Artificial polydopamine interface for high‐performance ambient particulate matter removal at large velocity

Ambient particulate matter (PM) has been identified as the fourth‐ranking risk factor for mortality globally, and efficient ventilation filtration technologies are urgently needed. In most previous trials, however, high filtration efficiency was achieved either at a low face air velocity or at a lar...

Full description

Saved in:
Bibliographic Details
Published inCarbon neutralization (Print) Vol. 2; no. 2; pp. 245 - 257
Main Authors Tian, Enze, Liu, Jun, Gao, Yilun, Mo, Jinhan, Zhang, Shaolin, Bai, Xuedong, Liu, Kehai, Xu, Guiyin, Liu, Kaihui
Format Journal Article
LanguageEnglish
Published Wenzhou John Wiley & Sons, Inc 01.03.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ambient particulate matter (PM) has been identified as the fourth‐ranking risk factor for mortality globally, and efficient ventilation filtration technologies are urgently needed. In most previous trials, however, high filtration efficiency was achieved either at a low face air velocity or at a large pressure drop cost. Here, nine coarse filters with in situ polydopamine (PDA) coatings were reported, which significantly improved the efficiency‐pressure drop‐energy consumption performance. By optimizing the filter substrate and synergistically modulating the electric fields, the artificial PDA coarse filter showed a high filtration efficiency of 96.9% for 0.3–0.5 μm particles, and a low pressure drop of 9.2 Pa at 1 m/s air velocity. At an extremely large air velocity of 4 m/s, the filtration efficiency remained as high as 94.3% for 1–3 μm particles. This work offers the engineering application opportunity for high‐air‐velocity filtration, paving the way to a safe, healthy, and energy‐saving environment. Self‐assembled PDA increased the filtration efficiency and reduce the pressure drop (up to 54%) of the coarse substrate filters.
AbstractList Abstract Ambient particulate matter (PM) has been identified as the fourth‐ranking risk factor for mortality globally, and efficient ventilation filtration technologies are urgently needed. In most previous trials, however, high filtration efficiency was achieved either at a low face air velocity or at a large pressure drop cost. Here, nine coarse filters with in situ polydopamine (PDA) coatings were reported, which significantly improved the efficiency‐pressure drop‐energy consumption performance. By optimizing the filter substrate and synergistically modulating the electric fields, the artificial PDA coarse filter showed a high filtration efficiency of 96.9% for 0.3–0.5 μm particles, and a low pressure drop of 9.2 Pa at 1 m/s air velocity. At an extremely large air velocity of 4 m/s, the filtration efficiency remained as high as 94.3% for 1–3 μm particles. This work offers the engineering application opportunity for high‐air‐velocity filtration, paving the way to a safe, healthy, and energy‐saving environment.
Ambient particulate matter (PM) has been identified as the fourth‐ranking risk factor for mortality globally, and efficient ventilation filtration technologies are urgently needed. In most previous trials, however, high filtration efficiency was achieved either at a low face air velocity or at a large pressure drop cost. Here, nine coarse filters with in situ polydopamine (PDA) coatings were reported, which significantly improved the efficiency‐pressure drop‐energy consumption performance. By optimizing the filter substrate and synergistically modulating the electric fields, the artificial PDA coarse filter showed a high filtration efficiency of 96.9% for 0.3–0.5 μm particles, and a low pressure drop of 9.2 Pa at 1 m/s air velocity. At an extremely large air velocity of 4 m/s, the filtration efficiency remained as high as 94.3% for 1–3 μm particles. This work offers the engineering application opportunity for high‐air‐velocity filtration, paving the way to a safe, healthy, and energy‐saving environment. Self‐assembled PDA increased the filtration efficiency and reduce the pressure drop (up to 54%) of the coarse substrate filters.
Ambient particulate matter (PM) has been identified as the fourth‐ranking risk factor for mortality globally, and efficient ventilation filtration technologies are urgently needed. In most previous trials, however, high filtration efficiency was achieved either at a low face air velocity or at a large pressure drop cost. Here, nine coarse filters with in situ polydopamine (PDA) coatings were reported, which significantly improved the efficiency‐pressure drop‐energy consumption performance. By optimizing the filter substrate and synergistically modulating the electric fields, the artificial PDA coarse filter showed a high filtration efficiency of 96.9% for 0.3–0.5 μm particles, and a low pressure drop of 9.2 Pa at 1 m/s air velocity. At an extremely large air velocity of 4 m/s, the filtration efficiency remained as high as 94.3% for 1–3 μm particles. This work offers the engineering application opportunity for high‐air‐velocity filtration, paving the way to a safe, healthy, and energy‐saving environment.
Author Bai, Xuedong
Tian, Enze
Zhang, Shaolin
Mo, Jinhan
Liu, Kehai
Liu, Kaihui
Liu, Jun
Gao, Yilun
Xu, Guiyin
Author_xml – sequence: 1
  givenname: Enze
  surname: Tian
  fullname: Tian, Enze
  email: tianenze@sslab.org.cn
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  organization: Research Center for Advanced Information Materials (CAIM)
– sequence: 3
  givenname: Yilun
  surname: Gao
  fullname: Gao, Yilun
  organization: Beijing Key Laboratory of Indoor Air Quality Evaluation and Control
– sequence: 4
  givenname: Jinhan
  surname: Mo
  fullname: Mo, Jinhan
  organization: Beijing Key Laboratory of Indoor Air Quality Evaluation and Control
– sequence: 5
  givenname: Shaolin
  surname: Zhang
  fullname: Zhang, Shaolin
  organization: Research Center for Advanced Information Materials (CAIM)
– sequence: 6
  givenname: Xuedong
  surname: Bai
  fullname: Bai, Xuedong
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Kehai
  surname: Liu
  fullname: Liu, Kehai
  email: liukehai@sslab.org.cn
  organization: Songshan Lake Materials Laboratory
– sequence: 8
  givenname: Guiyin
  orcidid: 0000-0002-5959-4814
  surname: Xu
  fullname: Xu, Guiyin
  email: xuguiyin@dhu.edu.cn
  organization: Donghua University
– sequence: 9
  givenname: Kaihui
  surname: Liu
  fullname: Liu, Kaihui
  organization: Peking University
BookMark eNp1kc1qGzEQx0VIIY4T-gqCHnoodvS1Hzoa0zYGk1xyF7PakSOjXW216xTf-gh9xj5J5biEXnKa4c9vfjMw1-Syjz0S8pGzJWdM3Nk-iGUhLshMVKVeSCmKy__6K3I7jnuWSS2YVnJGulWavPPWQ6BDDMc2DtD5HqnvJ0wOLFIXE332u-c_v34POYqpgz7H0DUe-4kOkA32EGBC2sGUp2jCLr5kIUw0QNohfcEQrZ-ON-SDgzDi7b86J0_fvj6t7xfbx--b9Wq7sJLXYlEotK6teIONbNpCo2tVKVpb27IqrXStYI6L2tW6rEG5MheplS00h0o3Ss7J5qxtI-zNkHwH6WgiePMaxLQzr0cHNHXNBbaskpVqFIIAwIYplJoV1jW6yK5PZ9eQ4o8DjpPZx0Pq8_VGMs2E1Lw8UZ_PlE1xHBO6t62cmdNnzOkzphCZ_HImf_qAx_cws37Yikz_BQq2kvk
CitedBy_id crossref_primary_10_1016_j_device_2024_100323
crossref_primary_10_1016_j_seppur_2024_128291
crossref_primary_10_1007_s42765_024_00403_x
crossref_primary_10_1021_acsestengg_3c00525
Cites_doi 10.1002/adfm.201706680
10.1021/acsami.9b13162
10.1016/j.buildenv.2017.12.036
10.1016/j.scitotenv.2020.142317
10.4209/aaqr.2016.10.0466
10.1002/adfm.201909554
10.4236/jcc.2018.61012
10.1016/j.memsci.2021.119463
10.1016/S0140-6736(17)30505-6
10.1080/02786826.2015.1061649
10.1111/j.1600-0668.2007.00504.x
10.1021/acsestengg.1c00186
10.1016/j.polymer.2017.10.033
10.1016/j.enbuild.2019.01.021
10.1016/j.buildenv.2018.08.026
10.1021/acsnano.1c00346
10.1039/c2jm15665b
10.1177/002034835316701b13
10.1080/02786826.2017.1361014
10.1007/978-1-4615-3742-7_38
10.1002/smll.202102051
10.1126/science.1147241
10.1016/j.jaerosci.2017.02.004
10.1016/j.scs.2019.101569
10.1016/j.rser.2016.01.033
10.1021/acsami.8b07203
10.1021/acsabm.1c00367
10.1016/j.seppur.2019.116003
10.1080/10789669.2010.10390905
10.1016/j.scs.2021.103226
10.1021/acs.est.5b00974
10.1038/s41598-019-43127-4
10.1016/j.seppur.2019.116002
10.1109/94.879357
10.1021/acs.nanolett.7b01404
10.1016/j.seppur.2020.116886
10.1111/ina.12447
10.1016/j.seppur.2020.116548
10.3390/en11061448
10.1016/j.seppur.2014.02.017
10.1002/adma.202002361
10.3390/polym12102341
10.1016/j.buildenv.2019.106628
10.1080/02786826.2019.1667477
10.1016/S0140-6736(20)30752-2
10.1038/s41586-020-2271-3
10.1016/j.scitotenv.2015.07.003
10.1016/0004-6981(83)90121-X
10.1021/acsami.9b18083
10.1016/j.jhazmat.2018.02.043
ContentType Journal Article
Copyright 2023 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/cnl2.52
DatabaseName Wiley Online Library
Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
ProQuest Central China
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2769-3325
EndPage 257
ExternalDocumentID oai_doaj_org_article_8812ed07374b4ea2aaeb04e3905cfb95
10_1002_cnl2_52
CNL252
Genre article
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2022A1515110897
– fundername: China Postdoctoral Science Foundation
  funderid: 2022M723351
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  funderid: 2021B0301030002
– fundername: The special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control
  funderid: BZ0344KF21‐02
– fundername: Science and Technology Projects in Guangzhou
  funderid: 202102010470
– fundername: The Key R&D Program of Guangdong Province
  funderid: 2018B030327001; 2019B010931001; 2020B010189001
– fundername: National Natural Science Foundation of China
  funderid: 11888101; 51972069; 51991342; 52021006; 52025023; 92163206
GroupedDBID 0R~
24P
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
BENPR
CCPQU
EBS
GROUPED_DOAJ
PIMPY
WIN
AAYXX
CITATION
ABUWG
AZQEC
COVID
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3182-54ecfd71beb3bd59efd462dc8c676c3fd20f128f8968a4f6968394c591a79b43
IEDL.DBID 24P
ISSN 2769-3325
2769-3333
IngestDate Tue Oct 22 15:14:51 EDT 2024
Thu Oct 10 22:26:32 EDT 2024
Wed Sep 11 14:17:07 EDT 2024
Sat Aug 24 01:07:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3182-54ecfd71beb3bd59efd462dc8c676c3fd20f128f8968a4f6968394c591a79b43
Notes Enze Tian and Jun Liu contributed equally to this study.
ORCID 0000-0002-5959-4814
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnl2.52
PQID 3090239165
PQPubID 6860417
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_8812ed07374b4ea2aaeb04e3905cfb95
proquest_journals_3090239165
crossref_primary_10_1002_cnl2_52
wiley_primary_10_1002_cnl2_52_CNL252
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace Wenzhou
PublicationPlace_xml – name: Wenzhou
PublicationTitle Carbon neutralization (Print)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 6
2018; 144
2018; 28
2019; 9
2010; 16
2017; 1
2021; 4
2019; 53
2019; 11
2020; 582
2008; 18
2000; 7
2020; 12
2017; 131
2020; 32
2021; 1
1983; 17
2021; 74
2016; 59
2019; 186
2018; 351
2018; 131
2017; 51
2021; 15
2015; 49
2021; 751
2020; 30
2020; 250
2015; 533
2020; 396
2017; 17
2021; 17
2020; 170
2021; 635
2019; 49
2020; 239
2020; 233
1991; 10B
2018; 11
2007; 318
2018; 10
2017; 389
2012; 22
1953; 167
2014; 126
2017; 107
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Tian E. (e_1_2_7_29_1) 2020; 12
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
Jokisch S. (e_1_2_7_47_1) 2017; 1
Zoughi R. (e_1_2_7_39_1) 1991
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 15
  start-page: 8171
  year: 2021
  publication-title: ACS Nano
– volume: 6
  start-page: 112
  year: 2017
  publication-title: J. Comput. Commun.
– volume: 49
  year: 2019
  publication-title: Sustain. Cities Soc.
– volume: 751
  year: 2021
  publication-title: Sci. Total Environ
– volume: 533
  start-page: 266
  year: 2015
  publication-title: Sci. Total Environ
– volume: 17
  start-page: 1917
  year: 2017
  publication-title: Aerosol Air Qual. Res.
– volume: 389
  start-page: 1907
  year: 2017
  publication-title: The Lancet
– volume: 12
  start-page: 29383
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 318
  start-page: 426
  year: 2007
  publication-title: Science
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 1409
  year: 2017
  publication-title: Aerosol. Sci. Technol.
– volume: 351
  start-page: 29
  year: 2018
  publication-title: J. Hazard. Mater.
– volume: 233
  year: 2020
  publication-title: Sep. Purif. Technol.
– volume: 22
  start-page: 5951
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 396
  start-page: 1223
  year: 2020
  publication-title: Lancet
– volume: 1
  year: 2017
  publication-title: Syst
– volume: 53
  start-page: 1441
  year: 2019
  publication-title: Aerosol. Sci. Technol.
– volume: 9
  start-page: 7015
  year: 2019
  publication-title: Sci. Rep.
– volume: 59
  start-page: 895
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 144
  start-page: 419
  year: 2018
  publication-title: Build. Environ.
– volume: 11
  start-page: 1448
  year: 2018
  publication-title: Energies
– volume: 28
  start-page: 360
  year: 2018
  publication-title: Indoor Air
– volume: 635
  year: 2021
  publication-title: J. Membr. Sci.
– volume: 17
  start-page: 4339
  year: 2017
  publication-title: Nano Lett.
– volume: 10B
  start-page: 1431
  year: 1991
– volume: 582
  start-page: 557
  year: 2020
  publication-title: Nature
– volume: 186
  start-page: 276
  year: 2019
  publication-title: Energy Build.
– volume: 107
  start-page: 31
  year: 2017
  publication-title: J. Aerosol Sci.
– volume: 17
  start-page: 477
  year: 1983
  publication-title: Atmos. Environ.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 49
  start-page: 6891
  year: 2015
  publication-title: Environ. Sci. Technol.
– volume: 131
  start-page: 143
  year: 2017
  publication-title: Polymer
– volume: 18
  start-page: 51
  year: 2008
  publication-title: Indoor Air
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 126
  start-page: 44
  year: 2014
  publication-title: Sep. Purif. Technol.
– volume: 74
  year: 2021
  publication-title: Sustain. Cities Soc.
– volume: 170
  year: 2020
  publication-title: Build. Environ.
– volume: 49
  start-page: 666
  year: 2015
  publication-title: Aerosol. Sci. Technol.
– volume: 12
  start-page: 2341
  year: 2020
  publication-title: Polymers
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 239
  year: 2020
  publication-title: Sep. Purif. Technol.
– volume: 4
  start-page: 5180
  year: 2021
  publication-title: ACS Applied Bio Materials
– volume: 1
  start-page: 1449
  year: 2021
  publication-title: ACS ES&T Engg
– volume: 131
  start-page: 210
  year: 2018
  publication-title: Build. Environ.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 167
  start-page: 185
  year: 1953
  publication-title: Proc. Inst. Mech. Eng.
– volume: 250
  year: 2020
  publication-title: Sep. Purif. Technol.
– volume: 16
  start-page: 273
  year: 2010
  publication-title: HVAC&R Res
– volume: 7
  start-page: 615
  year: 2000
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.201706680
– ident: e_1_2_7_15_1
  doi: 10.1021/acsami.9b13162
– ident: e_1_2_7_32_1
  doi: 10.1016/j.buildenv.2017.12.036
– ident: e_1_2_7_5_1
  doi: 10.1016/j.scitotenv.2020.142317
– ident: e_1_2_7_21_1
  doi: 10.4209/aaqr.2016.10.0466
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.201909554
– ident: e_1_2_7_37_1
  doi: 10.4236/jcc.2018.61012
– ident: e_1_2_7_11_1
  doi: 10.1016/j.memsci.2021.119463
– ident: e_1_2_7_2_1
  doi: 10.1016/S0140-6736(17)30505-6
– ident: e_1_2_7_16_1
  doi: 10.1080/02786826.2015.1061649
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1600-0668.2007.00504.x
– ident: e_1_2_7_30_1
  doi: 10.1021/acsestengg.1c00186
– ident: e_1_2_7_48_1
  doi: 10.1016/j.polymer.2017.10.033
– ident: e_1_2_7_28_1
  doi: 10.1016/j.enbuild.2019.01.021
– ident: e_1_2_7_46_1
  doi: 10.1016/j.buildenv.2018.08.026
– ident: e_1_2_7_53_1
  doi: 10.1021/acsnano.1c00346
– ident: e_1_2_7_36_1
  doi: 10.1039/c2jm15665b
– ident: e_1_2_7_44_1
  doi: 10.1177/002034835316701b13
– ident: e_1_2_7_43_1
  doi: 10.1080/02786826.2017.1361014
– start-page: 1431
  volume-title: Review of Progress in Quantitative Nondestructive Evaluation
  year: 1991
  ident: e_1_2_7_39_1
  doi: 10.1007/978-1-4615-3742-7_38
  contributor:
    fullname: Zoughi R.
– ident: e_1_2_7_31_1
  doi: 10.1002/smll.202102051
– ident: e_1_2_7_35_1
  doi: 10.1126/science.1147241
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jaerosci.2017.02.004
– ident: e_1_2_7_27_1
  doi: 10.1016/j.scs.2019.101569
– ident: e_1_2_7_6_1
  doi: 10.1016/j.rser.2016.01.033
– ident: e_1_2_7_41_1
  doi: 10.1021/acsami.8b07203
– ident: e_1_2_7_13_1
  doi: 10.1021/acsabm.1c00367
– ident: e_1_2_7_50_1
  doi: 10.1016/j.seppur.2019.116003
– ident: e_1_2_7_8_1
  doi: 10.1080/10789669.2010.10390905
– ident: e_1_2_7_22_1
  doi: 10.1016/j.scs.2021.103226
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.est.5b00974
– volume: 12
  start-page: 29383
  year: 2020
  ident: e_1_2_7_29_1
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Tian E.
– ident: e_1_2_7_18_1
  doi: 10.1038/s41598-019-43127-4
– ident: e_1_2_7_7_1
  doi: 10.1016/j.seppur.2019.116002
– ident: e_1_2_7_40_1
  doi: 10.1109/94.879357
– volume: 1
  year: 2017
  ident: e_1_2_7_47_1
  publication-title: Syst
  contributor:
    fullname: Jokisch S.
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.nanolett.7b01404
– ident: e_1_2_7_14_1
  doi: 10.1016/j.seppur.2020.116886
– ident: e_1_2_7_23_1
  doi: 10.1111/ina.12447
– ident: e_1_2_7_51_1
  doi: 10.1016/j.seppur.2020.116548
– ident: e_1_2_7_38_1
  doi: 10.3390/en11061448
– ident: e_1_2_7_45_1
  doi: 10.1016/j.seppur.2014.02.017
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202002361
– ident: e_1_2_7_17_1
  doi: 10.3390/polym12102341
– ident: e_1_2_7_34_1
  doi: 10.1016/j.buildenv.2019.106628
– ident: e_1_2_7_49_1
  doi: 10.1080/02786826.2019.1667477
– ident: e_1_2_7_3_1
  doi: 10.1016/S0140-6736(20)30752-2
– ident: e_1_2_7_4_1
  doi: 10.1038/s41586-020-2271-3
– ident: e_1_2_7_52_1
  doi: 10.1016/j.scitotenv.2015.07.003
– ident: e_1_2_7_42_1
  doi: 10.1016/0004-6981(83)90121-X
– ident: e_1_2_7_33_1
  doi: 10.1021/acsami.9b18083
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jhazmat.2018.02.043
SSID ssj0002920943
Score 2.2874856
Snippet Ambient particulate matter (PM) has been identified as the fourth‐ranking risk factor for mortality globally, and efficient ventilation filtration technologies...
Abstract Ambient particulate matter (PM) has been identified as the fourth‐ranking risk factor for mortality globally, and efficient ventilation filtration...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 245
SubjectTerms air filtration
Charged particles
Dielectric properties
Efficiency
Electric fields
electrostatic
Energy consumption
HVAC
Interfaces
large velocity
low pressure drop
particulate matter
Polyethylene terephthalate
Polymerization
Protective coatings
Velocity
Ventilation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ29TsMwEMct1AkGxKcoFOSha2hqO048QkVVIehUpG6WvzI1bVTKwMYj8Iw8CXdxC2VALKy5xbmzc_9Tzr8jpNuXLs1trhLJg09A__ukEJlKRIBPn0kLlTZ_zx_HcvQk7qfZdGvUF_aERTxwdFyvgAwUPGzEXFgRDDMm2FQEKNUzV1oV6aWp2iqm8BuMM5iU4PGWLFJGe24-Y9cZ-5F-Gkr_D2m5LVCbDDM8IPtraUhv4pIOyU6YH5G9LWDgManQGJkPtF7MXj2UvBWYKVIflqVxgYIIpcgg_nh7r78vBVBTWbz5SOvmjXFmV6BVw9aky1AtYL9Rs6Iz7Aun2EbkQJ2fkMnwbjIYJeuBCYmDo4kzDYIrfd63UCFbn6lQeiGZd4WTuXS89CwtIR-VhZKFESVycbgSLlN9kysr-ClpzRfzcEao54j1Ec5yY0QhsYSGAATQdsbIlIs2oRs36jpiMXQEIDONntYZa5NbdO-XGTnWzQOIrl5HV_8V3TbpbIKj14frWXPsJcULw2DuNgH7bQ16MH5gGTv_j6VckF0cNR_7zzqktVq-hEsQJCt71ey9T7V-4Hs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7BcoEDgpaKpRT5wDUl61fiUwWrRahqVwiBxM3yK71sNmF3OXDrT-hv7C-px8nyONAcY8my7Bn7G3vm-wBOR9LlhS1UJlnwWcT_Piu5UBkPceszeany9Hr-cyqv7vj3e3HfX7gt-7TK9Z6YNmrfOLwjP2OYQIhVouJb-5ChahS-rvYSGpuwRWOkQAewdTGZXt8837KgFlOXOkcLqTIWv65yFplHz9x8Rr8K-uZISsz9b-Dma9CaTp3LPdjt4SI579Z3HzbC_APsvCIR_Ag1NnY8EKRtZk8-hsF1bCbIBLGojAskAlOCvMR_f_9pXwoFiKktVkOSNpkP6ngFUie-TbIIdRNtkJgVmWGuOMHUIhcR-wHcXk5ux1dZL6KQueiuqHMQXOWLkY1Rs_VChcpzSb0rnSykY5WneRXPqKpUsjS8Qq4cprgTamQKZTn7BIN5Mw-HQDxDqh_uLDOGlxLDalbwEPGeMTJnfAhkPY267agydEeKTDXOtBZ0CBc4vc_NyG2dfjSLX7p3FV1GzBF86tzyYKgxweY8MJULV1klhnC8XhzdO9xSv5jHEE7Tgr03Bj2e_qCCHv2_l8-wjcLyXbbZMQxWi8fwJcKPlT3pbewfas3aww
  priority: 102
  providerName: ProQuest
Title Artificial polydopamine interface for high‐performance ambient particulate matter removal at large velocity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnl2.52
https://www.proquest.com/docview/3090239165
https://doaj.org/article/8812ed07374b4ea2aaeb04e3905cfb95
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQLDAgnqI8Kg9dA6lfiUcoVAVBqRAgNsuvsDRtVcrAxk_gN_JL8DmhlAGJKVIujqLznf2dc_cdQq22sGlmMpkI6l0S8L9LcsZlwnxY-nSayzT-Pb_pi94Du3riTwutvip-iPmBG3hGXK_BwbV5OfkhDbWjITnmYfVdAb4YMG7CBvPjFWjCVOXMkUzIhFLCq5JZGH1Sj_21F0XK_l84cxGtxu2mu4HWa5yIT6uJ3URLfrSF1hbYA7dRCcKKAAJPxsM3F-LfMogxUEBMC209DogUAyHx5_vH5KdCAOvSQBkknkS7gQZeHpeRaBNPfTkOxof1DA8hSRxDTpENUH0H3Xcv7ju9pO6ekNjgp9DgwNvCZW0TwmXjuPSFY4I4m1uRCUsLR9IibE5FLkWuWQEkOVQyy2VbZ9IwuouWR-OR30PYUeD4YdZQrVkuIJ6mGfMB6GktUsoaCH-rUU0qjgxVsSETBZpWnDTQGah3LgZS63hjPH1WtY-oPIAN7-LLDfOaaO1NyjyVKbeFkbyBDr8nR9We9qIoJJZC9XAQt-KE_fUNqtO_Jpzs_--xA7QKneWrdLNDtDybvvqjgD9mphktrYlWzi76g7tw7dw-Xp43YzT_BcOg3GA
link.rule.ids 315,783,787,867,2109,11576,21402,27938,27939,33758,38530,43819,43909,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwEN6B9gAceHcaWkCHXp06etk6MTTQSSENl8D0ptHLHIhjk6YHOPET-I38ErSy0wczcMBHaUYjz652v5V2vwU4GEmXF7ZQmWTBZxH_-6zkQmU8RNNn8lLl6fX8dCYnH_m7M3HWX7id92mVG5uYDLVvHN6RHzJMIMQqUfGq_Zph1yh8Xe1baNyG7ehY86jV2-MPn07eXN6yYC-mLnWOFlJlLH5d5Swyjx665YIOBb3hkhJz_w24eR20Jq9z_AD0Zr9dssmX4cXaDt33P6gc__-HHsL9HpCS150GPYJbYfkY7l2jKXwCNU52TBOkbRbffAy06zhNkGtiVRkXSIS-BJmPf_342V6VIhBTW6y3JG1SUOwUFkidGD3JKtRN1HJi1mSB2egEk5dcjAmewvz47Xw8yfo2DZmLBgE7KQRX-WJkY1xuvVCh8lxS70onC-lY5WleRS9YlUqWhlfIxsMUd0KNTKEsZzuwtWyWYReIZ0gmxJ1lxvBSYuDOCh4iojRG5owPgGwEpduOjEN3tMtUoyy1oAM4QgFeTiN7dhpoVp91fxh1GVFN8Glxy4OhxgSb8xA1SLjKKjGA_Y3IdH-kz_WVvAZwkFTib3vQ49mUCvrs36u8hDuT-elUT09m7_fgLrax73Lb9mFrvboIzyPYWdsXvUb_BqtqAKo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07b9swEMeJwgGKZgiSpkWcuimHrEpkviSOSRrDbRPDgwNkI_jsYsmC4wzd-hH6GftJyqMUP4YAXXWiIJA88k_p7ncInQ-FzQtTyExQ77Ko_11WMi4z5uPSp_NS5unv-f1EjB_Y90f-uFXqq-VDrD-4gWek9RocvHHhcgMNtfWcXPC4-u4xEOEAdWbT9ecVKMLUxsyRQsiMUsLblFlofdm13dmLErJ_R2duq9W03YwO0UGnE_FVO7BH6I2v36P9LXrgMarA2AIgcLOY_3Lx_FtFMwYExDJo63FUpBiAxH9__2k2GQJYVwbSIHGT5g0U8PK4SqBNvPTVIk4-rFd4DkHiGGKKbJTqH9BsdDu7GWdd9YTMRj-FAgfeBlcMTTwuG8elD44J4mxpRSEsDY7kIW5OoZSi1CwAJIdKZrkc6kIaRj-iXr2o_QnCjgLjh1lDtWalgPM0LZiPQk9rkVPWR_ilG1XTMjJUS0MmCnpacdJH19C9azNArdOFxfKn6nxElVFseJcebpjXRGtvcuapzLkNRvI-GrwMjuo87UlRCCyF7OFoPk8D9to7qJvJHeHk9P9u-4LeTr-O1N23yY9P6B0UmW8jzwaot1o--89RiqzMWZp0_wB1TNrN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+polydopamine+interface+for+high%E2%80%90performance+ambient+particulate+matter+removal+at+large+velocity&rft.jtitle=Carbon+neutralization+%28Print%29&rft.au=Tian%2C+Enze&rft.au=Liu%2C+Jun&rft.au=Gao%2C+Yilun&rft.au=Mo%2C+Jinhan&rft.date=2023-03-01&rft.issn=2769-3325&rft.eissn=2769-3325&rft.volume=2&rft.issue=2&rft.spage=245&rft.epage=257&rft_id=info:doi/10.1002%2Fcnl2.52&rft.externalDBID=10.1002%252Fcnl2.52&rft.externalDocID=CNL252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2769-3325&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2769-3325&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2769-3325&client=summon