Deep Learning for Wireless Physical Layer: Opportunities and Challenges
Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learn...
Saved in:
Published in | China communications Vol. 14; no. 11; pp. 92 - 111 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
China Institute of Communications
01.11.2017
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China%Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China%State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China%School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China |
Subjects | |
Online Access | Get full text |
ISSN | 1673-5447 |
DOI | 10.1109/CC.2017.8233654 |
Cover
Loading…
Abstract | Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learning ability of conventional ML algorithms. Deep learning(DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimization capability. The potential application of DL to the physical layer has also been increasingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements; these features challenge conventional communication theories. This paper presents a comprehensive overview of the emerging studies on DL-based physical layer processing, including leveraging DL to redesign a module of the conventional communication system(for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field. |
---|---|
AbstractList | Machine learning (ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its appli-cation to the physical layer is hampered by sophisticated channel environments and lim-ited learning ability of conventional ML algo-rithms. Deep learning (DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimi-zation capability. The potential application of DL to the physical layer has also been increas-ingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements;these features challenge conventional commu-nication theories. This paper presents a com-prehensive overview of the emerging studies on DL-based physical layer processing, in-cluding leveraging DL to redesign a module of the conventional communication system (for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field. Machine learning (ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learning ability of conventional ML algorithms. Deep learning (DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimization capability. The potential application of DL to the physical layer has also been increasingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements; these features challenge conventional communication theories. This paper presents a comprehensive overview of the emerging studies on DL-based physical layer processing, including leveraging DL to redesign a module of the conventional communication system (for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field. Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learning ability of conventional ML algorithms. Deep learning(DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimization capability. The potential application of DL to the physical layer has also been increasingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements; these features challenge conventional communication theories. This paper presents a comprehensive overview of the emerging studies on DL-based physical layer processing, including leveraging DL to redesign a module of the conventional communication system(for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field. |
Author | Tianqi Wang;Chao-Kai Wen;Hanqing Wang;Feifei Gao;Tao Jiang;Shi Jin |
AuthorAffiliation | National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China;Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China;State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology,Department of Automation, Tsinghua University, Beijing 100084, China;School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China |
AuthorAffiliation_xml | – name: National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China%Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China%State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China%School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China |
Author_xml | – sequence: 1 givenname: Tianqi surname: Wang fullname: Wang, Tianqi organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China – sequence: 2 givenname: Chao-Kai surname: Wen fullname: Wen, Chao-Kai organization: Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China – sequence: 3 givenname: Hanqing surname: Wang fullname: Wang, Hanqing organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China – sequence: 4 givenname: Feifei surname: Gao fullname: Gao, Feifei organization: State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Tao surname: Jiang fullname: Jiang, Tao organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 6 givenname: Shi surname: Jin fullname: Jin, Shi email: jinshi@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China |
BookMark | eNp9kL9OwzAQxj0UiVI6M7BESIxp_Sd2khGFf5UilQHEGLnOOXUVnGCngvIoPAvvxCuQqlWRGLjlhvu-7-5-J2hgGwsInRE8IQSn0yybUEziSUIZEzwaoCERMQt5FMXHaOz9CveVCMEEHaLZNUAb5CCdNbYKdOOCZ-OgBu-Dh-XGGyXrIJcbcN9fn8G8bRvXra3pDPhA2jLIlrKuwVbgT9GRlrWH8b6P0NPtzWN2H-bzu1l2lYeKkaQLSSIl4VSrlEmmFxAzlSoMXNAojWUaM1kqnnBeYo3LEvOIwkIttKKa9hdjxkbocpf7Jq2WtipWzdrZfmPxUXXv2897CjjtddOdTrnGewe6aJ15kW5TEFxsQRVZVmzlxR5U7-B_HMp0sjON7Zw09T--853PAMBhy-_0Yp-6bGz12lM-SEQcYSxoytgPOt2Eww |
CODEN | CCHOBE |
CitedBy_id | crossref_primary_10_1007_s11277_022_10077_6 crossref_primary_10_3390_photonics9110845 crossref_primary_10_1109_LWC_2019_2939314 crossref_primary_10_1109_JSAC_2020_3036950 crossref_primary_10_2139_ssrn_4119299 crossref_primary_10_1109_JSAC_2021_3087241 crossref_primary_10_1109_COMST_2021_3127267 crossref_primary_10_1364_OE_384572 crossref_primary_10_1109_TVT_2021_3120267 crossref_primary_10_1109_LCOMM_2021_3099841 crossref_primary_10_1186_s13638_022_02195_3 crossref_primary_10_1109_LSP_2019_2953673 crossref_primary_10_1109_ACCESS_2018_2886216 crossref_primary_10_3390_s25030669 crossref_primary_10_3390_s23041814 crossref_primary_10_1109_ACCESS_2022_3149590 crossref_primary_10_1109_TWC_2023_3327362 crossref_primary_10_1016_j_pbiomolbio_2022_11_004 crossref_primary_10_1109_ACCESS_2021_3108061 crossref_primary_10_1002_dac_5964 crossref_primary_10_1109_OJCOMS_2024_3472094 crossref_primary_10_1109_TWC_2019_2963185 crossref_primary_10_1109_ACCESS_2020_3003286 crossref_primary_10_1109_LWC_2021_3112747 crossref_primary_10_1007_s10489_023_05052_y crossref_primary_10_1109_JIOT_2021_3097133 crossref_primary_10_1109_COMST_2020_2964534 crossref_primary_10_1016_j_comnet_2024_110233 crossref_primary_10_1109_TVT_2019_2949122 crossref_primary_10_1007_s12652_020_02010_1 crossref_primary_10_1016_j_aej_2022_10_014 crossref_primary_10_1631_FITEE_2000505 crossref_primary_10_1109_LWC_2019_2920818 crossref_primary_10_1109_ACCESS_2021_3053045 crossref_primary_10_1109_ACCESS_2022_3224478 crossref_primary_10_1109_TWC_2021_3089878 crossref_primary_10_1109_ACCESS_2022_3186323 crossref_primary_10_1109_ACCESS_2019_2921988 crossref_primary_10_1109_ACCESS_2022_3170410 crossref_primary_10_1109_ACCESS_2019_2936880 crossref_primary_10_18469_1810_3189_2023_26_4_95_103 crossref_primary_10_4236_jcc_2023_119009 crossref_primary_10_1109_MWC_001_1900473 crossref_primary_10_1016_j_future_2019_01_041 crossref_primary_10_1155_2022_8992478 crossref_primary_10_1109_TVT_2022_3187046 crossref_primary_10_1109_TBC_2024_3417228 crossref_primary_10_1109_TWC_2021_3120926 crossref_primary_10_1109_COMST_2021_3089688 crossref_primary_10_1109_TCCN_2019_2949308 crossref_primary_10_1007_s11277_024_10923_9 crossref_primary_10_1109_TCCN_2024_3378225 crossref_primary_10_1016_j_procs_2021_04_078 crossref_primary_10_1109_COMST_2021_3135542 crossref_primary_10_1109_OJCOMS_2021_3084532 crossref_primary_10_1016_j_jpdc_2022_01_015 crossref_primary_10_1016_j_jnca_2024_104051 crossref_primary_10_1080_03772063_2023_2269116 crossref_primary_10_1109_ACCESS_2018_2889076 crossref_primary_10_1109_ACCESS_2020_2986679 crossref_primary_10_1109_TWC_2021_3100148 crossref_primary_10_1016_j_future_2019_12_047 crossref_primary_10_1007_s11831_019_09344_w crossref_primary_10_1109_TVLSI_2022_3225505 crossref_primary_10_1186_s13677_020_00168_9 crossref_primary_10_1109_TSP_2019_2899805 crossref_primary_10_1109_ACCESS_2018_2864222 crossref_primary_10_1109_ACCESS_2019_2925569 crossref_primary_10_1016_j_phycom_2023_102041 crossref_primary_10_1109_TWC_2019_2924220 crossref_primary_10_1109_ACCESS_2020_2966777 crossref_primary_10_1109_MWC_2019_1800447 crossref_primary_10_1109_TCOMM_2024_3366405 crossref_primary_10_3390_electronics11233981 crossref_primary_10_1109_TVT_2019_2900460 crossref_primary_10_1109_ACCESS_2023_3273297 crossref_primary_10_1049_cmu2_12424 crossref_primary_10_1109_TCCN_2024_3382973 crossref_primary_10_12677_AAM_2023_127331 crossref_primary_10_1049_cmu2_12669 crossref_primary_10_1109_ACCESS_2019_2928832 crossref_primary_10_1016_j_comcom_2020_12_021 crossref_primary_10_1007_s00521_020_04763_4 crossref_primary_10_1109_LWC_2018_2832128 crossref_primary_10_1109_TWC_2021_3080672 crossref_primary_10_1016_j_phycom_2021_101343 crossref_primary_10_1186_s40644_024_00737_0 crossref_primary_10_3389_fncom_2024_1345644 crossref_primary_10_1109_TMLCN_2024_3410208 crossref_primary_10_1109_TWC_2020_3035843 crossref_primary_10_1109_TCOMM_2020_3027882 crossref_primary_10_1109_ACCESS_2019_2909401 crossref_primary_10_1007_s11277_021_08432_0 crossref_primary_10_1109_MNET_011_2000096 crossref_primary_10_1364_OE_438422 crossref_primary_10_1002_dac_6007 crossref_primary_10_1016_j_dsp_2024_104944 crossref_primary_10_1109_ACCESS_2021_3074350 crossref_primary_10_1088_1755_1315_781_4_042047 crossref_primary_10_1109_ACCESS_2019_2910094 crossref_primary_10_1109_TCOMM_2020_2968314 crossref_primary_10_1109_ACCESS_2020_3041765 crossref_primary_10_18466_cbayarfbe_693942 crossref_primary_10_1109_JETCAS_2020_2991446 crossref_primary_10_3390_s23187710 crossref_primary_10_1109_LWC_2020_2964550 crossref_primary_10_3390_math10183336 crossref_primary_10_1109_TCSVT_2022_3216713 crossref_primary_10_1109_JPROC_2023_3328920 crossref_primary_10_1109_TVT_2020_2980861 crossref_primary_10_1016_j_dsp_2022_103483 crossref_primary_10_1109_TCOMM_2019_2954399 crossref_primary_10_1109_TMLCN_2024_3402178 crossref_primary_10_1109_ACCESS_2018_2815741 crossref_primary_10_1049_cmu2_12685 crossref_primary_10_1109_TCOMM_2023_3337272 crossref_primary_10_1109_LCOMM_2020_3019653 crossref_primary_10_1007_s11432_018_9596_5 crossref_primary_10_1109_OJVT_2020_2992502 crossref_primary_10_1109_ACCESS_2019_2954551 crossref_primary_10_1109_JSAC_2019_2904361 crossref_primary_10_1109_TCOMM_2022_3217777 crossref_primary_10_1109_ACCESS_2019_2956290 crossref_primary_10_1109_TWC_2020_3034895 crossref_primary_10_1109_COMST_2022_3199901 crossref_primary_10_1109_ACCESS_2019_2927997 crossref_primary_10_1007_s11432_020_2993_6 crossref_primary_10_1109_TIT_2024_3361388 crossref_primary_10_3390_app10134622 crossref_primary_10_1109_TCOMM_2019_2924010 crossref_primary_10_1109_TVT_2019_2925562 crossref_primary_10_1109_JSAC_2021_3078488 crossref_primary_10_1016_j_dcan_2023_01_011 crossref_primary_10_1109_JIOT_2023_3288641 crossref_primary_10_1007_s11036_020_01623_2 crossref_primary_10_1109_JSAC_2022_3180803 crossref_primary_10_1109_TCOMM_2021_3138097 crossref_primary_10_1007_s12652_020_02560_4 crossref_primary_10_1109_JETCAS_2020_2992593 crossref_primary_10_1016_j_eswa_2024_125985 crossref_primary_10_1109_JIOT_2020_2989078 crossref_primary_10_1109_TSP_2022_3140926 crossref_primary_10_1109_MCOM_2018_1701050 crossref_primary_10_1117_1_OE_61_12_128101 crossref_primary_10_1016_j_comcom_2020_07_035 crossref_primary_10_1109_ACCESS_2023_3275964 crossref_primary_10_1016_j_dsp_2025_105146 crossref_primary_10_1016_j_phycom_2023_102199 crossref_primary_10_1109_OJVT_2023_3238034 crossref_primary_10_1109_JSYST_2021_3114229 crossref_primary_10_1109_ACCESS_2021_3096853 crossref_primary_10_1109_TWC_2023_3262361 crossref_primary_10_1155_2022_1154325 crossref_primary_10_1109_TSP_2020_2976585 crossref_primary_10_1109_JSAC_2021_3064637 crossref_primary_10_3390_s23198139 crossref_primary_10_1109_JSAC_2020_3005470 crossref_primary_10_1109_TWC_2020_3001736 crossref_primary_10_1109_TCOMM_2019_2960361 crossref_primary_10_1109_TII_2019_2895086 crossref_primary_10_1109_TVT_2021_3057648 crossref_primary_10_1109_TWC_2024_3446633 crossref_primary_10_3390_s19163541 crossref_primary_10_1109_COMST_2019_2924243 crossref_primary_10_1109_TCOMM_2020_3010964 crossref_primary_10_1007_s11277_024_11269_y crossref_primary_10_1109_LCOMM_2021_3049849 crossref_primary_10_1109_TCOMM_2023_3280937 crossref_primary_10_1049_cmu2_12129 crossref_primary_10_1109_TCCN_2023_3235738 crossref_primary_10_1109_LWC_2020_3007990 crossref_primary_10_1016_j_phycom_2023_102055 crossref_primary_10_1016_j_dcan_2022_07_005 crossref_primary_10_1109_TNSE_2024_3357104 crossref_primary_10_1016_j_phycom_2021_101438 crossref_primary_10_3390_photonics9120940 crossref_primary_10_1109_TIT_2021_3129080 crossref_primary_10_1109_JSAC_2019_2933892 crossref_primary_10_1016_j_comcom_2024_107960 crossref_primary_10_1109_MWC_2019_1900027 crossref_primary_10_1109_OJCOMS_2023_3293591 crossref_primary_10_1109_ACCESS_2022_3228570 crossref_primary_10_3390_s23062946 crossref_primary_10_1109_ACCESS_2019_2901066 crossref_primary_10_1109_TCCN_2022_3225790 crossref_primary_10_1038_s44172_023_00108_w crossref_primary_10_1109_ACCESS_2020_3034744 crossref_primary_10_1109_ACCESS_2021_3124863 crossref_primary_10_1109_ACCESS_2019_2914928 crossref_primary_10_1109_TWC_2020_3042074 crossref_primary_10_1109_TCOMM_2024_3394039 crossref_primary_10_3390_s18093142 crossref_primary_10_3390_s23020910 crossref_primary_10_1109_TVT_2018_2848294 crossref_primary_10_1109_JSAC_2020_3041383 crossref_primary_10_1109_TCCN_2021_3049475 crossref_primary_10_1155_2022_2053086 crossref_primary_10_1134_S1063785021030263 crossref_primary_10_1109_ACCESS_2019_2929091 crossref_primary_10_1109_JSAC_2023_3280984 crossref_primary_10_3390_jsan10040060 crossref_primary_10_1016_j_comcom_2021_05_005 crossref_primary_10_1109_TSP_2019_2940128 crossref_primary_10_3390_e25060852 crossref_primary_10_1109_JLT_2020_2993271 crossref_primary_10_1007_s12596_024_02006_6 crossref_primary_10_3390_s22010333 crossref_primary_10_1109_JSAC_2020_3019724 crossref_primary_10_1109_TCOMM_2021_3072999 crossref_primary_10_1145_3494049 crossref_primary_10_3390_info14030189 crossref_primary_10_1016_j_comnet_2020_107556 crossref_primary_10_1109_JSAC_2020_3041397 crossref_primary_10_1109_JSTSP_2021_3051490 crossref_primary_10_1109_LWC_2020_3005027 crossref_primary_10_1109_ACCESS_2019_2909490 crossref_primary_10_1109_ACCESS_2022_3192971 crossref_primary_10_1109_LCOMM_2021_3076504 crossref_primary_10_1016_j_adhoc_2019_101913 crossref_primary_10_1109_ACCESS_2022_3208284 crossref_primary_10_1109_LCOMM_2018_2877965 crossref_primary_10_1109_TCCN_2024_3384500 crossref_primary_10_1109_JSTSP_2019_2934931 crossref_primary_10_1109_ACCESS_2022_3188111 crossref_primary_10_1109_JPHOT_2020_3030618 crossref_primary_10_3390_electronics10243114 crossref_primary_10_1109_JETCAS_2020_2992370 crossref_primary_10_1049_cmu2_12176 crossref_primary_10_3390_s22093589 crossref_primary_10_1109_TVT_2021_3128693 crossref_primary_10_1049_cmu2_12177 crossref_primary_10_1109_ACCESS_2018_2831240 crossref_primary_10_1109_TWC_2022_3142737 crossref_primary_10_1109_TCOMM_2023_3273413 crossref_primary_10_1109_ACCESS_2019_2919983 crossref_primary_10_1049_cmu2_12051 crossref_primary_10_1109_TVLSI_2023_3274555 crossref_primary_10_1016_j_comnet_2023_110022 crossref_primary_10_1049_iet_com_2019_0687 crossref_primary_10_1109_ACCESS_2019_2906424 crossref_primary_10_1109_ACCESS_2018_2812887 crossref_primary_10_1109_ACCESS_2021_3074180 crossref_primary_10_1109_ACCESS_2021_3087136 crossref_primary_10_1109_JPROC_2024_3520707 crossref_primary_10_1109_JSYST_2018_2870483 crossref_primary_10_1109_TWC_2020_2969627 crossref_primary_10_1007_s11036_020_01566_8 crossref_primary_10_1109_TCOMM_2024_3432690 crossref_primary_10_32604_iasc_2022_021779 crossref_primary_10_1109_JPROC_2019_2954595 crossref_primary_10_1109_LWC_2018_2874264 crossref_primary_10_1109_TIT_2023_3243869 crossref_primary_10_1016_j_mlwa_2022_100425 crossref_primary_10_3389_fmars_2023_1331635 crossref_primary_10_1109_COMST_2020_2986444 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 97E RIA RIE AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1109/CC.2017.8233654 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
DocumentTitleAlternate | Deep Learning for Wireless Physical Layer: Opportunities and Challenges |
EndPage | 111 |
ExternalDocumentID | zgtx201711009 10_1109_CC_2017_8233654 8233654 674006293 |
Genre | orig-research |
GroupedDBID | 0R~ 29B 2B. 2C0 2RA 4.4 5GY 6IK 92H 92I 92L 92R 93N 97E AAHTB AAJGR AASAJ ABPEJ AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CQIGP EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RIG RNS TCJ TGT U1G U5S U5T W92 ~WA -SI -SJ -S~ AARMG AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKQYR CAJEI CAJEJ Q-- Q-9 AAYXX CITATION 4A8 PSX |
ID | FETCH-LOGICAL-c318t-18aa152fc93a3fbe73c9c0e562497a973adc5855d0f0dd0542ebcbfc2f2636033 |
IEDL.DBID | RIE |
ISSN | 1673-5447 |
IngestDate | Thu May 29 03:54:25 EDT 2025 Sun Jul 27 03:07:10 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 Wed Aug 27 02:11:17 EDT 2025 Wed Feb 14 09:55:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | wireless communications deep learning physical layer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c318t-18aa152fc93a3fbe73c9c0e562497a973adc5855d0f0dd0542ebcbfc2f2636033 |
Notes | wireless communications; deep learning; physical layer Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learning ability of conventional ML algorithms. Deep learning(DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimization capability. The potential application of DL to the physical layer has also been increasingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements; these features challenge conventional communication theories. This paper presents a comprehensive overview of the emerging studies on DL-based physical layer processing, including leveraging DL to redesign a module of the conventional communication system(for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field. 11-5439/TN |
PageCount | 20 |
ParticipantIDs | ieee_primary_8233654 wanfang_journals_zgtx201711009 chongqing_primary_674006293 crossref_primary_10_1109_CC_2017_8233654 crossref_citationtrail_10_1109_CC_2017_8233654 |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | China communications |
PublicationTitleAbbrev | ChinaComm |
PublicationTitleAlternate | China Communications |
PublicationTitle_FL | China Communications |
PublicationYear | 2017 |
Publisher | China Institute of Communications National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China%Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China%State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China%School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China |
Publisher_xml | – name: China Institute of Communications – name: National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China%Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, China%State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China%School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China |
SSID | ssj0000866362 |
Score | 2.5793664 |
Snippet | Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio... Machine learning (ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio... |
SourceID | wanfang crossref ieee chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 92 |
SubjectTerms | Artificial neural networks Computer architecture deep learning Neurons Physical layer Signal processing algorithms Wireless communication wireless communications |
Title | Deep Learning for Wireless Physical Layer: Opportunities and Challenges |
URI | http://lib.cqvip.com/qk/89450X/201711/674006293.html https://ieeexplore.ieee.org/document/8233654 https://d.wanfangdata.com.cn/periodical/zgtx201711009 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0tXOBSSgF1oUU-9NBDE5LYidfcqpQPIS29FImbZTv2Vuoqu7BZCfHr8SROVBBI3KLIYyUe2_P8Me8BfGOC537O0xFzjEbMpiJSThVR4XzAyFmqM40nutPr4vKGXd3mtyP4MeTCWGvby2c2xsf2LL9amDVulZ1MMkqLnG3Ahl-4dblaw36Kh-YFbfVD04LjeT_jgcknTcRJWeItLh6HGpBI4e-int358PAsILUKK23-Tu1UPfsv1JzvwLT_yO6Gyb943ejYPL7gb3zvX3yEDwFzkp9dJ9mFka0_wVafkrzag4tf1i5JEJCYEY9jCVIYz_0sSJbBkWSuPDo_Jb-XiNjXdcvESlRdEdPrsaz24eb87E95GQWFhcj4sdxE6UQpH8CdEVRRpy2nRpjEekzkfagEp6oyfj2RV4lLqsqju8xqo53JXIY8Y5QewGa9qO1nIFpb57jJtEZVsyTRRZZSN3E2pyZxXI3haGhyueyYNGTBGSZxCjqGuHeCNIGcHDUy5rJdpCRClqVED8rQemP4Phj0tb1ZdA-dMBQbXh8HL8swbFfycdY8oCny6InD1-2OYBuLdPmIX2CzuV_brx6YNPq47ZFP6KDdiw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ReqCXlkKrbingQw89NCGJnXjdWxUKC2XhAhI3y3bsReoqu-1mpYpfX0_iRBRRqbco8liJx_Y8f8x7AB-Z4Lmf83TEHKMRs6mIlFNFVDgfMHKW6kzjie70spjcsPPb_HYDPg-5MNba9vKZjfGxPcuvFmaNW2VH44zSImfP4LmP-3naZWsNOyoenBe0VRBNC44n_owHLp80EUdlife4eBzqQCqFu0U9--kDxF8hqdVYaTN4aqfq2YNgc_IKpv1ndndMfsTrRsfm_hGD4__-xza8DKiTfO26yWvYsPUObPVJyatdOD22dkmChMSMeCRLkMR47udBsgyuJHPl8fkXcrVEzL6uWy5WouqKmF6RZfUGbk6-XZeTKGgsRMaP5iZKx0r5EO6MoIo6bTk1wiTWoyLvRSU4VZXxK4q8SlxSVR7fZVYb7UzmMmQao_QtbNaL2r4DorV1jptMa9Q1SxJdZCl1Y2dzahLH1Qj2hiaXy45LQxacYRqnoCOIeydIE-jJUSVjLttlSiJkWUr0oAytN4JPg0Ff2z-L7qIThmLD64PgZRkG7krez5rfaIpMeuL903aHsDW5nl7Ii7PL73vwAot32YkfYLP5tbb7HqY0-qDtnX8AoErg1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+wireless+physical+layer%3A+Opportunities+and+challenges&rft.jtitle=China+communications&rft.au=Wang%2C+Tianqi&rft.au=Wen%2C+Chao-Kai&rft.au=Wang%2C+Hanqing&rft.au=Gao%2C+Feifei&rft.date=2017-11-01&rft.pub=China+Institute+of+Communications&rft.issn=1673-5447&rft.volume=14&rft.issue=11&rft.spage=92&rft.epage=111&rft_id=info:doi/10.1109%2FCC.2017.8233654&rft.externalDocID=8233654 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F89450X%2F89450X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg |