Symmetry-invariant conservation laws of partial differential equations

A simple characterization of the action of symmetries on conservation laws of partial differential equations is studied by using the general method of conservation law multipliers. This action is used to define symmetry-invariant and symmetry-homogeneous conservation laws. The main results are appli...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 29; no. 1; pp. 78 - 117
Main Authors ANCO, STEPHEN C., KARA, ABDUL H.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.02.2018
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S0956792517000055

Cover

Abstract A simple characterization of the action of symmetries on conservation laws of partial differential equations is studied by using the general method of conservation law multipliers. This action is used to define symmetry-invariant and symmetry-homogeneous conservation laws. The main results are applied to several examples of physically interest, including the generalized Korteveg-de Vries equation, a non-Newtonian generalization of Burger's equation, the b-family of peakon equations, and the Navier–Stokes equations for compressible, viscous fluids in two dimensions.
AbstractList A simple characterization of the action of symmetries on conservation laws of partial differential equations is studied by using the general method of conservation law multipliers. This action is used to define symmetry-invariant and symmetry-homogeneous conservation laws. The main results are applied to several examples of physically interest, including the generalized Korteveg-de Vries equation, a non-Newtonian generalization of Burger's equation, the b -family of peakon equations, and the Navier–Stokes equations for compressible, viscous fluids in two dimensions.
A simple characterization of the action of symmetries on conservation laws of partial differential equations is studied by using the general method of conservation law multipliers. This action is used to define symmetry-invariant and symmetry-homogeneous conservation laws. The main results are applied to several examples of physically interest, including the generalized Korteveg-de Vries equation, a non-Newtonian generalization of Burger's equation, the b-family of peakon equations, and the Navier–Stokes equations for compressible, viscous fluids in two dimensions.
Author ANCO, STEPHEN C.
KARA, ABDUL H.
Author_xml – sequence: 1
  givenname: STEPHEN C.
  surname: ANCO
  fullname: ANCO, STEPHEN C.
  email: sanco@brocku.ca
  organization: Department of Mathematics and Statistics, Brock University St. Catharines, ON L2S3A1, Canada email: sanco@brocku.ca
– sequence: 2
  givenname: ABDUL H.
  surname: KARA
  fullname: KARA, ABDUL H.
  email: abdul.kara@wits.ac.za
  organization: School of Mathematics, University of the Witwatersrand Wits 2050, Johannesburg, South Africa email: abdul.kara@wits.ac.za
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnleTbD42RynWCgUP1fMymyaSspttk7TSf-_24yCKzmUY5n1mXt4RGvjOG4RuCb4nmMiHBVZcSEU5kbgvzi_QkDChcsYoH6DhYZ0f9ldoFOMKY1JgqYZouti3rUlhnzu_g-DAp0x3Ppqwg-Q6nzXwGbPOZmsIyUGTLZ21Jhh_HMxme1TFa3RpoYnm5tzH6H369DaZ5fPX55fJ4zzXBZEpt8Ato1oQRpUqsSy5lpRbU9tasyVoQsAwbqSkGogQVCoQhaY1LZQoVAnFGN2d7q5Dt9mamKpVtw2-f1kRVTLBGBGsV8mTSocuxmBspV06Gk0BXFMRXB1Cq36F1pPkB7kOroWw_5cpzgy0dXDLD_PN1J_UF2MEf5A
CitedBy_id crossref_primary_10_1080_0035919X_2020_1850541
crossref_primary_10_3390_math10060954
crossref_primary_10_1016_j_chaos_2020_110486
crossref_primary_10_1007_s13370_025_01279_9
crossref_primary_10_1016_j_padiff_2024_100749
crossref_primary_10_1002_mma_6582
crossref_primary_10_1016_j_ijleo_2019_03_046
crossref_primary_10_1016_j_ijleo_2019_05_068
crossref_primary_10_1142_S0219887823501724
crossref_primary_10_1016_j_ijnonlinmec_2020_103569
crossref_primary_10_1017_S0956792522000304
crossref_primary_10_1002_mma_5249
crossref_primary_10_1016_j_ijleo_2019_04_086
crossref_primary_10_1016_j_amc_2022_127769
crossref_primary_10_1017_S0956792522000328
crossref_primary_10_1080_16583655_2020_1760513
crossref_primary_10_1134_S004057791810001X
crossref_primary_10_1515_phys_2023_0155
crossref_primary_10_1007_s12596_024_02193_2
crossref_primary_10_1016_j_cnsns_2020_105349
crossref_primary_10_1016_j_cam_2018_11_008
crossref_primary_10_1080_0035919X_2022_2164629
crossref_primary_10_1016_j_chaos_2022_112892
crossref_primary_10_1016_j_cnsns_2020_105506
crossref_primary_10_1007_s13370_023_01163_4
crossref_primary_10_3390_math11224572
crossref_primary_10_1016_j_jmaa_2019_07_036
crossref_primary_10_1007_s13324_020_00365_4
crossref_primary_10_3390_sym12060950
crossref_primary_10_1007_s13324_019_00337_3
crossref_primary_10_1016_j_ijleo_2019_163134
crossref_primary_10_1155_2021_2861194
crossref_primary_10_1016_j_jmaa_2021_125615
crossref_primary_10_3390_sym9030033
crossref_primary_10_1016_j_physleta_2019_126229
crossref_primary_10_1142_S0219887817501821
crossref_primary_10_3390_sym13112083
crossref_primary_10_1155_2018_2952583
crossref_primary_10_3390_math9091009
Cites_doi 10.1201/9781584888901
10.1017/CBO9780511565847.012
10.1007/BF01405491
10.1063/1.527117
10.1142/S0217979216400038
10.1016/j.jmaa.2005.08.092
10.1142/9789812704467_0005
10.1103/PhysRevLett.36.1107
10.1007/978-1-4684-0274-2
10.2991/jnmp.2002.9.s2.6
10.1063/1.531515
10.1080/00036810903208155
10.1007/BF00669316
10.1023/A:1008240112483
10.1016/j.physd.2003.11.004
10.1017/S0956792501004715
10.1016/j.matcom.2009.08.032
10.1103/PhysRevLett.78.2869
10.1007/978-94-009-5243-0
10.1017/S0956792501004661
10.1103/PhysRevLett.71.1661
10.1088/0305-4470/36/32/305
10.1023/A:1003686831523
10.1017/S095679250100465X
10.1142/1475
10.1007/978-0-387-68028-6
10.1007/BF00397216
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2017
Copyright_xml – notice: Copyright © Cambridge University Press 2017
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0956792517000055
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate S. C. Anco and A. H. Kara
Symmetry-invariant conservation laws
EISSN 1469-4425
EndPage 117
ExternalDocumentID 10_1017_S0956792517000055
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29G
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABZCX
ABZUI
ACAJB
ACBMC
ACDLN
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S0W
S6-
S6U
SAAAG
T9M
UT1
VH1
VOH
WFFJZ
WQ3
WXU
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABHFL
ABXHF
ACEJA
ACOZI
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
IPYYG
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-fa5f42c61429980785c725febfbc4dac11ae45e772ca166279a63c2b2396398a3
IEDL.DBID BENPR
ISSN 0956-7925
IngestDate Fri Jul 25 19:33:10 EDT 2025
Tue Jul 01 01:07:13 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
Tue Jan 21 06:25:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords symmetry-invariant
multipliers
symmetry
conservation law
symmetry-homogeneous
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-fa5f42c61429980785c725febfbc4dac11ae45e772ca166279a63c2b2396398a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1984644164
PQPubID 37129
PageCount 40
ParticipantIDs proquest_journals_1984644164
crossref_citationtrail_10_1017_S0956792517000055
crossref_primary_10_1017_S0956792517000055
cambridge_journals_10_1017_S0956792517000055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180200
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 20180200
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle European journal of applied mathematics
PublicationTitleAlternate Eur. J. Appl. Math
PublicationYear 2018
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0956792517000055_ref22
Batchelor (S0956792517000055_ref31) 1967
S0956792517000055_ref23
S0956792517000055_ref24
S0956792517000055_ref25
Degaspersis (S0956792517000055_ref34) 1999
S0956792517000055_ref21
Anco (S0956792517000055_ref3) 2002; 13
Bluman (S0956792517000055_ref5) 2002
Verbotevsky (S0956792517000055_ref20) 1997
S0956792517000055_ref19
Bluman (S0956792517000055_ref10) 2008
S0956792517000055_ref15
S0956792517000055_ref16
S0956792517000055_ref17
S0956792517000055_ref18
S0956792517000055_ref11
S0956792517000055_ref33
S0956792517000055_ref6
S0956792517000055_ref7
S0956792517000055_ref13
S0956792517000055_ref4
S0956792517000055_ref35
S0956792517000055_ref14
Khamitova (S0956792517000055_ref12) 1982; 52
Lunev (S0956792517000055_ref26) 1990; 84
S0956792517000055_ref30
S0956792517000055_ref8
S0956792517000055_ref32
Singh (S0956792517000055_ref36) 2011; 11
Anco (S0956792517000055_ref9) 2017
Anco (S0956792517000055_ref2) 2002; 13
S0956792517000055_ref1
S0956792517000055_ref27
S0956792517000055_ref28
S0956792517000055_ref29
References_xml – ident: S0956792517000055_ref19
  doi: 10.1201/9781584888901
– ident: S0956792517000055_ref18
  doi: 10.1017/CBO9780511565847.012
– ident: S0956792517000055_ref8
  doi: 10.1007/BF01405491
– ident: S0956792517000055_ref25
  doi: 10.1063/1.527117
– ident: S0956792517000055_ref17
  doi: 10.1142/S0217979216400038
– ident: S0956792517000055_ref14
  doi: 10.1016/j.jmaa.2005.08.092
– ident: S0956792517000055_ref35
  doi: 10.1142/9789812704467_0005
– volume: 11
  start-page: 59
  year: 2011
  ident: S0956792517000055_ref36
  article-title: Exact solutions of b-family equation: Classical Lie approach and direct method.
  publication-title: Inter. J. Nonlin. Sci.
– volume-title: Symmetry and Integration Methods for Differential Equations
  year: 2002
  ident: S0956792517000055_ref5
– volume-title: Recent progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science
  year: 2017
  ident: S0956792517000055_ref9
– ident: S0956792517000055_ref29
  doi: 10.1103/PhysRevLett.36.1107
– start-page: 13
  volume-title: Group Analysis of Differential Equations and Integrable Systems (Proceedings of the 4th International Workshop)
  year: 2008
  ident: S0956792517000055_ref10
– ident: S0956792517000055_ref4
  doi: 10.1007/978-1-4684-0274-2
– ident: S0956792517000055_ref15
  doi: 10.2991/jnmp.2002.9.s2.6
– ident: S0956792517000055_ref28
  doi: 10.1063/1.531515
– ident: S0956792517000055_ref24
  doi: 10.1080/00036810903208155
– ident: S0956792517000055_ref30
  doi: 10.1007/BF00669316
– ident: S0956792517000055_ref13
  doi: 10.1023/A:1008240112483
– ident: S0956792517000055_ref32
  doi: 10.1016/j.physd.2003.11.004
– ident: S0956792517000055_ref21
  doi: 10.1017/S0956792501004715
– ident: S0956792517000055_ref23
  doi: 10.1016/j.matcom.2009.08.032
– ident: S0956792517000055_ref1
  doi: 10.1103/PhysRevLett.78.2869
– ident: S0956792517000055_ref11
  doi: 10.1007/978-94-009-5243-0
– volume: 13
  start-page: 567
  year: 2002
  ident: S0956792517000055_ref3
  article-title: Direct construction method for conservation laws of partial differential equations. II. General treatment.
  publication-title: Euro. J. Appl. Math.
  doi: 10.1017/S0956792501004661
– start-page: 23
  volume-title: Symmetry and Perturbation Theory
  year: 1999
  ident: S0956792517000055_ref34
– ident: S0956792517000055_ref33
  doi: 10.1103/PhysRevLett.71.1661
– ident: S0956792517000055_ref22
  doi: 10.1088/0305-4470/36/32/305
– ident: S0956792517000055_ref16
  doi: 10.1023/A:1003686831523
– volume: 84
  start-page: 205
  year: 1990
  ident: S0956792517000055_ref26
  article-title: An analogue of the Noether theorem for non-Noether and nonlocal symmetries
  publication-title: Teoret. Mat. Fiz.
– volume: 13
  start-page: 545
  year: 2002
  ident: S0956792517000055_ref2
  article-title: Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications.
  publication-title: Euro. J. Appl. Math.
  doi: 10.1017/S095679250100465X
– ident: S0956792517000055_ref27
  doi: 10.1142/1475
– ident: S0956792517000055_ref6
  doi: 10.1007/978-0-387-68028-6
– ident: S0956792517000055_ref7
  doi: 10.1007/BF00397216
– volume: 52
  start-page: 244
  year: 1982
  ident: S0956792517000055_ref12
  article-title: The structure of a group and the basis of conservation laws
  publication-title: Teoret. Mat. Fiz.
– volume-title: An Introduction to Fluid Dynamics
  year: 1967
  ident: S0956792517000055_ref31
– start-page: 211
  volume-title: Secondary Calculus and Cohomological Physics
  year: 1997
  ident: S0956792517000055_ref20
SSID ssj0013079
Score 2.3044682
Snippet A simple characterization of the action of symmetries on conservation laws of partial differential equations is studied by using the general method of...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 78
SubjectTerms Applied mathematics
Compressibility
Conservation laws
Fluid dynamics
Invariants
Mathematical analysis
Navier-Stokes equations
Partial differential equations
Symmetry
Viscous fluids
Title Symmetry-invariant conservation laws of partial differential equations
URI https://www.cambridge.org/core/product/identifier/S0956792517000055/type/journal_article
https://www.proquest.com/docview/1984644164
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1lhw8icF2s2k2J1FpLIJF1EJvYZ8gtOkjUem_dzbZpC1Cb8kmG5bZyXyzM8M3CF1z7gVUeMo15FkuwSRwQwFXEvTF44H0GM8LZAfd_pC8jPyRDbiltqyytIm5oZZTYWLkd3A4Jga7u-R-NndN1yiTXbUtNHZRHUwwBT2vP_YGb--rPEJ7xbYXhNgv85o5aTQMmjHDUGeoqNbZFTZRatNI58gTHaID6zI6D8UeH6EdlRyj_deKbzU9QdHHcjJR2WLpfiU_cPoFcTnC1EnbiKszZr-pM9XOzGgKfKzsi5LfqHnB952eomHU-3zqu7ZDgisA9zNXM18TLABiAVUMc7wvAuxrxTUXRDLR6TBFfAUetGAdQ_Uesq4nMMce_HchZd4ZqiXTRJ0jh2IJhz2thOYhkRRzXygcSKYDjKmSuoFuK-nEVs_TuKgRC-J_wmygdinAWFi2cdP0Yrxtyk01ZVZQbWx7uVnuytpqKh252P74Eu2B40OL6usmqmWLb3UFzkXGW2iXRs8tq0d_Rw7KNg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGIAB8RSFAhlgQVhQ22mSASEEhBZaFkBiC7ZjS0htWkgB9U_xGznnUUBI3bolTmxZ5y--O9_lO4B9KZnnK6aJJc8inHKPBAqvYsQLk17MhMwSZO8azUd-8-Q-VeCr_BfGplWWe2K2Ucd9Zc_Ij9E55lZ3N_jZ4JXYqlE2ulqW0MhhcatHn-iypaetS1zfA0rDq4eLJimqChCFunJIjHANpwrVEu7Elm3dVR51jZZGKh4LVa8LzV2NVqcSdUuPHogGU1RShlgNfMFw3BmY44wFtlSEH17_RC1Ofrj9vIC6ZRQ1o6jGRttm-fAs8dVvLoe_OvGvSsj0XLgMS4WB6pzniFqBik5WYbEzZndN1yC8H_V6evg2Ii_JB_rauDiOslnZxfmu0xWfqdM3zsDiEgcrq7BkN_o1ZxdP1-FxKpLbgNmkn-hNcHwao2tptDIy4LFPpas09WJhPEp9HZsqHI2lExVfVRrlGWle9E-YVTgpBRipgtvcltjoTupyOO4yyIk9Jr1cK1fl12zGiNya_HgP5psPnXbUbt3dbsMCmlx-nvddg9nh27veQbNmKHczLDnwPG3wfgPbrwRT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetry-invariant+conservation+laws+of+partial+differential+equations&rft.jtitle=European+journal+of+applied+mathematics&rft.au=ANCO%2C+STEPHEN+C.&rft.au=KARA%2C+ABDUL+H.&rft.date=2018-02-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=29&rft.issue=1&rft.spage=78&rft.epage=117&rft_id=info:doi/10.1017%2FS0956792517000055&rft.externalDocID=10_1017_S0956792517000055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon