Numerical experiments investigating the influence of drag on trajectory patterns of floating macroalgae

Ocean currents are a crucial means of dispersing natural and human-made materials on the ocean surface. Macroalgae are among the most conspicuous natural dispersers, often called the ‘tumbleweeds of the ocean.’ Despite numerous studies on the subject, the relative influence of wind and surface curre...

Full description

Saved in:
Bibliographic Details
Published inBotanica marina Vol. 67; no. 5; pp. 449 - 468
Main Authors Coppin, Ross, Rautenbach, Christo, Smit, Albertus J.
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 28.10.2024
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN0006-8055
1437-4323
DOI10.1515/bot-2023-0059

Cover

Loading…
Abstract Ocean currents are a crucial means of dispersing natural and human-made materials on the ocean surface. Macroalgae are among the most conspicuous natural dispersers, often called the ‘tumbleweeds of the ocean.’ Despite numerous studies on the subject, the relative influence of wind and surface currents on the trajectory of macroalgal dispersal remains uncertain. Previous studies have focused on kelp rafts of varying sizes, making it challenging to determine the impact of wind versus currents. These studies have also disregarded the macroalgae’s drag characteristics and surface area, which have been shown to impact the trajectory and accumulation of floating flotsam. This numerical study aims to shed light on the relative influence of wind and currents and the role of drag in determining the course and accumulation of macroalgae. By comparing simulations of virtual kelp ‘particles’ that incorporate drag and those without, this study focused on solitary kelp plants and considered the impact of morphological characteristics, flow-field combinations, and the presence of Stokes drift. Our results show that virtual kelp particles generally followed ocean currents, but the inclusion of drag caused deviations from purely Lagrangian particles’ trajectories and sheds light on the complex interplay of factors affecting macroalgal dispersal in the ocean.
AbstractList Ocean currents are a crucial means of dispersing natural and human-made materials on the ocean surface. Macroalgae are among the most conspicuous natural dispersers, often called the ‘tumbleweeds of the ocean.’ Despite numerous studies on the subject, the relative influence of wind and surface currents on the trajectory of macroalgal dispersal remains uncertain. Previous studies have focused on kelp rafts of varying sizes, making it challenging to determine the impact of wind versus currents. These studies have also disregarded the macroalgae’s drag characteristics and surface area, which have been shown to impact the trajectory and accumulation of floating flotsam. This numerical study aims to shed light on the relative influence of wind and currents and the role of drag in determining the course and accumulation of macroalgae. By comparing simulations of virtual kelp ‘particles’ that incorporate drag and those without, this study focused on solitary kelp plants and considered the impact of morphological characteristics, flow-field combinations, and the presence of Stokes drift. Our results show that virtual kelp particles generally followed ocean currents, but the inclusion of drag caused deviations from purely Lagrangian particles’ trajectories and sheds light on the complex interplay of factors affecting macroalgal dispersal in the ocean.
Ocean currents are a crucial means of dispersing natural and human-made materials on the ocean surface. Macroalgae are among the most conspicuous natural dispersers, often called the ‘tumbleweeds of the ocean.’ Despite numerous studies on the subject, the relative influence of wind and surface currents on the trajectory of macroalgal dispersal remains uncertain. Previous studies have focused on kelp rafts of varying sizes, making it challenging to determine the impact of wind versus currents. These studies have also disregarded the macroalgae’s drag characteristics and surface area, which have been shown to impact the trajectory and accumulation of floating flotsam. This numerical study aims to shed light on the relative influence of wind and currents and the role of drag in determining the course and accumulation of macroalgae. By comparing simulations of virtual kelp ‘particles’ that incorporate drag and those without, this study focused on solitary kelp plants and considered the impact of morphological characteristics, flow-field combinations, and the presence of Stokes drift. Our results show that virtual kelp particles generally followed ocean currents, but the inclusion of drag caused deviations from purely Lagrangian particles’ trajectories and sheds light on the complex interplay of factors affecting macroalgal dispersal in the ocean.
Author Rautenbach, Christo
Coppin, Ross
Smit, Albertus J.
Author_xml – sequence: 1
  givenname: Ross
  orcidid: 0000-0002-6947-3936
  surname: Coppin
  fullname: Coppin, Ross
  email: coppinross@gmail.com
  organization: Department of Biodiversity and Conservation Biology, 56390 University of the Western Cape , Private Bag X17, Bellville 7535, South Africa
– sequence: 2
  givenname: Christo
  orcidid: 0000-0001-6703-8386
  surname: Rautenbach
  fullname: Rautenbach, Christo
  email: christo.rautenbach@niwa.co.nz
  organization: National Institute of Water and Atmospheric Research, Gate 10 Silverdale Road Hillcrest, 3216, Auckland, New Zealand
– sequence: 3
  givenname: Albertus J.
  orcidid: 0000-0002-3799-6126
  surname: Smit
  fullname: Smit, Albertus J.
  email: ajsmit@uwc.ac.za
  organization: South African Environmental Observation Network, Elwandle Coastal Node, Port Elizabeth, South Africa
BookMark eNp1kM1LxDAQxYOs4O7q0XvAczWTNP3Akyx-gehFzyXNTmqXbrKmqbr_vSkVBNFThsx7M_N-CzKzziIhp8DOQYK8qF1IOOMiYUyWB2QOqciTVHAxI3PGWJYUTMojsuj7DWMgGZdz0jwOW_StVh3Fz12stmhDT1v7jn1oGxVa29DwivHHdANajdQZuvaqoc7S4NUGdXB-T3cqBPS2H9umc5Nxq7R3qmsUHpNDo7oeT77fJXm5uX5e3SUPT7f3q6uHRAvIQ2LqQuQiL1IwXIMAiVrxFMtCZ5qlAmvFuVnXvGZFnWvIgEtWMCOE4iB0IcWSnE1zd969DTFDtXGDt3FlJQBA5mUmIaqSSRXP63uPptrF5MrvK2DVyLKKLKuRZTWyjHrxS6_bECM6Gwm03b-uy8n1obrIZo2NH_ax-DnpT1-WyzQtxRe3Ko8O
CitedBy_id crossref_primary_10_1515_bot_2023_0061
crossref_primary_10_1515_bot_2024_0061
Cites_doi 10.1098/rspb.2010.1117
10.1016/j.pocean.2009.07.046
10.1016/j.ecolmodel.2020.109130
10.3354/meps11874
10.1126/science.aaw7912
10.1038/s41558-018-0209-7
10.1515/botm.1982.25.8.391
10.5194/gmd-12-3571-2019
10.1016/j.jmarsys.2017.09.003
10.1080/00071619200650271
10.1242/jeb.200.24.3141
10.1007/978-3-642-80353-6_9
10.1063/1.5139045
10.1016/j.jmarsys.2019.03.008
10.1016/j.aquaculture.2006.02.066
10.1016/S0198-0149(12)80023-9
10.1007/s00227-016-2962-3
10.1016/S0278-4343(99)00092-8
10.1073/pnas.1718453115
10.3354/meps13825
10.1002/2016GL071443
10.1016/j.jembe.2020.151398
10.1046/j.1466-822X.2001.00259.x
10.3354/meps12646
10.1175/2010JPO4382.1
10.2216/16-93.1
10.1016/0022-0981(89)90166-4
10.1029/2018GL081489
10.1007/s10811-017-1321-1
10.1016/0141-1187(93)90036-W
10.1242/jeb.200.24.3165
10.1029/2020GL089874
10.1023/A:1007965506873
10.1029/2002GL015718
10.1357/0022240963213763
10.1098/rsbl.2012.0821
10.1016/j.ocemod.2017.11.008
10.1016/S0022-0981(00)00255-0
10.1002/2016JC012247
10.3354/meps195101
10.1029/2019GL086768
10.1016/j.envsoft.2007.09.010
10.1242/jeb.067587
10.3389/fmars.2020.00567
10.1098/rsta.2017.0104
10.1016/j.pocean.2009.07.029
10.1007/BF02430432
10.4319/lo.2011.56.5.1751
10.3354/meps09581
10.1016/0022-0981(94)90069-8
10.1215/21573689-1573372
10.1029/2004JC002529
10.1016/j.apor.2011.01.005
10.1146/annurev.es.16.110185.001243
10.3354/meps07419
10.1175/1520-0485(1988)018<1570:TROTAC>2.0.CO;2
10.1016/j.pocean.2018.06.009
10.3390/d10010011
10.5194/os-3-129-2007
10.1007/s00227-012-1995-5
10.1242/jeb.205.10.1355
10.1175/JPO-D-14-0119.1
10.2307/j.ctvzsmfc6
10.1007/s00227-013-2186-8
ContentType Journal Article
Copyright 2024 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2024 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
7QO
7SN
7T7
7TN
8FD
C1K
F1W
FR3
M7N
P64
RC3
DOI 10.1515/bot-2023-0059
DatabaseName CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Oceanic Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Genetics Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1437-4323
EndPage 468
ExternalDocumentID 10_1515_bot_2023_0059
10_1515_bot_2023_0059675449
GroupedDBID -~X
0R~
0~D
23N
4.4
5GY
AAAEU
AAFPC
AAGVJ
AAHBH
AAKRG
AALGR
AAOWA
AAPJK
AAQCX
AASQH
AAXCG
AAXMT
ABABW
ABAOT
ABAQN
ABDRH
ABFKT
ABIQR
ABJNI
ABLVI
ABMIY
ABPLS
ABPPZ
ABRDF
ABUVI
ABWLS
ABXMZ
ABYBW
ACDEB
ACEFL
ACGFS
ACIWK
ACPMA
ACPRK
ACUND
ACYCL
ACZBO
ADEQT
ADGQD
ADGYE
ADNPR
ADOZN
AECWL
AEGVQ
AEICA
AEJTT
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFQUK
AFRAH
AFYRI
AGBEV
AGWTP
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AJPIC
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ASYPN
BAKPI
BBCWN
BBDJO
BCIFA
CS3
DSRVY
DU5
EBS
HZ~
IY9
KDIRW
O9-
P2P
QD8
RDG
SA.
SLJYH
UK5
UPT
WTRAM
~02
AAYXX
CITATION
7QO
7SN
7T7
7TN
8FD
C1K
DA2
ECGQY
F1W
FR3
M7N
P64
RC3
ID FETCH-LOGICAL-c317t-fb83737841f2c1315eca24e98c6c043eba22fdb2b08b7c16125080f33a213c853
ISSN 0006-8055
IngestDate Mon Aug 25 17:41:17 EDT 2025
Thu Apr 24 23:04:13 EDT 2025
Tue Jul 01 03:47:16 EDT 2025
Sat Sep 06 16:58:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-fb83737841f2c1315eca24e98c6c043eba22fdb2b08b7c16125080f33a213c853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6947-3936
0000-0002-3799-6126
0000-0001-6703-8386
PQID 3111579651
PQPubID 2045213
PageCount 20
ParticipantIDs proquest_journals_3111579651
crossref_primary_10_1515_bot_2023_0059
crossref_citationtrail_10_1515_bot_2023_0059
walterdegruyter_journals_10_1515_bot_2023_0059675449
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-28
PublicationDateYYYYMMDD 2024-10-28
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-28
  day: 28
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Botanica marina
PublicationYear 2024
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2024100116525265199_j_bot-2023-0059_ref_019
2024100116525265199_j_bot-2023-0059_ref_015
2024100116525265199_j_bot-2023-0059_ref_059
2024100116525265199_j_bot-2023-0059_ref_016
2024100116525265199_j_bot-2023-0059_ref_017
2024100116525265199_j_bot-2023-0059_ref_018
2024100116525265199_j_bot-2023-0059_ref_011
2024100116525265199_j_bot-2023-0059_ref_055
2024100116525265199_j_bot-2023-0059_ref_012
2024100116525265199_j_bot-2023-0059_ref_056
2024100116525265199_j_bot-2023-0059_ref_013
2024100116525265199_j_bot-2023-0059_ref_057
2024100116525265199_j_bot-2023-0059_ref_014
2024100116525265199_j_bot-2023-0059_ref_058
2024100116525265199_j_bot-2023-0059_ref_051
2024100116525265199_j_bot-2023-0059_ref_052
2024100116525265199_j_bot-2023-0059_ref_053
2024100116525265199_j_bot-2023-0059_ref_010
2024100116525265199_j_bot-2023-0059_ref_054
2024100116525265199_j_bot-2023-0059_ref_050
2024100116525265199_j_bot-2023-0059_ref_026
2024100116525265199_j_bot-2023-0059_ref_027
2024100116525265199_j_bot-2023-0059_ref_028
2024100116525265199_j_bot-2023-0059_ref_029
2024100116525265199_j_bot-2023-0059_ref_022
2024100116525265199_j_bot-2023-0059_ref_066
2024100116525265199_j_bot-2023-0059_ref_023
2024100116525265199_j_bot-2023-0059_ref_067
2024100116525265199_j_bot-2023-0059_ref_024
2024100116525265199_j_bot-2023-0059_ref_068
2024100116525265199_j_bot-2023-0059_ref_025
2024100116525265199_j_bot-2023-0059_ref_069
2024100116525265199_j_bot-2023-0059_ref_062
2024100116525265199_j_bot-2023-0059_ref_063
2024100116525265199_j_bot-2023-0059_ref_020
2024100116525265199_j_bot-2023-0059_ref_021
2024100116525265199_j_bot-2023-0059_ref_065
2024100116525265199_j_bot-2023-0059_ref_060
2024100116525265199_j_bot-2023-0059_ref_061
2024100116525265199_j_bot-2023-0059_ref_037
2024100116525265199_j_bot-2023-0059_ref_038
2024100116525265199_j_bot-2023-0059_ref_039
2024100116525265199_j_bot-2023-0059_ref_033
2024100116525265199_j_bot-2023-0059_ref_035
2024100116525265199_j_bot-2023-0059_ref_036
2024100116525265199_j_bot-2023-0059_ref_073
2024100116525265199_j_bot-2023-0059_ref_030
2024100116525265199_j_bot-2023-0059_ref_074
2024100116525265199_j_bot-2023-0059_ref_031
2024100116525265199_j_bot-2023-0059_ref_032
2024100116525265199_j_bot-2023-0059_ref_070
2024100116525265199_j_bot-2023-0059_ref_071
2024100116525265199_j_bot-2023-0059_ref_072
2024100116525265199_j_bot-2023-0059_ref_008
2024100116525265199_j_bot-2023-0059_ref_004
2024100116525265199_j_bot-2023-0059_ref_048
2024100116525265199_j_bot-2023-0059_ref_005
2024100116525265199_j_bot-2023-0059_ref_049
2024100116525265199_j_bot-2023-0059_ref_007
2024100116525265199_j_bot-2023-0059_ref_044
2024100116525265199_j_bot-2023-0059_ref_001
2024100116525265199_j_bot-2023-0059_ref_045
2024100116525265199_j_bot-2023-0059_ref_002
2024100116525265199_j_bot-2023-0059_ref_046
2024100116525265199_j_bot-2023-0059_ref_003
2024100116525265199_j_bot-2023-0059_ref_047
2024100116525265199_j_bot-2023-0059_ref_040
2024100116525265199_j_bot-2023-0059_ref_041
2024100116525265199_j_bot-2023-0059_ref_042
2024100116525265199_j_bot-2023-0059_ref_043
References_xml – ident: 2024100116525265199_j_bot-2023-0059_ref_025
  doi: 10.1098/rspb.2010.1117
– ident: 2024100116525265199_j_bot-2023-0059_ref_039
  doi: 10.1016/j.pocean.2009.07.046
– ident: 2024100116525265199_j_bot-2023-0059_ref_074
  doi: 10.1016/j.ecolmodel.2020.109130
– ident: 2024100116525265199_j_bot-2023-0059_ref_013
  doi: 10.3354/meps11874
– ident: 2024100116525265199_j_bot-2023-0059_ref_070
  doi: 10.1126/science.aaw7912
– ident: 2024100116525265199_j_bot-2023-0059_ref_001
– ident: 2024100116525265199_j_bot-2023-0059_ref_024
  doi: 10.1038/s41558-018-0209-7
– ident: 2024100116525265199_j_bot-2023-0059_ref_021
  doi: 10.1515/botm.1982.25.8.391
– ident: 2024100116525265199_j_bot-2023-0059_ref_018
  doi: 10.5194/gmd-12-3571-2019
– ident: 2024100116525265199_j_bot-2023-0059_ref_030
– ident: 2024100116525265199_j_bot-2023-0059_ref_066
  doi: 10.1016/j.jmarsys.2017.09.003
– ident: 2024100116525265199_j_bot-2023-0059_ref_049
  doi: 10.1080/00071619200650271
– ident: 2024100116525265199_j_bot-2023-0059_ref_028
  doi: 10.1242/jeb.200.24.3141
– ident: 2024100116525265199_j_bot-2023-0059_ref_058
  doi: 10.1007/978-3-642-80353-6_9
– ident: 2024100116525265199_j_bot-2023-0059_ref_050
  doi: 10.1063/1.5139045
– ident: 2024100116525265199_j_bot-2023-0059_ref_055
  doi: 10.1016/j.jmarsys.2019.03.008
– ident: 2024100116525265199_j_bot-2023-0059_ref_062
  doi: 10.1016/j.aquaculture.2006.02.066
– ident: 2024100116525265199_j_bot-2023-0059_ref_016
  doi: 10.1016/S0198-0149(12)80023-9
– ident: 2024100116525265199_j_bot-2023-0059_ref_029
  doi: 10.1007/s00227-016-2962-3
– ident: 2024100116525265199_j_bot-2023-0059_ref_043
  doi: 10.1016/S0278-4343(99)00092-8
– ident: 2024100116525265199_j_bot-2023-0059_ref_015
  doi: 10.1073/pnas.1718453115
– ident: 2024100116525265199_j_bot-2023-0059_ref_073
  doi: 10.3354/meps13825
– ident: 2024100116525265199_j_bot-2023-0059_ref_005
  doi: 10.1002/2016GL071443
– ident: 2024100116525265199_j_bot-2023-0059_ref_052
  doi: 10.1016/j.jembe.2020.151398
– ident: 2024100116525265199_j_bot-2023-0059_ref_059
  doi: 10.1046/j.1466-822X.2001.00259.x
– ident: 2024100116525265199_j_bot-2023-0059_ref_012
  doi: 10.3354/meps12646
– ident: 2024100116525265199_j_bot-2023-0059_ref_048
– ident: 2024100116525265199_j_bot-2023-0059_ref_067
  doi: 10.1175/2010JPO4382.1
– ident: 2024100116525265199_j_bot-2023-0059_ref_061
  doi: 10.2216/16-93.1
– ident: 2024100116525265199_j_bot-2023-0059_ref_002
– ident: 2024100116525265199_j_bot-2023-0059_ref_032
  doi: 10.1016/0022-0981(89)90166-4
– ident: 2024100116525265199_j_bot-2023-0059_ref_011
  doi: 10.1029/2018GL081489
– ident: 2024100116525265199_j_bot-2023-0059_ref_037
  doi: 10.1007/s10811-017-1321-1
– ident: 2024100116525265199_j_bot-2023-0059_ref_031
  doi: 10.1016/0141-1187(93)90036-W
– ident: 2024100116525265199_j_bot-2023-0059_ref_020
  doi: 10.1242/jeb.200.24.3165
– ident: 2024100116525265199_j_bot-2023-0059_ref_046
  doi: 10.1029/2020GL089874
– ident: 2024100116525265199_j_bot-2023-0059_ref_041
  doi: 10.1023/A:1007965506873
– ident: 2024100116525265199_j_bot-2023-0059_ref_033
– ident: 2024100116525265199_j_bot-2023-0059_ref_007
  doi: 10.1029/2002GL015718
– ident: 2024100116525265199_j_bot-2023-0059_ref_027
  doi: 10.1357/0022240963213763
– ident: 2024100116525265199_j_bot-2023-0059_ref_047
  doi: 10.1098/rsbl.2012.0821
– ident: 2024100116525265199_j_bot-2023-0059_ref_065
  doi: 10.1016/j.ocemod.2017.11.008
– ident: 2024100116525265199_j_bot-2023-0059_ref_036
  doi: 10.1016/S0022-0981(00)00255-0
– ident: 2024100116525265199_j_bot-2023-0059_ref_068
  doi: 10.1002/2016JC012247
– ident: 2024100116525265199_j_bot-2023-0059_ref_035
  doi: 10.3354/meps195101
– ident: 2024100116525265199_j_bot-2023-0059_ref_040
  doi: 10.1029/2019GL086768
– ident: 2024100116525265199_j_bot-2023-0059_ref_026
  doi: 10.1016/j.envsoft.2007.09.010
– ident: 2024100116525265199_j_bot-2023-0059_ref_054
  doi: 10.1242/jeb.067587
– ident: 2024100116525265199_j_bot-2023-0059_ref_014
  doi: 10.3389/fmars.2020.00567
– ident: 2024100116525265199_j_bot-2023-0059_ref_063
  doi: 10.1098/rsta.2017.0104
– ident: 2024100116525265199_j_bot-2023-0059_ref_022
– ident: 2024100116525265199_j_bot-2023-0059_ref_057
  doi: 10.1016/j.pocean.2009.07.029
– ident: 2024100116525265199_j_bot-2023-0059_ref_071
  doi: 10.1007/BF02430432
– ident: 2024100116525265199_j_bot-2023-0059_ref_056
  doi: 10.4319/lo.2011.56.5.1751
– ident: 2024100116525265199_j_bot-2023-0059_ref_023
  doi: 10.3354/meps09581
– ident: 2024100116525265199_j_bot-2023-0059_ref_038
  doi: 10.1016/0022-0981(94)90069-8
– ident: 2024100116525265199_j_bot-2023-0059_ref_072
  doi: 10.1215/21573689-1573372
– ident: 2024100116525265199_j_bot-2023-0059_ref_008
  doi: 10.1029/2004JC002529
– ident: 2024100116525265199_j_bot-2023-0059_ref_010
  doi: 10.1016/j.apor.2011.01.005
– ident: 2024100116525265199_j_bot-2023-0059_ref_017
  doi: 10.1146/annurev.es.16.110185.001243
– ident: 2024100116525265199_j_bot-2023-0059_ref_045
  doi: 10.3354/meps07419
– ident: 2024100116525265199_j_bot-2023-0059_ref_044
  doi: 10.1175/1520-0485(1988)018<1570:TROTAC>2.0.CO;2
– ident: 2024100116525265199_j_bot-2023-0059_ref_051
  doi: 10.1016/j.pocean.2018.06.009
– ident: 2024100116525265199_j_bot-2023-0059_ref_004
  doi: 10.3390/d10010011
– ident: 2024100116525265199_j_bot-2023-0059_ref_042
  doi: 10.5194/os-3-129-2007
– ident: 2024100116525265199_j_bot-2023-0059_ref_053
  doi: 10.1007/s00227-012-1995-5
– ident: 2024100116525265199_j_bot-2023-0059_ref_019
  doi: 10.1242/jeb.205.10.1355
– ident: 2024100116525265199_j_bot-2023-0059_ref_003
  doi: 10.1175/JPO-D-14-0119.1
– ident: 2024100116525265199_j_bot-2023-0059_ref_069
  doi: 10.2307/j.ctvzsmfc6
– ident: 2024100116525265199_j_bot-2023-0059_ref_060
  doi: 10.1007/s00227-013-2186-8
SSID ssj0015025
Score 2.3781781
Snippet Ocean currents are a crucial means of dispersing natural and human-made materials on the ocean surface. Macroalgae are among the most conspicuous natural...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 449
SubjectTerms Accumulation
Algae
Dispersal
Drag
drift
Floating
Flotsam
Kelp
Lagrangian
Ocean currents
Ocean surface
Physical characteristics
Rafting
Seaweeds
Surface currents
Wind
Wind effects
Title Numerical experiments investigating the influence of drag on trajectory patterns of floating macroalgae
URI https://www.degruyter.com/doi/10.1515/bot-2023-0059
https://www.proquest.com/docview/3111579651
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWLQcuFU-xUJAPiAtkSWzndWxRoapETy3qLbIdZwVaNiibqFp-PTOx8yqLVLhEq8QPZefLeOyZ-YaQN3kegdEa5V5g_NATKo68lLHU034ojUxgBZGY4PzlIjq7EufX4fVsdjPOLqnVUv_am1fyP1KFeyBXzJL9B8n2g8IN-A3yhStIGK53kvFFY_0t6xFRP8ZX9dQZLhXqW1eJBE3DvJKr1kVQye_tkf0OyVXxXLCN6ijWpe34Q4KOxkyPSbDQSQnWJEwJjytXedtmeSDPgw3V3g7h87IBk1xJW27K8RiMz3Rsig3Gdjfbd-fL8REEE6i7WTJRq8hqbPl2l8ZqUsFjT3CbTNypWlt5w0EqHOlNYXlL3RIsbKWdP7R72BJhqLL2sOi7h4mzwzLWue5vrW59zCHudmCADLpn2D3D7vfIAYP9hT8nB8efT06_9g6o0Ge2-IV7M0fPCgN8mMw_NWeGPcrhTRvtkJtV1ezqzrveGi2XD8mh223QYwudR2RmNo_J_VaGuydk1eOHjvBDJ_ihgB_a44eWBUX80HJDB_zQDj_4uMMPHfDzlFx9Or38eOa5whueBnOy9gqV8JijR7pgOuBBaLRkwqSJjrQvuFGSsSJXTPmJinWARjJsPArOJQu4BgPwGZlvyo15TigHkz4qYFnRzIgiilXA4kKpApkEYdB0Qd53_1-mHSs9FkdZZ3vltSBv--Y_LR3L3xoedcLI3Be7zXiA1FJpFAYLIm4JaGi1d7wIiSLTF3ed_iV5MHwoR2ReV415BdZrrV47pP0GCz2deg
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NU9swEN1pAzPtBVpahrRQdOj0VBFbthX7CAw0fOUEHW4eSZZCS2IziT1M-PXdjZ2kUHppr9ZqR17J3ift6i3A5yyTCFplxn3rRTzUXckTIRJuvEhZFaMHUXTB-aIve1fh6XU0zyacNGmVmR2Mq2lZM6R2ssJUdFC24BpAD9zRRcmp8Deny5Odm3I0fAkrcYhguQUr-98Ojr4vQgmRJ-oyBh4x70ZRQ7T5h5bHjmmJNtfuZ3HrxaB-cz_H66DnA6-zTm73qlLvmYcnnI7_9WZvYK0Bp2y_Xk1v4YXNN2D1oEAAOX0Hg35Vh3eGbFkXYMJ-LJk68gFDPIlPmsInrHAsG6sBK3JWjtXPWYRgyu5mnJ75hJrdsKg7jhTahS6W2PdwdXx0edjjTZ0GbhB9lNxp3OUGFMB0wviBH1mjRGiT2EjjhYHVSgiXaaG9WHeNT5gKcaoLAiX8wCBe2IRWXuR2C1iACFA6_AsZYUMnu9oXXae1I-I5VJq04et8klLTkJhTLY1hSpsZtF-K9kvJfinZrw1fFuJ3NXvH3wS35zOeNh_xJA18YiJKZOS3IXyyCpZSz-qTxCuYfPi3brvwqnd5cZ6en_TPPsJrbA3JW4p4G1rluLI7CINK_alZ6L8A0YUEsg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa2dBh2Sfcqlj5WHYadqsaWbcU-9pV1r2CHtejNkGQp2JbZQWKjSH99ydhJ-tqlu1oUIVOy-UkUPwJ8yDKJoFVm3LdexEPdkzwRIuHGi5RVMXoQRQnO3wfy9Cz8chFd3Mjip2uVmR1OqllZM6R2s8JUdFC25BpAD9zVRcmp8Den5MnuOHNPYS2mG4stWDv4dHhyvowkRJ6oqxh4RLwbRQ3P5j0lt_3SCmy2L-dh6-WYbnif_jqoxbjrSyd_9qtS75urO5SO__NiL6HdQFN2UK-lV_DE5q_h2WGB8HH2BoaDqg7ujNiqKsCU_VrxdORDhmgSnzRlT1jhWDZRQ1bkrJyo3_P4wIyN54ye-ZSa3aioO_5VaBZKK7Fv4ax_8vPolDdVGrhB7FFyp3GPG1D40gnjB35kjRKhTWIjjRcGVishXKaF9mLdMz4hKkSpLgiU8AODaGEDWnmR23fAAsR_0uE_yAgbOtnTvug5rR3RzqHSpAN7izlKTUNhTpU0RiltZdB8KZovJfOlZL4OfFyKj2vujn8Jbi8mPG0-4Wka-MRDlMjI70B4ZxGspB7UJ4lVMNl8XLddeP7juJ9--zz4ugUvsDEkVynibWiVk8ruIAYq9ftmmV8DwPgDWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+experiments+investigating+the+influence+of+drag+on+trajectory+patterns+of+floating+macroalgae&rft.jtitle=Botanica+marina&rft.au=Coppin%2C+Ross&rft.au=Rautenbach%2C+Christo&rft.au=Smit%2C+Albertus+J.&rft.date=2024-10-28&rft.issn=0006-8055&rft.eissn=1437-4323&rft.volume=67&rft.issue=5&rft.spage=449&rft.epage=468&rft_id=info:doi/10.1515%2Fbot-2023-0059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_bot_2023_0059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8055&client=summon