Numerical experiments investigating the influence of drag on trajectory patterns of floating macroalgae
Ocean currents are a crucial means of dispersing natural and human-made materials on the ocean surface. Macroalgae are among the most conspicuous natural dispersers, often called the ‘tumbleweeds of the ocean.’ Despite numerous studies on the subject, the relative influence of wind and surface curre...
Saved in:
Published in | Botanica marina Vol. 67; no. 5; pp. 449 - 468 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
28.10.2024
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 0006-8055 1437-4323 |
DOI | 10.1515/bot-2023-0059 |
Cover
Loading…
Abstract | Ocean currents are a crucial means of dispersing natural and human-made materials on the ocean surface. Macroalgae are among the most conspicuous natural dispersers, often called the ‘tumbleweeds of the ocean.’ Despite numerous studies on the subject, the relative influence of wind and surface currents on the trajectory of macroalgal dispersal remains uncertain. Previous studies have focused on kelp rafts of varying sizes, making it challenging to determine the impact of wind versus currents. These studies have also disregarded the macroalgae’s drag characteristics and surface area, which have been shown to impact the trajectory and accumulation of floating flotsam. This numerical study aims to shed light on the relative influence of wind and currents and the role of drag in determining the course and accumulation of macroalgae. By comparing simulations of virtual kelp ‘particles’ that incorporate drag and those without, this study focused on solitary kelp plants and considered the impact of morphological characteristics, flow-field combinations, and the presence of Stokes drift. Our results show that virtual kelp particles generally followed ocean currents, but the inclusion of drag caused deviations from purely Lagrangian particles’ trajectories and sheds light on the complex interplay of factors affecting macroalgal dispersal in the ocean. |
---|---|
AbstractList | Ocean currents are a crucial means of dispersing natural and human-made materials on the ocean surface. Macroalgae are among the most conspicuous natural dispersers, often called the ‘tumbleweeds of the ocean.’ Despite numerous studies on the subject, the relative influence of wind and surface currents on the trajectory of macroalgal dispersal remains uncertain. Previous studies have focused on kelp rafts of varying sizes, making it challenging to determine the impact of wind versus currents. These studies have also disregarded the macroalgae’s drag characteristics and surface area, which have been shown to impact the trajectory and accumulation of floating flotsam. This numerical study aims to shed light on the relative influence of wind and currents and the role of drag in determining the course and accumulation of macroalgae. By comparing simulations of virtual kelp ‘particles’ that incorporate drag and those without, this study focused on solitary kelp plants and considered the impact of morphological characteristics, flow-field combinations, and the presence of Stokes drift. Our results show that virtual kelp particles generally followed ocean currents, but the inclusion of drag caused deviations from purely Lagrangian particles’ trajectories and sheds light on the complex interplay of factors affecting macroalgal dispersal in the ocean. Ocean currents are a crucial means of dispersing natural and human-made materials on the ocean surface. Macroalgae are among the most conspicuous natural dispersers, often called the ‘tumbleweeds of the ocean.’ Despite numerous studies on the subject, the relative influence of wind and surface currents on the trajectory of macroalgal dispersal remains uncertain. Previous studies have focused on kelp rafts of varying sizes, making it challenging to determine the impact of wind versus currents. These studies have also disregarded the macroalgae’s drag characteristics and surface area, which have been shown to impact the trajectory and accumulation of floating flotsam. This numerical study aims to shed light on the relative influence of wind and currents and the role of drag in determining the course and accumulation of macroalgae. By comparing simulations of virtual kelp ‘particles’ that incorporate drag and those without, this study focused on solitary kelp plants and considered the impact of morphological characteristics, flow-field combinations, and the presence of Stokes drift. Our results show that virtual kelp particles generally followed ocean currents, but the inclusion of drag caused deviations from purely Lagrangian particles’ trajectories and sheds light on the complex interplay of factors affecting macroalgal dispersal in the ocean. |
Author | Rautenbach, Christo Coppin, Ross Smit, Albertus J. |
Author_xml | – sequence: 1 givenname: Ross orcidid: 0000-0002-6947-3936 surname: Coppin fullname: Coppin, Ross email: coppinross@gmail.com organization: Department of Biodiversity and Conservation Biology, 56390 University of the Western Cape , Private Bag X17, Bellville 7535, South Africa – sequence: 2 givenname: Christo orcidid: 0000-0001-6703-8386 surname: Rautenbach fullname: Rautenbach, Christo email: christo.rautenbach@niwa.co.nz organization: National Institute of Water and Atmospheric Research, Gate 10 Silverdale Road Hillcrest, 3216, Auckland, New Zealand – sequence: 3 givenname: Albertus J. orcidid: 0000-0002-3799-6126 surname: Smit fullname: Smit, Albertus J. email: ajsmit@uwc.ac.za organization: South African Environmental Observation Network, Elwandle Coastal Node, Port Elizabeth, South Africa |
BookMark | eNp1kM1LxDAQxYOs4O7q0XvAczWTNP3Akyx-gehFzyXNTmqXbrKmqbr_vSkVBNFThsx7M_N-CzKzziIhp8DOQYK8qF1IOOMiYUyWB2QOqciTVHAxI3PGWJYUTMojsuj7DWMgGZdz0jwOW_StVh3Fz12stmhDT1v7jn1oGxVa29DwivHHdANajdQZuvaqoc7S4NUGdXB-T3cqBPS2H9umc5Nxq7R3qmsUHpNDo7oeT77fJXm5uX5e3SUPT7f3q6uHRAvIQ2LqQuQiL1IwXIMAiVrxFMtCZ5qlAmvFuVnXvGZFnWvIgEtWMCOE4iB0IcWSnE1zd969DTFDtXGDt3FlJQBA5mUmIaqSSRXP63uPptrF5MrvK2DVyLKKLKuRZTWyjHrxS6_bECM6Gwm03b-uy8n1obrIZo2NH_ax-DnpT1-WyzQtxRe3Ko8O |
CitedBy_id | crossref_primary_10_1515_bot_2023_0061 crossref_primary_10_1515_bot_2024_0061 |
Cites_doi | 10.1098/rspb.2010.1117 10.1016/j.pocean.2009.07.046 10.1016/j.ecolmodel.2020.109130 10.3354/meps11874 10.1126/science.aaw7912 10.1038/s41558-018-0209-7 10.1515/botm.1982.25.8.391 10.5194/gmd-12-3571-2019 10.1016/j.jmarsys.2017.09.003 10.1080/00071619200650271 10.1242/jeb.200.24.3141 10.1007/978-3-642-80353-6_9 10.1063/1.5139045 10.1016/j.jmarsys.2019.03.008 10.1016/j.aquaculture.2006.02.066 10.1016/S0198-0149(12)80023-9 10.1007/s00227-016-2962-3 10.1016/S0278-4343(99)00092-8 10.1073/pnas.1718453115 10.3354/meps13825 10.1002/2016GL071443 10.1016/j.jembe.2020.151398 10.1046/j.1466-822X.2001.00259.x 10.3354/meps12646 10.1175/2010JPO4382.1 10.2216/16-93.1 10.1016/0022-0981(89)90166-4 10.1029/2018GL081489 10.1007/s10811-017-1321-1 10.1016/0141-1187(93)90036-W 10.1242/jeb.200.24.3165 10.1029/2020GL089874 10.1023/A:1007965506873 10.1029/2002GL015718 10.1357/0022240963213763 10.1098/rsbl.2012.0821 10.1016/j.ocemod.2017.11.008 10.1016/S0022-0981(00)00255-0 10.1002/2016JC012247 10.3354/meps195101 10.1029/2019GL086768 10.1016/j.envsoft.2007.09.010 10.1242/jeb.067587 10.3389/fmars.2020.00567 10.1098/rsta.2017.0104 10.1016/j.pocean.2009.07.029 10.1007/BF02430432 10.4319/lo.2011.56.5.1751 10.3354/meps09581 10.1016/0022-0981(94)90069-8 10.1215/21573689-1573372 10.1029/2004JC002529 10.1016/j.apor.2011.01.005 10.1146/annurev.es.16.110185.001243 10.3354/meps07419 10.1175/1520-0485(1988)018<1570:TROTAC>2.0.CO;2 10.1016/j.pocean.2018.06.009 10.3390/d10010011 10.5194/os-3-129-2007 10.1007/s00227-012-1995-5 10.1242/jeb.205.10.1355 10.1175/JPO-D-14-0119.1 10.2307/j.ctvzsmfc6 10.1007/s00227-013-2186-8 |
ContentType | Journal Article |
Copyright | 2024 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2024 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION 7QO 7SN 7T7 7TN 8FD C1K F1W FR3 M7N P64 RC3 |
DOI | 10.1515/bot-2023-0059 |
DatabaseName | CrossRef Biotechnology Research Abstracts Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Oceanic Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Genetics Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1437-4323 |
EndPage | 468 |
ExternalDocumentID | 10_1515_bot_2023_0059 10_1515_bot_2023_0059675449 |
GroupedDBID | -~X 0R~ 0~D 23N 4.4 5GY AAAEU AAFPC AAGVJ AAHBH AAKRG AALGR AAOWA AAPJK AAQCX AASQH AAXCG AAXMT ABABW ABAOT ABAQN ABDRH ABFKT ABIQR ABJNI ABLVI ABMIY ABPLS ABPPZ ABRDF ABUVI ABWLS ABXMZ ABYBW ACDEB ACEFL ACGFS ACIWK ACPMA ACPRK ACUND ACYCL ACZBO ADEQT ADGQD ADGYE ADNPR ADOZN AECWL AEGVQ AEICA AEJTT AENEX AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFQUK AFRAH AFYRI AGBEV AGWTP AHVWV AHXUK AIERV AIWOI AJATJ AJPIC AKXKS ALMA_UNASSIGNED_HOLDINGS ASYPN BAKPI BBCWN BBDJO BCIFA CS3 DSRVY DU5 EBS HZ~ IY9 KDIRW O9- P2P QD8 RDG SA. SLJYH UK5 UPT WTRAM ~02 AAYXX CITATION 7QO 7SN 7T7 7TN 8FD C1K DA2 ECGQY F1W FR3 M7N P64 RC3 |
ID | FETCH-LOGICAL-c317t-fb83737841f2c1315eca24e98c6c043eba22fdb2b08b7c16125080f33a213c853 |
ISSN | 0006-8055 |
IngestDate | Mon Aug 25 17:41:17 EDT 2025 Thu Apr 24 23:04:13 EDT 2025 Tue Jul 01 03:47:16 EDT 2025 Sat Sep 06 16:58:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c317t-fb83737841f2c1315eca24e98c6c043eba22fdb2b08b7c16125080f33a213c853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6947-3936 0000-0002-3799-6126 0000-0001-6703-8386 |
PQID | 3111579651 |
PQPubID | 2045213 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3111579651 crossref_primary_10_1515_bot_2023_0059 crossref_citationtrail_10_1515_bot_2023_0059 walterdegruyter_journals_10_1515_bot_2023_0059675449 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-28 |
PublicationDateYYYYMMDD | 2024-10-28 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Botanica marina |
PublicationYear | 2024 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2024100116525265199_j_bot-2023-0059_ref_019 2024100116525265199_j_bot-2023-0059_ref_015 2024100116525265199_j_bot-2023-0059_ref_059 2024100116525265199_j_bot-2023-0059_ref_016 2024100116525265199_j_bot-2023-0059_ref_017 2024100116525265199_j_bot-2023-0059_ref_018 2024100116525265199_j_bot-2023-0059_ref_011 2024100116525265199_j_bot-2023-0059_ref_055 2024100116525265199_j_bot-2023-0059_ref_012 2024100116525265199_j_bot-2023-0059_ref_056 2024100116525265199_j_bot-2023-0059_ref_013 2024100116525265199_j_bot-2023-0059_ref_057 2024100116525265199_j_bot-2023-0059_ref_014 2024100116525265199_j_bot-2023-0059_ref_058 2024100116525265199_j_bot-2023-0059_ref_051 2024100116525265199_j_bot-2023-0059_ref_052 2024100116525265199_j_bot-2023-0059_ref_053 2024100116525265199_j_bot-2023-0059_ref_010 2024100116525265199_j_bot-2023-0059_ref_054 2024100116525265199_j_bot-2023-0059_ref_050 2024100116525265199_j_bot-2023-0059_ref_026 2024100116525265199_j_bot-2023-0059_ref_027 2024100116525265199_j_bot-2023-0059_ref_028 2024100116525265199_j_bot-2023-0059_ref_029 2024100116525265199_j_bot-2023-0059_ref_022 2024100116525265199_j_bot-2023-0059_ref_066 2024100116525265199_j_bot-2023-0059_ref_023 2024100116525265199_j_bot-2023-0059_ref_067 2024100116525265199_j_bot-2023-0059_ref_024 2024100116525265199_j_bot-2023-0059_ref_068 2024100116525265199_j_bot-2023-0059_ref_025 2024100116525265199_j_bot-2023-0059_ref_069 2024100116525265199_j_bot-2023-0059_ref_062 2024100116525265199_j_bot-2023-0059_ref_063 2024100116525265199_j_bot-2023-0059_ref_020 2024100116525265199_j_bot-2023-0059_ref_021 2024100116525265199_j_bot-2023-0059_ref_065 2024100116525265199_j_bot-2023-0059_ref_060 2024100116525265199_j_bot-2023-0059_ref_061 2024100116525265199_j_bot-2023-0059_ref_037 2024100116525265199_j_bot-2023-0059_ref_038 2024100116525265199_j_bot-2023-0059_ref_039 2024100116525265199_j_bot-2023-0059_ref_033 2024100116525265199_j_bot-2023-0059_ref_035 2024100116525265199_j_bot-2023-0059_ref_036 2024100116525265199_j_bot-2023-0059_ref_073 2024100116525265199_j_bot-2023-0059_ref_030 2024100116525265199_j_bot-2023-0059_ref_074 2024100116525265199_j_bot-2023-0059_ref_031 2024100116525265199_j_bot-2023-0059_ref_032 2024100116525265199_j_bot-2023-0059_ref_070 2024100116525265199_j_bot-2023-0059_ref_071 2024100116525265199_j_bot-2023-0059_ref_072 2024100116525265199_j_bot-2023-0059_ref_008 2024100116525265199_j_bot-2023-0059_ref_004 2024100116525265199_j_bot-2023-0059_ref_048 2024100116525265199_j_bot-2023-0059_ref_005 2024100116525265199_j_bot-2023-0059_ref_049 2024100116525265199_j_bot-2023-0059_ref_007 2024100116525265199_j_bot-2023-0059_ref_044 2024100116525265199_j_bot-2023-0059_ref_001 2024100116525265199_j_bot-2023-0059_ref_045 2024100116525265199_j_bot-2023-0059_ref_002 2024100116525265199_j_bot-2023-0059_ref_046 2024100116525265199_j_bot-2023-0059_ref_003 2024100116525265199_j_bot-2023-0059_ref_047 2024100116525265199_j_bot-2023-0059_ref_040 2024100116525265199_j_bot-2023-0059_ref_041 2024100116525265199_j_bot-2023-0059_ref_042 2024100116525265199_j_bot-2023-0059_ref_043 |
References_xml | – ident: 2024100116525265199_j_bot-2023-0059_ref_025 doi: 10.1098/rspb.2010.1117 – ident: 2024100116525265199_j_bot-2023-0059_ref_039 doi: 10.1016/j.pocean.2009.07.046 – ident: 2024100116525265199_j_bot-2023-0059_ref_074 doi: 10.1016/j.ecolmodel.2020.109130 – ident: 2024100116525265199_j_bot-2023-0059_ref_013 doi: 10.3354/meps11874 – ident: 2024100116525265199_j_bot-2023-0059_ref_070 doi: 10.1126/science.aaw7912 – ident: 2024100116525265199_j_bot-2023-0059_ref_001 – ident: 2024100116525265199_j_bot-2023-0059_ref_024 doi: 10.1038/s41558-018-0209-7 – ident: 2024100116525265199_j_bot-2023-0059_ref_021 doi: 10.1515/botm.1982.25.8.391 – ident: 2024100116525265199_j_bot-2023-0059_ref_018 doi: 10.5194/gmd-12-3571-2019 – ident: 2024100116525265199_j_bot-2023-0059_ref_030 – ident: 2024100116525265199_j_bot-2023-0059_ref_066 doi: 10.1016/j.jmarsys.2017.09.003 – ident: 2024100116525265199_j_bot-2023-0059_ref_049 doi: 10.1080/00071619200650271 – ident: 2024100116525265199_j_bot-2023-0059_ref_028 doi: 10.1242/jeb.200.24.3141 – ident: 2024100116525265199_j_bot-2023-0059_ref_058 doi: 10.1007/978-3-642-80353-6_9 – ident: 2024100116525265199_j_bot-2023-0059_ref_050 doi: 10.1063/1.5139045 – ident: 2024100116525265199_j_bot-2023-0059_ref_055 doi: 10.1016/j.jmarsys.2019.03.008 – ident: 2024100116525265199_j_bot-2023-0059_ref_062 doi: 10.1016/j.aquaculture.2006.02.066 – ident: 2024100116525265199_j_bot-2023-0059_ref_016 doi: 10.1016/S0198-0149(12)80023-9 – ident: 2024100116525265199_j_bot-2023-0059_ref_029 doi: 10.1007/s00227-016-2962-3 – ident: 2024100116525265199_j_bot-2023-0059_ref_043 doi: 10.1016/S0278-4343(99)00092-8 – ident: 2024100116525265199_j_bot-2023-0059_ref_015 doi: 10.1073/pnas.1718453115 – ident: 2024100116525265199_j_bot-2023-0059_ref_073 doi: 10.3354/meps13825 – ident: 2024100116525265199_j_bot-2023-0059_ref_005 doi: 10.1002/2016GL071443 – ident: 2024100116525265199_j_bot-2023-0059_ref_052 doi: 10.1016/j.jembe.2020.151398 – ident: 2024100116525265199_j_bot-2023-0059_ref_059 doi: 10.1046/j.1466-822X.2001.00259.x – ident: 2024100116525265199_j_bot-2023-0059_ref_012 doi: 10.3354/meps12646 – ident: 2024100116525265199_j_bot-2023-0059_ref_048 – ident: 2024100116525265199_j_bot-2023-0059_ref_067 doi: 10.1175/2010JPO4382.1 – ident: 2024100116525265199_j_bot-2023-0059_ref_061 doi: 10.2216/16-93.1 – ident: 2024100116525265199_j_bot-2023-0059_ref_002 – ident: 2024100116525265199_j_bot-2023-0059_ref_032 doi: 10.1016/0022-0981(89)90166-4 – ident: 2024100116525265199_j_bot-2023-0059_ref_011 doi: 10.1029/2018GL081489 – ident: 2024100116525265199_j_bot-2023-0059_ref_037 doi: 10.1007/s10811-017-1321-1 – ident: 2024100116525265199_j_bot-2023-0059_ref_031 doi: 10.1016/0141-1187(93)90036-W – ident: 2024100116525265199_j_bot-2023-0059_ref_020 doi: 10.1242/jeb.200.24.3165 – ident: 2024100116525265199_j_bot-2023-0059_ref_046 doi: 10.1029/2020GL089874 – ident: 2024100116525265199_j_bot-2023-0059_ref_041 doi: 10.1023/A:1007965506873 – ident: 2024100116525265199_j_bot-2023-0059_ref_033 – ident: 2024100116525265199_j_bot-2023-0059_ref_007 doi: 10.1029/2002GL015718 – ident: 2024100116525265199_j_bot-2023-0059_ref_027 doi: 10.1357/0022240963213763 – ident: 2024100116525265199_j_bot-2023-0059_ref_047 doi: 10.1098/rsbl.2012.0821 – ident: 2024100116525265199_j_bot-2023-0059_ref_065 doi: 10.1016/j.ocemod.2017.11.008 – ident: 2024100116525265199_j_bot-2023-0059_ref_036 doi: 10.1016/S0022-0981(00)00255-0 – ident: 2024100116525265199_j_bot-2023-0059_ref_068 doi: 10.1002/2016JC012247 – ident: 2024100116525265199_j_bot-2023-0059_ref_035 doi: 10.3354/meps195101 – ident: 2024100116525265199_j_bot-2023-0059_ref_040 doi: 10.1029/2019GL086768 – ident: 2024100116525265199_j_bot-2023-0059_ref_026 doi: 10.1016/j.envsoft.2007.09.010 – ident: 2024100116525265199_j_bot-2023-0059_ref_054 doi: 10.1242/jeb.067587 – ident: 2024100116525265199_j_bot-2023-0059_ref_014 doi: 10.3389/fmars.2020.00567 – ident: 2024100116525265199_j_bot-2023-0059_ref_063 doi: 10.1098/rsta.2017.0104 – ident: 2024100116525265199_j_bot-2023-0059_ref_022 – ident: 2024100116525265199_j_bot-2023-0059_ref_057 doi: 10.1016/j.pocean.2009.07.029 – ident: 2024100116525265199_j_bot-2023-0059_ref_071 doi: 10.1007/BF02430432 – ident: 2024100116525265199_j_bot-2023-0059_ref_056 doi: 10.4319/lo.2011.56.5.1751 – ident: 2024100116525265199_j_bot-2023-0059_ref_023 doi: 10.3354/meps09581 – ident: 2024100116525265199_j_bot-2023-0059_ref_038 doi: 10.1016/0022-0981(94)90069-8 – ident: 2024100116525265199_j_bot-2023-0059_ref_072 doi: 10.1215/21573689-1573372 – ident: 2024100116525265199_j_bot-2023-0059_ref_008 doi: 10.1029/2004JC002529 – ident: 2024100116525265199_j_bot-2023-0059_ref_010 doi: 10.1016/j.apor.2011.01.005 – ident: 2024100116525265199_j_bot-2023-0059_ref_017 doi: 10.1146/annurev.es.16.110185.001243 – ident: 2024100116525265199_j_bot-2023-0059_ref_045 doi: 10.3354/meps07419 – ident: 2024100116525265199_j_bot-2023-0059_ref_044 doi: 10.1175/1520-0485(1988)018<1570:TROTAC>2.0.CO;2 – ident: 2024100116525265199_j_bot-2023-0059_ref_051 doi: 10.1016/j.pocean.2018.06.009 – ident: 2024100116525265199_j_bot-2023-0059_ref_004 doi: 10.3390/d10010011 – ident: 2024100116525265199_j_bot-2023-0059_ref_042 doi: 10.5194/os-3-129-2007 – ident: 2024100116525265199_j_bot-2023-0059_ref_053 doi: 10.1007/s00227-012-1995-5 – ident: 2024100116525265199_j_bot-2023-0059_ref_019 doi: 10.1242/jeb.205.10.1355 – ident: 2024100116525265199_j_bot-2023-0059_ref_003 doi: 10.1175/JPO-D-14-0119.1 – ident: 2024100116525265199_j_bot-2023-0059_ref_069 doi: 10.2307/j.ctvzsmfc6 – ident: 2024100116525265199_j_bot-2023-0059_ref_060 doi: 10.1007/s00227-013-2186-8 |
SSID | ssj0015025 |
Score | 2.3781781 |
Snippet | Ocean currents are a crucial means of dispersing natural and human-made materials on the ocean surface. Macroalgae are among the most conspicuous natural... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 449 |
SubjectTerms | Accumulation Algae Dispersal Drag drift Floating Flotsam Kelp Lagrangian Ocean currents Ocean surface Physical characteristics Rafting Seaweeds Surface currents Wind Wind effects |
Title | Numerical experiments investigating the influence of drag on trajectory patterns of floating macroalgae |
URI | https://www.degruyter.com/doi/10.1515/bot-2023-0059 https://www.proquest.com/docview/3111579651 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWLQcuFU-xUJAPiAtkSWzndWxRoapETy3qLbIdZwVaNiibqFp-PTOx8yqLVLhEq8QPZefLeOyZ-YaQN3kegdEa5V5g_NATKo68lLHU034ojUxgBZGY4PzlIjq7EufX4fVsdjPOLqnVUv_am1fyP1KFeyBXzJL9B8n2g8IN-A3yhStIGK53kvFFY_0t6xFRP8ZX9dQZLhXqW1eJBE3DvJKr1kVQye_tkf0OyVXxXLCN6ijWpe34Q4KOxkyPSbDQSQnWJEwJjytXedtmeSDPgw3V3g7h87IBk1xJW27K8RiMz3Rsig3Gdjfbd-fL8REEE6i7WTJRq8hqbPl2l8ZqUsFjT3CbTNypWlt5w0EqHOlNYXlL3RIsbKWdP7R72BJhqLL2sOi7h4mzwzLWue5vrW59zCHudmCADLpn2D3D7vfIAYP9hT8nB8efT06_9g6o0Ge2-IV7M0fPCgN8mMw_NWeGPcrhTRvtkJtV1ezqzrveGi2XD8mh223QYwudR2RmNo_J_VaGuydk1eOHjvBDJ_ihgB_a44eWBUX80HJDB_zQDj_4uMMPHfDzlFx9Or38eOa5whueBnOy9gqV8JijR7pgOuBBaLRkwqSJjrQvuFGSsSJXTPmJinWARjJsPArOJQu4BgPwGZlvyo15TigHkz4qYFnRzIgiilXA4kKpApkEYdB0Qd53_1-mHSs9FkdZZ3vltSBv--Y_LR3L3xoedcLI3Be7zXiA1FJpFAYLIm4JaGi1d7wIiSLTF3ed_iV5MHwoR2ReV415BdZrrV47pP0GCz2deg |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NU9swEN1pAzPtBVpahrRQdOj0VBFbthX7CAw0fOUEHW4eSZZCS2IziT1M-PXdjZ2kUHppr9ZqR17J3ift6i3A5yyTCFplxn3rRTzUXckTIRJuvEhZFaMHUXTB-aIve1fh6XU0zyacNGmVmR2Mq2lZM6R2ssJUdFC24BpAD9zRRcmp8Deny5Odm3I0fAkrcYhguQUr-98Ojr4vQgmRJ-oyBh4x70ZRQ7T5h5bHjmmJNtfuZ3HrxaB-cz_H66DnA6-zTm73qlLvmYcnnI7_9WZvYK0Bp2y_Xk1v4YXNN2D1oEAAOX0Hg35Vh3eGbFkXYMJ-LJk68gFDPIlPmsInrHAsG6sBK3JWjtXPWYRgyu5mnJ75hJrdsKg7jhTahS6W2PdwdXx0edjjTZ0GbhB9lNxp3OUGFMB0wviBH1mjRGiT2EjjhYHVSgiXaaG9WHeNT5gKcaoLAiX8wCBe2IRWXuR2C1iACFA6_AsZYUMnu9oXXae1I-I5VJq04et8klLTkJhTLY1hSpsZtF-K9kvJfinZrw1fFuJ3NXvH3wS35zOeNh_xJA18YiJKZOS3IXyyCpZSz-qTxCuYfPi3brvwqnd5cZ6en_TPPsJrbA3JW4p4G1rluLI7CINK_alZ6L8A0YUEsg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa2dBh2Sfcqlj5WHYadqsaWbcU-9pV1r2CHtejNkGQp2JbZQWKjSH99ydhJ-tqlu1oUIVOy-UkUPwJ8yDKJoFVm3LdexEPdkzwRIuHGi5RVMXoQRQnO3wfy9Cz8chFd3Mjip2uVmR1OqllZM6R2s8JUdFC25BpAD9zVRcmp8Den5MnuOHNPYS2mG4stWDv4dHhyvowkRJ6oqxh4RLwbRQ3P5j0lt_3SCmy2L-dh6-WYbnif_jqoxbjrSyd_9qtS75urO5SO__NiL6HdQFN2UK-lV_DE5q_h2WGB8HH2BoaDqg7ujNiqKsCU_VrxdORDhmgSnzRlT1jhWDZRQ1bkrJyo3_P4wIyN54ye-ZSa3aioO_5VaBZKK7Fv4ax_8vPolDdVGrhB7FFyp3GPG1D40gnjB35kjRKhTWIjjRcGVishXKaF9mLdMz4hKkSpLgiU8AODaGEDWnmR23fAAsR_0uE_yAgbOtnTvug5rR3RzqHSpAN7izlKTUNhTpU0RiltZdB8KZovJfOlZL4OfFyKj2vujn8Jbi8mPG0-4Wka-MRDlMjI70B4ZxGspB7UJ4lVMNl8XLddeP7juJ9--zz4ugUvsDEkVynibWiVk8ruIAYq9ftmmV8DwPgDWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+experiments+investigating+the+influence+of+drag+on+trajectory+patterns+of+floating+macroalgae&rft.jtitle=Botanica+marina&rft.au=Coppin%2C+Ross&rft.au=Rautenbach%2C+Christo&rft.au=Smit%2C+Albertus+J.&rft.date=2024-10-28&rft.issn=0006-8055&rft.eissn=1437-4323&rft.volume=67&rft.issue=5&rft.spage=449&rft.epage=468&rft_id=info:doi/10.1515%2Fbot-2023-0059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_bot_2023_0059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8055&client=summon |