Two-Dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: Design, evaluation, and application
Purpose: To design, evaluate, and apply a 2D 16‐channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. Materials and Methods: The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF)...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 36; no. 4; pp. 847 - 857 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.10.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 1522-2586 |
DOI | 10.1002/jmri.23724 |
Cover
Loading…
Abstract | Purpose:
To design, evaluate, and apply a 2D 16‐channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T.
Materials and Methods:
The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2* mapping, and fat–water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality.
Results:
RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal‐to‐noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm3. The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality.
Conclusion:
The 16‐channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T. J. Magn. Reson. Imaging 2012;36:847–857. © 2012 Wiley Periodicals, Inc. |
---|---|
AbstractList | To design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T.PURPOSETo design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T.The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2 mapping, and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality.MATERIALS AND METHODSThe cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2 mapping, and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality.RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal-to-noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm(3) . The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality.RESULTSRF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal-to-noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm(3) . The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality.The 16-channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T.CONCLUSIONThe 16-channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T. To design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2 mapping, and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality. RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal-to-noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm(3) . The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality. The 16-channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T. Purpose: To design, evaluate, and apply a 2D 16‐channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. Materials and Methods: The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2* mapping, and fat–water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality. Results: RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal‐to‐noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm3. The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality. Conclusion: The 16‐channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T. J. Magn. Reson. Imaging 2012;36:847–857. © 2012 Wiley Periodicals, Inc. |
Author | Pfeiffer, Harald Seifert, Frank Kellman, Peter von Knobelsdorff-Brenkenhoff, Florian Niendorf, Thoralf Rieger, Jan Winter, Lukas Thalhammer, Christof Hoffmann, Werner Schulz-Menger, Jeanette Renz, Wolfgang Graessl, Andreas Tkachenko, Valeriy Hezel, Fabian |
Author_xml | – sequence: 1 givenname: Christof surname: Thalhammer fullname: Thalhammer, Christof organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany – sequence: 2 givenname: Wolfgang surname: Renz fullname: Renz, Wolfgang organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany – sequence: 3 givenname: Lukas surname: Winter fullname: Winter, Lukas organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany – sequence: 4 givenname: Fabian surname: Hezel fullname: Hezel, Fabian organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany – sequence: 5 givenname: Jan surname: Rieger fullname: Rieger, Jan organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany – sequence: 6 givenname: Harald surname: Pfeiffer fullname: Pfeiffer, Harald organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany – sequence: 7 givenname: Andreas surname: Graessl fullname: Graessl, Andreas organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany – sequence: 8 givenname: Frank surname: Seifert fullname: Seifert, Frank organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany – sequence: 9 givenname: Werner surname: Hoffmann fullname: Hoffmann, Werner organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany – sequence: 10 givenname: Florian surname: von Knobelsdorff-Brenkenhoff fullname: von Knobelsdorff-Brenkenhoff, Florian organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany – sequence: 11 givenname: Valeriy surname: Tkachenko fullname: Tkachenko, Valeriy organization: HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany – sequence: 12 givenname: Jeanette surname: Schulz-Menger fullname: Schulz-Menger, Jeanette organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany – sequence: 13 givenname: Peter surname: Kellman fullname: Kellman, Peter organization: Laboratory of Cardiac Energetics, National Institutes of Health/NHLBI, Bethesda, Maryland, USA – sequence: 14 givenname: Thoralf surname: Niendorf fullname: Niendorf, Thoralf email: Thoralf.Niendorf@mdc-berlin.de organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22706727$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1URB-w4QcgLxFqpn7GCTs0A21ReRQNArGx7jg34OI4g51pO_--6UzbBUKsbFnfdySfs092Yh-RkOecTThj4uiiS34ipBHqEdnjWohC6KrcGe9My4JXzOyS_ZwvGGN1rfQTsiuEYaURZo-s51d9MfMdxuz7CIFmfz0gRup-QYwY6JAg5s4PRwkd-kukrveBQkqwpm2fqIPUeHD0w5dTCgM1E0bnr-kMs_8ZDyleQljBMEYfUogNheUyeLd5eEoetxAyPrs7D8jXd2_n05Pi7NPx6fTNWeEkr1SBC6Y51ouGa6mgVk6y1jlR11AKZlpuWl0y2ToNUrNGtA1WIEonwSnZVkrLA_Jym7tM_Z8V5sF2PjsMASL2q2w5U5wrVvN6RF_coatFh41dJt9BWtv7ukbg1RZwqc85YfuAcGZvt7C3W9jNFiPM_oKdHzZfHzv14d8K3ypXPuD6P-H2_dj3vVNsHZ8HvH5wIP22pZFG228fj-2P8_rz99n03Bp5A-h_qts |
CitedBy_id | crossref_primary_10_1109_TMTT_2021_3079422 crossref_primary_10_1186_1532_429X_17_S1_P13 crossref_primary_10_1155_2020_8828047 crossref_primary_10_1186_1532_429X_15_23 crossref_primary_10_1097_RLI_0000000000000047 crossref_primary_10_1002_mrm_28382 crossref_primary_10_4329_wjr_v12_i10_231 crossref_primary_10_1002_nbm_3680 crossref_primary_10_1002_mrm_26688 crossref_primary_10_1097_RMR_0000000000000202 crossref_primary_10_1002_mrm_28423 crossref_primary_10_1371_journal_pone_0255341 crossref_primary_10_3389_fphar_2015_00255 crossref_primary_10_1038_s41598_018_22439_x crossref_primary_10_1016_j_mri_2015_06_012 crossref_primary_10_1002_mrm_24903 crossref_primary_10_1109_RBME_2023_3244132 crossref_primary_10_1371_journal_pone_0052324 crossref_primary_10_1002_mrm_28093 crossref_primary_10_1002_mrm_27880 crossref_primary_10_1002_mrm_26153 crossref_primary_10_1371_journal_pone_0252797 crossref_primary_10_1007_s10334_016_0559_y crossref_primary_10_1111_apha_12393 crossref_primary_10_1002_mrm_28450 crossref_primary_10_1016_j_jmr_2019_07_004 crossref_primary_10_1371_journal_pone_0117095 crossref_primary_10_1002_mrm_25424 crossref_primary_10_1002_nbm_4726 crossref_primary_10_1109_TCI_2016_2610141 crossref_primary_10_1002_nbm_4802 crossref_primary_10_1002_mrm_26312 crossref_primary_10_1016_j_jmr_2014_04_001 crossref_primary_10_3389_fphy_2017_00022 crossref_primary_10_1002_mrm_24856 crossref_primary_10_4329_wjr_v12_i10_229 crossref_primary_10_1109_JERM_2019_2893546 crossref_primary_10_1371_journal_pone_0191719 crossref_primary_10_1016_j_mri_2022_10_001 crossref_primary_10_1002_nbm_3224 crossref_primary_10_1002_nbm_3268 crossref_primary_10_1002_nbm_3300 crossref_primary_10_1016_j_photonics_2019_100764 crossref_primary_10_1007_s00117_012_2348_6 crossref_primary_10_1002_mrm_29096 crossref_primary_10_1007_s10334_017_0644_x crossref_primary_10_1161_CIRCIMAGING_116_005460 crossref_primary_10_1016_j_mric_2020_10_001 crossref_primary_10_1007_s00723_015_0712_1 crossref_primary_10_1002_mrm_28885 crossref_primary_10_1002_nbm_3701 crossref_primary_10_1007_s10334_023_01077_z crossref_primary_10_1259_bjr_20160690 crossref_primary_10_1088_1361_6560_aca4b7 crossref_primary_10_1016_j_jmr_2018_08_013 crossref_primary_10_1371_journal_pone_0148066 crossref_primary_10_1002_nbm_5032 crossref_primary_10_1371_journal_pone_0161863 crossref_primary_10_1016_j_pnmrs_2018_06_001 crossref_primary_10_1002_mrm_25483 crossref_primary_10_1007_s10334_017_0665_5 crossref_primary_10_1109_TMTT_2019_2913636 crossref_primary_10_1186_s13167_015_0038_y crossref_primary_10_1002_mrm_25324 crossref_primary_10_1109_TAP_2020_3016495 crossref_primary_10_1002_nbm_3338 crossref_primary_10_1002_mrm_25246 crossref_primary_10_1002_mrm_25840 crossref_primary_10_1016_j_jmr_2012_11_015 crossref_primary_10_1038_s41598_020_59949_6 |
Cites_doi | 10.1002/mrm.22177 10.1007/s00330-005-2678-0 10.1088/0031-9155/55/2/N01 10.1002/mrm.10137 10.3813/AAA.918017 10.1007/BF02668182 10.1007/978-0-387-49648-1_6 10.1002/mrm.22886 10.1002/mrm.20209 10.1007/978-3-540-68879-2_44 10.1016/j.jmr.2009.06.005 10.1002/mrm.1910290221 10.1016/j.acra.2005.01.012 10.1002/mrm.21893 10.1002/mrm.21895 10.1016/j.jacc.2009.11.011 10.1097/RLI.0b013e3181b4c15e 10.1016/j.jmr.2009.06.014 10.1148/radiol.100615 10.1186/1532-429X-12-67 10.1002/nbm.1708 10.1002/jmri.22451 10.1002/mrm.10597 10.1016/0730-725X(93)90078-R 10.1002/mrm.22168 10.1002/mrm.20713 10.1002/mrm.20708 10.1002/jmri.20327 10.1002/mrm.21751 10.1002/mrm.20183 10.1002/mrm.20923 10.1007/s12410-010-9012-1 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/jmri.23724 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 857 |
ExternalDocumentID | 22706727 10_1002_jmri_23724 JMRI23724 ark_67375_WNG_ZQ9PXDCQ_7 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 HL999999 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3184-eb051e9bd1534a94c30fcc299a6207f17f5603fc5a350d2fde8a26c3ac43f8453 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 08:50:14 EDT 2025 Mon Jul 21 05:50:26 EDT 2025 Tue Jul 01 03:56:25 EDT 2025 Thu Apr 24 22:54:47 EDT 2025 Wed Jan 22 17:02:03 EST 2025 Wed Oct 30 09:54:10 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3184-eb051e9bd1534a94c30fcc299a6207f17f5603fc5a350d2fde8a26c3ac43f8453 |
Notes | istex:E4E85E16B70B7DC27B50CADA6494D53624D87A2B ark:/67375/WNG-ZQ9PXDCQ-7 ArticleID:JMRI23724 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.23724 |
PMID | 22706727 |
PQID | 1041140919 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1041140919 pubmed_primary_22706727 crossref_primary_10_1002_jmri_23724 crossref_citationtrail_10_1002_jmri_23724 wiley_primary_10_1002_jmri_23724_JMRI23724 istex_primary_ark_67375_WNG_ZQ9PXDCQ_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10 October 2012 2012-10-00 2012-Oct 20121001 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Frauenrath T, Hezel F, Renz W, et al. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2010; 12: 1-14. Butler J. Beam-forming matrix simplifies design of electronically scanned antennas. Electron Des 1961; 9: 170-173. Wiesinger F, Boesiger P, Pruessmann KP. Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 2004; 52: 376-390. Suttie JJ, Delabarre L, Pitcher A, et al. 7 Tesla (T) human cardiovascular magnetic resonance imaging using FLASH and SSFP to assess cardiac function: validation against 1.5 T and 3 T. NMR Biomed 2012; 25: 27-34. Vaughan JT, Snyder CJ, DelaBarre LJ, et al. Whole body imaging at 7T: preliminary results. Magn Reson Med 2009; 61: 244-248. van Elderen SG, Versluis MJ, Westenberg JJ, et al. Right coronary MR angiography at 7 T: a direct quantitative and qualitative comparison with 3 T in young healthy volunteers. Radiology 2010; 257: 254-259. Maderwald S, Orzada S, Schaefer LC, et al. 7T human in vivo cardiac imaging with an 8-channel transmit/receive array. In: Proc 17th Annual Meeting ISMRM, Honolulu; 2009 (abstract 822). Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Journal of the American College of Cardiology 2010; 55: 2614. Frauenrath T, Hezel F, Heinrichs U, et al. Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol 2009; 44: 539. Ohliger MA, Grant AK, Sodickson DK. Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations. Magn Reson Med 2003; 50: 1018-1030. von Knobelsdorff-Brenkenhoff F, Frauenrath T, Prothmann M, et al. Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla-a pilot study. Eur Radiol 2010: 1-9. Yang QX, Wang J, Zhang X, et al. Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 2002; 47: 982-989. Kellman P, McVeigh ER. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 2005; 54: 1439-1447 (erratum: Magn Reson Med 2007;58:211-212). Van de Moortele PF, Akgun C, Adriany G, et al. B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005; 54: 1503-1518. Christ A, Kainz W, Hahn EG, et al. The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 2010; 55: N23. Zhu Y, Hardy CJ, Sodickson DK, et al. Highly parallel volumetric imaging with a 32-element RF coil array. Magn Reson Med 2004; 52: 869. Kellman P, Hernando D, Arai AE. Myocardial fat imaging. Curr Cardiovasc Imaging Rep 2010; 3: 83-91. Niendorf T, Hardy CJ, Giaquinto RO, et al. Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 2006; 56: 167-176. Versluis MJ, Tsekos N, Smith NB, Webb AG. Simple RF design for human functional and morphological cardiac imaging at 7Tesla. J Magn Reson 2009; 200: 161-166. Turner R, Jezzard P, Wen H, et al. Functional mapping of the human visual cortex at 4 and 1.5 Tesla using deoxygenation contrast EPI. Magn Reson Med 1993; 29: 277-279. Frauenrath T, Niendorf T, Kob M. Acoustic method for synchronization of magnetic resonance imaging (MRI). Acta Acustica United with Acustica 2008; 94: 148-155. Raaijmakers AJ, Ipek O, Klomp DW, et al. Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna. Magn Reson Med 2011; 66: 1488-1497. Akoka S, Franconi F, Seguin F, Le Pape A. Radiofrequency map of an NMR coil by imaging. Magn Reson Imaging 1993; 11: 437-441. Reeder SB, Markl M, Yu H, Hellinger JC, Herfkens RJ, Pelc NJ. Cardiac CINE imaging with IDEAL water-fat separation and steady-state free precession. J Magn Reson Imaging 2005; 22: 44-52. Brunner DO, Pruessmann KP. B 1+ interferometry for the calibration of RF transmitter arrays. Magn Reson Med 2009; 61: 1480-1488. Sodickson DK, Hardy CJ, Zhu Y, et al. Rapid volumetric MRI using parallel imaging with order-of-magnitude accelerations and a 32-element RF coil array. Feasibility and implications. Acad Radiol 2005; 12: 626-635. van Elderen SG, Versluis MJ, Webb AG, et al. Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med 2009; 62: 1379-1384. Weiger M, Pruessmann KP, Boesiger P. 2D SENSE for faster 3D MRI. Magn Reson Mater Phys 2002; 14: 10-19. Gräβl A, Winter L, Thalhammer C, et al. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. Eur J Radiol 2011 [Epub ahead of print]. Adriany G, Ritter J, Vaughan JT, Ugurbil K, Moortele PF. Experimental verification of enhanced B1 shim performance with a Z-encoding RF coil array at 7 Tesla. In: Proc Joint Annual Meeting ISMRM-ESMRMB. Stockholm; 2010 (abstract 3831). Dieringer M, Renz W, Lindel T, et al. Design and application of a four channel transmit/receive surface coil for functional cardiac imaging at 7T. J Magn Reson Imaging 2011; 33: 736-741. Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005; 15: 946-959. Hernando D, Kellman P, Haldar JP, Liang ZP. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 2010; 63: 79-90. Niendorf T, Sodickson DK, Krombach GA, Schulz-Menger J. Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. Eur Radiol 2010: 1-11. Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J Magn Reson 2009; 200: 147-152. Snyder CJ, DelaBarre L, Metzger GJ, et al. Initial results of cardiac imaging at 7 Tesla. Magn Reson Med 2009; 61: 517-524. 2010; 12 2010; 55 2009; 44 2002; 14 2009; 62 1993; 29 2006; 56 2011 2009; 61 2010 2009 2011; 33 2007 2006 2008; 94 2003; 50 2010; 63 2005; 22 2002; 47 2004; 52 2010; 257 1993; 11 2009; 200 2011; 66 2005; 54 1961; 9 2012; 25 2005; 15 2010; 3 2005; 12 e_1_2_5_26_2 e_1_2_5_24_2 e_1_2_5_25_2 e_1_2_5_22_2 e_1_2_5_23_2 e_1_2_5_21_2 Butler J (e_1_2_5_27_2) 1961; 9 Gräβl A (e_1_2_5_19_2) 2011 Niendorf T (e_1_2_5_8_2) 2010 e_1_2_5_28_2 e_1_2_5_29_2 e_1_2_5_41_2 e_1_2_5_40_2 Weiger M (e_1_2_5_39_2) 2002; 14 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_13_2 e_1_2_5_38_2 e_1_2_5_9_2 e_1_2_5_35_2 e_1_2_5_15_2 e_1_2_5_36_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_6_2 e_1_2_5_34_2 e_1_2_5_5_2 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_4_2 e_1_2_5_11_2 e_1_2_5_32_2 e_1_2_5_3_2 e_1_2_5_2_2 von Knobelsdorff‐Brenkenhoff F (e_1_2_5_7_2) 2010 e_1_2_5_18_2 e_1_2_5_17_2 Maderwald S (e_1_2_5_16_2) 2009 e_1_2_5_30_2 Adriany G (e_1_2_5_20_2) 2010 |
References_xml | – reference: Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J Magn Reson 2009; 200: 147-152. – reference: Zhu Y, Hardy CJ, Sodickson DK, et al. Highly parallel volumetric imaging with a 32-element RF coil array. Magn Reson Med 2004; 52: 869. – reference: Brunner DO, Pruessmann KP. B 1+ interferometry for the calibration of RF transmitter arrays. Magn Reson Med 2009; 61: 1480-1488. – reference: Suttie JJ, Delabarre L, Pitcher A, et al. 7 Tesla (T) human cardiovascular magnetic resonance imaging using FLASH and SSFP to assess cardiac function: validation against 1.5 T and 3 T. NMR Biomed 2012; 25: 27-34. – reference: Weiger M, Pruessmann KP, Boesiger P. 2D SENSE for faster 3D MRI. Magn Reson Mater Phys 2002; 14: 10-19. – reference: Versluis MJ, Tsekos N, Smith NB, Webb AG. Simple RF design for human functional and morphological cardiac imaging at 7Tesla. J Magn Reson 2009; 200: 161-166. – reference: Vaughan JT, Snyder CJ, DelaBarre LJ, et al. Whole body imaging at 7T: preliminary results. Magn Reson Med 2009; 61: 244-248. – reference: Maderwald S, Orzada S, Schaefer LC, et al. 7T human in vivo cardiac imaging with an 8-channel transmit/receive array. In: Proc 17th Annual Meeting ISMRM, Honolulu; 2009 (abstract 822). – reference: Dieringer M, Renz W, Lindel T, et al. Design and application of a four channel transmit/receive surface coil for functional cardiac imaging at 7T. J Magn Reson Imaging 2011; 33: 736-741. – reference: Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Journal of the American College of Cardiology 2010; 55: 2614. – reference: Kellman P, Hernando D, Arai AE. Myocardial fat imaging. Curr Cardiovasc Imaging Rep 2010; 3: 83-91. – reference: Van de Moortele PF, Akgun C, Adriany G, et al. B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005; 54: 1503-1518. – reference: Snyder CJ, DelaBarre L, Metzger GJ, et al. Initial results of cardiac imaging at 7 Tesla. Magn Reson Med 2009; 61: 517-524. – reference: Niendorf T, Hardy CJ, Giaquinto RO, et al. Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 2006; 56: 167-176. – reference: Akoka S, Franconi F, Seguin F, Le Pape A. Radiofrequency map of an NMR coil by imaging. Magn Reson Imaging 1993; 11: 437-441. – reference: Frauenrath T, Hezel F, Renz W, et al. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2010; 12: 1-14. – reference: Frauenrath T, Niendorf T, Kob M. Acoustic method for synchronization of magnetic resonance imaging (MRI). Acta Acustica United with Acustica 2008; 94: 148-155. – reference: von Knobelsdorff-Brenkenhoff F, Frauenrath T, Prothmann M, et al. Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla-a pilot study. Eur Radiol 2010: 1-9. – reference: Wiesinger F, Boesiger P, Pruessmann KP. Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 2004; 52: 376-390. – reference: Frauenrath T, Hezel F, Heinrichs U, et al. Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol 2009; 44: 539. – reference: Gräβl A, Winter L, Thalhammer C, et al. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. Eur J Radiol 2011 [Epub ahead of print]. – reference: Ohliger MA, Grant AK, Sodickson DK. Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations. Magn Reson Med 2003; 50: 1018-1030. – reference: Kellman P, McVeigh ER. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 2005; 54: 1439-1447 (erratum: Magn Reson Med 2007;58:211-212). – reference: Butler J. Beam-forming matrix simplifies design of electronically scanned antennas. Electron Des 1961; 9: 170-173. – reference: Niendorf T, Sodickson DK, Krombach GA, Schulz-Menger J. Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. Eur Radiol 2010: 1-11. – reference: Adriany G, Ritter J, Vaughan JT, Ugurbil K, Moortele PF. Experimental verification of enhanced B1 shim performance with a Z-encoding RF coil array at 7 Tesla. In: Proc Joint Annual Meeting ISMRM-ESMRMB. Stockholm; 2010 (abstract 3831). – reference: Hernando D, Kellman P, Haldar JP, Liang ZP. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 2010; 63: 79-90. – reference: van Elderen SG, Versluis MJ, Webb AG, et al. Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med 2009; 62: 1379-1384. – reference: Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005; 15: 946-959. – reference: Raaijmakers AJ, Ipek O, Klomp DW, et al. Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna. Magn Reson Med 2011; 66: 1488-1497. – reference: Sodickson DK, Hardy CJ, Zhu Y, et al. Rapid volumetric MRI using parallel imaging with order-of-magnitude accelerations and a 32-element RF coil array. Feasibility and implications. Acad Radiol 2005; 12: 626-635. – reference: Yang QX, Wang J, Zhang X, et al. Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 2002; 47: 982-989. – reference: van Elderen SG, Versluis MJ, Westenberg JJ, et al. Right coronary MR angiography at 7 T: a direct quantitative and qualitative comparison with 3 T in young healthy volunteers. Radiology 2010; 257: 254-259. – reference: Christ A, Kainz W, Hahn EG, et al. The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 2010; 55: N23. – reference: Reeder SB, Markl M, Yu H, Hellinger JC, Herfkens RJ, Pelc NJ. Cardiac CINE imaging with IDEAL water-fat separation and steady-state free precession. J Magn Reson Imaging 2005; 22: 44-52. – reference: Turner R, Jezzard P, Wen H, et al. Functional mapping of the human visual cortex at 4 and 1.5 Tesla using deoxygenation contrast EPI. Magn Reson Med 1993; 29: 277-279. – volume: 12 start-page: 1 year: 2010 end-page: 14 article-title: Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla publication-title: J Cardiovasc Magn Reson – volume: 54 start-page: 1439 year: 2005 end-page: 1447 article-title: Image reconstruction in SNR units: a general method for SNR measurement publication-title: Magn Reson Med – volume: 33 start-page: 736 year: 2011 end-page: 741 article-title: Design and application of a four channel transmit/receive surface coil for functional cardiac imaging at 7T publication-title: J Magn Reson Imaging – volume: 29 start-page: 277 year: 1993 end-page: 279 article-title: Functional mapping of the human visual cortex at 4 and 1.5 Tesla using deoxygenation contrast EPI publication-title: Magn Reson Med – volume: 61 start-page: 244 year: 2009 end-page: 248 article-title: Whole body imaging at 7T: preliminary results publication-title: Magn Reson Med – volume: 52 start-page: 376 year: 2004 end-page: 390 article-title: Electrodynamics and ultimate SNR in parallel MR imaging publication-title: Magn Reson Med – volume: 63 start-page: 79 year: 2010 end-page: 90 article-title: Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm publication-title: Magn Reson Med – volume: 56 start-page: 167 year: 2006 end-page: 176 article-title: Toward single breath‐hold whole‐heart coverage coronary MRA using highly accelerated parallel imaging with a 32‐channel MR system publication-title: Magn Reson Med – volume: 11 start-page: 437 year: 1993 end-page: 441 article-title: Radiofrequency map of an NMR coil by imaging publication-title: Magn Reson Imaging – volume: 52 start-page: 869 year: 2004 article-title: Highly parallel volumetric imaging with a 32‐element RF coil array publication-title: Magn Reson Med – year: 2009 article-title: 7T human in vivo cardiac imaging with an 8‐channel transmit/receive array publication-title: In: Proc 17th Annual Meeting ISMRM, Honolulu – volume: 55 start-page: 2614 year: 2010 article-title: ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents publication-title: Journal of the American College of Cardiology – volume: 61 start-page: 517 year: 2009 end-page: 524 article-title: Initial results of cardiac imaging at 7 Tesla publication-title: Magn Reson Med – volume: 200 start-page: 147 year: 2009 end-page: 152 article-title: Fast MRI coil analysis based on 3‐D electromagnetic and RF circuit co‐simulation publication-title: J Magn Reson – year: 2011 article-title: Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T publication-title: Eur J Radiol – start-page: 1 year: 2010 end-page: 9 article-title: Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study publication-title: Eur Radiol – year: 2010 – volume: 22 start-page: 44 year: 2005 end-page: 52 article-title: Cardiac CINE imaging with IDEAL water‐fat separation and steady‐state free precession publication-title: J Magn Reson Imaging – volume: 54 start-page: 1503 year: 2005 end-page: 1518 article-title: B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil publication-title: Magn Reson Med – volume: 9 start-page: 170 year: 1961 end-page: 173 article-title: Beam‐forming matrix simplifies design of electronically scanned antennas publication-title: Electron Des – start-page: 127 year: 2006 end-page: 161 – start-page: 1 year: 2010 end-page: 11 article-title: Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises publication-title: Eur Radiol – volume: 94 start-page: 148 year: 2008 end-page: 155 article-title: Acoustic method for synchronization of magnetic resonance imaging (MRI) publication-title: Acta Acustica United with Acustica – year: 2010 article-title: Experimental verification of enhanced B1 shim performance with a Z‐encoding RF coil array at 7 Tesla publication-title: In: Proc Joint Annual Meeting ISMRM‐ESMRMB. – volume: 257 start-page: 254 year: 2010 end-page: 259 article-title: Right coronary MR angiography at 7 T: a direct quantitative and qualitative comparison with 3 T in young healthy volunteers publication-title: Radiology – volume: 12 start-page: 626 year: 2005 end-page: 635 article-title: Rapid volumetric MRI using parallel imaging with order‐of‐magnitude accelerations and a 32‐element RF coil array. Feasibility and implications publication-title: Acad Radiol – volume: 44 start-page: 539 year: 2009 article-title: Feasibility of cardiac gating free of interference with electro‐magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR‐stethoscope publication-title: Invest Radiol – volume: 50 start-page: 1018 year: 2003 end-page: 1030 article-title: Ultimate intrinsic signal‐to‐noise ratio for parallel MRI: electromagnetic field considerations publication-title: Magn Reson Med – volume: 15 start-page: 946 year: 2005 end-page: 959 article-title: Whole‐body MRI at high field: technical limits and clinical potential publication-title: Eur Radiol – volume: 3 start-page: 83 year: 2010 end-page: 91 article-title: Myocardial fat imaging publication-title: Curr Cardiovasc Imaging Rep – volume: 61 start-page: 1480 year: 2009 end-page: 1488 article-title: B 1+ interferometry for the calibration of RF transmitter arrays publication-title: Magn Reson Med – start-page: 497 year: 2007 end-page: 510 – volume: 200 start-page: 161 year: 2009 end-page: 166 article-title: Simple RF design for human functional and morphological cardiac imaging at 7Tesla publication-title: J Magn Reson – volume: 25 start-page: 27 year: 2012 end-page: 34 article-title: 7 Tesla (T) human cardiovascular magnetic resonance imaging using FLASH and SSFP to assess cardiac function: validation against 1.5 T and 3 T publication-title: NMR Biomed – volume: 55 start-page: N23 year: 2010 article-title: The virtual family—development of surface‐based anatomical models of two adults and two children for dosimetric simulations publication-title: Phys Med Biol – volume: 66 start-page: 1488 year: 2011 end-page: 1497 article-title: Design of a radiative surface coil array element at 7 T: the single‐side adapted dipole antenna publication-title: Magn Reson Med – volume: 14 start-page: 10 year: 2002 end-page: 19 article-title: 2D SENSE for faster 3D MRI publication-title: Magn Reson Mater Phys – volume: 62 start-page: 1379 year: 2009 end-page: 1384 article-title: Initial results on in vivo human coronary MR angiography at 7 T publication-title: Magn Reson Med – volume: 47 start-page: 982 year: 2002 end-page: 989 article-title: Analysis of wave behavior in lossy dielectric samples at high field publication-title: Magn Reson Med – year: 2011 ident: e_1_2_5_19_2 article-title: Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T publication-title: Eur J Radiol – ident: e_1_2_5_33_2 doi: 10.1002/mrm.22177 – ident: e_1_2_5_10_2 doi: 10.1007/s00330-005-2678-0 – ident: e_1_2_5_28_2 doi: 10.1088/0031-9155/55/2/N01 – ident: e_1_2_5_14_2 doi: 10.1002/mrm.10137 – ident: e_1_2_5_31_2 doi: 10.3813/AAA.918017 – volume: 14 start-page: 10 year: 2002 ident: e_1_2_5_39_2 article-title: 2D SENSE for faster 3D MRI publication-title: Magn Reson Mater Phys doi: 10.1007/BF02668182 – ident: e_1_2_5_15_2 doi: 10.1007/978-0-387-49648-1_6 – ident: e_1_2_5_25_2 doi: 10.1002/mrm.22886 – ident: e_1_2_5_40_2 doi: 10.1002/mrm.20209 – ident: e_1_2_5_26_2 doi: 10.1007/978-3-540-68879-2_44 – ident: e_1_2_5_29_2 doi: 10.1016/j.jmr.2009.06.005 – ident: e_1_2_5_35_2 doi: 10.1002/mrm.1910290221 – ident: e_1_2_5_41_2 doi: 10.1016/j.acra.2005.01.012 – ident: e_1_2_5_38_2 doi: 10.1002/mrm.21893 – ident: e_1_2_5_5_2 doi: 10.1002/mrm.21895 – ident: e_1_2_5_2_2 doi: 10.1016/j.jacc.2009.11.011 – ident: e_1_2_5_11_2 doi: 10.1097/RLI.0b013e3181b4c15e – ident: e_1_2_5_17_2 doi: 10.1016/j.jmr.2009.06.014 – ident: e_1_2_5_24_2 – ident: e_1_2_5_9_2 doi: 10.1148/radiol.100615 – ident: e_1_2_5_12_2 doi: 10.1186/1532-429X-12-67 – ident: e_1_2_5_3_2 doi: 10.1002/nbm.1708 – ident: e_1_2_5_18_2 doi: 10.1002/jmri.22451 – ident: e_1_2_5_21_2 doi: 10.1002/mrm.10597 – volume: 9 start-page: 170 year: 1961 ident: e_1_2_5_27_2 article-title: Beam‐forming matrix simplifies design of electronically scanned antennas publication-title: Electron Des – ident: e_1_2_5_30_2 doi: 10.1016/0730-725X(93)90078-R – ident: e_1_2_5_6_2 doi: 10.1002/mrm.22168 – ident: e_1_2_5_34_2 – start-page: 1 year: 2010 ident: e_1_2_5_8_2 article-title: Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises publication-title: Eur Radiol – ident: e_1_2_5_32_2 doi: 10.1002/mrm.20713 – ident: e_1_2_5_13_2 doi: 10.1002/mrm.20708 – year: 2010 ident: e_1_2_5_20_2 article-title: Experimental verification of enhanced B1 shim performance with a Z‐encoding RF coil array at 7 Tesla publication-title: In: Proc Joint Annual Meeting ISMRM‐ESMRMB. – ident: e_1_2_5_36_2 doi: 10.1002/jmri.20327 – ident: e_1_2_5_4_2 doi: 10.1002/mrm.21751 – start-page: 1 year: 2010 ident: e_1_2_5_7_2 article-title: Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study publication-title: Eur Radiol – ident: e_1_2_5_22_2 doi: 10.1002/mrm.20183 – ident: e_1_2_5_23_2 doi: 10.1002/mrm.20923 – year: 2009 ident: e_1_2_5_16_2 article-title: 7T human in vivo cardiac imaging with an 8‐channel transmit/receive array publication-title: In: Proc 17th Annual Meeting ISMRM, Honolulu – ident: e_1_2_5_37_2 doi: 10.1007/s12410-010-9012-1 |
SSID | ssj0009945 |
Score | 2.3479023 |
Snippet | Purpose:
To design, evaluate, and apply a 2D 16‐channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T.... To design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. The cardiac... To design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T.PURPOSETo... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 847 |
SubjectTerms | cardiovascular MRI Computer-Aided Design Equipment Design Equipment Failure Analysis Heart - anatomy & histology Humans Image Enhancement - instrumentation Magnetic Resonance Imaging, Cine - methods Magnetics - instrumentation parallel imaging Reproducibility of Results Sensitivity and Specificity transceiver array Transducers ultrahigh field MRI |
Title | Two-Dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: Design, evaluation, and application |
URI | https://api.istex.fr/ark:/67375/WNG-ZQ9PXDCQ-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.23724 https://www.ncbi.nlm.nih.gov/pubmed/22706727 https://www.proquest.com/docview/1041140919 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UCuKL90u8MaIISrNNZiaZHfFFutZa2GLLFhdBwtwCa9usZLN4e_En-Bv9Jc6Z7GatFEHf8nAymcycy8ecM98BeNQ32Pwk1THXiYg5z2isqc1ihMbaenzgQreG4V6-c8h3x9l4DZ4v78K0_BDdgRtaRvDXaOBKzzZXpKEfTupJjzJBkQwUi7UQER2suKOkDB2KPX5gcdpPRMdNSjdXr56KRudwYT-fBTVPI9cQerYvwfvlpNuKk6PevNE98_UPPsf__avLcHGBScmLVomuwJqrrsL54SLrfg2-jT5Nf37_McBGAC2JB5lNvE93FcF7w_6TpMGQdzJp8NDHeQdKzHRyTFRdqy_Ew2JigiIaMjx4TVRDRC8ho2dkEMpHNsiKcnyDqMqS37Lq1-Fw--VoaydeNG2IjXcPPHbam7mT2npXypXkhiWlMT7oqZwmokxF6TEWK02mWJZYWlrXVzQ3TBnOyj7P2A1Yr6aVuwVEGu2szE0ukV3YKJlbdOCWpWmpLCsjeLLcvMIsGM2xscZx0XIx0wJXswirGcHDTvZjy-NxptTjoAOdiKqPsPJNZMXbvVfFu335ZjzY2i9EBA-WSlJ4e8Qki6rcdD7zI_IUScRSGcHNVnu60SgVIfMdwdOgA3-ZSbHrNyQ83f4X4TtwwSM62lYb3oX1pp67ex41Nfp-sI5fffkSiQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWglYAX7pdwNQIhUTXbxHbiNW-oS9mW7opWW7HixXJsR1raZlE2q1544RP4Rr4Ej5NmKaqQ4C0Pk5s9Mz7yjM9B6GVXg_hJnIUsi3jIWELCjJgkBGicGYcPrFdrGAzT_h7bGifjpjcHzsLU_BDthhtEhs_XEOCwIb22YA39clhOOoRywi6jZZD0hrjs7S7Yo4TwGsUOQdAw7ka8ZScla4t7z61HyzC0xxeBzfPY1S8-GzdqhdWZ5yyEnpP9zrzKOvr0D0bH__6vm-h6A0vx29qPbqFLtriNrgyawvsd9G10NP35_UcPtABqHg88m7i0bgsMR4fdO3EFq97hpIJ9H-tyKNbTyQFWZalOsEPGWHtf1Hiwu4lVhXknwqM3uOc7SFbxgnV8FavC4N8K63fR3sa70Xo_bHQbQu0yBAtt5iLdisy4bMqUYJpGudZu3VMpiXge89zBLJrrRNEkMiQ3tqtIqqnSjOZdltB7aKmYFvYBwkJn1ohUpwIIhrUSqYEcbmgc58rQPECvz2ZP6obUHLQ1DmRNx0wkjKb0oxmgF63t15rK40KrV94JWhNV7kPzG0_kp-F7-XlHfBz31nckD9DzMy-RLiShzqIKO53P3BNZDDxisQjQ_dp92qcRwn3xO0Ar3gn-8iVyy02Iv3r4L8bP0NX-aLAttzeHHx6haw7gkbr58DFaqsq5feJAVJU99aHyC4q7FqI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amzTxwv0SNsAIhARausR2Lka8oIWyDVptU6dVSMhybEcq29IpS8UGL_wEfiO_BNtpU4YmJHjLw4mT2Ofyxef4OwDPUmmbn4S5T_Mg8SmNsJ9jFfkWGufK4APtujX0-vHmPt0eRsMFeD07C9PwQ7QbbtYynL-2Bn6iivU5aejn42rUwSTB9Aos0ThI7a9Xtjcnj2LMtSg2AIL4YRokLTkpXp_feyEcLdmZPbsMa16Eri72dK_Dp9lbNyUnh51JnXfk1z8IHf_3s27AtSkoRW8aLboJC7q8Bcu9adr9NnwbfBn__P4js50AGhYPdDoyTl2XyB4cNo9EtY15x6Pa7vpo40GRHI-OkKgqcY4MLkbSaaJEvb0tJGqUdAI0eIUyVz-yhuac42tIlAr9lla_A_vdt4ONTX_atcGXxj9QX-fGzjXLlfGlVDAqSVBIaaKeiHGQFGFSGJBFChkJEgUKF0qnAseSCElJkdKI3IXFclzq-4CYzLVisYyZpReWgsXKenBFwrAQihQevJgtHpdTSnPbWeOIN2TMmNvZ5G42PXjayp40RB6XSj13OtCKiOrQlr4lET_ov-Mfd9nOMNvY5YkHT2ZKwo1B2iyLKPV4cmpGpKFlEQuZB_ca7WlHwzhxqW8PXjod-Mub8G2zIO7qwb8IP4blnazLP2z136_AVYPucFN5uAqLdTXRDw2CqvNHzlB-AVfCFVo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+sixteen+channel+transmit%2Freceive+coil+array+for+cardiac+MRI+at+7.0+T%3A+design%2C+evaluation%2C+and+application&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Thalhammer%2C+Christof&rft.au=Renz%2C+Wolfgang&rft.au=Winter%2C+Lukas&rft.au=Hezel%2C+Fabian&rft.date=2012-10-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=36&rft.issue=4&rft.spage=847&rft_id=info:doi/10.1002%2Fjmri.23724&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |