Two-Dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: Design, evaluation, and application

Purpose: To design, evaluate, and apply a 2D 16‐channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. Materials and Methods: The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF)...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 36; no. 4; pp. 847 - 857
Main Authors Thalhammer, Christof, Renz, Wolfgang, Winter, Lukas, Hezel, Fabian, Rieger, Jan, Pfeiffer, Harald, Graessl, Andreas, Seifert, Frank, Hoffmann, Werner, von Knobelsdorff-Brenkenhoff, Florian, Tkachenko, Valeriy, Schulz-Menger, Jeanette, Kellman, Peter, Niendorf, Thoralf
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2012
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.23724

Cover

Loading…
Abstract Purpose: To design, evaluate, and apply a 2D 16‐channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. Materials and Methods: The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2* mapping, and fat–water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality. Results: RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal‐to‐noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm3. The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality. Conclusion: The 16‐channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T. J. Magn. Reson. Imaging 2012;36:847–857. © 2012 Wiley Periodicals, Inc.
AbstractList To design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T.PURPOSETo design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T.The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2 mapping, and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality.MATERIALS AND METHODSThe cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2 mapping, and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality.RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal-to-noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm(3) . The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality.RESULTSRF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal-to-noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm(3) . The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality.The 16-channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T.CONCLUSIONThe 16-channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T.
To design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2 mapping, and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality. RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal-to-noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm(3) . The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality. The 16-channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T.
Purpose: To design, evaluate, and apply a 2D 16‐channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. Materials and Methods: The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2* mapping, and fat–water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality. Results: RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal‐to‐noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm3. The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality. Conclusion: The 16‐channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T. J. Magn. Reson. Imaging 2012;36:847–857. © 2012 Wiley Periodicals, Inc.
Author Pfeiffer, Harald
Seifert, Frank
Kellman, Peter
von Knobelsdorff-Brenkenhoff, Florian
Niendorf, Thoralf
Rieger, Jan
Winter, Lukas
Thalhammer, Christof
Hoffmann, Werner
Schulz-Menger, Jeanette
Renz, Wolfgang
Graessl, Andreas
Tkachenko, Valeriy
Hezel, Fabian
Author_xml – sequence: 1
  givenname: Christof
  surname: Thalhammer
  fullname: Thalhammer, Christof
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
– sequence: 2
  givenname: Wolfgang
  surname: Renz
  fullname: Renz, Wolfgang
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
– sequence: 3
  givenname: Lukas
  surname: Winter
  fullname: Winter, Lukas
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
– sequence: 4
  givenname: Fabian
  surname: Hezel
  fullname: Hezel, Fabian
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
– sequence: 5
  givenname: Jan
  surname: Rieger
  fullname: Rieger, Jan
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
– sequence: 6
  givenname: Harald
  surname: Pfeiffer
  fullname: Pfeiffer, Harald
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
– sequence: 7
  givenname: Andreas
  surname: Graessl
  fullname: Graessl, Andreas
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
– sequence: 8
  givenname: Frank
  surname: Seifert
  fullname: Seifert, Frank
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
– sequence: 9
  givenname: Werner
  surname: Hoffmann
  fullname: Hoffmann, Werner
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
– sequence: 10
  givenname: Florian
  surname: von Knobelsdorff-Brenkenhoff
  fullname: von Knobelsdorff-Brenkenhoff, Florian
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
– sequence: 11
  givenname: Valeriy
  surname: Tkachenko
  fullname: Tkachenko, Valeriy
  organization: HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany
– sequence: 12
  givenname: Jeanette
  surname: Schulz-Menger
  fullname: Schulz-Menger, Jeanette
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
– sequence: 13
  givenname: Peter
  surname: Kellman
  fullname: Kellman, Peter
  organization: Laboratory of Cardiac Energetics, National Institutes of Health/NHLBI, Bethesda, Maryland, USA
– sequence: 14
  givenname: Thoralf
  surname: Niendorf
  fullname: Niendorf, Thoralf
  email: Thoralf.Niendorf@mdc-berlin.de
  organization: Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22706727$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB-w4QcgLxFqpn7GCTs0A21ReRQNArGx7jg34OI4g51pO_--6UzbBUKsbFnfdySfs092Yh-RkOecTThj4uiiS34ipBHqEdnjWohC6KrcGe9My4JXzOyS_ZwvGGN1rfQTsiuEYaURZo-s51d9MfMdxuz7CIFmfz0gRup-QYwY6JAg5s4PRwkd-kukrveBQkqwpm2fqIPUeHD0w5dTCgM1E0bnr-kMs_8ZDyleQljBMEYfUogNheUyeLd5eEoetxAyPrs7D8jXd2_n05Pi7NPx6fTNWeEkr1SBC6Y51ouGa6mgVk6y1jlR11AKZlpuWl0y2ToNUrNGtA1WIEonwSnZVkrLA_Jym7tM_Z8V5sF2PjsMASL2q2w5U5wrVvN6RF_coatFh41dJt9BWtv7ukbg1RZwqc85YfuAcGZvt7C3W9jNFiPM_oKdHzZfHzv14d8K3ypXPuD6P-H2_dj3vVNsHZ8HvH5wIP22pZFG228fj-2P8_rz99n03Bp5A-h_qts
CitedBy_id crossref_primary_10_1109_TMTT_2021_3079422
crossref_primary_10_1186_1532_429X_17_S1_P13
crossref_primary_10_1155_2020_8828047
crossref_primary_10_1186_1532_429X_15_23
crossref_primary_10_1097_RLI_0000000000000047
crossref_primary_10_1002_mrm_28382
crossref_primary_10_4329_wjr_v12_i10_231
crossref_primary_10_1002_nbm_3680
crossref_primary_10_1002_mrm_26688
crossref_primary_10_1097_RMR_0000000000000202
crossref_primary_10_1002_mrm_28423
crossref_primary_10_1371_journal_pone_0255341
crossref_primary_10_3389_fphar_2015_00255
crossref_primary_10_1038_s41598_018_22439_x
crossref_primary_10_1016_j_mri_2015_06_012
crossref_primary_10_1002_mrm_24903
crossref_primary_10_1109_RBME_2023_3244132
crossref_primary_10_1371_journal_pone_0052324
crossref_primary_10_1002_mrm_28093
crossref_primary_10_1002_mrm_27880
crossref_primary_10_1002_mrm_26153
crossref_primary_10_1371_journal_pone_0252797
crossref_primary_10_1007_s10334_016_0559_y
crossref_primary_10_1111_apha_12393
crossref_primary_10_1002_mrm_28450
crossref_primary_10_1016_j_jmr_2019_07_004
crossref_primary_10_1371_journal_pone_0117095
crossref_primary_10_1002_mrm_25424
crossref_primary_10_1002_nbm_4726
crossref_primary_10_1109_TCI_2016_2610141
crossref_primary_10_1002_nbm_4802
crossref_primary_10_1002_mrm_26312
crossref_primary_10_1016_j_jmr_2014_04_001
crossref_primary_10_3389_fphy_2017_00022
crossref_primary_10_1002_mrm_24856
crossref_primary_10_4329_wjr_v12_i10_229
crossref_primary_10_1109_JERM_2019_2893546
crossref_primary_10_1371_journal_pone_0191719
crossref_primary_10_1016_j_mri_2022_10_001
crossref_primary_10_1002_nbm_3224
crossref_primary_10_1002_nbm_3268
crossref_primary_10_1002_nbm_3300
crossref_primary_10_1016_j_photonics_2019_100764
crossref_primary_10_1007_s00117_012_2348_6
crossref_primary_10_1002_mrm_29096
crossref_primary_10_1007_s10334_017_0644_x
crossref_primary_10_1161_CIRCIMAGING_116_005460
crossref_primary_10_1016_j_mric_2020_10_001
crossref_primary_10_1007_s00723_015_0712_1
crossref_primary_10_1002_mrm_28885
crossref_primary_10_1002_nbm_3701
crossref_primary_10_1007_s10334_023_01077_z
crossref_primary_10_1259_bjr_20160690
crossref_primary_10_1088_1361_6560_aca4b7
crossref_primary_10_1016_j_jmr_2018_08_013
crossref_primary_10_1371_journal_pone_0148066
crossref_primary_10_1002_nbm_5032
crossref_primary_10_1371_journal_pone_0161863
crossref_primary_10_1016_j_pnmrs_2018_06_001
crossref_primary_10_1002_mrm_25483
crossref_primary_10_1007_s10334_017_0665_5
crossref_primary_10_1109_TMTT_2019_2913636
crossref_primary_10_1186_s13167_015_0038_y
crossref_primary_10_1002_mrm_25324
crossref_primary_10_1109_TAP_2020_3016495
crossref_primary_10_1002_nbm_3338
crossref_primary_10_1002_mrm_25246
crossref_primary_10_1002_mrm_25840
crossref_primary_10_1016_j_jmr_2012_11_015
crossref_primary_10_1038_s41598_020_59949_6
Cites_doi 10.1002/mrm.22177
10.1007/s00330-005-2678-0
10.1088/0031-9155/55/2/N01
10.1002/mrm.10137
10.3813/AAA.918017
10.1007/BF02668182
10.1007/978-0-387-49648-1_6
10.1002/mrm.22886
10.1002/mrm.20209
10.1007/978-3-540-68879-2_44
10.1016/j.jmr.2009.06.005
10.1002/mrm.1910290221
10.1016/j.acra.2005.01.012
10.1002/mrm.21893
10.1002/mrm.21895
10.1016/j.jacc.2009.11.011
10.1097/RLI.0b013e3181b4c15e
10.1016/j.jmr.2009.06.014
10.1148/radiol.100615
10.1186/1532-429X-12-67
10.1002/nbm.1708
10.1002/jmri.22451
10.1002/mrm.10597
10.1016/0730-725X(93)90078-R
10.1002/mrm.22168
10.1002/mrm.20713
10.1002/mrm.20708
10.1002/jmri.20327
10.1002/mrm.21751
10.1002/mrm.20183
10.1002/mrm.20923
10.1007/s12410-010-9012-1
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jmri.23724
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 857
ExternalDocumentID 22706727
10_1002_jmri_23724
JMRI23724
ark_67375_WNG_ZQ9PXDCQ_7
Genre article
Journal Article
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 HL999999
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3184-eb051e9bd1534a94c30fcc299a6207f17f5603fc5a350d2fde8a26c3ac43f8453
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 08:50:14 EDT 2025
Mon Jul 21 05:50:26 EDT 2025
Tue Jul 01 03:56:25 EDT 2025
Thu Apr 24 22:54:47 EDT 2025
Wed Jan 22 17:02:03 EST 2025
Wed Oct 30 09:54:10 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3184-eb051e9bd1534a94c30fcc299a6207f17f5603fc5a350d2fde8a26c3ac43f8453
Notes istex:E4E85E16B70B7DC27B50CADA6494D53624D87A2B
ark:/67375/WNG-ZQ9PXDCQ-7
ArticleID:JMRI23724
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.23724
PMID 22706727
PQID 1041140919
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1041140919
pubmed_primary_22706727
crossref_primary_10_1002_jmri_23724
crossref_citationtrail_10_1002_jmri_23724
wiley_primary_10_1002_jmri_23724_JMRI23724
istex_primary_ark_67375_WNG_ZQ9PXDCQ_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10
October 2012
2012-10-00
2012-Oct
20121001
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Frauenrath T, Hezel F, Renz W, et al. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2010; 12: 1-14.
Butler J. Beam-forming matrix simplifies design of electronically scanned antennas. Electron Des 1961; 9: 170-173.
Wiesinger F, Boesiger P, Pruessmann KP. Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 2004; 52: 376-390.
Suttie JJ, Delabarre L, Pitcher A, et al. 7 Tesla (T) human cardiovascular magnetic resonance imaging using FLASH and SSFP to assess cardiac function: validation against 1.5 T and 3 T. NMR Biomed 2012; 25: 27-34.
Vaughan JT, Snyder CJ, DelaBarre LJ, et al. Whole body imaging at 7T: preliminary results. Magn Reson Med 2009; 61: 244-248.
van Elderen SG, Versluis MJ, Westenberg JJ, et al. Right coronary MR angiography at 7 T: a direct quantitative and qualitative comparison with 3 T in young healthy volunteers. Radiology 2010; 257: 254-259.
Maderwald S, Orzada S, Schaefer LC, et al. 7T human in vivo cardiac imaging with an 8-channel transmit/receive array. In: Proc 17th Annual Meeting ISMRM, Honolulu; 2009 (abstract 822).
Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Journal of the American College of Cardiology 2010; 55: 2614.
Frauenrath T, Hezel F, Heinrichs U, et al. Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol 2009; 44: 539.
Ohliger MA, Grant AK, Sodickson DK. Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations. Magn Reson Med 2003; 50: 1018-1030.
von Knobelsdorff-Brenkenhoff F, Frauenrath T, Prothmann M, et al. Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla-a pilot study. Eur Radiol 2010: 1-9.
Yang QX, Wang J, Zhang X, et al. Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 2002; 47: 982-989.
Kellman P, McVeigh ER. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 2005; 54: 1439-1447 (erratum: Magn Reson Med 2007;58:211-212).
Van de Moortele PF, Akgun C, Adriany G, et al. B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005; 54: 1503-1518.
Christ A, Kainz W, Hahn EG, et al. The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 2010; 55: N23.
Zhu Y, Hardy CJ, Sodickson DK, et al. Highly parallel volumetric imaging with a 32-element RF coil array. Magn Reson Med 2004; 52: 869.
Kellman P, Hernando D, Arai AE. Myocardial fat imaging. Curr Cardiovasc Imaging Rep 2010; 3: 83-91.
Niendorf T, Hardy CJ, Giaquinto RO, et al. Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 2006; 56: 167-176.
Versluis MJ, Tsekos N, Smith NB, Webb AG. Simple RF design for human functional and morphological cardiac imaging at 7Tesla. J Magn Reson 2009; 200: 161-166.
Turner R, Jezzard P, Wen H, et al. Functional mapping of the human visual cortex at 4 and 1.5 Tesla using deoxygenation contrast EPI. Magn Reson Med 1993; 29: 277-279.
Frauenrath T, Niendorf T, Kob M. Acoustic method for synchronization of magnetic resonance imaging (MRI). Acta Acustica United with Acustica 2008; 94: 148-155.
Raaijmakers AJ, Ipek O, Klomp DW, et al. Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna. Magn Reson Med 2011; 66: 1488-1497.
Akoka S, Franconi F, Seguin F, Le Pape A. Radiofrequency map of an NMR coil by imaging. Magn Reson Imaging 1993; 11: 437-441.
Reeder SB, Markl M, Yu H, Hellinger JC, Herfkens RJ, Pelc NJ. Cardiac CINE imaging with IDEAL water-fat separation and steady-state free precession. J Magn Reson Imaging 2005; 22: 44-52.
Brunner DO, Pruessmann KP. B 1+ interferometry for the calibration of RF transmitter arrays. Magn Reson Med 2009; 61: 1480-1488.
Sodickson DK, Hardy CJ, Zhu Y, et al. Rapid volumetric MRI using parallel imaging with order-of-magnitude accelerations and a 32-element RF coil array. Feasibility and implications. Acad Radiol 2005; 12: 626-635.
van Elderen SG, Versluis MJ, Webb AG, et al. Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med 2009; 62: 1379-1384.
Weiger M, Pruessmann KP, Boesiger P. 2D SENSE for faster 3D MRI. Magn Reson Mater Phys 2002; 14: 10-19.
Gräβl A, Winter L, Thalhammer C, et al. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. Eur J Radiol 2011 [Epub ahead of print].
Adriany G, Ritter J, Vaughan JT, Ugurbil K, Moortele PF. Experimental verification of enhanced B1 shim performance with a Z-encoding RF coil array at 7 Tesla. In: Proc Joint Annual Meeting ISMRM-ESMRMB. Stockholm; 2010 (abstract 3831).
Dieringer M, Renz W, Lindel T, et al. Design and application of a four channel transmit/receive surface coil for functional cardiac imaging at 7T. J Magn Reson Imaging 2011; 33: 736-741.
Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005; 15: 946-959.
Hernando D, Kellman P, Haldar JP, Liang ZP. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 2010; 63: 79-90.
Niendorf T, Sodickson DK, Krombach GA, Schulz-Menger J. Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. Eur Radiol 2010: 1-11.
Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J Magn Reson 2009; 200: 147-152.
Snyder CJ, DelaBarre L, Metzger GJ, et al. Initial results of cardiac imaging at 7 Tesla. Magn Reson Med 2009; 61: 517-524.
2010; 12
2010; 55
2009; 44
2002; 14
2009; 62
1993; 29
2006; 56
2011
2009; 61
2010
2009
2011; 33
2007
2006
2008; 94
2003; 50
2010; 63
2005; 22
2002; 47
2004; 52
2010; 257
1993; 11
2009; 200
2011; 66
2005; 54
1961; 9
2012; 25
2005; 15
2010; 3
2005; 12
e_1_2_5_26_2
e_1_2_5_24_2
e_1_2_5_25_2
e_1_2_5_22_2
e_1_2_5_23_2
e_1_2_5_21_2
Butler J (e_1_2_5_27_2) 1961; 9
Gräβl A (e_1_2_5_19_2) 2011
Niendorf T (e_1_2_5_8_2) 2010
e_1_2_5_28_2
e_1_2_5_29_2
e_1_2_5_41_2
e_1_2_5_40_2
Weiger M (e_1_2_5_39_2) 2002; 14
e_1_2_5_14_2
e_1_2_5_37_2
e_1_2_5_13_2
e_1_2_5_38_2
e_1_2_5_9_2
e_1_2_5_35_2
e_1_2_5_15_2
e_1_2_5_36_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_6_2
e_1_2_5_34_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_4_2
e_1_2_5_11_2
e_1_2_5_32_2
e_1_2_5_3_2
e_1_2_5_2_2
von Knobelsdorff‐Brenkenhoff F (e_1_2_5_7_2) 2010
e_1_2_5_18_2
e_1_2_5_17_2
Maderwald S (e_1_2_5_16_2) 2009
e_1_2_5_30_2
Adriany G (e_1_2_5_20_2) 2010
References_xml – reference: Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J Magn Reson 2009; 200: 147-152.
– reference: Zhu Y, Hardy CJ, Sodickson DK, et al. Highly parallel volumetric imaging with a 32-element RF coil array. Magn Reson Med 2004; 52: 869.
– reference: Brunner DO, Pruessmann KP. B 1+ interferometry for the calibration of RF transmitter arrays. Magn Reson Med 2009; 61: 1480-1488.
– reference: Suttie JJ, Delabarre L, Pitcher A, et al. 7 Tesla (T) human cardiovascular magnetic resonance imaging using FLASH and SSFP to assess cardiac function: validation against 1.5 T and 3 T. NMR Biomed 2012; 25: 27-34.
– reference: Weiger M, Pruessmann KP, Boesiger P. 2D SENSE for faster 3D MRI. Magn Reson Mater Phys 2002; 14: 10-19.
– reference: Versluis MJ, Tsekos N, Smith NB, Webb AG. Simple RF design for human functional and morphological cardiac imaging at 7Tesla. J Magn Reson 2009; 200: 161-166.
– reference: Vaughan JT, Snyder CJ, DelaBarre LJ, et al. Whole body imaging at 7T: preliminary results. Magn Reson Med 2009; 61: 244-248.
– reference: Maderwald S, Orzada S, Schaefer LC, et al. 7T human in vivo cardiac imaging with an 8-channel transmit/receive array. In: Proc 17th Annual Meeting ISMRM, Honolulu; 2009 (abstract 822).
– reference: Dieringer M, Renz W, Lindel T, et al. Design and application of a four channel transmit/receive surface coil for functional cardiac imaging at 7T. J Magn Reson Imaging 2011; 33: 736-741.
– reference: Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Journal of the American College of Cardiology 2010; 55: 2614.
– reference: Kellman P, Hernando D, Arai AE. Myocardial fat imaging. Curr Cardiovasc Imaging Rep 2010; 3: 83-91.
– reference: Van de Moortele PF, Akgun C, Adriany G, et al. B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 2005; 54: 1503-1518.
– reference: Snyder CJ, DelaBarre L, Metzger GJ, et al. Initial results of cardiac imaging at 7 Tesla. Magn Reson Med 2009; 61: 517-524.
– reference: Niendorf T, Hardy CJ, Giaquinto RO, et al. Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 2006; 56: 167-176.
– reference: Akoka S, Franconi F, Seguin F, Le Pape A. Radiofrequency map of an NMR coil by imaging. Magn Reson Imaging 1993; 11: 437-441.
– reference: Frauenrath T, Hezel F, Renz W, et al. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2010; 12: 1-14.
– reference: Frauenrath T, Niendorf T, Kob M. Acoustic method for synchronization of magnetic resonance imaging (MRI). Acta Acustica United with Acustica 2008; 94: 148-155.
– reference: von Knobelsdorff-Brenkenhoff F, Frauenrath T, Prothmann M, et al. Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla-a pilot study. Eur Radiol 2010: 1-9.
– reference: Wiesinger F, Boesiger P, Pruessmann KP. Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 2004; 52: 376-390.
– reference: Frauenrath T, Hezel F, Heinrichs U, et al. Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol 2009; 44: 539.
– reference: Gräβl A, Winter L, Thalhammer C, et al. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. Eur J Radiol 2011 [Epub ahead of print].
– reference: Ohliger MA, Grant AK, Sodickson DK. Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations. Magn Reson Med 2003; 50: 1018-1030.
– reference: Kellman P, McVeigh ER. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 2005; 54: 1439-1447 (erratum: Magn Reson Med 2007;58:211-212).
– reference: Butler J. Beam-forming matrix simplifies design of electronically scanned antennas. Electron Des 1961; 9: 170-173.
– reference: Niendorf T, Sodickson DK, Krombach GA, Schulz-Menger J. Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. Eur Radiol 2010: 1-11.
– reference: Adriany G, Ritter J, Vaughan JT, Ugurbil K, Moortele PF. Experimental verification of enhanced B1 shim performance with a Z-encoding RF coil array at 7 Tesla. In: Proc Joint Annual Meeting ISMRM-ESMRMB. Stockholm; 2010 (abstract 3831).
– reference: Hernando D, Kellman P, Haldar JP, Liang ZP. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 2010; 63: 79-90.
– reference: van Elderen SG, Versluis MJ, Webb AG, et al. Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med 2009; 62: 1379-1384.
– reference: Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005; 15: 946-959.
– reference: Raaijmakers AJ, Ipek O, Klomp DW, et al. Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna. Magn Reson Med 2011; 66: 1488-1497.
– reference: Sodickson DK, Hardy CJ, Zhu Y, et al. Rapid volumetric MRI using parallel imaging with order-of-magnitude accelerations and a 32-element RF coil array. Feasibility and implications. Acad Radiol 2005; 12: 626-635.
– reference: Yang QX, Wang J, Zhang X, et al. Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 2002; 47: 982-989.
– reference: van Elderen SG, Versluis MJ, Westenberg JJ, et al. Right coronary MR angiography at 7 T: a direct quantitative and qualitative comparison with 3 T in young healthy volunteers. Radiology 2010; 257: 254-259.
– reference: Christ A, Kainz W, Hahn EG, et al. The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 2010; 55: N23.
– reference: Reeder SB, Markl M, Yu H, Hellinger JC, Herfkens RJ, Pelc NJ. Cardiac CINE imaging with IDEAL water-fat separation and steady-state free precession. J Magn Reson Imaging 2005; 22: 44-52.
– reference: Turner R, Jezzard P, Wen H, et al. Functional mapping of the human visual cortex at 4 and 1.5 Tesla using deoxygenation contrast EPI. Magn Reson Med 1993; 29: 277-279.
– volume: 12
  start-page: 1
  year: 2010
  end-page: 14
  article-title: Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla
  publication-title: J Cardiovasc Magn Reson
– volume: 54
  start-page: 1439
  year: 2005
  end-page: 1447
  article-title: Image reconstruction in SNR units: a general method for SNR measurement
  publication-title: Magn Reson Med
– volume: 33
  start-page: 736
  year: 2011
  end-page: 741
  article-title: Design and application of a four channel transmit/receive surface coil for functional cardiac imaging at 7T
  publication-title: J Magn Reson Imaging
– volume: 29
  start-page: 277
  year: 1993
  end-page: 279
  article-title: Functional mapping of the human visual cortex at 4 and 1.5 Tesla using deoxygenation contrast EPI
  publication-title: Magn Reson Med
– volume: 61
  start-page: 244
  year: 2009
  end-page: 248
  article-title: Whole body imaging at 7T: preliminary results
  publication-title: Magn Reson Med
– volume: 52
  start-page: 376
  year: 2004
  end-page: 390
  article-title: Electrodynamics and ultimate SNR in parallel MR imaging
  publication-title: Magn Reson Med
– volume: 63
  start-page: 79
  year: 2010
  end-page: 90
  article-title: Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm
  publication-title: Magn Reson Med
– volume: 56
  start-page: 167
  year: 2006
  end-page: 176
  article-title: Toward single breath‐hold whole‐heart coverage coronary MRA using highly accelerated parallel imaging with a 32‐channel MR system
  publication-title: Magn Reson Med
– volume: 11
  start-page: 437
  year: 1993
  end-page: 441
  article-title: Radiofrequency map of an NMR coil by imaging
  publication-title: Magn Reson Imaging
– volume: 52
  start-page: 869
  year: 2004
  article-title: Highly parallel volumetric imaging with a 32‐element RF coil array
  publication-title: Magn Reson Med
– year: 2009
  article-title: 7T human in vivo cardiac imaging with an 8‐channel transmit/receive array
  publication-title: In: Proc 17th Annual Meeting ISMRM, Honolulu
– volume: 55
  start-page: 2614
  year: 2010
  article-title: ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents
  publication-title: Journal of the American College of Cardiology
– volume: 61
  start-page: 517
  year: 2009
  end-page: 524
  article-title: Initial results of cardiac imaging at 7 Tesla
  publication-title: Magn Reson Med
– volume: 200
  start-page: 147
  year: 2009
  end-page: 152
  article-title: Fast MRI coil analysis based on 3‐D electromagnetic and RF circuit co‐simulation
  publication-title: J Magn Reson
– year: 2011
  article-title: Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T
  publication-title: Eur J Radiol
– start-page: 1
  year: 2010
  end-page: 9
  article-title: Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study
  publication-title: Eur Radiol
– year: 2010
– volume: 22
  start-page: 44
  year: 2005
  end-page: 52
  article-title: Cardiac CINE imaging with IDEAL water‐fat separation and steady‐state free precession
  publication-title: J Magn Reson Imaging
– volume: 54
  start-page: 1503
  year: 2005
  end-page: 1518
  article-title: B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil
  publication-title: Magn Reson Med
– volume: 9
  start-page: 170
  year: 1961
  end-page: 173
  article-title: Beam‐forming matrix simplifies design of electronically scanned antennas
  publication-title: Electron Des
– start-page: 127
  year: 2006
  end-page: 161
– start-page: 1
  year: 2010
  end-page: 11
  article-title: Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises
  publication-title: Eur Radiol
– volume: 94
  start-page: 148
  year: 2008
  end-page: 155
  article-title: Acoustic method for synchronization of magnetic resonance imaging (MRI)
  publication-title: Acta Acustica United with Acustica
– year: 2010
  article-title: Experimental verification of enhanced B1 shim performance with a Z‐encoding RF coil array at 7 Tesla
  publication-title: In: Proc Joint Annual Meeting ISMRM‐ESMRMB.
– volume: 257
  start-page: 254
  year: 2010
  end-page: 259
  article-title: Right coronary MR angiography at 7 T: a direct quantitative and qualitative comparison with 3 T in young healthy volunteers
  publication-title: Radiology
– volume: 12
  start-page: 626
  year: 2005
  end-page: 635
  article-title: Rapid volumetric MRI using parallel imaging with order‐of‐magnitude accelerations and a 32‐element RF coil array. Feasibility and implications
  publication-title: Acad Radiol
– volume: 44
  start-page: 539
  year: 2009
  article-title: Feasibility of cardiac gating free of interference with electro‐magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR‐stethoscope
  publication-title: Invest Radiol
– volume: 50
  start-page: 1018
  year: 2003
  end-page: 1030
  article-title: Ultimate intrinsic signal‐to‐noise ratio for parallel MRI: electromagnetic field considerations
  publication-title: Magn Reson Med
– volume: 15
  start-page: 946
  year: 2005
  end-page: 959
  article-title: Whole‐body MRI at high field: technical limits and clinical potential
  publication-title: Eur Radiol
– volume: 3
  start-page: 83
  year: 2010
  end-page: 91
  article-title: Myocardial fat imaging
  publication-title: Curr Cardiovasc Imaging Rep
– volume: 61
  start-page: 1480
  year: 2009
  end-page: 1488
  article-title: B 1+ interferometry for the calibration of RF transmitter arrays
  publication-title: Magn Reson Med
– start-page: 497
  year: 2007
  end-page: 510
– volume: 200
  start-page: 161
  year: 2009
  end-page: 166
  article-title: Simple RF design for human functional and morphological cardiac imaging at 7Tesla
  publication-title: J Magn Reson
– volume: 25
  start-page: 27
  year: 2012
  end-page: 34
  article-title: 7 Tesla (T) human cardiovascular magnetic resonance imaging using FLASH and SSFP to assess cardiac function: validation against 1.5 T and 3 T
  publication-title: NMR Biomed
– volume: 55
  start-page: N23
  year: 2010
  article-title: The virtual family—development of surface‐based anatomical models of two adults and two children for dosimetric simulations
  publication-title: Phys Med Biol
– volume: 66
  start-page: 1488
  year: 2011
  end-page: 1497
  article-title: Design of a radiative surface coil array element at 7 T: the single‐side adapted dipole antenna
  publication-title: Magn Reson Med
– volume: 14
  start-page: 10
  year: 2002
  end-page: 19
  article-title: 2D SENSE for faster 3D MRI
  publication-title: Magn Reson Mater Phys
– volume: 62
  start-page: 1379
  year: 2009
  end-page: 1384
  article-title: Initial results on in vivo human coronary MR angiography at 7 T
  publication-title: Magn Reson Med
– volume: 47
  start-page: 982
  year: 2002
  end-page: 989
  article-title: Analysis of wave behavior in lossy dielectric samples at high field
  publication-title: Magn Reson Med
– year: 2011
  ident: e_1_2_5_19_2
  article-title: Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T
  publication-title: Eur J Radiol
– ident: e_1_2_5_33_2
  doi: 10.1002/mrm.22177
– ident: e_1_2_5_10_2
  doi: 10.1007/s00330-005-2678-0
– ident: e_1_2_5_28_2
  doi: 10.1088/0031-9155/55/2/N01
– ident: e_1_2_5_14_2
  doi: 10.1002/mrm.10137
– ident: e_1_2_5_31_2
  doi: 10.3813/AAA.918017
– volume: 14
  start-page: 10
  year: 2002
  ident: e_1_2_5_39_2
  article-title: 2D SENSE for faster 3D MRI
  publication-title: Magn Reson Mater Phys
  doi: 10.1007/BF02668182
– ident: e_1_2_5_15_2
  doi: 10.1007/978-0-387-49648-1_6
– ident: e_1_2_5_25_2
  doi: 10.1002/mrm.22886
– ident: e_1_2_5_40_2
  doi: 10.1002/mrm.20209
– ident: e_1_2_5_26_2
  doi: 10.1007/978-3-540-68879-2_44
– ident: e_1_2_5_29_2
  doi: 10.1016/j.jmr.2009.06.005
– ident: e_1_2_5_35_2
  doi: 10.1002/mrm.1910290221
– ident: e_1_2_5_41_2
  doi: 10.1016/j.acra.2005.01.012
– ident: e_1_2_5_38_2
  doi: 10.1002/mrm.21893
– ident: e_1_2_5_5_2
  doi: 10.1002/mrm.21895
– ident: e_1_2_5_2_2
  doi: 10.1016/j.jacc.2009.11.011
– ident: e_1_2_5_11_2
  doi: 10.1097/RLI.0b013e3181b4c15e
– ident: e_1_2_5_17_2
  doi: 10.1016/j.jmr.2009.06.014
– ident: e_1_2_5_24_2
– ident: e_1_2_5_9_2
  doi: 10.1148/radiol.100615
– ident: e_1_2_5_12_2
  doi: 10.1186/1532-429X-12-67
– ident: e_1_2_5_3_2
  doi: 10.1002/nbm.1708
– ident: e_1_2_5_18_2
  doi: 10.1002/jmri.22451
– ident: e_1_2_5_21_2
  doi: 10.1002/mrm.10597
– volume: 9
  start-page: 170
  year: 1961
  ident: e_1_2_5_27_2
  article-title: Beam‐forming matrix simplifies design of electronically scanned antennas
  publication-title: Electron Des
– ident: e_1_2_5_30_2
  doi: 10.1016/0730-725X(93)90078-R
– ident: e_1_2_5_6_2
  doi: 10.1002/mrm.22168
– ident: e_1_2_5_34_2
– start-page: 1
  year: 2010
  ident: e_1_2_5_8_2
  article-title: Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises
  publication-title: Eur Radiol
– ident: e_1_2_5_32_2
  doi: 10.1002/mrm.20713
– ident: e_1_2_5_13_2
  doi: 10.1002/mrm.20708
– year: 2010
  ident: e_1_2_5_20_2
  article-title: Experimental verification of enhanced B1 shim performance with a Z‐encoding RF coil array at 7 Tesla
  publication-title: In: Proc Joint Annual Meeting ISMRM‐ESMRMB.
– ident: e_1_2_5_36_2
  doi: 10.1002/jmri.20327
– ident: e_1_2_5_4_2
  doi: 10.1002/mrm.21751
– start-page: 1
  year: 2010
  ident: e_1_2_5_7_2
  article-title: Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study
  publication-title: Eur Radiol
– ident: e_1_2_5_22_2
  doi: 10.1002/mrm.20183
– ident: e_1_2_5_23_2
  doi: 10.1002/mrm.20923
– year: 2009
  ident: e_1_2_5_16_2
  article-title: 7T human in vivo cardiac imaging with an 8‐channel transmit/receive array
  publication-title: In: Proc 17th Annual Meeting ISMRM, Honolulu
– ident: e_1_2_5_37_2
  doi: 10.1007/s12410-010-9012-1
SSID ssj0009945
Score 2.3479023
Snippet Purpose: To design, evaluate, and apply a 2D 16‐channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T....
To design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. The cardiac...
To design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T.PURPOSETo...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 847
SubjectTerms cardiovascular MRI
Computer-Aided Design
Equipment Design
Equipment Failure Analysis
Heart - anatomy & histology
Humans
Image Enhancement - instrumentation
Magnetic Resonance Imaging, Cine - methods
Magnetics - instrumentation
parallel imaging
Reproducibility of Results
Sensitivity and Specificity
transceiver array
Transducers
ultrahigh field MRI
Title Two-Dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: Design, evaluation, and application
URI https://api.istex.fr/ark:/67375/WNG-ZQ9PXDCQ-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.23724
https://www.ncbi.nlm.nih.gov/pubmed/22706727
https://www.proquest.com/docview/1041140919
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UCuKL90u8MaIISrNNZiaZHfFFutZa2GLLFhdBwtwCa9usZLN4e_En-Bv9Jc6Z7GatFEHf8nAymcycy8ecM98BeNQ32Pwk1THXiYg5z2isqc1ihMbaenzgQreG4V6-c8h3x9l4DZ4v78K0_BDdgRtaRvDXaOBKzzZXpKEfTupJjzJBkQwUi7UQER2suKOkDB2KPX5gcdpPRMdNSjdXr56KRudwYT-fBTVPI9cQerYvwfvlpNuKk6PevNE98_UPPsf__avLcHGBScmLVomuwJqrrsL54SLrfg2-jT5Nf37_McBGAC2JB5lNvE93FcF7w_6TpMGQdzJp8NDHeQdKzHRyTFRdqy_Ew2JigiIaMjx4TVRDRC8ho2dkEMpHNsiKcnyDqMqS37Lq1-Fw--VoaydeNG2IjXcPPHbam7mT2npXypXkhiWlMT7oqZwmokxF6TEWK02mWJZYWlrXVzQ3TBnOyj7P2A1Yr6aVuwVEGu2szE0ukV3YKJlbdOCWpWmpLCsjeLLcvMIsGM2xscZx0XIx0wJXswirGcHDTvZjy-NxptTjoAOdiKqPsPJNZMXbvVfFu335ZjzY2i9EBA-WSlJ4e8Qki6rcdD7zI_IUScRSGcHNVnu60SgVIfMdwdOgA3-ZSbHrNyQ83f4X4TtwwSM62lYb3oX1pp67ex41Nfp-sI5fffkSiQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWglYAX7pdwNQIhUTXbxHbiNW-oS9mW7opWW7HixXJsR1raZlE2q1544RP4Rr4Ej5NmKaqQ4C0Pk5s9Mz7yjM9B6GVXg_hJnIUsi3jIWELCjJgkBGicGYcPrFdrGAzT_h7bGifjpjcHzsLU_BDthhtEhs_XEOCwIb22YA39clhOOoRywi6jZZD0hrjs7S7Yo4TwGsUOQdAw7ka8ZScla4t7z61HyzC0xxeBzfPY1S8-GzdqhdWZ5yyEnpP9zrzKOvr0D0bH__6vm-h6A0vx29qPbqFLtriNrgyawvsd9G10NP35_UcPtABqHg88m7i0bgsMR4fdO3EFq97hpIJ9H-tyKNbTyQFWZalOsEPGWHtf1Hiwu4lVhXknwqM3uOc7SFbxgnV8FavC4N8K63fR3sa70Xo_bHQbQu0yBAtt5iLdisy4bMqUYJpGudZu3VMpiXge89zBLJrrRNEkMiQ3tqtIqqnSjOZdltB7aKmYFvYBwkJn1ohUpwIIhrUSqYEcbmgc58rQPECvz2ZP6obUHLQ1DmRNx0wkjKb0oxmgF63t15rK40KrV94JWhNV7kPzG0_kp-F7-XlHfBz31nckD9DzMy-RLiShzqIKO53P3BNZDDxisQjQ_dp92qcRwn3xO0Ar3gn-8iVyy02Iv3r4L8bP0NX-aLAttzeHHx6haw7gkbr58DFaqsq5feJAVJU99aHyC4q7FqI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amzTxwv0SNsAIhARausR2Lka8oIWyDVptU6dVSMhybEcq29IpS8UGL_wEfiO_BNtpU4YmJHjLw4mT2Ofyxef4OwDPUmmbn4S5T_Mg8SmNsJ9jFfkWGufK4APtujX0-vHmPt0eRsMFeD07C9PwQ7QbbtYynL-2Bn6iivU5aejn42rUwSTB9Aos0ThI7a9Xtjcnj2LMtSg2AIL4YRokLTkpXp_feyEcLdmZPbsMa16Eri72dK_Dp9lbNyUnh51JnXfk1z8IHf_3s27AtSkoRW8aLboJC7q8Bcu9adr9NnwbfBn__P4js50AGhYPdDoyTl2XyB4cNo9EtY15x6Pa7vpo40GRHI-OkKgqcY4MLkbSaaJEvb0tJGqUdAI0eIUyVz-yhuac42tIlAr9lla_A_vdt4ONTX_atcGXxj9QX-fGzjXLlfGlVDAqSVBIaaKeiHGQFGFSGJBFChkJEgUKF0qnAseSCElJkdKI3IXFclzq-4CYzLVisYyZpReWgsXKenBFwrAQihQevJgtHpdTSnPbWeOIN2TMmNvZ5G42PXjayp40RB6XSj13OtCKiOrQlr4lET_ov-Mfd9nOMNvY5YkHT2ZKwo1B2iyLKPV4cmpGpKFlEQuZB_ca7WlHwzhxqW8PXjod-Mub8G2zIO7qwb8IP4blnazLP2z136_AVYPucFN5uAqLdTXRDw2CqvNHzlB-AVfCFVo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+sixteen+channel+transmit%2Freceive+coil+array+for+cardiac+MRI+at+7.0+T%3A+design%2C+evaluation%2C+and+application&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Thalhammer%2C+Christof&rft.au=Renz%2C+Wolfgang&rft.au=Winter%2C+Lukas&rft.au=Hezel%2C+Fabian&rft.date=2012-10-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=36&rft.issue=4&rft.spage=847&rft_id=info:doi/10.1002%2Fjmri.23724&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon