Deep Learning for Wireless Physical Layer: Opportunities and Challenges

Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learn...

Full description

Saved in:
Bibliographic Details
Published inChina communications Vol. 14; no. 11; pp. 92 - 111
Main Authors Wang, Tianqi, Wen, Chao-Kai, Wang, Hanqing, Gao, Feifei, Jiang, Tao, Jin, Shi
Format Journal Article
LanguageEnglish
Published China Institute of Communications 01.11.2017
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China%Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China%State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China%School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
Subjects
Online AccessGet full text
ISSN1673-5447
DOI10.1109/CC.2017.8233654

Cover

Loading…
Abstract Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learning ability of conventional ML algorithms. Deep learning(DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimization capability. The potential application of DL to the physical layer has also been increasingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements; these features challenge conventional communication theories. This paper presents a comprehensive overview of the emerging studies on DL-based physical layer processing, including leveraging DL to redesign a module of the conventional communication system(for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field.
AbstractList Machine learning (ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its appli-cation to the physical layer is hampered by sophisticated channel environments and lim-ited learning ability of conventional ML algo-rithms. Deep learning (DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimi-zation capability. The potential application of DL to the physical layer has also been increas-ingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements;these features challenge conventional commu-nication theories. This paper presents a com-prehensive overview of the emerging studies on DL-based physical layer processing, in-cluding leveraging DL to redesign a module of the conventional communication system (for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field.
Machine learning (ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learning ability of conventional ML algorithms. Deep learning (DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimization capability. The potential application of DL to the physical layer has also been increasingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements; these features challenge conventional communication theories. This paper presents a comprehensive overview of the emerging studies on DL-based physical layer processing, including leveraging DL to redesign a module of the conventional communication system (for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field.
Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learning ability of conventional ML algorithms. Deep learning(DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimization capability. The potential application of DL to the physical layer has also been increasingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements; these features challenge conventional communication theories. This paper presents a comprehensive overview of the emerging studies on DL-based physical layer processing, including leveraging DL to redesign a module of the conventional communication system(for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field.
Author Tianqi Wang;Chao-Kai Wen;Hanqing Wang;Feifei Gao;Tao Jiang;Shi Jin
AuthorAffiliation National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China;Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China;State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology,Department of Automation, Tsinghua University, Beijing 100084, China;School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
AuthorAffiliation_xml – name: National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China%Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China%State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China%School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
Author_xml – sequence: 1
  givenname: Tianqi
  surname: Wang
  fullname: Wang, Tianqi
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Chao-Kai
  surname: Wen
  fullname: Wen, Chao-Kai
  organization: Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China
– sequence: 3
  givenname: Hanqing
  surname: Wang
  fullname: Wang, Hanqing
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
– sequence: 4
  givenname: Feifei
  surname: Gao
  fullname: Gao, Feifei
  organization: State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Tao
  surname: Jiang
  fullname: Jiang, Tao
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 6
  givenname: Shi
  surname: Jin
  fullname: Jin, Shi
  email: jinshi@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
BookMark eNp9kL9OwzAQxj0UiVI6M7BESIxp_Sd2khGFf5UilQHEGLnOOXUVnGCngvIoPAvvxCuQqlWRGLjlhvu-7-5-J2hgGwsInRE8IQSn0yybUEziSUIZEzwaoCERMQt5FMXHaOz9CveVCMEEHaLZNUAb5CCdNbYKdOOCZ-OgBu-Dh-XGGyXrIJcbcN9fn8G8bRvXra3pDPhA2jLIlrKuwVbgT9GRlrWH8b6P0NPtzWN2H-bzu1l2lYeKkaQLSSIl4VSrlEmmFxAzlSoMXNAojWUaM1kqnnBeYo3LEvOIwkIttKKa9hdjxkbocpf7Jq2WtipWzdrZfmPxUXXv2897CjjtddOdTrnGewe6aJ15kW5TEFxsQRVZVmzlxR5U7-B_HMp0sjON7Zw09T--853PAMBhy-_0Yp-6bGz12lM-SEQcYSxoytgPOt2Eww
CODEN CCHOBE
CitedBy_id crossref_primary_10_1007_s11277_022_10077_6
crossref_primary_10_3390_photonics9110845
crossref_primary_10_1109_LWC_2019_2939314
crossref_primary_10_1109_JSAC_2020_3036950
crossref_primary_10_2139_ssrn_4119299
crossref_primary_10_1109_JSAC_2021_3087241
crossref_primary_10_1109_COMST_2021_3127267
crossref_primary_10_1364_OE_384572
crossref_primary_10_1109_TVT_2021_3120267
crossref_primary_10_1109_LCOMM_2021_3099841
crossref_primary_10_1186_s13638_022_02195_3
crossref_primary_10_1109_LSP_2019_2953673
crossref_primary_10_1109_ACCESS_2018_2886216
crossref_primary_10_3390_s25030669
crossref_primary_10_3390_s23041814
crossref_primary_10_1109_ACCESS_2022_3149590
crossref_primary_10_1109_TWC_2023_3327362
crossref_primary_10_1016_j_pbiomolbio_2022_11_004
crossref_primary_10_1109_ACCESS_2021_3108061
crossref_primary_10_1002_dac_5964
crossref_primary_10_1109_OJCOMS_2024_3472094
crossref_primary_10_1109_TWC_2019_2963185
crossref_primary_10_1109_ACCESS_2020_3003286
crossref_primary_10_1109_LWC_2021_3112747
crossref_primary_10_1007_s10489_023_05052_y
crossref_primary_10_1109_JIOT_2021_3097133
crossref_primary_10_1109_COMST_2020_2964534
crossref_primary_10_1016_j_comnet_2024_110233
crossref_primary_10_1109_TVT_2019_2949122
crossref_primary_10_1007_s12652_020_02010_1
crossref_primary_10_1016_j_aej_2022_10_014
crossref_primary_10_1631_FITEE_2000505
crossref_primary_10_1109_LWC_2019_2920818
crossref_primary_10_1109_ACCESS_2021_3053045
crossref_primary_10_1109_ACCESS_2022_3224478
crossref_primary_10_1109_TWC_2021_3089878
crossref_primary_10_1109_ACCESS_2022_3186323
crossref_primary_10_1109_ACCESS_2019_2921988
crossref_primary_10_1109_ACCESS_2022_3170410
crossref_primary_10_1109_ACCESS_2019_2936880
crossref_primary_10_18469_1810_3189_2023_26_4_95_103
crossref_primary_10_4236_jcc_2023_119009
crossref_primary_10_1109_MWC_001_1900473
crossref_primary_10_1016_j_future_2019_01_041
crossref_primary_10_1155_2022_8992478
crossref_primary_10_1109_TVT_2022_3187046
crossref_primary_10_1109_TBC_2024_3417228
crossref_primary_10_1109_TWC_2021_3120926
crossref_primary_10_1109_COMST_2021_3089688
crossref_primary_10_1109_TCCN_2019_2949308
crossref_primary_10_1007_s11277_024_10923_9
crossref_primary_10_1109_TCCN_2024_3378225
crossref_primary_10_1016_j_procs_2021_04_078
crossref_primary_10_1109_COMST_2021_3135542
crossref_primary_10_1109_OJCOMS_2021_3084532
crossref_primary_10_1016_j_jpdc_2022_01_015
crossref_primary_10_1016_j_jnca_2024_104051
crossref_primary_10_1080_03772063_2023_2269116
crossref_primary_10_1109_ACCESS_2018_2889076
crossref_primary_10_1109_ACCESS_2020_2986679
crossref_primary_10_1109_TWC_2021_3100148
crossref_primary_10_1016_j_future_2019_12_047
crossref_primary_10_1007_s11831_019_09344_w
crossref_primary_10_1109_TVLSI_2022_3225505
crossref_primary_10_1186_s13677_020_00168_9
crossref_primary_10_1109_TSP_2019_2899805
crossref_primary_10_1109_ACCESS_2018_2864222
crossref_primary_10_1109_ACCESS_2019_2925569
crossref_primary_10_1016_j_phycom_2023_102041
crossref_primary_10_1109_TWC_2019_2924220
crossref_primary_10_1109_ACCESS_2020_2966777
crossref_primary_10_1109_MWC_2019_1800447
crossref_primary_10_1109_TCOMM_2024_3366405
crossref_primary_10_3390_electronics11233981
crossref_primary_10_1109_TVT_2019_2900460
crossref_primary_10_1109_ACCESS_2023_3273297
crossref_primary_10_1049_cmu2_12424
crossref_primary_10_1109_TCCN_2024_3382973
crossref_primary_10_12677_AAM_2023_127331
crossref_primary_10_1049_cmu2_12669
crossref_primary_10_1109_ACCESS_2019_2928832
crossref_primary_10_1016_j_comcom_2020_12_021
crossref_primary_10_1007_s00521_020_04763_4
crossref_primary_10_1109_LWC_2018_2832128
crossref_primary_10_1109_TWC_2021_3080672
crossref_primary_10_1016_j_phycom_2021_101343
crossref_primary_10_1186_s40644_024_00737_0
crossref_primary_10_3389_fncom_2024_1345644
crossref_primary_10_1109_TMLCN_2024_3410208
crossref_primary_10_1109_TWC_2020_3035843
crossref_primary_10_1109_TCOMM_2020_3027882
crossref_primary_10_1109_ACCESS_2019_2909401
crossref_primary_10_1007_s11277_021_08432_0
crossref_primary_10_1109_MNET_011_2000096
crossref_primary_10_1364_OE_438422
crossref_primary_10_1002_dac_6007
crossref_primary_10_1016_j_dsp_2024_104944
crossref_primary_10_1109_ACCESS_2021_3074350
crossref_primary_10_1088_1755_1315_781_4_042047
crossref_primary_10_1109_ACCESS_2019_2910094
crossref_primary_10_1109_TCOMM_2020_2968314
crossref_primary_10_1109_ACCESS_2020_3041765
crossref_primary_10_18466_cbayarfbe_693942
crossref_primary_10_1109_JETCAS_2020_2991446
crossref_primary_10_3390_s23187710
crossref_primary_10_1109_LWC_2020_2964550
crossref_primary_10_3390_math10183336
crossref_primary_10_1109_TCSVT_2022_3216713
crossref_primary_10_1109_JPROC_2023_3328920
crossref_primary_10_1109_TVT_2020_2980861
crossref_primary_10_1016_j_dsp_2022_103483
crossref_primary_10_1109_TCOMM_2019_2954399
crossref_primary_10_1109_TMLCN_2024_3402178
crossref_primary_10_1109_ACCESS_2018_2815741
crossref_primary_10_1049_cmu2_12685
crossref_primary_10_1109_TCOMM_2023_3337272
crossref_primary_10_1109_LCOMM_2020_3019653
crossref_primary_10_1007_s11432_018_9596_5
crossref_primary_10_1109_OJVT_2020_2992502
crossref_primary_10_1109_ACCESS_2019_2954551
crossref_primary_10_1109_JSAC_2019_2904361
crossref_primary_10_1109_TCOMM_2022_3217777
crossref_primary_10_1109_ACCESS_2019_2956290
crossref_primary_10_1109_TWC_2020_3034895
crossref_primary_10_1109_COMST_2022_3199901
crossref_primary_10_1109_ACCESS_2019_2927997
crossref_primary_10_1007_s11432_020_2993_6
crossref_primary_10_1109_TIT_2024_3361388
crossref_primary_10_3390_app10134622
crossref_primary_10_1109_TCOMM_2019_2924010
crossref_primary_10_1109_TVT_2019_2925562
crossref_primary_10_1109_JSAC_2021_3078488
crossref_primary_10_1016_j_dcan_2023_01_011
crossref_primary_10_1109_JIOT_2023_3288641
crossref_primary_10_1007_s11036_020_01623_2
crossref_primary_10_1109_JSAC_2022_3180803
crossref_primary_10_1109_TCOMM_2021_3138097
crossref_primary_10_1007_s12652_020_02560_4
crossref_primary_10_1109_JETCAS_2020_2992593
crossref_primary_10_1016_j_eswa_2024_125985
crossref_primary_10_1109_JIOT_2020_2989078
crossref_primary_10_1109_TSP_2022_3140926
crossref_primary_10_1109_MCOM_2018_1701050
crossref_primary_10_1117_1_OE_61_12_128101
crossref_primary_10_1016_j_comcom_2020_07_035
crossref_primary_10_1109_ACCESS_2023_3275964
crossref_primary_10_1016_j_dsp_2025_105146
crossref_primary_10_1016_j_phycom_2023_102199
crossref_primary_10_1109_OJVT_2023_3238034
crossref_primary_10_1109_JSYST_2021_3114229
crossref_primary_10_1109_ACCESS_2021_3096853
crossref_primary_10_1109_TWC_2023_3262361
crossref_primary_10_1155_2022_1154325
crossref_primary_10_1109_TSP_2020_2976585
crossref_primary_10_1109_JSAC_2021_3064637
crossref_primary_10_3390_s23198139
crossref_primary_10_1109_JSAC_2020_3005470
crossref_primary_10_1109_TWC_2020_3001736
crossref_primary_10_1109_TCOMM_2019_2960361
crossref_primary_10_1109_TII_2019_2895086
crossref_primary_10_1109_TVT_2021_3057648
crossref_primary_10_1109_TWC_2024_3446633
crossref_primary_10_3390_s19163541
crossref_primary_10_1109_COMST_2019_2924243
crossref_primary_10_1109_TCOMM_2020_3010964
crossref_primary_10_1007_s11277_024_11269_y
crossref_primary_10_1109_LCOMM_2021_3049849
crossref_primary_10_1109_TCOMM_2023_3280937
crossref_primary_10_1049_cmu2_12129
crossref_primary_10_1109_TCCN_2023_3235738
crossref_primary_10_1109_LWC_2020_3007990
crossref_primary_10_1016_j_phycom_2023_102055
crossref_primary_10_1016_j_dcan_2022_07_005
crossref_primary_10_1109_TNSE_2024_3357104
crossref_primary_10_1016_j_phycom_2021_101438
crossref_primary_10_3390_photonics9120940
crossref_primary_10_1109_TIT_2021_3129080
crossref_primary_10_1109_JSAC_2019_2933892
crossref_primary_10_1016_j_comcom_2024_107960
crossref_primary_10_1109_MWC_2019_1900027
crossref_primary_10_1109_OJCOMS_2023_3293591
crossref_primary_10_1109_ACCESS_2022_3228570
crossref_primary_10_3390_s23062946
crossref_primary_10_1109_ACCESS_2019_2901066
crossref_primary_10_1109_TCCN_2022_3225790
crossref_primary_10_1038_s44172_023_00108_w
crossref_primary_10_1109_ACCESS_2020_3034744
crossref_primary_10_1109_ACCESS_2021_3124863
crossref_primary_10_1109_ACCESS_2019_2914928
crossref_primary_10_1109_TWC_2020_3042074
crossref_primary_10_1109_TCOMM_2024_3394039
crossref_primary_10_3390_s18093142
crossref_primary_10_3390_s23020910
crossref_primary_10_1109_TVT_2018_2848294
crossref_primary_10_1109_JSAC_2020_3041383
crossref_primary_10_1109_TCCN_2021_3049475
crossref_primary_10_1155_2022_2053086
crossref_primary_10_1134_S1063785021030263
crossref_primary_10_1109_ACCESS_2019_2929091
crossref_primary_10_1109_JSAC_2023_3280984
crossref_primary_10_3390_jsan10040060
crossref_primary_10_1016_j_comcom_2021_05_005
crossref_primary_10_1109_TSP_2019_2940128
crossref_primary_10_3390_e25060852
crossref_primary_10_1109_JLT_2020_2993271
crossref_primary_10_1007_s12596_024_02006_6
crossref_primary_10_3390_s22010333
crossref_primary_10_1109_JSAC_2020_3019724
crossref_primary_10_1109_TCOMM_2021_3072999
crossref_primary_10_1145_3494049
crossref_primary_10_3390_info14030189
crossref_primary_10_1016_j_comnet_2020_107556
crossref_primary_10_1109_JSAC_2020_3041397
crossref_primary_10_1109_JSTSP_2021_3051490
crossref_primary_10_1109_LWC_2020_3005027
crossref_primary_10_1109_ACCESS_2019_2909490
crossref_primary_10_1109_ACCESS_2022_3192971
crossref_primary_10_1109_LCOMM_2021_3076504
crossref_primary_10_1016_j_adhoc_2019_101913
crossref_primary_10_1109_ACCESS_2022_3208284
crossref_primary_10_1109_LCOMM_2018_2877965
crossref_primary_10_1109_TCCN_2024_3384500
crossref_primary_10_1109_JSTSP_2019_2934931
crossref_primary_10_1109_ACCESS_2022_3188111
crossref_primary_10_1109_JPHOT_2020_3030618
crossref_primary_10_3390_electronics10243114
crossref_primary_10_1109_JETCAS_2020_2992370
crossref_primary_10_1049_cmu2_12176
crossref_primary_10_3390_s22093589
crossref_primary_10_1109_TVT_2021_3128693
crossref_primary_10_1049_cmu2_12177
crossref_primary_10_1109_ACCESS_2018_2831240
crossref_primary_10_1109_TWC_2022_3142737
crossref_primary_10_1109_TCOMM_2023_3273413
crossref_primary_10_1109_ACCESS_2019_2919983
crossref_primary_10_1049_cmu2_12051
crossref_primary_10_1109_TVLSI_2023_3274555
crossref_primary_10_1016_j_comnet_2023_110022
crossref_primary_10_1049_iet_com_2019_0687
crossref_primary_10_1109_ACCESS_2019_2906424
crossref_primary_10_1109_ACCESS_2018_2812887
crossref_primary_10_1109_ACCESS_2021_3074180
crossref_primary_10_1109_ACCESS_2021_3087136
crossref_primary_10_1109_JPROC_2024_3520707
crossref_primary_10_1109_JSYST_2018_2870483
crossref_primary_10_1109_TWC_2020_2969627
crossref_primary_10_1007_s11036_020_01566_8
crossref_primary_10_1109_TCOMM_2024_3432690
crossref_primary_10_32604_iasc_2022_021779
crossref_primary_10_1109_JPROC_2019_2954595
crossref_primary_10_1109_LWC_2018_2874264
crossref_primary_10_1109_TIT_2023_3243869
crossref_primary_10_1016_j_mlwa_2022_100425
crossref_primary_10_3389_fmars_2023_1331635
crossref_primary_10_1109_COMST_2020_2986444
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
97E
RIA
RIE
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/CC.2017.8233654
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
DocumentTitleAlternate Deep Learning for Wireless Physical Layer: Opportunities and Challenges
EndPage 111
ExternalDocumentID zgtx201711009
10_1109_CC_2017_8233654
8233654
674006293
Genre orig-research
GroupedDBID 0R~
29B
2B.
2C0
2RA
4.4
5GY
6IK
92H
92I
92L
92R
93N
97E
AAHTB
AAJGR
AASAJ
ABPEJ
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CQIGP
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
RIG
RNS
TCJ
TGT
U1G
U5S
U5T
W92
~WA
-SI
-SJ
-S~
AARMG
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKQYR
CAJEI
CAJEJ
Q--
Q-9
AAYXX
CITATION
4A8
PSX
ID FETCH-LOGICAL-c318t-18aa152fc93a3fbe73c9c0e562497a973adc5855d0f0dd0542ebcbfc2f2636033
IEDL.DBID RIE
ISSN 1673-5447
IngestDate Thu May 29 03:54:25 EDT 2025
Sun Jul 27 03:07:10 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Wed Aug 27 02:11:17 EDT 2025
Wed Feb 14 09:55:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords wireless communications
deep learning
physical layer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-18aa152fc93a3fbe73c9c0e562497a973adc5855d0f0dd0542ebcbfc2f2636033
Notes wireless communications; deep learning; physical layer
Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learning ability of conventional ML algorithms. Deep learning(DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimization capability. The potential application of DL to the physical layer has also been increasingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements; these features challenge conventional communication theories. This paper presents a comprehensive overview of the emerging studies on DL-based physical layer processing, including leveraging DL to redesign a module of the conventional communication system(for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field.
11-5439/TN
PageCount 20
ParticipantIDs ieee_primary_8233654
wanfang_journals_zgtx201711009
chongqing_primary_674006293
crossref_primary_10_1109_CC_2017_8233654
crossref_citationtrail_10_1109_CC_2017_8233654
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationTitle China communications
PublicationTitleAbbrev ChinaComm
PublicationTitleAlternate China Communications
PublicationTitle_FL China Communications
PublicationYear 2017
Publisher China Institute of Communications
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China%Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China%State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China%School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
Publisher_xml – name: China Institute of Communications
– name: National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China%Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China%State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China%School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
SSID ssj0000866362
Score 2.5793664
Snippet Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio...
Machine learning (ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio...
SourceID wanfang
crossref
ieee
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 92
SubjectTerms Artificial neural networks
Computer architecture
deep learning
Neurons
Physical layer
Signal processing algorithms
Wireless communication
wireless communications
Title Deep Learning for Wireless Physical Layer: Opportunities and Challenges
URI http://lib.cqvip.com/qk/89450X/201711/674006293.html
https://ieeexplore.ieee.org/document/8233654
https://d.wanfangdata.com.cn/periodical/zgtx201711009
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0tXOBSSgF1oUU-9NBDE5LYidfcqpQPIS29FImbZTv2Vuoqu7BZCfHr8SROVBBI3KLIYyUe2_P8Me8BfGOC537O0xFzjEbMpiJSThVR4XzAyFmqM40nutPr4vKGXd3mtyP4MeTCWGvby2c2xsf2LL9amDVulZ1MMkqLnG3Ahl-4dblaw36Kh-YFbfVD04LjeT_jgcknTcRJWeItLh6HGpBI4e-int358PAsILUKK23-Tu1UPfsv1JzvwLT_yO6Gyb943ejYPL7gb3zvX3yEDwFzkp9dJ9mFka0_wVafkrzag4tf1i5JEJCYEY9jCVIYz_0sSJbBkWSuPDo_Jb-XiNjXdcvESlRdEdPrsaz24eb87E95GQWFhcj4sdxE6UQpH8CdEVRRpy2nRpjEekzkfagEp6oyfj2RV4lLqsqju8xqo53JXIY8Y5QewGa9qO1nIFpb57jJtEZVsyTRRZZSN3E2pyZxXI3haGhyueyYNGTBGSZxCjqGuHeCNIGcHDUy5rJdpCRClqVED8rQemP4Phj0tb1ZdA-dMBQbXh8HL8swbFfycdY8oCny6InD1-2OYBuLdPmIX2CzuV_brx6YNPq47ZFP6KDdiw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ReqCXlkKrbingQw89NCGJnXjdWxUKC2XhAhI3y3bsReoqu-1mpYpfX0_iRBRRqbco8liJx_Y8f8x7AB-Z4Lmf83TEHKMRs6mIlFNFVDgfMHKW6kzjie70spjcsPPb_HYDPg-5MNba9vKZjfGxPcuvFmaNW2VH44zSImfP4LmP-3naZWsNOyoenBe0VRBNC44n_owHLp80EUdlife4eBzqQCqFu0U9--kDxF8hqdVYaTN4aqfq2YNgc_IKpv1ndndMfsTrRsfm_hGD4__-xza8DKiTfO26yWvYsPUObPVJyatdOD22dkmChMSMeCRLkMR47udBsgyuJHPl8fkXcrVEzL6uWy5WouqKmF6RZfUGbk6-XZeTKGgsRMaP5iZKx0r5EO6MoIo6bTk1wiTWoyLvRSU4VZXxK4q8SlxSVR7fZVYb7UzmMmQao_QtbNaL2r4DorV1jptMa9Q1SxJdZCl1Y2dzahLH1Qj2hiaXy45LQxacYRqnoCOIeydIE-jJUSVjLttlSiJkWUr0oAytN4JPg0Ff2z-L7qIThmLD64PgZRkG7krez5rfaIpMeuL903aHsDW5nl7Ii7PL73vwAot32YkfYLP5tbb7HqY0-qDtnX8AoErg1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+wireless+physical+layer%3A+Opportunities+and+challenges&rft.jtitle=China+communications&rft.au=Wang%2C+Tianqi&rft.au=Wen%2C+Chao-Kai&rft.au=Wang%2C+Hanqing&rft.au=Gao%2C+Feifei&rft.date=2017-11-01&rft.pub=China+Institute+of+Communications&rft.issn=1673-5447&rft.volume=14&rft.issue=11&rft.spage=92&rft.epage=111&rft_id=info:doi/10.1109%2FCC.2017.8233654&rft.externalDocID=8233654
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F89450X%2F89450X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg