineering, Foshan University – sequence: 3 givenname: Xian surname: Hu fullname: Hu, Xian organization: Tencent – sequence: 4 givenname: Eric C. C. surname: Tsang fullname: Tsang, Eric C. C. organization: Faculty of Information Technology, Macau University of Science and Technology – sequence: 5 givenname: Daniel S. surname: Yeung fullname: Yeung, Daniel S. – sequence: 6 givenname: Wing W. Y. surname: Ng fullname: Ng, Wing W. Y. organization: School of Computer Science and Engineering, South China University of Technology |
BookMark | eNp9kE1LxDAQhoOs4LruH_AU8FydSdqmPUrxCxa8KHgLaZJq136ZpOr-e7tW9OZcZg7P-w48x2TR9Z0l5BThHAHEhUcOMYuAQQSISR6JA7LELM2iDLKnxe8t8Iisvd_CNClwDmxJikKNXoX63dJGlbahVVMPVIWg9Cs1Nlgd6r6jH3V4oUYFRXXfDo39rMOOtlb50Vl_Qg4r1Xi7_tkr8nh99VDcRpv7m7vichNpjlmImNElGgSONjEQW0gFFzxnrMwrNCZhJSZVVUGptFFJzCDmGjJVxmmepaVK-Iqczb2D699G64Pc9qPrppeS5ZhzkQu2p9hMadd772wlB1e3yu0kgtz7krMvOfmS376kmEJ8DvkJ7p6t-6v-J_UFb6du7w |
Cites_doi | 10.1007/s10994-010-5188-5 10.1016/j.patcog.2014.05.003 10.1109/34.990132 10.1145/1081870.1081950 10.1109/SP.2017.49 10.1016/j.patcog.2012.07.009 10.1109/TEVC.2004.840153 10.1007/s13042-010-0007-7 10.1145/1541880.1541882 10.1145/1014052.1014066 10.1007/s100440200009 10.1109/EuroSP.2016.36 10.1016/j.patcog.2018.07.023 10.1007/11856214_4 10.1007/978-3-030-01258-8_10 10.1145/2046684.2046692 10.1109/ICWAPR.2015.7295946 10.1016/j.neucom.2014.08.081 10.1109/TNN.2002.1031953 10.1145/2420950.2420987 10.1007/978-3-642-40994-3_25 10.1109/TKDE.2013.57 10.1007/978-3-319-20248-8_15 10.1109/ICDE.2007.367917 10.1016/j.patcog.2004.11.012 10.1007/s13042-015-0348-3 10.1145/1315245.1315288 10.1145/1644893.1644895 10.1016/j.ins.2011.09.022 10.1145/1030194.1015492 10.1007/s13042-016-0629-5 10.1145/3219819.3220078 10.1109/SP.2008.11 10.1109/TC.1968.229395 10.1145/1330107.1330147 10.1007/978-3-642-21557-5_37 10.1109/TEVC.2019.2890858 10.1145/1553374.1553404 10.1145/3052973.3053009 10.1007/s10044-007-0061-2 10.1002/sam.10054 10.1145/3190619.3190637 10.1145/1128817.1128824 10.1109/TCYB.2015.2415032 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PQEST PQQKQ PQUKI PTHSS |
DOI | 10.1007/s13042-020-01159-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Computer Science Database ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 116 |
ExternalDocumentID | 10_1007_s13042_020_01159_7 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61802061 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Guangdong Province grantid: 2018A030313203 – fundername: Fundamental Research Funds for the Central Universities grantid: 2018ZD32 funderid: http://dx.doi.org/10.13039/501100012226 – fundername: Project of Department of Education of Guangdong Province grantid: 2017KQNCX216 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACKNC ACMLO ACOKC ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKLTO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~A9 AACDK AAJBT AASML AAYXX ABAKF ABJCF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AFKRA AGQEE AGRTI AIGIU ARAPS BENPR BGLVJ CCPQU CITATION H13 HCIFZ K7- M7S PTHSS SJYHP 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c318t-2dcb1d1031e5d04e067373922b9f1dd52b15fff0bacda542043c08ab46986ba53 |
IEDL.DBID | 8FG |
ISSN | 1868-8071 |
IngestDate | Thu Oct 10 22:03:58 EDT 2024 Thu Sep 12 18:29:35 EDT 2024 Sat Dec 16 12:10:30 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Data complexity Label flip attack Causative attack detection Adversarial learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-2dcb1d1031e5d04e067373922b9f1dd52b15fff0bacda542043c08ab46986ba53 |
PQID | 2919379725 |
PQPubID | 2043904 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2919379725 crossref_primary_10_1007_s13042_020_01159_7 springer_journals_10_1007_s13042_020_01159_7 |
PublicationCentury | 2000 |
PublicationDate | 1-2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 1-2021 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Biggio B (2010) Adversarial pattern classification. PhD thesis, University of Cagliari, Cagliari (Italy) MaoKRbf neural network center selection based on fisher ratio class separability measureIEEE Trans Neural Netw20021351211121710.1109/TNN.2002.1031953 Dekel O, Shamir O (2009) Good learners for evil teachers. In: Proceedings of the 26th annual international conference on machine learning, ACM, pp 233–240 XiaoHBiggioBNelsonBXiaoHEckertCRoliFSupport vector machines under adversarial label contaminationNeurocomputing2015160536210.1016/j.neucom.2014.08.081 Papernot N, McDaniel P, Goodfellow I, Jha S, Celik ZB, Swami A (2017) Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia conference on computer and communications security, pp 506–519 SmithFWPattern classifier design by linear programmingIEEE Trans Comput1968100436737210.1109/TC.1968.229395 Xiao H, Biggio B, Brown G, Fumera G, Eckert C, Roli F (2015a) Is feature selection secure against training data poisoning? In: Proceedings of The 32nd international conference on machine learning (ICML’15), pp 1689–1698 Bernado-MansillaEHoTKDomain of competence of xcs classifier system in complexity measurement spaceIEEE Trans Evolut Comput2005918210410.1109/TEVC.2004.840153 Zhang F, Chan PP, Tang TQ (2015) L-gem based robust learning against poisoning attack. In: 2015 International conference on wavelet analysis and pattern recognition (ICWAPR), IEEE, pp 175–178 Biggio B, Corona I, Maiorca D, Nelson B, Srndic N, Laskov P, Giacinto G, Roli F (2013) Evasion attacks against machine learning at test time. In: European conference on machine learning and principles and practice of knowledge discovery in databases (ECML PKDD), Springer-Verlag Berlin Heidelberg, vol 8190, pp 387–402 BiggioBFumeraGRoliFSecurity evaluation of pattern classifiers under attackIEEE Trans Knowl Data Eng20142698499610.1109/TKDE.2013.57 BiggioBFumeraGRoliFMultiple classifier systems for robust classifier design in adversarial environmentsInt J Mach Learning Cybernet201011–4274110.1007/s13042-010-0007-7 Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks. In: 2017 IEEE symposium on security and privacy (SP), IEEE, pp 39–57 Biggio B, Corona I, Fumera G, Giacinto G, Roli F (2011a) Bagging classifiers for fighting poisoning attacks in adversarial classification tasks. In: International workshop on multiple classifier systems. Springer, Berlin, pp 350–359 Li B, Wang Y, Singh A, Vorobeychik Y (2016) Data poisoning attacks on factorization-based collaborative filtering. In: Advances in neural information processing systems, pp 1885–1893 Sahami M, Dumais S, Heckerman D, Horvitz E (1998) A bayesian approach to filtering junk e-mail. In: Learning for text categorization: papers from the 1998 workshop, vol 62, pp 98–105 PekalskaEPaclikPDuinRPWA generalized kernel approach to dissimilarity-based classificationJ Mach Learn Res2002217521119047581037.68127 Chung SP, Mok AK (2006) Allergy attack against automatic signature generation. In: Proceedings of the 9th international conference on recent advances in intrusion detection, Springer-Verlag, RAID’06, pp 61–80 BiggioBRoliFWild patterns: ten years after the rise of adversarial machine learningPattern Recognition20188431733110.1016/j.patcog.2018.07.023 HoTKBasuMComplexity measures of supervised classification problemsIEEE Trans Pattern Anal Mach Intell200224328930010.1109/34.990132 BarrenoMNelsonBJosephADTygarJDThe security of machine learningMach Learning2010812121148310817710.1007/s10994-010-5188-5 Wang Y, Chaudhuri K (2018) Data poisoning attacks against online learning. arXiv preprint arXiv:180808994 DriesARückertUAdaptive concept drift detectionStat Anal Data Mining200925–6311327257047810.1002/sam.10054 HeZMChanPPKYeungDSPedryczWNgWWYQuantification of side-channel information leaks based on data complexity measures for web browsingInt J Mach Learn Cybernet20156460761910.1007/s13042-015-0348-3 Rubinstein BI, Nelson B, Huang L, Joseph AD, Lau Sh, Rao S, Taft N, Tygar J (2009) Antidote: understanding and defending against poisoning of anomaly detectors. In: Proceedings of the 9th ACM SIGCOMM conference on internet measurement conference, ACM, pp 1–14 Fefilatyev S, Shreve M, Kramer K, Hall L, Goldgof D, Kasturi R, Daly K, Remsen A, Bunke H (2012) Label-noise reduction with support vector machines. In: 21st international conference on pattern recognition (ICPR), IEEE, pp 3504–3508 Huang L, Joseph AD, Nelson B, Rubinstein BI, Tygar J (2011) Adversarial machine learning. In: Proceedings of the 4th ACM workshop on Security and artificial intelligence, ACM, pp 43–58 BiggioBCoronaIHeZMChanPPKGiacintoGYeungDSRoliFOne-and-a-half-class multiple classifier systems for secure learning against evasion attacks at test timeInt’l Workshop Multiple Classifier Syst (MCS)2015913216818010.1007/978-3-319-20248-8_15 HoTKA data complexity analysis of comparative advantages of decision forest constructorsPattern Anal Appl200252102112193044110.1007/s100440200009 ZhangFChanPBiggioBYeungDRoliFAdversarial feature selection against evasion attacksIEEE Trans Cybernet20164676677710.1109/TCYB.2015.2415032 SánchezJSMollinedaRASotocaJMAn analysis of how training data complexity affects the nearest neighbor classifiersPattern Anal Appl2007103189201239387910.1007/s10044-007-0061-2 Xiao H, Xiao H, Eckert C (2012) Adversarial label flips attack on support vector machines. 20th European Conference on artificial intelligence (ECAI). Montepellier, France, pp 870–875 Aha DW, Kibler D (1989) Noise-tolerant instance-based learning algorithms. In: Proceedings of the 11th international joint conference on artificial intelligence—Volume 1, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, IJCAI’89, pp 794–799 SáEzJALuengoJHerreraFPredicting noise filtering efficacy with data complexity measures for nearest neighbor classificationPattern Recognition201346135536410.1016/j.patcog.2012.07.009 Biggio B, Nelson B, Laskov P (2011b) Support vector machines under adversarial label noise. In: Journal of machine learning research—proc. 3rd Asian conference on machine learning (ACML 2011), Taoyuan, Taiwan, vol 20, pp 97–112 Fierrez-AguilarJOrtega-GarciaJGonzalez-RodriguezJBigunJDiscriminative multimodal biometric authentication based on quality measuresPattern Recognition200538577777910.1016/j.patcog.2004.11.012 Nelson B (2010) Behavior of machine learning algorithms in adversarial environments. PhD thesis, EECS Department, University of California, Berkeley Ramachandran A, Feamster N, Vempala S (2007) Filtering spam with behavioral blacklisting. In: Proceedings of the 14th ACM conference on computer and communications security, ACM, pp 342–351 Lowd D, Meek C (2005) Adversarial learning. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining, ACM, New York, NY, USA, KDD ’05, pp 641–647 LuengoJHerreraFShared domains of competence of approximate learning models using measures of separability of classesInform Sci201218514365285287710.1016/j.ins.2011.09.022 LakhinaACrovellaMDiotCDiagnosing network-wide traffic anomaliesACM SIGCOMM Comput Commun Rev ACM20043421923010.1145/1030194.1015492 TuvEBorisovARungerGTorkkolaKFeature selection with ensembles, artificial variables, and redundancy eliminationJ Mach Learn Res200910Jul1341136625348631235.62003 Zügner D, Akbarnejad A, Günnemann S (2018) Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, ACM, pp 2847–2856 NelsonBBarrenoMChiFJJosephADRubinsteinBISainiUSuttonCATygarJDXiaKExploiting machine learning to subvert your spam filterLEET2008819 BrittoASSabourinROliveiraLEDynamic selection of classifiersa comprehensive reviewPattern Recognition201447113665368010.1016/j.patcog.2014.05.003 Whitehill J, Wu Tf, Bergsma J, Movellan JR, Ruvolo PL (2009) Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In: Advances in neural information processing systems, pp 2035–2043 Soule A, Salamatian K, Taft N (2005) Combining filtering and statistical methods for anomaly detection. In: Proceedings of the 5th ACM SIGCOMM conference on internet measurement, USENIX Association ChanPPHeZMLiHHsuCCData sanitization against adversarial label contamination based on data complexityInt J Mach Learn Cybernet2018961039105210.1007/s13042-016-0629-5 Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami A (2016) The limitations of deep learning in adversarial settings. In: IEEE European symposium on security and privacy, IEEE, pp 372–387 Kantchelian A, Tygar J, Joseph A (2016) Evasion and hardening of tree ensemble classifiers. In: International conference on machine learning, pp 2387–2396 RoliFBiggioBFumeraGPattern recognition systems under attackProgress in pattern recognition, image analysis, computer vision, and applications2013BerlinSpringer18 Cretu GF, Stavrou A, Locasto ME, Stolfo SJ, Keromytis AD (2008) Casting out demons: sanitizing training data for anomaly sensors. In: Security and privacy, 2008. SP 2008. IEEE symposium on, IEEE, pp 81–95 Biggio B, Nelson B, Laskov P (2012) Poisoning attacks against support vector machines. In: 29th Int’l Conf. on Machine Learning (ICML), Omnipress Barreno M, Nelson B, Sears R, Joseph AD, Tygar JD (2006) Can machine learning be secure? In: Proceedings of the 2006 ACM symposium on information, computer and communications security, ACM, ASIACCS ’06, pp 16–25 Alcalá-FdezJFernándezALuengoJDerracJGarcíaSSánchezLHerreraFKeel data-mining software tool: data set repository, integration of algorithms and experimental analysis frameworkJ Multiple-Valued Logic Soft Comput2011172–3255287 Cheng H, Yan X, Han J, Hsu CW (2007) Discriminative frequent pattern analysis for effective classification. In: IEEE 23rd international conference on data engineering, IEEE, pp 716–725 Bhagoji AN, He W, Li B, Song D (2018) Practical black-box attacks on deep neural networks using K Mao (1159_CR43) 2002; 13 E Bernado-Mansilla (1159_CR6) 2005; 9 1159_CR19 1159_CR18 A Lakhina (1159_CR38) 2004; 34 F Roli (1159_CR50) 2013 1159_CR12 1159_CR11 V Chandola (1159_CR21) 2009; 41 1159_CR53 1159_CR59 1159_CR14 1159_CR58 1159_CR13 1159_CR57 1159_CR51 H Xiao (1159_CR65) 2015; 160 J Alcalá-Fdez (1159_CR2) 2011; 17 B Biggio (1159_CR10) 2010; 1 ZM He (1159_CR33) 2015; 6 1159_CR44 1159_CR42 1159_CR49 J Fierrez-Aguilar (1159_CR31) 2005; 38 1159_CR47 1159_CR46 JS Sánchez (1159_CR54) 2007; 10 1159_CR40 M Barreno (1159_CR5) 2010; 81 1159_CR4 1159_CR3 F Zhang (1159_CR67) 2016; 46 1159_CR8 1159_CR7 E Pekalska (1159_CR48) 2002; 2 TK Ho (1159_CR35) 2002; 24 E Tuv (1159_CR60) 2009; 10 1159_CR39 1159_CR1 JA SáEz (1159_CR52) 2013; 46 RA Servedio (1159_CR55) 2003; 4 1159_CR37 1159_CR36 AS Britto (1159_CR17) 2014; 47 B Biggio (1159_CR9) 2018; 84 1159_CR30 FW Smith (1159_CR56) 1968; 100 B Biggio (1159_CR16) 2015; 9132 ZM He (1159_CR32) 2012; 1 CC Chang (1159_CR22) 2011; 2 B Nelson (1159_CR45) 2008; 8 PP Chan (1159_CR20) 2018; 9 1159_CR28 J Luengo (1159_CR41) 2012; 185 B Biggio (1159_CR15) 2014; 26 1159_CR23 1159_CR66 1159_CR64 1159_CR27 1159_CR26 1159_CR25 1159_CR24 1159_CR68 1159_CR63 A Dries (1159_CR29) 2009; 2 1159_CR62 1159_CR61 TK Ho (1159_CR34) 2002; 5 |
References_xml | – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 1159_CR22 publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) contributor: fullname: CC Chang – ident: 1159_CR63 – volume: 81 start-page: 121 issue: 2 year: 2010 ident: 1159_CR5 publication-title: Mach Learning doi: 10.1007/s10994-010-5188-5 contributor: fullname: M Barreno – volume: 47 start-page: 3665 issue: 11 year: 2014 ident: 1159_CR17 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2014.05.003 contributor: fullname: AS Britto – volume: 8 start-page: 1 year: 2008 ident: 1159_CR45 publication-title: LEET contributor: fullname: B Nelson – volume: 17 start-page: 255 issue: 2–3 year: 2011 ident: 1159_CR2 publication-title: J Multiple-Valued Logic Soft Comput contributor: fullname: J Alcalá-Fdez – ident: 1159_CR30 – volume: 24 start-page: 289 issue: 3 year: 2002 ident: 1159_CR35 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.990132 contributor: fullname: TK Ho – ident: 1159_CR40 doi: 10.1145/1081870.1081950 – ident: 1159_CR44 – ident: 1159_CR19 doi: 10.1109/SP.2017.49 – start-page: 1 volume-title: Progress in pattern recognition, image analysis, computer vision, and applications year: 2013 ident: 1159_CR50 contributor: fullname: F Roli – ident: 1159_CR39 – ident: 1159_CR62 – volume: 46 start-page: 355 issue: 1 year: 2013 ident: 1159_CR52 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.07.009 contributor: fullname: JA SáEz – ident: 1159_CR3 – ident: 1159_CR18 – volume: 9 start-page: 82 issue: 1 year: 2005 ident: 1159_CR6 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2004.840153 contributor: fullname: E Bernado-Mansilla – volume: 1 start-page: 27 issue: 1–4 year: 2010 ident: 1159_CR10 publication-title: Int J Mach Learning Cybernet doi: 10.1007/s13042-010-0007-7 contributor: fullname: B Biggio – volume: 41 start-page: 15 issue: 3 year: 2009 ident: 1159_CR21 publication-title: ACM Comput Surveys (CSUR) doi: 10.1145/1541880.1541882 contributor: fullname: V Chandola – ident: 1159_CR26 doi: 10.1145/1014052.1014066 – volume: 5 start-page: 102 issue: 2 year: 2002 ident: 1159_CR34 publication-title: Pattern Anal Appl doi: 10.1007/s100440200009 contributor: fullname: TK Ho – ident: 1159_CR46 doi: 10.1109/EuroSP.2016.36 – ident: 1159_CR28 – volume: 10 start-page: 1341 issue: Jul year: 2009 ident: 1159_CR60 publication-title: J Mach Learn Res contributor: fullname: E Tuv – volume: 84 start-page: 317 year: 2018 ident: 1159_CR9 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2018.07.023 contributor: fullname: B Biggio – ident: 1159_CR24 doi: 10.1007/11856214_4 – ident: 1159_CR7 doi: 10.1007/978-3-030-01258-8_10 – ident: 1159_CR36 doi: 10.1145/2046684.2046692 – ident: 1159_CR66 doi: 10.1109/ICWAPR.2015.7295946 – volume: 4 start-page: 633 year: 2003 ident: 1159_CR55 publication-title: J Mach Learn Res contributor: fullname: RA Servedio – volume: 160 start-page: 53 year: 2015 ident: 1159_CR65 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.081 contributor: fullname: H Xiao – ident: 1159_CR13 – volume: 13 start-page: 1211 issue: 5 year: 2002 ident: 1159_CR43 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2002.1031953 contributor: fullname: K Mao – ident: 1159_CR57 doi: 10.1145/2420950.2420987 – ident: 1159_CR14 doi: 10.1007/978-3-642-40994-3_25 – volume: 26 start-page: 984 year: 2014 ident: 1159_CR15 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.57 contributor: fullname: B Biggio – volume: 9132 start-page: 168 year: 2015 ident: 1159_CR16 publication-title: Int’l Workshop Multiple Classifier Syst (MCS) doi: 10.1007/978-3-319-20248-8_15 contributor: fullname: B Biggio – ident: 1159_CR61 – ident: 1159_CR23 doi: 10.1109/ICDE.2007.367917 – volume: 38 start-page: 777 issue: 5 year: 2005 ident: 1159_CR31 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2004.11.012 contributor: fullname: J Fierrez-Aguilar – volume: 6 start-page: 607 issue: 4 year: 2015 ident: 1159_CR33 publication-title: Int J Mach Learn Cybernet doi: 10.1007/s13042-015-0348-3 contributor: fullname: ZM He – volume: 2 start-page: 175 year: 2002 ident: 1159_CR48 publication-title: J Mach Learn Res contributor: fullname: E Pekalska – ident: 1159_CR49 doi: 10.1145/1315245.1315288 – ident: 1159_CR64 – ident: 1159_CR51 doi: 10.1145/1644893.1644895 – ident: 1159_CR37 – volume: 185 start-page: 43 issue: 1 year: 2012 ident: 1159_CR41 publication-title: Inform Sci doi: 10.1016/j.ins.2011.09.022 contributor: fullname: J Luengo – ident: 1159_CR1 – volume: 34 start-page: 219 year: 2004 ident: 1159_CR38 publication-title: ACM SIGCOMM Comput Commun Rev ACM doi: 10.1145/1030194.1015492 contributor: fullname: A Lakhina – volume: 9 start-page: 1039 issue: 6 year: 2018 ident: 1159_CR20 publication-title: Int J Mach Learn Cybernet doi: 10.1007/s13042-016-0629-5 contributor: fullname: PP Chan – ident: 1159_CR68 doi: 10.1145/3219819.3220078 – ident: 1159_CR25 doi: 10.1109/SP.2008.11 – volume: 100 start-page: 367 issue: 4 year: 1968 ident: 1159_CR56 publication-title: IEEE Trans Comput doi: 10.1109/TC.1968.229395 contributor: fullname: FW Smith – ident: 1159_CR12 – ident: 1159_CR58 doi: 10.1145/1330107.1330147 – ident: 1159_CR8 – ident: 1159_CR11 doi: 10.1007/978-3-642-21557-5_37 – ident: 1159_CR59 doi: 10.1109/TEVC.2019.2890858 – ident: 1159_CR53 – ident: 1159_CR27 doi: 10.1145/1553374.1553404 – ident: 1159_CR47 doi: 10.1145/3052973.3053009 – volume: 1 start-page: 349 year: 2012 ident: 1159_CR32 publication-title: Int Conf Mach Learn Cybernet contributor: fullname: ZM He – volume: 10 start-page: 189 issue: 3 year: 2007 ident: 1159_CR54 publication-title: Pattern Anal Appl doi: 10.1007/s10044-007-0061-2 contributor: fullname: JS Sánchez – volume: 2 start-page: 311 issue: 5–6 year: 2009 ident: 1159_CR29 publication-title: Stat Anal Data Mining doi: 10.1002/sam.10054 contributor: fullname: A Dries – ident: 1159_CR42 doi: 10.1145/3190619.3190637 – ident: 1159_CR4 doi: 10.1145/1128817.1128824 – volume: 46 start-page: 766 year: 2016 ident: 1159_CR67 publication-title: IEEE Trans Cybernet doi: 10.1109/TCYB.2015.2415032 contributor: fullname: F Zhang |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.251054 |
Snippet | A causative attack which manipulates training samples to mislead learning is a common attack scenario. Current countermeasures reduce the influence of the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 103 |
SubjectTerms | Accuracy Artificial Intelligence Classification Classifiers Complex Systems Complexity Computational Intelligence Control Datasets Engineering Learning Mechatronics Neural networks Original Article Pattern Recognition Robotics Robustness Security systems Support vector machines Systems Biology Taxonomy |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPSgghpRNHvwoNEldNvt40gISDR6ggRPzb6aGBCJLYnx17u7ba3PA9c-09npzDezM98AnLNIatjAAuyTKMGeqyjWfodhyQ07nSSRtHnI-wd_NPFup3Ra9XHbYvdyR9Ia6qrXzQTe2EQ7BsVEONiEetF4Wu_dPN4NSjVyHUOwUnlZ1_Us0dRn6qXr62N5NWLoh4aO1ynaaf5-0XeXVeHQH1un1iMNd2Fc9vXkhSizzirjHfH-m-ZxnY_dg50CoaJerlIN2FCLJmx_4S1sQqOwCCm6KGirL_eh32er1NKII61Zao6S-dMSsSxjYoakymzN1wKZxC8ydanIVrOrNx0GoOc8U5kewGQ4GPdHuBjRgIU2BhkmUnBHmlERiupVVXbsjYZchEeJIyUl3KFJknQ5E5JRzzTiim7IuJlb6XNG3UOoLV4W6ghQYMZoafsgBHE94QcsCXU0JUN9vyMj4bTgqlyFeJkzccQV57KRV6zlFVt5xUEL2uVCxcVfmcYk0nA1iAJCW3BdCr46_f_Tjte7_AS2iCl9sZmaNtSy15U61dgl42eFrn4AW43d-g priority: 102 providerName: Springer Nature |
Title | Causative label flip attack detection with data complexity measures |
URI | https://link.springer.com/article/10.1007/s13042-020-01159-7 https://www.proquest.com/docview/2919379725 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyI8wOnc-TgQdHgmn6kPckc-0BxiDiYp5ImKYizm7YD_3zz0tSioKdCSnP4NS_v915efg-hUx5JTRs4IwGNUuK5yifa73AiE1CnkzSSJg95Pw0mM-927s9twi23ZZXVnmg2arkUkCO_opGmGixi1L9evRPoGgWnq7aFxiZqOpQxCL7C0bhaT64DSiu1u3VdzyhOfedgeoEeK8sSwyAEXV7H3qspb9dBqE8gvgLeFBH203fVhPTXGapxTaMdtG05Je6Xi6CFNlS2i1rWanN8ZqWlz_fQYMDXuZH6xvrvqwVOFy8rzIuCi1csVWHqsjIMyVkMtaPYVJyrT03V8VuZTcz30Ww0fBpMiG2jQIQ22IJQKRJHQjsH5WvklWlNo2kRTaLUkdKnieOnadpLuJDc9-CyrOiFPIHekkHCffcANbJlpg4RZtDqStuwENT1RMB4GuqIR4b6e0dGwmmjiwqgeFWqZcS1LjLAGWs4YwNnzNqoU2EYW8vJ4_o_t9FlhWv9-u_Zjv6f7RhtUShHMdmTDmoUH2t1ovlEkXTNoumiZn_8fDfUz5vh9OFRj85o_wsjC8TK |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66HfQizh84nZqDB0WDa9r0x0l0bEzdhsgGu5U0SUGc27Qd-Oebl6YWBb02NIcveXnfe3n5HkJnPJKaNvCA-DRKiecqRrTf4UQmoE4naSRNHnI48vsT72HKpjbhltmyyvJMNAe1XAjIkV_TSFONIAoou1m-E-gaBbertoXGOqqDVJUOvup33dHTc7mjXAe0ViqH67qe0Zz6zsK0ff2tKEwM_RCUeR37sqZ4XwfBPoEIC5hTRIKf3quipL9uUY1z6m2jLcsq8W2xDRpoTc13UMPabYbPrbj0xS7qdPgqM2LfWK-_muF09rLEPM-5eMVS5aYya44hPYuhehSbmnP1qck6fivyidkemvS6406f2EYKRGiTzQmVInEkNHRQTGOvTHMaTYxoEqWOlIwmDkvTtJ1wITnz4LmsaIc8ge6SfsKZu49q88VcHSAcQLMrbcVCUNcTfsDTUMc8MtT_OzISThNdlgDFy0IvI66UkQHOWMMZGzjjoIlaJYaxtZ0srla6ia5KXKvhv2c7_H-2U7TRHw8H8eB-9HiENikUp5hcSgvV8o-VOtbsIk9O7Bb6Avj-xQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oBNGDuKk4nZqDB0XD1rRpm-OYjvlreHCwW0mTFMRZh-3AP98kbe0UPXjtT3h5j_fl5XvfAzjlTGrYwAPsE5Zgz1UU67zDsYyNOp0kTNo65MPYH0282ymdLnXxW7Z7dSRZ9DQYlaY0785l0q0b38wuHJutj4E0DAersKZTkWtIfRPSrzzKdYzWSp1wXdezmlNfVZier68VxMTQD40yr1N21vz-m-_Zq4akP05RbXIabsNWiSpRv3CDJqyotAWbS1qDLWiWUZyhs1Jq-nwHBgO-yKz0N9LeoGYomT3PEc9zLl6QVLnlaaXIFGuR4ZIiy0BXHxq6o9eiupjtwmR4_TQY4XKsAhY6gHNMpIgdacY7KKpXQtlRNRomkZgljpSUxA5NkqQXcyE59UzzrOiFPDazJv2YU3cPGulbqvYBBWb0lY5pIYjrCT_gSah3QDLU7zuSCacNF5W5onmhnhHVOsnGuJE2bmSNGwVt6FQWjcpIyiLCNMQMWEBoGy4rK9e3__7awf8eP4H1x6thdH8zvjuEDWKYK7bQ0oFG_r5QRxp65PGx9a5PjozJKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causative+label+flip+attack+detection+with+data+complexity+measures&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Chan%2C+Patrick+P.+K&rft.au=He%2C+Zhimin&rft.au=Hu%2C+Xian&rft.au=Tsang%2C+Eric+C.+C&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=12&rft.issue=1&rft.spage=103&rft.epage=116&rft_id=info:doi/10.1007%2Fs13042-020-01159-7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |