STOCHASTIC MODEL PREDICTIVE CONTROL FOR SPACECRAFT RENDEZVOUS AND DOCKING VIA A DISTRIBUTIONALLY ROBUST OPTIMIZATION APPROACH

A stochastic model predictive control (SMPC) algorithm is developed to solve the problem of three-dimensional spacecraft rendezvous and docking with unbounded disturbance. In particular, we only assume that the mean and variance information of the disturbance is available. In other words, the probab...

Full description

Saved in:
Bibliographic Details
Published inThe ANZIAM journal Vol. 63; no. 1; pp. 39 - 57
Main Authors LI, ZUOXUN, ZHANG, KAI
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A stochastic model predictive control (SMPC) algorithm is developed to solve the problem of three-dimensional spacecraft rendezvous and docking with unbounded disturbance. In particular, we only assume that the mean and variance information of the disturbance is available. In other words, the probability density function of the disturbance distribution is not fully known. Obstacle avoidance is considered during the rendezvous phase. Line-of-sight cone, attitude control bandwidth, and thrust direction constraints are considered during the docking phase. A distributionally robust optimization based algorithm is then proposed by reformulating the SMPC problem into a convex optimization problem. Numerical examples show that the proposed method improves the existing model predictive control based strategy and the robust model predictive control based strategy in the presence of disturbance.
AbstractList A stochastic model predictive control (SMPC) algorithm is developed to solve the problem of three-dimensional spacecraft rendezvous and docking with unbounded disturbance. In particular, we only assume that the mean and variance information of the disturbance is available. In other words, the probability density function of the disturbance distribution is not fully known. Obstacle avoidance is considered during the rendezvous phase. Line-of-sight cone, attitude control bandwidth, and thrust direction constraints are considered during the docking phase. A distributionally robust optimization based algorithm is then proposed by reformulating the SMPC problem into a convex optimization problem. Numerical examples show that the proposed method improves the existing model predictive control based strategy and the robust model predictive control based strategy in the presence of disturbance.
Author ZHANG, KAI
LI, ZUOXUN
Author_xml – sequence: 1
  givenname: ZUOXUN
  orcidid: 0000-0001-9765-1894
  surname: LI
  fullname: LI, ZUOXUN
  email: lizuoxun@stu.scu.edu.cn
  organization: 1The College of Electrical Engineering, Sichuan University, 610065 Chengdu, China; lizuoxun@stu.scu.edu.cn
– sequence: 2
  givenname: KAI
  orcidid: 0000-0001-7683-3488
  surname: ZHANG
  fullname: ZHANG, KAI
  email: kaizhang@swjtu.edu.cn
  organization: 2The College of Electrical Engineering, Southwest Jiaotong University, 610031 Chengdu, China
BookMark eNp9kE1Pg0AQhjemJtbqD_C2iefqLgssHLcLbTdSlsC2ib0QPg1NWyrQgwf_uzRtYqLR9zKTmfeZmcwtGOzrfQHAA0ZPGGH6HGFdN7GFsYZRL4KvwPBUGluUGINLfurfgNu23SCkE0q0IfiMlORzFinB4UI6rgeD0HUEV2LlQi59FUoPTmUIo4Bxl4dsqmDo-o67XsllBJnvQEfyF-HP4EowyKAjIhWKyVIJ6TPPe4WhnCwjBWWgxEKs2akOWRCEkvH5Hbguk21b3F_iCCynruLzsSdngjNvnBFMu3GpWTm2bL2kdo4skxBU6EmGCDV1o-yVpqaVpznKSpPYiZFgw0ZFahtFSvI0pRoZgcfz3ENTvx-Ltos39bHZ9ytjjWrUNDDS9N6Fz66sqdu2Kcr40FS7pPmIMYpPX45_fbln6A8mq7qkq-p91yTV9l-SXMhklzZV_lZ8H_U39QX3-4cs
CitedBy_id crossref_primary_10_1016_j_arcontrol_2024_100957
crossref_primary_10_1061_JAEEEZ_ASENG_5338
Cites_doi 10.1016/j.actaastro.2018.03.025
10.1002/rnc.2827
10.1016/j.asr.2018.03.037
10.1017/CBO9780511543388
10.1109/TRO.2010.2044948
10.1109/ACCESS.2017.2767179
10.1016/j.automatica.2008.06.017
10.1016/j.conengprac.2011.09.006
10.1109/TCST.2014.2379639
10.2514/1.30734
10.1016/j.jprocont.2016.03.005
10.1109/ACC.2001.946298
10.1016/j.conengprac.2012.03.009
10.1007/978-1-4471-3398-8
10.2514/2.4211
10.2514/1.62219
10.1049/iet-cta:20050411
10.1007/s10957-006-9084-x
10.1109/TAES.2016.140406
10.1109/TAC.2012.2203054
10.1007/s10957-007-9166-4
ContentType Journal Article
Copyright Australian Mathematical Society 2021
Copyright_xml – notice: Australian Mathematical Society 2021
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S1446181121000031
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1446-8735
EndPage 57
ExternalDocumentID 10_1017_S1446181121000031
GroupedDBID --Z
-1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
123
23M
2WC
4.4
5VS
6J9
6~7
74X
74Y
7~V
88I
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABROB
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEGXH
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BQFHP
C0O
C1A
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DOHLZ
DWQXO
EBS
EGQIC
EJD
ESX
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KC5
KCGVB
KFECR
KWQ
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OK1
PTHSS
PYCCK
RAMDC
RCA
RFR
RNS
ROL
RR0
S6U
SAAAG
SJN
T9M
TN5
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZCG
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~02
~V1
AAKNA
AATMM
AAYXX
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
ACRPL
ADNMO
AEMFK
AFZFC
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-f28d1894f79d086330e4ac037645ffffbb68dbd0cf639a5a1590eb95eb3dbb723
IEDL.DBID BENPR
ISSN 1446-1811
IngestDate Fri Jul 25 11:50:04 EDT 2025
Tue Jul 01 02:30:25 EDT 2025
Thu Apr 24 22:57:26 EDT 2025
Wed Mar 13 06:02:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords rendezvous and docking
93B45
stochastic model predictive control
Monte Carlo
49N10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-f28d1894f79d086330e4ac037645ffffbb68dbd0cf639a5a1590eb95eb3dbb723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7683-3488
0000-0001-9765-1894
PQID 2727651024
PQPubID 5516365
PageCount 19
ParticipantIDs proquest_journals_2727651024
crossref_primary_10_1017_S1446181121000031
crossref_citationtrail_10_1017_S1446181121000031
cambridge_journals_10_1017_S1446181121000031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle The ANZIAM journal
PublicationTitleAlternate ANZIAM J
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S1446181121000031_r15
S1446181121000031_r14
S1446181121000031_r13
Wie (S1446181121000031_r22) 1998
S1446181121000031_r12
S1446181121000031_r19
S1446181121000031_r18
S1446181121000031_r17
S1446181121000031_r16
Alfriend (S1446181121000031_r1) 2010
S1446181121000031_r5
S1446181121000031_r6
S1446181121000031_r3
S1446181121000031_r4
Batina (S1446181121000031_r2)
S1446181121000031_r11
S1446181121000031_r9
S1446181121000031_r10
S1446181121000031_r7
S1446181121000031_r8
S1446181121000031_r25
S1446181121000031_r24
S1446181121000031_r23
S1446181121000031_r27
Nolet (S1446181121000031_r20) 2004; 5419
S1446181121000031_r21
References_xml – ident: S1446181121000031_r17
  doi: 10.1016/j.actaastro.2018.03.025
– ident: S1446181121000031_r4
  doi: 10.1002/rnc.2827
– volume-title: Spacecraft formation flying
  year: 2010
  ident: S1446181121000031_r1
– ident: S1446181121000031_r25
  doi: 10.1016/j.asr.2018.03.037
– ident: S1446181121000031_r13
– ident: S1446181121000031_r11
  doi: 10.1017/CBO9780511543388
– ident: S1446181121000031_r3
  doi: 10.1109/TRO.2010.2044948
– ident: S1446181121000031_r18
  doi: 10.1109/ACCESS.2017.2767179
– volume: 5419
  start-page: 1
  volume-title: Proc. SPIE
  year: 2004
  ident: S1446181121000031_r20
– ident: S1446181121000031_r6
  doi: 10.1016/j.automatica.2008.06.017
– ident: S1446181121000031_r12
  doi: 10.1016/j.conengprac.2011.09.006
– ident: S1446181121000031_r23
  doi: 10.1109/TCST.2014.2379639
– start-page: 25
  volume-title: Proc. 2001 Amer. Control Conf. (Cat. No. 01CH37148)
  ident: S1446181121000031_r2
– ident: S1446181121000031_r24
  doi: 10.2514/1.30734
– ident: S1446181121000031_r10
  doi: 10.1016/j.jprocont.2016.03.005
– ident: S1446181121000031_r15
  doi: 10.1109/ACC.2001.946298
– ident: S1446181121000031_r14
  doi: 10.1016/j.conengprac.2012.03.009
– ident: S1446181121000031_r5
  doi: 10.1007/978-1-4471-3398-8
– ident: S1446181121000031_r7
  doi: 10.2514/2.4211
– ident: S1446181121000031_r9
  doi: 10.2514/1.62219
– ident: S1446181121000031_r21
  doi: 10.1049/iet-cta:20050411
– ident: S1446181121000031_r8
  doi: 10.1007/s10957-006-9084-x
– ident: S1446181121000031_r16
  doi: 10.1109/TAES.2016.140406
– volume-title: Space vehicle dynamics and control
  year: 1998
  ident: S1446181121000031_r22
– ident: S1446181121000031_r27
  doi: 10.1109/TAC.2012.2203054
– ident: S1446181121000031_r19
  doi: 10.1007/s10957-007-9166-4
SSID ssj0043732
Score 2.1974335
Snippet A stochastic model predictive control (SMPC) algorithm is developed to solve the problem of three-dimensional spacecraft rendezvous and docking with unbounded...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Aerospace engineering
Algorithms
Attitude control
Computational geometry
Convexity
Electrical engineering
Obstacle avoidance
Optimization
Predictive control
Probability density functions
Robust control
Space rendezvous
Space stations
Spacecraft
Spacecraft docking
Stochastic models
Title STOCHASTIC MODEL PREDICTIVE CONTROL FOR SPACECRAFT RENDEZVOUS AND DOCKING VIA A DISTRIBUTIONALLY ROBUST OPTIMIZATION APPROACH
URI https://www.cambridge.org/core/product/identifier/S1446181121000031/type/journal_article
https://www.proquest.com/docview/2727651024
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFLYGXNhhGoNpbAz5sNM0izS_e5pcJ6WZ2jhKnIpxqerYPk2Frd2R_53nNGmFkJqjY0uRn_O9H376PoS-DcPIA7-niY5dQ3wVSiJDrYmJ_GUjjTa61Tqc5eGk9n_dBXddwW3dtVX2mNgCtXpobI38xgVHG8IBcv2fj3-JVY2yt6udhMYROgEIjiH5OhmleVH2WGx5e9r7Tkh6CPiyQX-vaUmj7aAdc9sSt1WZ27MrvPRSL0G69Tzj9-hdFzJiurXxGXqjVx_Q29mOb3V9jp4qwdmEViJjeMaTdIphZ5OMiWyeYsZzUfIphnwPVwVlKSvpWOAyzZP0fs7rCtM8wQlnkMnf4nlGMcVJVokyG9Vbqtzpb1zyUV0JzAsBaHffFrYwLYqSUza5QPU4FWxCOmEF0kC4sCHGjdUgHvomGipIaTzP0WAZB7DGDww8UoaxksppDMQvy2AJIY-j5TCAxFtJGbneR3S8eljpTwgrFUdL6QWqCSVEZlo2A28QmMAKrksTxpfox25TF93vsV5sW8uixSsbXCKn3_dF05GUW62MP4eWfN8tedwydByafNUbc_81-6P1-fDrL-jUtS0tbQXmCh1v_v3XXyEm2chrdBSPb6-74_cM-y3SSA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemcRgc0PgSYwN8gAvCok3z1QNCWZIupmlcJU617RLq2D6h7qNFiAP_En8jz0nTaprU23J0Ysnxe36_957t30Pow9D1BoB7iijf0sSWriDCVYpoz57XQiutmlqHk8xNSvv7uXO-h_51d2HMscrOJjaGWl7VJkf-xQKgdUGBLPvb9Q0xVaPM7mpXQqNVi7H68xtCtuVXGoF8P1rWKOZhQtZVBUgNWLki2vJl3x_a2htK8OchnlcwrB4sNNvR8Ajh-lLIXq0BvOfOHPC-p8TQgahTCuEZogMw-Y9s-EWzovzRWWf5DUtQs7sKIRYB5Ox3u6iGoto0mjarSaibmnZbLoe7mHgXEhqcGx2ip2sHFQetRj1De2rxHD2ZbNhdly_Q34KzMAkKTkM8YVGcYpBjRENOZzEOWcZzlmKILnExDcI4zIMRx3mcRfHljJUFDrIIRywc0-wMz2iAAxzRguf0tGyJedMLnLPTsuCYTTnY1ssmjYaD6TRnQZi8ROWDTPgrtL-4WqjXCEvpe3MxcGTtCvADlaj7g76jHVPeXWjXP0KfN5NarRfjsmoPsnnVPRkcoV4371W9pkQ3lTl-7uryadPluuUD2fXxSSfM7Wi2ivxm9-v36CDhk7RKaTY-Ro8tc5imyf2coP3V7S_1FryhlXjXqCBGPx5a5_8DT6EN8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWXQnBYcVT7APwAS4Ia9M0rx4QSp2UhrZJlDjVspdQx_Zp1V1oVysO_DF-HeM8Wq2QetscnViyPOP5ZsaTbxB6P3TcAeCeJNIzFbGEwwl3pCTKtZYVV1LJutfhPHYmhfXtwr44QH-7f2F0WWVnE2tDLa4rnSM_NwFoHVAg0zpXbVlEGoy_3PwkuoOUvmnt2mk0KjKVv-8gfFt_jgKQ9QfTHIeMTkjbYYBUgJsbokxP9L2hpdyhAN8eYnsJSzTg0Fm2godzxxNcGJUCIF_aS8B-Q_KhDRGo4NzVpAdg_g9diIqMHjochXGadTigOYPqu1YIuAjgaL-7U9WE1XpQj5l1el13uNsxO9xHyPsAUaPe-Ck6at1V7Df69QwdyNVz9GS-5Xpdv0B_cpbQiZ-ziOJ5EoQzDFINIsqiRYhpErMsmWGINXGe-jSkmT9mOAvjILxcJEWO_TjAQUKnUfwVLyIf-ziIcpZFo6Kh6Z19x1kyKnKGk5SBpb2sk2rYT9Ms8enkJSoeZMtfod7qeiVfIyyE5y75wBaVw8ErlLzqD_q2snWzd64c7xh92m5q2R7NddmUtbnlfzI4Rka372XVEqTrPh1X-6Z83E65adhB9n181glzt5qdWp_sf_0OPQJ9L2dRPD1Fj01dWVMngs5Qb_PrVr4B12jD37Y6iNGPh1b7fy7-E4M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STOCHASTIC+MODEL+PREDICTIVE+CONTROL+FOR+SPACECRAFT+RENDEZVOUS+AND+DOCKING+VIA+A+DISTRIBUTIONALLY+ROBUST+OPTIMIZATION+APPROACH&rft.jtitle=The+ANZIAM+journal&rft.au=LI%2C+ZUOXUN&rft.au=ZHANG%2C+KAI&rft.date=2021-01-01&rft.pub=Cambridge+University+Press&rft.issn=1446-1811&rft.eissn=1446-8735&rft.volume=63&rft.issue=1&rft.spage=39&rft.epage=57&rft_id=info:doi/10.1017%2FS1446181121000031&rft.externalDocID=10_1017_S1446181121000031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1446-1811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1446-1811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1446-1811&client=summon