Symmetry-invariant conservation laws of partial differential equations
A simple characterization of the action of symmetries on conservation laws of partial differential equations is studied by using the general method of conservation law multipliers. This action is used to define symmetry-invariant and symmetry-homogeneous conservation laws. The main results are appli...
Saved in:
Published in | European journal of applied mathematics Vol. 29; no. 1; pp. 78 - 117 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-7925 1469-4425 |
DOI | 10.1017/S0956792517000055 |
Cover
Abstract | A simple characterization of the action of symmetries on conservation laws of partial differential equations is studied by using the general method of conservation law multipliers. This action is used to define symmetry-invariant and symmetry-homogeneous conservation laws. The main results are applied to several examples of physically interest, including the generalized Korteveg-de Vries equation, a non-Newtonian generalization of Burger's equation, the b-family of peakon equations, and the Navier–Stokes equations for compressible, viscous fluids in two dimensions. |
---|---|
AbstractList | A simple characterization of the action of symmetries on conservation laws of partial differential equations is studied by using the general method of conservation law multipliers. This action is used to define symmetry-invariant and symmetry-homogeneous conservation laws. The main results are applied to several examples of physically interest, including the generalized Korteveg-de Vries equation, a non-Newtonian generalization of Burger's equation, the
b
-family of peakon equations, and the Navier–Stokes equations for compressible, viscous fluids in two dimensions. A simple characterization of the action of symmetries on conservation laws of partial differential equations is studied by using the general method of conservation law multipliers. This action is used to define symmetry-invariant and symmetry-homogeneous conservation laws. The main results are applied to several examples of physically interest, including the generalized Korteveg-de Vries equation, a non-Newtonian generalization of Burger's equation, the b-family of peakon equations, and the Navier–Stokes equations for compressible, viscous fluids in two dimensions. |
Author | ANCO, STEPHEN C. KARA, ABDUL H. |
Author_xml | – sequence: 1 givenname: STEPHEN C. surname: ANCO fullname: ANCO, STEPHEN C. email: sanco@brocku.ca organization: Department of Mathematics and Statistics, Brock University St. Catharines, ON L2S3A1, Canada email: sanco@brocku.ca – sequence: 2 givenname: ABDUL H. surname: KARA fullname: KARA, ABDUL H. email: abdul.kara@wits.ac.za organization: School of Mathematics, University of the Witwatersrand Wits 2050, Johannesburg, South Africa email: abdul.kara@wits.ac.za |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnleTbD42RynWCgUP1fMymyaSspttk7TSf-_24yCKzmUY5n1mXt4RGvjOG4RuCb4nmMiHBVZcSEU5kbgvzi_QkDChcsYoH6DhYZ0f9ldoFOMKY1JgqYZouti3rUlhnzu_g-DAp0x3Ppqwg-Q6nzXwGbPOZmsIyUGTLZ21Jhh_HMxme1TFa3RpoYnm5tzH6H369DaZ5fPX55fJ4zzXBZEpt8Ato1oQRpUqsSy5lpRbU9tasyVoQsAwbqSkGogQVCoQhaY1LZQoVAnFGN2d7q5Dt9mamKpVtw2-f1kRVTLBGBGsV8mTSocuxmBspV06Gk0BXFMRXB1Cq36F1pPkB7kOroWw_5cpzgy0dXDLD_PN1J_UF2MEf5A |
CitedBy_id | crossref_primary_10_1080_0035919X_2020_1850541 crossref_primary_10_3390_math10060954 crossref_primary_10_1016_j_chaos_2020_110486 crossref_primary_10_1007_s13370_025_01279_9 crossref_primary_10_1016_j_padiff_2024_100749 crossref_primary_10_1002_mma_6582 crossref_primary_10_1016_j_ijleo_2019_03_046 crossref_primary_10_1016_j_ijleo_2019_05_068 crossref_primary_10_1142_S0219887823501724 crossref_primary_10_1016_j_ijnonlinmec_2020_103569 crossref_primary_10_1017_S0956792522000304 crossref_primary_10_1002_mma_5249 crossref_primary_10_1016_j_ijleo_2019_04_086 crossref_primary_10_1016_j_amc_2022_127769 crossref_primary_10_1017_S0956792522000328 crossref_primary_10_1080_16583655_2020_1760513 crossref_primary_10_1134_S004057791810001X crossref_primary_10_1515_phys_2023_0155 crossref_primary_10_1007_s12596_024_02193_2 crossref_primary_10_1016_j_cnsns_2020_105349 crossref_primary_10_1016_j_cam_2018_11_008 crossref_primary_10_1080_0035919X_2022_2164629 crossref_primary_10_1016_j_chaos_2022_112892 crossref_primary_10_1016_j_cnsns_2020_105506 crossref_primary_10_1007_s13370_023_01163_4 crossref_primary_10_3390_math11224572 crossref_primary_10_1016_j_jmaa_2019_07_036 crossref_primary_10_1007_s13324_020_00365_4 crossref_primary_10_3390_sym12060950 crossref_primary_10_1007_s13324_019_00337_3 crossref_primary_10_1016_j_ijleo_2019_163134 crossref_primary_10_1155_2021_2861194 crossref_primary_10_1016_j_jmaa_2021_125615 crossref_primary_10_3390_sym9030033 crossref_primary_10_1016_j_physleta_2019_126229 crossref_primary_10_1142_S0219887817501821 crossref_primary_10_3390_sym13112083 crossref_primary_10_1155_2018_2952583 crossref_primary_10_3390_math9091009 |
Cites_doi | 10.1201/9781584888901 10.1017/CBO9780511565847.012 10.1007/BF01405491 10.1063/1.527117 10.1142/S0217979216400038 10.1016/j.jmaa.2005.08.092 10.1142/9789812704467_0005 10.1103/PhysRevLett.36.1107 10.1007/978-1-4684-0274-2 10.2991/jnmp.2002.9.s2.6 10.1063/1.531515 10.1080/00036810903208155 10.1007/BF00669316 10.1023/A:1008240112483 10.1016/j.physd.2003.11.004 10.1017/S0956792501004715 10.1016/j.matcom.2009.08.032 10.1103/PhysRevLett.78.2869 10.1007/978-94-009-5243-0 10.1017/S0956792501004661 10.1103/PhysRevLett.71.1661 10.1088/0305-4470/36/32/305 10.1023/A:1003686831523 10.1017/S095679250100465X 10.1142/1475 10.1007/978-0-387-68028-6 10.1007/BF00397216 |
ContentType | Journal Article |
Copyright | Copyright © Cambridge University Press 2017 |
Copyright_xml | – notice: Copyright © Cambridge University Press 2017 |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/S0956792517000055 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | S. C. Anco and A. H. Kara Symmetry-invariant conservation laws |
EISSN | 1469-4425 |
EndPage | 117 |
ExternalDocumentID | 10_1017_S0956792517000055 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .DC .FH 09C 09E 0E1 0R~ 29G 3V. 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB ABBXD ABBZL ABEFU ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABZCX ABZUI ACAJB ACBMC ACDLN ACETC ACGFO ACGFS ACGOD ACIMK ACIWK ACMRT ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMFK AEMTW AENCP AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ GROUPED_DOAJ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S0W S6- S6U SAAAG T9M UT1 VH1 VOH WFFJZ WQ3 WXU WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AAYXX ABHFL ABXHF ACEJA ACOZI AGQPQ AKMAY AMVHM ANOYL CITATION IPYYG PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c317t-fa5f42c61429980785c725febfbc4dac11ae45e772ca166279a63c2b2396398a3 |
IEDL.DBID | BENPR |
ISSN | 0956-7925 |
IngestDate | Fri Jul 25 19:33:10 EDT 2025 Tue Jul 01 01:07:13 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 Tue Jan 21 06:25:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | symmetry-invariant multipliers symmetry conservation law symmetry-homogeneous |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c317t-fa5f42c61429980785c725febfbc4dac11ae45e772ca166279a63c2b2396398a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1984644164 |
PQPubID | 37129 |
PageCount | 40 |
ParticipantIDs | proquest_journals_1984644164 crossref_citationtrail_10_1017_S0956792517000055 crossref_primary_10_1017_S0956792517000055 cambridge_journals_10_1017_S0956792517000055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180200 2018-02-00 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 20180200 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | European journal of applied mathematics |
PublicationTitleAlternate | Eur. J. Appl. Math |
PublicationYear | 2018 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S0956792517000055_ref22 Batchelor (S0956792517000055_ref31) 1967 S0956792517000055_ref23 S0956792517000055_ref24 S0956792517000055_ref25 Degaspersis (S0956792517000055_ref34) 1999 S0956792517000055_ref21 Anco (S0956792517000055_ref3) 2002; 13 Bluman (S0956792517000055_ref5) 2002 Verbotevsky (S0956792517000055_ref20) 1997 S0956792517000055_ref19 Bluman (S0956792517000055_ref10) 2008 S0956792517000055_ref15 S0956792517000055_ref16 S0956792517000055_ref17 S0956792517000055_ref18 S0956792517000055_ref11 S0956792517000055_ref33 S0956792517000055_ref6 S0956792517000055_ref7 S0956792517000055_ref13 S0956792517000055_ref4 S0956792517000055_ref35 S0956792517000055_ref14 Khamitova (S0956792517000055_ref12) 1982; 52 Lunev (S0956792517000055_ref26) 1990; 84 S0956792517000055_ref30 S0956792517000055_ref8 S0956792517000055_ref32 Singh (S0956792517000055_ref36) 2011; 11 Anco (S0956792517000055_ref9) 2017 Anco (S0956792517000055_ref2) 2002; 13 S0956792517000055_ref1 S0956792517000055_ref27 S0956792517000055_ref28 S0956792517000055_ref29 |
References_xml | – ident: S0956792517000055_ref19 doi: 10.1201/9781584888901 – ident: S0956792517000055_ref18 doi: 10.1017/CBO9780511565847.012 – ident: S0956792517000055_ref8 doi: 10.1007/BF01405491 – ident: S0956792517000055_ref25 doi: 10.1063/1.527117 – ident: S0956792517000055_ref17 doi: 10.1142/S0217979216400038 – ident: S0956792517000055_ref14 doi: 10.1016/j.jmaa.2005.08.092 – ident: S0956792517000055_ref35 doi: 10.1142/9789812704467_0005 – volume: 11 start-page: 59 year: 2011 ident: S0956792517000055_ref36 article-title: Exact solutions of b-family equation: Classical Lie approach and direct method. publication-title: Inter. J. Nonlin. Sci. – volume-title: Symmetry and Integration Methods for Differential Equations year: 2002 ident: S0956792517000055_ref5 – volume-title: Recent progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science year: 2017 ident: S0956792517000055_ref9 – ident: S0956792517000055_ref29 doi: 10.1103/PhysRevLett.36.1107 – start-page: 13 volume-title: Group Analysis of Differential Equations and Integrable Systems (Proceedings of the 4th International Workshop) year: 2008 ident: S0956792517000055_ref10 – ident: S0956792517000055_ref4 doi: 10.1007/978-1-4684-0274-2 – ident: S0956792517000055_ref15 doi: 10.2991/jnmp.2002.9.s2.6 – ident: S0956792517000055_ref28 doi: 10.1063/1.531515 – ident: S0956792517000055_ref24 doi: 10.1080/00036810903208155 – ident: S0956792517000055_ref30 doi: 10.1007/BF00669316 – ident: S0956792517000055_ref13 doi: 10.1023/A:1008240112483 – ident: S0956792517000055_ref32 doi: 10.1016/j.physd.2003.11.004 – ident: S0956792517000055_ref21 doi: 10.1017/S0956792501004715 – ident: S0956792517000055_ref23 doi: 10.1016/j.matcom.2009.08.032 – ident: S0956792517000055_ref1 doi: 10.1103/PhysRevLett.78.2869 – ident: S0956792517000055_ref11 doi: 10.1007/978-94-009-5243-0 – volume: 13 start-page: 567 year: 2002 ident: S0956792517000055_ref3 article-title: Direct construction method for conservation laws of partial differential equations. II. General treatment. publication-title: Euro. J. Appl. Math. doi: 10.1017/S0956792501004661 – start-page: 23 volume-title: Symmetry and Perturbation Theory year: 1999 ident: S0956792517000055_ref34 – ident: S0956792517000055_ref33 doi: 10.1103/PhysRevLett.71.1661 – ident: S0956792517000055_ref22 doi: 10.1088/0305-4470/36/32/305 – ident: S0956792517000055_ref16 doi: 10.1023/A:1003686831523 – volume: 84 start-page: 205 year: 1990 ident: S0956792517000055_ref26 article-title: An analogue of the Noether theorem for non-Noether and nonlocal symmetries publication-title: Teoret. Mat. Fiz. – volume: 13 start-page: 545 year: 2002 ident: S0956792517000055_ref2 article-title: Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications. publication-title: Euro. J. Appl. Math. doi: 10.1017/S095679250100465X – ident: S0956792517000055_ref27 doi: 10.1142/1475 – ident: S0956792517000055_ref6 doi: 10.1007/978-0-387-68028-6 – ident: S0956792517000055_ref7 doi: 10.1007/BF00397216 – volume: 52 start-page: 244 year: 1982 ident: S0956792517000055_ref12 article-title: The structure of a group and the basis of conservation laws publication-title: Teoret. Mat. Fiz. – volume-title: An Introduction to Fluid Dynamics year: 1967 ident: S0956792517000055_ref31 – start-page: 211 volume-title: Secondary Calculus and Cohomological Physics year: 1997 ident: S0956792517000055_ref20 |
SSID | ssj0013079 |
Score | 2.3044682 |
Snippet | A simple characterization of the action of symmetries on conservation laws of partial differential equations is studied by using the general method of... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 78 |
SubjectTerms | Applied mathematics Compressibility Conservation laws Fluid dynamics Invariants Mathematical analysis Navier-Stokes equations Partial differential equations Symmetry Viscous fluids |
Title | Symmetry-invariant conservation laws of partial differential equations |
URI | https://www.cambridge.org/core/product/identifier/S0956792517000055/type/journal_article https://www.proquest.com/docview/1984644164 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1lhw8icF2s2k2J1FpLIJF1EJvYZ8gtOkjUem_dzbZpC1Cb8kmG5bZyXyzM8M3CF1z7gVUeMo15FkuwSRwQwFXEvTF44H0GM8LZAfd_pC8jPyRDbiltqyytIm5oZZTYWLkd3A4Jga7u-R-NndN1yiTXbUtNHZRHUwwBT2vP_YGb--rPEJ7xbYXhNgv85o5aTQMmjHDUGeoqNbZFTZRatNI58gTHaID6zI6D8UeH6EdlRyj_deKbzU9QdHHcjJR2WLpfiU_cPoFcTnC1EnbiKszZr-pM9XOzGgKfKzsi5LfqHnB952eomHU-3zqu7ZDgisA9zNXM18TLABiAVUMc7wvAuxrxTUXRDLR6TBFfAUetGAdQ_Uesq4nMMce_HchZd4ZqiXTRJ0jh2IJhz2thOYhkRRzXygcSKYDjKmSuoFuK-nEVs_TuKgRC-J_wmygdinAWFi2cdP0Yrxtyk01ZVZQbWx7uVnuytpqKh252P74Eu2B40OL6usmqmWLb3UFzkXGW2iXRs8tq0d_Rw7KNg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGIAB8RSFAhlgQVhQ22mSASEEhBZaFkBiC7ZjS0htWkgB9U_xGznnUUBI3bolTmxZ5y--O9_lO4B9KZnnK6aJJc8inHKPBAqvYsQLk17MhMwSZO8azUd-8-Q-VeCr_BfGplWWe2K2Ucd9Zc_Ij9E55lZ3N_jZ4JXYqlE2ulqW0MhhcatHn-iypaetS1zfA0rDq4eLJimqChCFunJIjHANpwrVEu7Elm3dVR51jZZGKh4LVa8LzV2NVqcSdUuPHogGU1RShlgNfMFw3BmY44wFtlSEH17_RC1Ofrj9vIC6ZRQ1o6jGRttm-fAs8dVvLoe_OvGvSsj0XLgMS4WB6pzniFqBik5WYbEzZndN1yC8H_V6evg2Ii_JB_rauDiOslnZxfmu0xWfqdM3zsDiEgcrq7BkN_o1ZxdP1-FxKpLbgNmkn-hNcHwao2tptDIy4LFPpas09WJhPEp9HZsqHI2lExVfVRrlGWle9E-YVTgpBRipgtvcltjoTupyOO4yyIk9Jr1cK1fl12zGiNya_HgP5psPnXbUbt3dbsMCmlx-nvddg9nh27veQbNmKHczLDnwPG3wfgPbrwRT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetry-invariant+conservation+laws+of+partial+differential+equations&rft.jtitle=European+journal+of+applied+mathematics&rft.au=ANCO%2C+STEPHEN+C.&rft.au=KARA%2C+ABDUL+H.&rft.date=2018-02-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=29&rft.issue=1&rft.spage=78&rft.epage=117&rft_id=info:doi/10.1017%2FS0956792517000055&rft.externalDocID=10_1017_S0956792517000055 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon |