Volatile organic compounds (VOCs) removal by photocatalysts: A review
Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by...
Saved in:
Published in | Chemosphere (Oxford) Vol. 306; p. 135655 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale.
[Display omitted]
•Review of photocatalytic degradation of volatile organic compounds (VOCs).•Different types of photocatalyst activated by UV and visible lights are applied.•Introduction of novel and high efficiency photocatalyst in VOCs removal.•Review of effective operational parameters in the photocatalytic degradation of VOCs.•Review of visible light activation methods of the photocatalysts used in VOC removal. |
---|---|
AbstractList | Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale. Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale. [Display omitted] •Review of photocatalytic degradation of volatile organic compounds (VOCs).•Different types of photocatalyst activated by UV and visible lights are applied.•Introduction of novel and high efficiency photocatalyst in VOCs removal.•Review of effective operational parameters in the photocatalytic degradation of VOCs.•Review of visible light activation methods of the photocatalysts used in VOC removal. Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale.Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale. |
ArticleNumber | 135655 |
Author | Koyuncu, Ismail Almaie, Soudeh Vatanpour, Vahid Rasoulifard, Mohammad Hossein |
Author_xml | – sequence: 1 givenname: Soudeh surname: Almaie fullname: Almaie, Soudeh organization: Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran – sequence: 2 givenname: Vahid orcidid: 0000-0001-9420-1644 surname: Vatanpour fullname: Vatanpour, Vahid email: vahidvatanpour@khu.ac.ir organization: Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran – sequence: 3 givenname: Mohammad Hossein surname: Rasoulifard fullname: Rasoulifard, Mohammad Hossein email: m_h_rasoulifard@znu.ac.ir organization: Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran – sequence: 4 givenname: Ismail orcidid: 0000-0001-8354-1889 surname: Koyuncu fullname: Koyuncu, Ismail organization: National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey |
BookMark | eNqNkL1uwjAURq2KSgXad0g3OoTaTpzEXSqE6I-ExIJYLce-FKMQp7ah4u1rRIeqS5nu4O879_oMUK-1LSB0T_CYYFI8bsdqAzvruw04GFNM6ZhkrGDsCvVJVfKUUF71UB_jnKUFy9gNGni_xTiWGe-j2co2MpgGEus-ZGtUouyus_tW-2S0Wkz9Q-Ii_yCbpD4m3cYGq2SQzdEH_5RM4uPBwNctul7LxsPdzxyi5ctsOX1L54vX9-lknqqMlCEFiWtcKiIlVnWpS5UrqKgkusohz8jpQ5rHgzlheVbXtSQ54zoHKLXmTGZDNDpjO2c_9-CD2BmvoGlkC3bvBS1JRYsyL_j_0aKqGI2raIw-n6PKWe8drIUyITqxbXDSNIJgcbpMbMUv1eKkWpxVRwL_Q-ic2Ul3vKg7PXcheosunfDKQKtAGwcqCG3NBZRvKR6img |
CitedBy_id | crossref_primary_10_3390_ma17071585 crossref_primary_10_1016_j_envres_2024_120713 crossref_primary_10_3390_agriculture14122216 crossref_primary_10_1016_j_chemosphere_2024_142756 crossref_primary_10_1016_j_commatsci_2024_113248 crossref_primary_10_3390_molecules27206828 crossref_primary_10_1016_j_jssc_2023_124100 crossref_primary_10_1002_asia_202400993 crossref_primary_10_1080_26395940_2024_2376827 crossref_primary_10_1002_cctc_202401509 crossref_primary_10_1016_j_cattod_2024_114645 crossref_primary_10_1016_j_scitotenv_2024_170748 crossref_primary_10_1021_acsestengg_4c00586 crossref_primary_10_9767_bcrec_20042 crossref_primary_10_3390_solar5010004 crossref_primary_10_1088_2632_2153_ad9708 crossref_primary_10_1016_j_mtchem_2024_102292 crossref_primary_10_1088_1748_9326_ad4376 crossref_primary_10_1016_j_apcato_2024_206975 crossref_primary_10_1016_j_cej_2024_152193 crossref_primary_10_1016_j_electacta_2022_141336 crossref_primary_10_1016_j_jece_2025_116261 crossref_primary_10_1016_j_seppur_2022_122716 crossref_primary_10_3390_pr12061074 crossref_primary_10_1016_j_cej_2023_148488 crossref_primary_10_1016_j_envres_2024_118415 crossref_primary_10_1021_acs_iecr_4c00821 crossref_primary_10_3390_nano13091528 crossref_primary_10_1016_j_cej_2023_144437 crossref_primary_10_1039_D4TA08972C crossref_primary_10_1016_j_coche_2024_101072 crossref_primary_10_1016_j_chemosphere_2023_137985 crossref_primary_10_1007_s42823_022_00399_7 crossref_primary_10_1016_j_seppur_2024_126980 crossref_primary_10_1016_j_jclepro_2024_141915 crossref_primary_10_1039_D4EN00151F crossref_primary_10_1016_j_mtchem_2023_101633 crossref_primary_10_1016_j_apsadv_2024_100576 crossref_primary_10_1007_s11783_025_1946_2 crossref_primary_10_1007_s13399_023_04647_2 crossref_primary_10_1016_j_jece_2024_114087 crossref_primary_10_1016_j_gce_2023_06_001 crossref_primary_10_1039_D4EN00463A crossref_primary_10_71267_mencom_7601 crossref_primary_10_1002_bkcs_12887 crossref_primary_10_1016_j_jece_2024_112747 crossref_primary_10_3390_catal13081203 crossref_primary_10_1016_j_mtnano_2024_100499 crossref_primary_10_1016_j_seppur_2024_131121 crossref_primary_10_3390_molecules29225484 crossref_primary_10_3390_catal14040233 crossref_primary_10_1149_1945_7111_ad2af7 crossref_primary_10_1016_j_seppur_2024_128635 crossref_primary_10_1016_j_ceramint_2025_03_172 crossref_primary_10_3390_molecules28227658 crossref_primary_10_3390_pr12081569 crossref_primary_10_1016_j_jece_2023_111322 crossref_primary_10_3390_pollutants3010011 crossref_primary_10_1016_j_nanoen_2024_109965 crossref_primary_10_1038_s41598_024_56502_7 crossref_primary_10_1016_j_commatsci_2023_112462 crossref_primary_10_1016_j_jece_2024_112120 crossref_primary_10_1016_j_cej_2023_143310 crossref_primary_10_1080_19392699_2025_2469148 crossref_primary_10_1016_j_rser_2025_115464 crossref_primary_10_1016_j_buildenv_2023_111108 crossref_primary_10_1039_D4TA03123G crossref_primary_10_3390_nano13152173 crossref_primary_10_1016_j_applthermaleng_2024_123972 crossref_primary_10_1016_j_jes_2023_10_025 crossref_primary_10_1016_j_inoche_2023_111716 crossref_primary_10_1021_acs_inorgchem_5c00133 crossref_primary_10_1039_D4RE00151F crossref_primary_10_1016_j_chemosphere_2024_141485 crossref_primary_10_1007_s11664_024_11491_1 crossref_primary_10_1016_j_apsusc_2024_161925 crossref_primary_10_1016_j_jece_2024_114450 crossref_primary_10_1016_j_nxmate_2024_100340 crossref_primary_10_1016_j_apsusc_2023_159048 crossref_primary_10_1016_j_pnsc_2023_08_004 crossref_primary_10_1016_j_seppur_2024_130804 crossref_primary_10_1016_j_fuel_2023_128012 crossref_primary_10_1016_j_colsurfa_2023_131494 crossref_primary_10_1016_j_ceramint_2024_08_374 crossref_primary_10_1016_j_jece_2023_111823 crossref_primary_10_1016_j_seppur_2024_130523 crossref_primary_10_1016_j_applthermaleng_2024_122552 crossref_primary_10_1016_j_colsurfa_2024_134249 crossref_primary_10_1002_cctc_202300783 crossref_primary_10_1016_j_seppur_2023_123510 crossref_primary_10_1021_acs_est_3c09331 crossref_primary_10_1016_j_fbio_2024_104771 crossref_primary_10_1007_s11270_023_06636_7 crossref_primary_10_1016_j_nanoen_2024_110364 crossref_primary_10_1039_D2CP03606A crossref_primary_10_1016_j_jhazmat_2024_135447 crossref_primary_10_3390_molecules28207121 crossref_primary_10_1016_j_apcatb_2024_124139 crossref_primary_10_1016_j_rser_2023_113948 crossref_primary_10_1109_TIM_2024_3400335 crossref_primary_10_3390_molecules28176187 crossref_primary_10_1039_D4TA00332B |
Cites_doi | 10.1016/j.apcatb.2020.119447 10.1007/s40089-018-0230-x 10.1016/j.apsusc.2019.143641 10.1016/j.ces.2004.01.073 10.1016/j.cis.2021.102598 10.1021/acs.iecr.8b02873 10.3390/ijms11062336 10.1016/j.buildenv.2018.05.002 10.1007/s13201-020-01228-w 10.1016/j.jpcs.2020.109799 10.4103/2045-9912.222450 10.3390/ma12121916 10.1016/j.ces.2021.117389 10.1007/s10853-006-0574-x 10.1016/j.jhazmat.2013.02.007 10.3390/nano11123195 10.1021/cr500390v 10.3390/ijerph182413147 10.1016/j.apcatb.2003.11.010 10.1016/j.cej.2012.10.004 10.1039/C7RA02157G 10.1016/j.apcatb.2021.120885 10.1016/j.jphotochem.2004.01.012 10.1016/j.jhazmat.2016.12.004 10.1016/j.jallcom.2019.05.236 10.1016/j.jhazmat.2019.121478 10.1016/j.solener.2013.08.027 10.1016/j.jece.2019.103045 10.1016/j.apsusc.2020.146633 10.1016/j.apcatb.2013.05.009 10.1515/chem-2019-0088 10.1016/j.cej.2020.125485 10.1016/j.seppur.2021.118344 10.1016/j.apcatb.2020.119388 10.1016/j.cej.2018.09.158 10.1016/j.psep.2018.03.015 10.1080/07388550590935814 10.1039/D1GC00639H 10.1016/j.cej.2018.05.107 10.1016/j.jes.2018.01.022 10.1039/C8NJ00409A 10.1016/j.apcatb.2017.08.019 10.1016/j.ceramint.2012.03.016 10.3390/ani11051289 10.1155/2016/8324826 10.1016/j.apcata.2014.10.055 10.1016/j.cej.2020.125927 10.1016/j.jece.2019.102980 10.1007/s11270-021-05106-2 10.1016/j.apcata.2011.09.019 10.1007/s10854-016-6169-7 10.1016/j.jhazmat.2021.126577 10.1515/revce-2017-0057 10.1007/s11814-020-0684-1 10.1016/j.jhazmat.2008.07.078 10.1016/j.psep.2018.07.026 10.1016/j.solener.2021.05.087 10.1039/C9EN00891H 10.1021/acs.est.5b02350 10.1016/j.jece.2020.104162 10.1006/jcat.2000.3050 10.1016/j.cej.2018.12.136 10.1016/j.apsusc.2015.06.197 10.1039/C4RA05904B 10.1016/j.jcis.2021.08.146 10.1016/j.cej.2018.04.017 10.1016/j.apcatb.2019.03.063 10.1016/j.cattod.2016.06.047 10.1016/j.progsolidstchem.2015.09.001 10.1016/j.mssp.2021.105901 10.1016/j.apsusc.2020.146780 10.1016/j.jiec.2020.09.031 10.1016/j.colsurfa.2020.125959 10.1016/j.cej.2017.09.153 10.1016/j.cej.2018.09.167 10.1016/j.buildenv.2019.106481 10.1016/j.seppur.2019.116213 10.1016/j.cej.2016.08.068 10.1016/j.chemosphere.2021.131344 10.1016/j.chemosphere.2018.11.175 10.1016/j.jhazmat.2019.121070 10.1016/j.cej.2021.132766 10.1016/j.seppur.2021.118545 10.1002/ep.13082 10.1016/j.chemosphere.2020.126096 10.1016/j.cej.2019.03.280 10.1016/j.jhazmat.2008.04.075 10.1021/acs.est.8b02282 10.1016/j.jhazmat.2008.08.033 10.1016/j.apcatb.2016.04.009 10.1016/j.buildenv.2020.107518 10.1007/s11164-009-0026-8 10.1021/acsami.5b03948 10.3390/catal8120596 10.1016/j.jhazmat.2016.11.025 10.1016/S0926-3373(01)00274-0 10.1016/j.jhazmat.2020.123062 10.1021/acs.est.5b05418 10.1016/j.jcis.2021.07.129 10.1007/s11356-019-05436-z 10.1039/C7CY02572F 10.1038/s41467-021-22839-0 10.1007/s11771-014-2398-1 10.1016/j.clay.2017.11.040 10.1016/j.apcatb.2010.03.039 10.1016/j.cej.2018.09.040 10.1016/j.jcis.2021.05.186 10.1016/j.molstruc.2021.130023 10.1016/j.cattod.2020.03.063 10.1021/acs.iecr.7b02526 10.1016/j.jclepro.2020.125462 10.1016/j.jscs.2019.01.004 10.1007/s11244-020-01347-3 10.1016/j.jphotochemrev.2015.07.001 10.1016/j.apsusc.2017.12.054 10.1016/j.apcatb.2021.120489 10.1016/j.apcatb.2017.02.066 10.1016/j.ultsonch.2019.04.031 10.1021/acs.chemrev.8b00408 10.1039/C5RA06390F 10.1007/s11814-011-0179-1 10.1016/j.scitotenv.2020.138425 10.1007/s11356-016-6494-7 10.1016/j.apcatb.2020.118755 10.3390/catal10091017 10.1016/j.atmosenv.2016.05.031 10.1016/j.jphotochem.2015.07.004 10.1016/j.apcatb.2019.117880 10.1016/j.apcatb.2021.120118 10.1016/j.envres.2021.112036 10.1016/S0011-9164(99)00095-8 10.1016/j.cej.2019.122102 10.1016/j.cej.2020.126602 10.1016/j.cej.2020.125932 10.1016/j.cej.2021.129112 10.1016/j.apsusc.2012.01.075 10.1039/c1ra00382h 10.3390/catal6080121 10.1016/j.molcata.2014.12.007 10.1007/s11696-018-0621-5 10.1039/C9RA01209E 10.1016/j.cep.2017.02.015 10.1007/s11356-021-12932-8 10.1007/s10971-021-05532-y 10.1016/j.jece.2019.103247 10.1002/advs.202102376 10.1021/acs.iecr.8b04134 10.1016/j.jphotochem.2020.112534 10.1016/j.cej.2015.03.135 10.1016/j.cej.2020.126280 10.1016/j.jhazmat.2020.123402 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2022.135655 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
ExternalDocumentID | 10_1016_j_chemosphere_2022_135655 S0045653522021488 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEFWE AEGFY AEIPS AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AATTM AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c317t-ea0b07c1aa0cb7d7c4ce82a1d84e4311016d912991543bbba1459d4ee7dd95a3 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri Jul 11 05:16:33 EDT 2025 Fri Jul 11 08:09:35 EDT 2025 Tue Jul 01 02:08:27 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Sat Jan 18 16:10:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Volatile organic compounds Nanomaterials Photo-degradation Environmental pollution removal Photocatalysts |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c317t-ea0b07c1aa0cb7d7c4ce82a1d84e4311016d912991543bbba1459d4ee7dd95a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8354-1889 0000-0001-9420-1644 |
PQID | 2688522992 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718267469 proquest_miscellaneous_2688522992 crossref_citationtrail_10_1016_j_chemosphere_2022_135655 crossref_primary_10_1016_j_chemosphere_2022_135655 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2022_135655 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | Chemosphere (Oxford) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bueno-alejo, Graus, Arenal, Lafuente, Bottega-pergher, Hueso (bib6) 2021; 362 Molinari, Lavorato, Argurio (bib83) 2017; 281 An, Zhang, Wang, Sheng, Fu (bib3) 2005; 80 Qu, Liu, Ma, Cao (bib96) 2009; 35 Nasrollahi, Ghalamchi, Vatanpour, Khataee (bib88) 2021; 93 Huang, Zhang, Yuan, Zhang, Zhang (bib36) 2015; 353 Kaneco, Rahman, Suzuki, Katsumata, Ohta (bib44) 2004; 163 Tseng, Lin, Chen, Chu (bib130) 2010; 11 Weon, He, Choi (bib139) 2019; 6 Yasui, Sekiguchi, Yoshida, Kim, Tamura (bib147) 2021; 232 Zhang, Pu, Chen, Xu, Wang, Yang, Gong (bib153) 2020; 384 Li, Zhang, Yang, Wang, Yan, Ran (bib65) 2020; 235 Jo, Kim (bib41) 2009; 164 Ye, Ye, Nikiforov, Chen, Zhou, Chen, Wang, Zhang (bib148) 2021; 407 Khataee, Sadeghi Rad, Nikzat, Hassani, Aslan, Kobya, Demirbaş (bib50) 2019; 375 Chen, Chen, Wang, Rao, Sun, Chen, Xie (bib14) 2022; 605 Abatement, Boaretti, Vitiello, Luciani, Lorenzetti, Modesti, Roso (bib1) 2020; 10 Gao, Gan, Xiao, Zhan, Li (bib26) 2015; 5 Chen, Wang, Rao, Tang, Shi, Wang, Lu, Xie, Chen, Sun (bib15) 2022; 303 Pham, Jung, Kim (bib91) 2021; 224 Gao, Zhang, Su, Wang, Liu, Liu, Zhan, Liu, Sang (bib27) 2018; 346 Kim, Dey, Seo, Kim, Lim, Lee (bib54) 2011; 408 Lyu, Zhou, Shao, Zhou, Gao, Li, Dong, Wang (bib75) 2020; 400 Sheydaei, Fattahi, Ghalamchi, Vatanpour (bib121) 2019; 56 Ge, Zhang, Park (bib28) 2019; 12 Yu, Wang, Sun, Ye (bib150) 2018; 73 He, Jeon, Choi (bib32) 2021; 12 Selishchev, Filippov, Lyulyukin, Kozlov (bib113) 2019; 370 Fujimoto, Ponczek, Rochetto, Landers, Tomaz (bib25) 2017; 24 Jafari, Kalantari, Kermani, Firooz (bib39) 2019; 73 Priya, Suresh, Kumar, Rajendran, Vo, Soto-moscoso (bib92) 2021; 284 Luo, Zuo, Feng, Qian, Zheng, Lin, Huang, Chen (bib74) 2019; 357 Ren, Qiu, Zhang, He, Chen (bib103) 2015; 398 Zhao, Wu, Zhang, Szeto, Wang, Pan, Li, Leung (bib157) 2022; 250 Yao, Fu, Ge, Wang, Wang, Zhong (bib146) 2020; 727 Zhao, Zhang, Wu, Szeto, Wang, Pan, Leung (bib155) 2020; 527 Li, Li, Zhang, Ji, Zhou, Guo, Zhao, Liu, Han (bib67) 2021; 9 Chen, Li, Yang, Cheng, Li, Zuo (bib11) 2019; 356 Ducom, Cabassud (bib23) 1999; 124 Gholami, Khataee, Soltani, Dinpazhoh, Bhatnagar (bib29) 2020; 382 Xue, Chen, Gong (bib142) 2021; 132 Shayegan, Haghighat, Lee (bib119) 2020; 401 Cao, Gao, Suib, Obee, Hay, Freihaut (bib7) 2000; 196 Rooke, Barakat, Finol, Billemont, De Weireld, Li, Cousin, Giraudon, Siffert, Lamonier (bib104) 2013; 142 Selishchev, Svintsitskiy, Kovtunova, Gerasimov, Gladky, Kozlov (bib114) 2021; 612 Torres-martínez, Lu (bib128) 2021; 134 Muangmora, Kemacheevakul, Chuangchote (bib86) 2020; 16 Vatanpour, Karami, Sheydaei (bib131) 2017; 116 Cheng, Zhang (bib16) 2020 Chae, Yu, Young, Il (bib8) 2019; 496 Hu, Li, Sun, Song, Zheng (bib35) 2020; 168 Liu, Wang, Qu, Li, Shi, Zhang (bib72) 2019; 257 Guo, Wen, Li, An (bib30) 2021; 281 Kong, Jiang, Rui, Liu, Xian, Ji, Ji (bib56) 2020; 397 Zhuang, Gu, Long, Lin, Lin, Wang (bib159) 2014; 4 Sekiguchi, Morinaga, Sakamoto, Tamura, Yasui, Mehrjouei, Müller, Möller (bib112) 2010; 97 Roso, Boaretti, Pelizzo, Lauria, Modesti, Lorenzetti (bib105) 2017; 56 Yao, Zhang, Wang, Chen, Huang, Cao, Ho, Lee (bib145) 2017; 7 Chen, Wang, Rao, Tang, Wang, Shi, Lu, Xie, Chen, Sun (bib13) 2021; 416 Truc, Pham, Van Thuan, Tran, Nguyen, Dang, Trang (bib129) 2019; 798 Malayeri, Haghighat, Lee (bib78) 2021; 404 Oladipo, Garlisi, Al-Ali, Azar, Palmisano (bib89) 2019; 7 Rajabi, Khani, Shamsipur, Vatanpour (bib98) 2013; 250–251 Qiu, Wang, Li, Cao, Ouyang, Zhu (bib95) 2018; 8 Deng, He, Xie, Yang, Liu, Guo, Dai (bib22) 2015; 49 Wang, Xu, Wu, C (bib134) 2018; 8 Liu, Chen, Li, Wang, Chen, Wang, Li, Dong (bib73) 2022; 606 Roso, Falcomer, Azzano, Boaretti, Donadini, Lorenzetti, Modesti (bib107) 2019; 7 He, Cheng, Zhang, Douthwaite, Pattisson, Hao (bib31) 2019; 119 Zou, Zhao, Zhang, Sun, Pan, Guo (bib161) 2019; 17 Konstantinou, Albanis (bib58) 2004; 49 Fiorenza, Bellardita, D'Urso, Compagnini, Palmisano, Scirè (bib24) 2016; 6 Laokiat, Khemthong, Grisdanurak, Sreearunothai (bib59) 2012; 29 Saucedo-Lucero, Arriaga (bib111) 2015; 312 Li, Jia, Zhang, Zhang, Tang (bib62) 2014; 21 Pui, Yusoff, Aroua (bib93) 2019; 35 Shayegan, Haghighat, Lee (bib120) 2021; 287 Sun, Ding, Bao, Gao, Qi, Yang, He, Li (bib124) 2012; 258 An, Jimmy (bib2) 2011; 1 Rad, Ansarian, Soltani, Khataee, Orooji, Vafaei (bib97) 2020; 399 Zou, Yuan, Cui, Dong, Chen, Ge, Ke (bib162) 2021; 266 Nagaraju, Harikaranahalli, Wantala, Shahmoradi (bib87) 2020; 10 Zhang, Wu, Wang, Kwok, Pan, Szeto, Huang, Leung (bib154) 2021; 280 Zhou, Ou, Li, Qin, Fang, Lee, Wang, Ho (bib158) 2021; 8 Chen, Wang, Wang, Ji, Wang, Dong, Gao (bib12) 2021; 38 Liao, Xie, Liu, Chen, Li, Wu (bib69) 2012; 38 Saldanha, das Graças Santos, Tomaz (bib109) 2021; 263 Qian, Yue, Tian, Reng, Zhu, Kan, Zhang, Zhao (bib94) 2016; 193 Mahmodi, Sharifnia, Madani, Vatanpour (bib76) 2013; 97 Jafari, Arfaeinia, Badi, Kalantary, Kermani (bib38) 2019; 38 Rangkooy, Jahani, Siahi Ahangar (bib101) 2020; 7 Kannangara, Wijesena, Rajapakse, de Silva (bib45) 2018; 8 Wang, Yang (bib133) 2015; 115 Tai, Chook, Lai, Lee, Yang, Chong, Juan (bib125) 2019; 9 Xie, Li, Shi, Zhao, Zhao, Fang, Zheng, Wang (bib141) 2012; 213 Ao, Lee (bib4) 2005; 60 Karimi, Rajabi, Kavoshi (bib46) 2020; 397 Chen, Katsumata, Chiu, Okada, Matsushita, Hsu (bib9) 2015; 490 Kim, Lee, Han, Park (bib53) 2006; 41 Kamal, Razzak, Hossain (bib43) 2016; 140 Lin, Chen (bib70) 2021; 11 Degefu, Liao (bib19) 2021; 98 Van Thuan, Hanh, Vy, Hang, Van Ha, Pham, Sharma, Nguyen, Dang, Truc (bib126) 2020; 63 Hu, Song, Jiang, Wei (bib33) 2015; 274 Zhang, Liu, Hashisho, Sun, Zheng, Zhong (bib152) 2020; 525 Kong, Xiang, Li, An (bib57) 2020; 269 Shayegan, Haghighat, Lee (bib117) 2019; 357 Mishra, Mehta, Kainth, Basu (bib82) 2018; 153 David, Niculescu (bib18) 2021; 18 Jouyandeh, Mousavi Khadem, Habibzadeh, Esmaeili, Abida, Vatanpour, Rabiee, Bagherzadeh, Iravani, Reza Saeb, Varma (bib42) 2021; 23 Meng, Wang, Yang, Hu, Guo, Yang (bib81) 2019; 251 Moure, Peña (bib85) 2015; 43 Shu, Ji, Xu, Deng, Huang, He, Leung, Wu, Liu, Liu (bib123) 2018; 220 Tomatis, Xu, He, Zhang (bib127) 2016; 2016 Wang, Rao, Mahmood, Wang, Wang, Xie, Sun (bib135) 2021; 602 Shayegan, Lee, Haghighat (bib116) 2018; 334 Li, Li, Sui, Du, Zhuang, Zhang (bib66) 2021; 1231 Zou, Gao, Ok, Dong (bib160) 2019; 218 Kim, Kim, Park, Park, Kim, Jeong, Yang, Choi, Yeom, Song, Lee (bib55) 2022; 204 Hu, Chen, Fu, Ba, Sun, Zhang, Zou (bib34) 2018; 436 Kim, Hong (bib51) 2002; 35 Lee, Koziel, Murphy, Jenks, Chen, Li, Banik (bib61) 2021; 11 Weon, Choi, Kim, Kim, Park, Kim, Kim, Choi (bib138) 2018; 52 Pham, Lee (bib90) 2017; 307 Wu, Ye, Qiao, Li, Niemantsverdriet, Richards, Pan, Su (bib140) 2021 Shayegan, Haghighat, Lee (bib118) 2020; 8 Yang, Liu, Li, Chen, Rui (bib144) 2020; 249 Li, Cai, Xu, Chen, Chen, Jia, Chen (bib64) 2017; 325 Weon, Choi (bib137) 2016; 50 Assadi, Armaghan, Taheri (bib5) 2021; 161 Chen, He, Li, An, Shi, Li (bib10) 2017; 209 Li, Sang, Chen, Zhang, Zhu, Ma, Su, Wang (bib63) 2015; 7 Moma, Baloyi (bib84) 2019 Rangkooy, Ghaedi, Jahani (bib100) 2019; 7 Yousefi, Zandavar, Pourmortazavi, Rajabi, Sajadiasl, Ganjali, Mirsadeghi (bib149) 2021; 28 ctro-Fenton and electrocoagulation processes: a comparative study. J. Hazard Mater. 161, 1225–1233. Rangkooy, Tanha, Jaafarzadeh, Mohammadbeigi (bib99) 2017; 7 Khataee, A.R., Vatanpour, V., Amani Ghadim, A.R., 2009. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, el Li, Fang, Qian, Tian (bib68) 2022; 428 Rao, Lu, Chen, Mahmood, Shi, Tang, Xie, Sun (bib102) 2022; 430 Delhoménie, Heitz (bib20) 2005; 25 Kim, Lee (bib52) 2018; 119 Lee, Wei-Chieh Chung (bib60) 2019; 26 Wang, Li, Yang, Liu, Wang, Geng, Dong (bib136) 2021; 297 Zang, Zhao, Wang, Chen (bib151) 2019; 23 Mahmood, Shi, Wang, Rao, Xiao, Xie, Sun (bib77) 2021; 401 Mamaghani, Haghighat, Lee (bib79) 2018; 138 Shahna, Bahrami, Alimohammadi, Yarahmadi, Jaleh, Gandomi, Ebrahimi, Abedi (bib115) 2017; 324 Roso, Boaretti, Bonora, Modesti, Lorenzetti (bib106) 2018; 57 Ji, Shen, Kong, Rui, Tong (bib40) 2018; 57 Jafari, Kalantary, Esrafili, Arfaeinia (bib37) 2018; 116 Roushani, Mavaei, Daneshfar, Rajabi (bib108) 2017; 28 Sansotera, Kheyli, Baggioli, Bianchi, Pedeferri, Diamanti, Navarrini (bib110) 2019; 361 Xue, Gong, Chen, Chen (bib143) 2021; 150 Cheng, Gao, Zhang, Su, Wang, Wang (bib17) 2018; 42 Zhao, Deng, Li, Huang, Sun, Li (bib156) 2021; 420 Lin, Xie, Wang, Wang, Segets, Sun (bib71) 2018; 349 Verbruggen (bib132) 2015; 24 Demeestere, Dewulf, Ohno, Herrera, Langenhove (bib21) 2005; vol. 61 Khan, Kim (bib48) 2009; 163 Shojaei, Ghafourian, Yadegarian, Lari, Sadatipour (bib122) 2021 Keyikoglu, Khataee, Yoon (bib47) 2022; 300 Mamaghani, Haghighat, Lee (bib80) 2021; 189 Mamaghani (10.1016/j.chemosphere.2022.135655_bib80) 2021; 189 Roso (10.1016/j.chemosphere.2022.135655_bib107) 2019; 7 Cao (10.1016/j.chemosphere.2022.135655_bib7) 2000; 196 Delhoménie (10.1016/j.chemosphere.2022.135655_bib20) 2005; 25 Liu (10.1016/j.chemosphere.2022.135655_bib73) 2022; 606 Gao (10.1016/j.chemosphere.2022.135655_bib26) 2015; 5 Yao (10.1016/j.chemosphere.2022.135655_bib145) 2017; 7 Liu (10.1016/j.chemosphere.2022.135655_bib72) 2019; 257 Chen (10.1016/j.chemosphere.2022.135655_bib9) 2015; 490 Guo (10.1016/j.chemosphere.2022.135655_bib30) 2021; 281 Li (10.1016/j.chemosphere.2022.135655_bib66) 2021; 1231 Verbruggen (10.1016/j.chemosphere.2022.135655_bib132) 2015; 24 Gholami (10.1016/j.chemosphere.2022.135655_bib29) 2020; 382 Nasrollahi (10.1016/j.chemosphere.2022.135655_bib88) 2021; 93 An (10.1016/j.chemosphere.2022.135655_bib2) 2011; 1 Sun (10.1016/j.chemosphere.2022.135655_bib124) 2012; 258 Weon (10.1016/j.chemosphere.2022.135655_bib137) 2016; 50 Kim (10.1016/j.chemosphere.2022.135655_bib53) 2006; 41 Hu (10.1016/j.chemosphere.2022.135655_bib33) 2015; 274 Li (10.1016/j.chemosphere.2022.135655_bib63) 2015; 7 Khataee (10.1016/j.chemosphere.2022.135655_bib50) 2019; 375 Yao (10.1016/j.chemosphere.2022.135655_bib146) 2020; 727 Moma (10.1016/j.chemosphere.2022.135655_bib84) 2019 Zhao (10.1016/j.chemosphere.2022.135655_bib155) 2020; 527 Shu (10.1016/j.chemosphere.2022.135655_bib123) 2018; 220 Zhang (10.1016/j.chemosphere.2022.135655_bib152) 2020; 525 Deng (10.1016/j.chemosphere.2022.135655_bib22) 2015; 49 Xie (10.1016/j.chemosphere.2022.135655_bib141) 2012; 213 Lin (10.1016/j.chemosphere.2022.135655_bib71) 2018; 349 Kamal (10.1016/j.chemosphere.2022.135655_bib43) 2016; 140 Sekiguchi (10.1016/j.chemosphere.2022.135655_bib112) 2010; 97 Mahmodi (10.1016/j.chemosphere.2022.135655_bib76) 2013; 97 Pham (10.1016/j.chemosphere.2022.135655_bib90) 2017; 307 Jafari (10.1016/j.chemosphere.2022.135655_bib37) 2018; 116 Chen (10.1016/j.chemosphere.2022.135655_bib14) 2022; 605 Jouyandeh (10.1016/j.chemosphere.2022.135655_bib42) 2021; 23 Kong (10.1016/j.chemosphere.2022.135655_bib57) 2020; 269 Ge (10.1016/j.chemosphere.2022.135655_bib28) 2019; 12 Gao (10.1016/j.chemosphere.2022.135655_bib27) 2018; 346 Sheydaei (10.1016/j.chemosphere.2022.135655_bib121) 2019; 56 He (10.1016/j.chemosphere.2022.135655_bib32) 2021; 12 Chen (10.1016/j.chemosphere.2022.135655_bib12) 2021; 38 Ren (10.1016/j.chemosphere.2022.135655_bib103) 2015; 398 Rooke (10.1016/j.chemosphere.2022.135655_bib104) 2013; 142 Zou (10.1016/j.chemosphere.2022.135655_bib162) 2021; 266 Zou (10.1016/j.chemosphere.2022.135655_bib160) 2019; 218 Mishra (10.1016/j.chemosphere.2022.135655_bib82) 2018; 153 Shayegan (10.1016/j.chemosphere.2022.135655_bib118) 2020; 8 Saucedo-Lucero (10.1016/j.chemosphere.2022.135655_bib111) 2015; 312 Selishchev (10.1016/j.chemosphere.2022.135655_bib114) 2021; 612 Hu (10.1016/j.chemosphere.2022.135655_bib35) 2020; 168 Qu (10.1016/j.chemosphere.2022.135655_bib96) 2009; 35 Laokiat (10.1016/j.chemosphere.2022.135655_bib59) 2012; 29 Malayeri (10.1016/j.chemosphere.2022.135655_bib78) 2021; 404 Sansotera (10.1016/j.chemosphere.2022.135655_bib110) 2019; 361 Zou (10.1016/j.chemosphere.2022.135655_bib161) 2019; 17 Cheng (10.1016/j.chemosphere.2022.135655_bib16) 2020 Meng (10.1016/j.chemosphere.2022.135655_bib81) 2019; 251 Weon (10.1016/j.chemosphere.2022.135655_bib139) 2019; 6 Rangkooy (10.1016/j.chemosphere.2022.135655_bib100) 2019; 7 Wang (10.1016/j.chemosphere.2022.135655_bib135) 2021; 602 Chen (10.1016/j.chemosphere.2022.135655_bib10) 2017; 209 Roso (10.1016/j.chemosphere.2022.135655_bib105) 2017; 56 Torres-martínez (10.1016/j.chemosphere.2022.135655_bib128) 2021; 134 Molinari (10.1016/j.chemosphere.2022.135655_bib83) 2017; 281 Chen (10.1016/j.chemosphere.2022.135655_bib13) 2021; 416 Chen (10.1016/j.chemosphere.2022.135655_bib11) 2019; 356 Li (10.1016/j.chemosphere.2022.135655_bib67) 2021; 9 Muangmora (10.1016/j.chemosphere.2022.135655_bib86) 2020; 16 Selishchev (10.1016/j.chemosphere.2022.135655_bib113) 2019; 370 Shayegan (10.1016/j.chemosphere.2022.135655_bib117) 2019; 357 David (10.1016/j.chemosphere.2022.135655_bib18) 2021; 18 Zhou (10.1016/j.chemosphere.2022.135655_bib158) 2021; 8 Xue (10.1016/j.chemosphere.2022.135655_bib143) 2021; 150 Pham (10.1016/j.chemosphere.2022.135655_bib91) 2021; 224 Jo (10.1016/j.chemosphere.2022.135655_bib41) 2009; 164 Hu (10.1016/j.chemosphere.2022.135655_bib34) 2018; 436 He (10.1016/j.chemosphere.2022.135655_bib31) 2019; 119 Qiu (10.1016/j.chemosphere.2022.135655_bib95) 2018; 8 Shayegan (10.1016/j.chemosphere.2022.135655_bib116) 2018; 334 An (10.1016/j.chemosphere.2022.135655_bib3) 2005; 80 Rad (10.1016/j.chemosphere.2022.135655_bib97) 2020; 399 Rao (10.1016/j.chemosphere.2022.135655_bib102) 2022; 430 Bueno-alejo (10.1016/j.chemosphere.2022.135655_bib6) 2021; 362 Mamaghani (10.1016/j.chemosphere.2022.135655_bib79) 2018; 138 Cheng (10.1016/j.chemosphere.2022.135655_bib17) 2018; 42 Jafari (10.1016/j.chemosphere.2022.135655_bib38) 2019; 38 Rangkooy (10.1016/j.chemosphere.2022.135655_bib101) 2020; 7 Roushani (10.1016/j.chemosphere.2022.135655_bib108) 2017; 28 Liao (10.1016/j.chemosphere.2022.135655_bib69) 2012; 38 Qian (10.1016/j.chemosphere.2022.135655_bib94) 2016; 193 Li (10.1016/j.chemosphere.2022.135655_bib64) 2017; 325 Nagaraju (10.1016/j.chemosphere.2022.135655_bib87) 2020; 10 Zhuang (10.1016/j.chemosphere.2022.135655_bib159) 2014; 4 Zhang (10.1016/j.chemosphere.2022.135655_bib154) 2021; 280 Tseng (10.1016/j.chemosphere.2022.135655_bib130) 2010; 11 Luo (10.1016/j.chemosphere.2022.135655_bib74) 2019; 357 Xue (10.1016/j.chemosphere.2022.135655_bib142) 2021; 132 Lee (10.1016/j.chemosphere.2022.135655_bib60) 2019; 26 Roso (10.1016/j.chemosphere.2022.135655_bib106) 2018; 57 Zhao (10.1016/j.chemosphere.2022.135655_bib157) 2022; 250 Ji (10.1016/j.chemosphere.2022.135655_bib40) 2018; 57 Wang (10.1016/j.chemosphere.2022.135655_bib136) 2021; 297 Shahna (10.1016/j.chemosphere.2022.135655_bib115) 2017; 324 Ao (10.1016/j.chemosphere.2022.135655_bib4) 2005; 60 Rangkooy (10.1016/j.chemosphere.2022.135655_bib99) 2017; 7 Demeestere (10.1016/j.chemosphere.2022.135655_bib21) 2005; vol. 61 Yousefi (10.1016/j.chemosphere.2022.135655_bib149) 2021; 28 Wu (10.1016/j.chemosphere.2022.135655_bib140) 2021 Lee (10.1016/j.chemosphere.2022.135655_bib61) 2021; 11 Saldanha (10.1016/j.chemosphere.2022.135655_bib109) 2021; 263 Kaneco (10.1016/j.chemosphere.2022.135655_bib44) 2004; 163 Karimi (10.1016/j.chemosphere.2022.135655_bib46) 2020; 397 Kim (10.1016/j.chemosphere.2022.135655_bib51) 2002; 35 Yu (10.1016/j.chemosphere.2022.135655_bib150) 2018; 73 Kong (10.1016/j.chemosphere.2022.135655_bib56) 2020; 397 Moure (10.1016/j.chemosphere.2022.135655_bib85) 2015; 43 Khan (10.1016/j.chemosphere.2022.135655_bib48) 2009; 163 Assadi (10.1016/j.chemosphere.2022.135655_bib5) 2021; 161 Kim (10.1016/j.chemosphere.2022.135655_bib52) 2018; 119 Keyikoglu (10.1016/j.chemosphere.2022.135655_bib47) 2022; 300 Tomatis (10.1016/j.chemosphere.2022.135655_bib127) 2016; 2016 Ye (10.1016/j.chemosphere.2022.135655_bib148) 2021; 407 Kim (10.1016/j.chemosphere.2022.135655_bib55) 2022; 204 Tai (10.1016/j.chemosphere.2022.135655_bib125) 2019; 9 Li (10.1016/j.chemosphere.2022.135655_bib68) 2022; 428 Shayegan (10.1016/j.chemosphere.2022.135655_bib120) 2021; 287 Chae (10.1016/j.chemosphere.2022.135655_bib8) 2019; 496 Weon (10.1016/j.chemosphere.2022.135655_bib138) 2018; 52 Abatement (10.1016/j.chemosphere.2022.135655_bib1) 2020; 10 Pui (10.1016/j.chemosphere.2022.135655_bib93) 2019; 35 Yang (10.1016/j.chemosphere.2022.135655_bib144) 2020; 249 Ducom (10.1016/j.chemosphere.2022.135655_bib23) 1999; 124 Yasui (10.1016/j.chemosphere.2022.135655_bib147) 2021; 232 Kannangara (10.1016/j.chemosphere.2022.135655_bib45) 2018; 8 Rajabi (10.1016/j.chemosphere.2022.135655_bib98) 2013; 250–251 Shojaei (10.1016/j.chemosphere.2022.135655_bib122) 2021 Fujimoto (10.1016/j.chemosphere.2022.135655_bib25) 2017; 24 10.1016/j.chemosphere.2022.135655_bib49 Vatanpour (10.1016/j.chemosphere.2022.135655_bib131) 2017; 116 Wang (10.1016/j.chemosphere.2022.135655_bib133) 2015; 115 Jafari (10.1016/j.chemosphere.2022.135655_bib39) 2019; 73 Van Thuan (10.1016/j.chemosphere.2022.135655_bib126) 2020; 63 Degefu (10.1016/j.chemosphere.2022.135655_bib19) 2021; 98 Mahmood (10.1016/j.chemosphere.2022.135655_bib77) 2021; 401 Priya (10.1016/j.chemosphere.2022.135655_bib92) 2021; 284 Shayegan (10.1016/j.chemosphere.2022.135655_bib119) 2020; 401 Wang (10.1016/j.chemosphere.2022.135655_bib134) 2018; 8 Huang (10.1016/j.chemosphere.2022.135655_bib36) 2015; 353 Li (10.1016/j.chemosphere.2022.135655_bib65) 2020; 235 Zhao (10.1016/j.chemosphere.2022.135655_bib156) 2021; 420 Chen (10.1016/j.chemosphere.2022.135655_bib15) 2022; 303 Fiorenza (10.1016/j.chemosphere.2022.135655_bib24) 2016; 6 Konstantinou (10.1016/j.chemosphere.2022.135655_bib58) 2004; 49 Oladipo (10.1016/j.chemosphere.2022.135655_bib89) 2019; 7 Truc (10.1016/j.chemosphere.2022.135655_bib129) 2019; 798 Li (10.1016/j.chemosphere.2022.135655_bib62) 2014; 21 Lyu (10.1016/j.chemosphere.2022.135655_bib75) 2020; 400 Kim (10.1016/j.chemosphere.2022.135655_bib54) 2011; 408 Zang (10.1016/j.chemosphere.2022.135655_bib151) 2019; 23 Zhang (10.1016/j.chemosphere.2022.135655_bib153) 2020; 384 Lin (10.1016/j.chemosphere.2022.135655_bib70) 2021; 11 |
References_xml | – volume: 18 year: 2021 ident: bib18 article-title: Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials publication-title: Int. J. Environ. Res. Publ. Health – volume: 7 start-page: 260 year: 2017 ident: bib99 article-title: The influence of ZnO-SnO publication-title: Med. Gas Res. – volume: 287 year: 2021 ident: bib120 article-title: Anatase/brookite biphasic surface fluorinated Fe–TiO2 photocatalysts to enhance photocatalytic removal of VOCs under visible and UV light publication-title: J. Clean. Prod. – volume: 12 start-page: 1916 year: 2019 ident: bib28 article-title: Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: a mini review publication-title: Materials – volume: 258 start-page: 5031 year: 2012 end-page: 5037 ident: bib124 article-title: Photocatalytic degradation of gaseous toluene on Fe-TiO publication-title: Appl. Surf. Sci. – volume: 8 year: 2021 ident: bib158 article-title: Photocatalytic air purification using functional polymeric carbon nitrides publication-title: Adv. Sci. – volume: 52 start-page: 9330 year: 2018 end-page: 9340 ident: bib138 article-title: Active {001} facet exposed TiO publication-title: Environ. Sci. Technol. – volume: 269 year: 2020 ident: bib57 article-title: Introduce oxygen vacancies into CeO publication-title: Appl. Catal. B Environ. – volume: 21 start-page: 4066 year: 2014 end-page: 4070 ident: bib62 article-title: Photocatalytic degradation of formaldehyde using mesoporous TiO publication-title: J. Cent. South Univ. – volume: 193 start-page: 16 year: 2016 end-page: 21 ident: bib94 article-title: Carbon quantum dots decorated Bi publication-title: Appl. Catal. B Environ. – volume: 43 start-page: 123 year: 2015 end-page: 148 ident: bib85 article-title: Recent advances in perovskites: processing and properties publication-title: Prog. Solid State Chem. – volume: 397 year: 2020 ident: bib56 article-title: Photothermocatalytic synergistic oxidation: an effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation publication-title: Chem. Eng. J. – volume: 7 start-page: 13714 year: 2015 end-page: 13721 ident: bib63 article-title: Enhanced visible photovoltaic response of TiO publication-title: ACS Appl. Mater. Interfaces – volume: 119 start-page: 4471 year: 2019 end-page: 4568 ident: bib31 article-title: Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources publication-title: Chem. Rev. – volume: 353 start-page: 949 year: 2015 end-page: 957 ident: bib36 article-title: One-pot facile synthesis of branched Ag-ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst publication-title: Appl. Surf. Sci. – volume: 93 start-page: 101 year: 2021 end-page: 116 ident: bib88 article-title: Photocatalytic-membrane technology: a critical review for membrane fouling mitigation publication-title: J. Ind. Eng. Chem. – volume: 8 start-page: 596 year: 2018 ident: bib95 article-title: Photocatalytic oxidation of toluene on fluorine doped TiO publication-title: Catalysts – volume: 98 start-page: 605 year: 2021 end-page: 614 ident: bib19 article-title: Photocatalytic degradation of volatile organic compounds using nanocomposite of P-type and N-type transition metal semiconductors publication-title: J. Sol. Gel Sci. Technol. – volume: 7 year: 2019 ident: bib107 article-title: Design and development of nanostructured filter media for VOCs abatement in closed environments publication-title: J. Environ. Chem. Eng. – volume: 73 start-page: 138 year: 2018 end-page: 146 ident: bib150 article-title: Enhanced photocatalytic activity of rGO/TiO publication-title: J. Environ. Sci. (China) – volume: 80 start-page: 251 year: 2005 end-page: 258 ident: bib3 article-title: Photocatalytic degradation of gaseous trichloroethene using immobilized ZnO/SnO publication-title: J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. – volume: 140 start-page: 117 year: 2016 end-page: 134 ident: bib43 article-title: Catalytic oxidation of volatile organic compounds (VOCs)–A review publication-title: Atmos. Environ. – volume: 138 start-page: 275 year: 2018 end-page: 282 ident: bib79 article-title: Photocatalytic degradation of VOCs on various commercial titanium dioxides: impact of operating parameters on removal efficiency and by-products generation publication-title: Build. Environ. – volume: 29 start-page: 377 year: 2012 end-page: 383 ident: bib59 article-title: Photocatalytic degradation of benzene, toluene, ethylbenzene, and xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglass cloth publication-title: Kor. J. Chem. Eng. – volume: 41 start-page: 6150 year: 2006 end-page: 6153 ident: bib53 article-title: Preparation of dip-coated TiO publication-title: J. Mater. Sci. – volume: 97 start-page: 186 year: 2013 end-page: 194 ident: bib76 article-title: Photoreduction of carbon dioxide in the presence of H publication-title: Sol. Energy – start-page: 1 year: 2020 end-page: 11 ident: bib16 article-title: Enhanced photocatalytic performance of tungsten-based photocatalysts for degradation of volatile organic compounds: a review publication-title: Tungsten – volume: 5 start-page: 52985 year: 2015 end-page: 52992 ident: bib26 article-title: Enhancement of photo-catalytic degradation of formaldehyde through loading anatase TiO publication-title: RSC Adv. – volume: 23 start-page: 4931 year: 2021 ident: bib42 article-title: Quantum dots for photocatalysis: synthesis and environmental applications publication-title: Green Chem. – volume: 250 year: 2022 ident: bib157 article-title: Bifunctional Mn publication-title: Chem. Eng. Sci. – volume: 56 start-page: 361 year: 2019 end-page: 371 ident: bib121 article-title: Systematic comparison of sono-synthesized Ce-, La- and Ho-doped ZnO nanoparticles and using the optimum catalyst in a visible light assisted continuous sono-photocatalytic membrane reactor publication-title: Ultrason. Sonochem. – volume: 404 year: 2021 ident: bib78 article-title: Kinetic modeling of the photocatalytic degradation of methyl ethyl ketone in air for a continuous-flow reactor publication-title: Chem. Eng. J. – reference: ctro-Fenton and electrocoagulation processes: a comparative study. J. Hazard Mater. 161, 1225–1233. – volume: 361 start-page: 885 year: 2019 end-page: 896 ident: bib110 article-title: Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO publication-title: Chem. Eng. J. – volume: 384 year: 2020 ident: bib153 article-title: Oxygen vacancies enhanced photocatalytic activity towards VOCs oxidation over Pt deposited Bi publication-title: J. Hazard Mater. – volume: 274 start-page: 102 year: 2015 end-page: 112 ident: bib33 article-title: Enhanced photocatalytic activity of Pt-doped TiO publication-title: Chem. Eng. J. – volume: 73 start-page: 635 year: 2019 end-page: 644 ident: bib39 article-title: Photocatalytic oxidation of benzene by ZnO coated on glass plates under simulated sunlight publication-title: Chem. Pap. – volume: 401 year: 2021 ident: bib77 article-title: Carbon quantum dots-TiO publication-title: J. Hazard Mater. – volume: 399 year: 2020 ident: bib97 article-title: Sonophotocatalytic activities of FeCuMg and CrCuMg LDHs: influencing factors, antibacterial effects, and intermediate determination publication-title: J. Hazard Mater. – start-page: 1 year: 2021 end-page: 10 ident: bib122 article-title: Removal of volatile organic compounds (VOCs) from waste air stream using ozone assisted zinc oxide (ZnO) nanoparticles coated on zeolite publication-title: J. Environ. Heal. Sci. Eng. – volume: 401 year: 2020 ident: bib119 article-title: Surface fluorinated Ce-doped TiO publication-title: Chem. Eng. J. – volume: 168 year: 2020 ident: bib35 article-title: Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO publication-title: Build. Environ. – volume: 116 start-page: 68 year: 2017 end-page: 75 ident: bib131 article-title: Central composite design optimization of Rhodamine B degradation using TiO publication-title: Chem. Eng. Process. Process Intensif. – volume: 218 start-page: 845 year: 2019 end-page: 859 ident: bib160 article-title: Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review publication-title: Chemosphere – volume: 163 start-page: 1179 year: 2009 end-page: 1184 ident: bib48 article-title: Preparation and application of visible-light-responsive Ni-doped and SnO publication-title: J. Hazard Mater. – volume: 235 year: 2020 ident: bib65 article-title: Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review publication-title: Separ. Purif. Technol. – volume: 356 start-page: 255 year: 2019 end-page: 261 ident: bib11 article-title: Ce-modified mesoporous γ-Al publication-title: Chem. Eng. J. – volume: 346 start-page: 77 year: 2018 end-page: 84 ident: bib27 article-title: Construction of bimetallic Pd-Ag enhanced AgBr/TiO publication-title: Chem. Eng. J. – volume: 28 start-page: 5135 year: 2017 end-page: 5143 ident: bib108 article-title: Application of graphene quantum dots as green homogenous nanophotocatalyst in the visible-light-driven photolytic process publication-title: J. Mater. Sci. Mater. Electron. – volume: 12 start-page: 10 year: 2021 end-page: 13 ident: bib32 article-title: Photocatalytic air purification mimicking the self-cleaning process of the atmosphere publication-title: Nat. Commun. – volume: 1231 start-page: 2 year: 2021 end-page: 10 ident: bib66 article-title: Removal of volatile organic compounds from air using supported ionic liquid membrane containing ultraviolet-visible light-driven Nd-TiO publication-title: J. Mol. Struct. – year: 2019 ident: bib84 article-title: Modified titanium dioxide for photocatalytic applications publication-title: Photocatalysts - Applications and Attributes – volume: 307 start-page: 63 year: 2017 end-page: 73 ident: bib90 article-title: Selective removal of polar VOCs by novel photocatalytic activity of metals co-doped TiO publication-title: Chem. Eng. J. – volume: 119 start-page: 164 year: 2018 end-page: 171 ident: bib52 article-title: Enhanced photocatalytic decomposition of VOCs by visible-driven photocatalyst combined Cu-TiO publication-title: Process Saf. Environ. Protect. – volume: 496 year: 2019 ident: bib8 article-title: Hybrid poly (3-hexylthiophene) (P3HT) nanomesh/ZnO nanorod p-n junction visible photocatalyst for efficient indoor air purification publication-title: Appl. Surf. Sci. – volume: 606 start-page: 1435 year: 2022 end-page: 1444 ident: bib73 article-title: Promote the activation and ring opening of intermediates for stable photocatalytic toluene degradation over Zn-Ti-LDH publication-title: J. Colloid Interface Sci. – volume: 132 year: 2021 ident: bib142 article-title: Materials Science in Semiconductor Processing Fast electron transfer and enhanced visible light photocatalytic activity of silver and Ag publication-title: Mater. Sci. Semicond. Process. – volume: 297 year: 2021 ident: bib136 article-title: Promote reactants activation and key intermediates formation for facilitated toluene photodecomposition via Ba active sites construction publication-title: Appl. Catal. B Environ. – volume: 357 start-page: 395 year: 2019 end-page: 403 ident: bib74 article-title: Good interaction between well dispersed Pt and LaCoO publication-title: Chem. Eng. J. – volume: 10 start-page: 1 year: 2020 end-page: 15 ident: bib87 article-title: Preparation of modified ZnO nanoparticles for photocatalytic degradation of chlorobenzene publication-title: Appl. Water Sci. – volume: 280 year: 2021 ident: bib154 article-title: Fluorinated TiO publication-title: Appl. Catal. B Environ. – volume: 10 start-page: 1017 year: 2020 ident: bib1 article-title: Electrospun active media based on polyvinylidene fluoride (PVDF)-graphene-TiO publication-title: Catalysts – volume: 727 year: 2020 ident: bib146 article-title: Preparation and characterization of a copper phosphotungstate/titanium dioxide (Cu-H publication-title: Sci. Total Environ. – volume: 349 start-page: 708 year: 2018 end-page: 718 ident: bib71 article-title: Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO publication-title: Chem. Eng. J. – reference: Khataee, A.R., Vatanpour, V., Amani Ghadim, A.R., 2009. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, el – volume: 134 year: 2021 ident: bib128 article-title: Materials Science in Semiconductor Processing Earth-abundant ZnS/ZnO/CuFeS publication-title: Mater. Sci. Semicond. Process. – volume: 303 year: 2022 ident: bib15 article-title: One-pot synthesis of the MIL-100 (Fe) MOF/MOX homojunctions with tunable hierarchical pores for the photocatalytic removal of BTXS publication-title: Appl. Catal. B Environ. – volume: 370 start-page: 1440 year: 2019 end-page: 1449 ident: bib113 article-title: Uranyl-modified TiO publication-title: Chem. Eng. J. – volume: 163 start-page: 419 year: 2004 end-page: 424 ident: bib44 article-title: Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide publication-title: J. Photochem. Photobiol. Chem. – volume: 49 start-page: 1 year: 2004 end-page: 14 ident: bib58 article-title: TiO publication-title: Appl. Catal. B Environ. – volume: 375 year: 2019 ident: bib50 article-title: Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of moxifloxacin publication-title: Chem. Eng. J. – volume: 204 year: 2022 ident: bib55 article-title: Practical scale evaluation of a photocatalytic air purifier equipped with a Titania-zeolite composite bead filter for VOC removal and viral inactivation publication-title: Environ. Res. – volume: 430 year: 2022 ident: bib102 article-title: Photocatalytic oxidation mechanism of Gas-Phase VOCs: unveiling the role of holes, •OH and •O publication-title: Chem. Eng. J. – volume: 6 start-page: 121 year: 2016 ident: bib24 article-title: Au/TiO publication-title: Catalysts – volume: 408 start-page: 148 year: 2011 end-page: 155 ident: bib54 article-title: Photocatalytic decomposition of toluene by nanodiamond-supported TiO publication-title: Appl. Catal. Gen. – volume: 334 start-page: 2408 year: 2018 end-page: 2439 ident: bib116 article-title: TiO publication-title: Chem. Eng. J. – volume: 407 year: 2021 ident: bib148 article-title: Influence of mixed-phase TiO publication-title: Chem. Eng. J. – volume: 281 start-page: 144 year: 2017 end-page: 164 ident: bib83 article-title: Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review publication-title: Catal. Today – volume: 357 start-page: 533 year: 2019 end-page: 546 ident: bib117 article-title: Photocatalytic oxidation of volatile organic compounds for indoor environment applications: three different scaled setups publication-title: Chem. Eng. J. – volume: 23 start-page: 645 year: 2019 end-page: 654 ident: bib151 article-title: A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts publication-title: J. Saudi Chem. Soc. – volume: 57 start-page: 16635 year: 2018 end-page: 16644 ident: bib106 article-title: Nanostructured active media for volatile organic compounds abatement: the synergy of graphene oxide and semiconductor coupling publication-title: Ind. Eng. Chem. Res. – volume: 490 start-page: 1 year: 2015 end-page: 9 ident: bib9 article-title: ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation publication-title: Appl. Catal. Gen. – volume: 436 start-page: 319 year: 2018 end-page: 326 ident: bib34 article-title: Hydrothermal synthesis of BiVO publication-title: Appl. Surf. Sci. – volume: 7 start-page: 41 year: 2020 end-page: 47 ident: bib101 article-title: Photocatalytic removal of xylene as a pollutant in the air using ZnO-activated carbon, TiO publication-title: Environ. Heal. Eng. Manag. J. – volume: 24 start-page: 6390 year: 2017 end-page: 6396 ident: bib25 article-title: Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO publication-title: Environ. Sci. Pollut. Res. – volume: 164 start-page: 360 year: 2009 end-page: 366 ident: bib41 article-title: Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds publication-title: J. Hazard. Mater. – volume: 6 start-page: 3185 year: 2019 end-page: 3214 ident: bib139 article-title: Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation publication-title: Environ. Sci. Nano – volume: 284 year: 2021 ident: bib92 article-title: A review on recent advancements in photocatalytic remediation for harmful inorganic and organic gases publication-title: Chemosphere – volume: 397 year: 2020 ident: bib46 article-title: Application of decorated magnetic nanophotocatalysts for efficient photodegradation of organic dye: a comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots publication-title: J. Photochem. Photobiol. Chem. – start-page: 120118 year: 2021 ident: bib140 article-title: Inhibit the formation of toxic methylphenolic by-products in photo-decomposition of formaldehyde–toluene/xylene mixtures by pd cocatalyst on TiO publication-title: Appl. Catal. B Environ. – volume: 420 year: 2021 ident: bib156 article-title: Efficient photocatalytic toluene degradation over heterojunction of GQDs@BiOCl ultrathin nanosheets with selective benzoic acid activation publication-title: J. Hazard Mater. – volume: 266 year: 2021 ident: bib162 article-title: Construction of zinc-indium-sulfide/indium oxide step-scheme junction catalyst for enhanced photocatalytic activities of pollutant degradation and hydrogen generation publication-title: Separ. Purif. Technol. – volume: 49 start-page: 11089 year: 2015 end-page: 11095 ident: bib22 article-title: Ultralow loading of silver nanoparticles on Mn publication-title: Environ. Sci. Technol. – volume: 35 start-page: 649 year: 2019 end-page: 668 ident: bib93 article-title: A review on activated carbon adsorption for volatile organic compounds (VOCs) publication-title: Rev. Chem. Eng. – volume: 1 start-page: 1426 year: 2011 end-page: 1434 ident: bib2 article-title: Graphene-based photocatalytic composites publication-title: RSC Adv. – volume: 153 start-page: 144 year: 2018 end-page: 153 ident: bib82 article-title: Effect of different plasmonic metals on photocatalytic degradation of volatile organic compounds (VOCs) by bentonite/M-TiO publication-title: Appl. Clay Sci. – volume: 527 year: 2020 ident: bib155 article-title: Carbon doped ultra-small TiO publication-title: Appl. Surf. Sci. – volume: 11 start-page: 3195 year: 2021 ident: bib70 article-title: Graphene family nanomaterials (GFN)-TiO publication-title: Nanomaterials – volume: 161 year: 2021 ident: bib5 article-title: Photocatalytic oxidation of ketone group volatile organic compounds in an intensified fluidized bed reactor using nano-TiO publication-title: Chem. Eng. Process. Intensif. – volume: 312 start-page: 28 year: 2015 end-page: 33 ident: bib111 article-title: Study of ZnO-photocatalyst deactivation during continuous degradation of n-hexane vapors publication-title: J. Photochem. Photobiol. Chem. – volume: 428 year: 2022 ident: bib68 article-title: Z-scheme heterojunction of low conduction band potential MnO publication-title: Chem. Eng. J. – volume: vol. 61 start-page: 140 year: 2005 end-page: 149 ident: bib21 publication-title: Visible Light Mediated Photocatalytic Degradation of Gaseous Trichloroethylene and Dimethyl Sulfide on Modified Titanium Dioxide – volume: 11 start-page: 1289 year: 2021 ident: bib61 article-title: Evaluation of TiO publication-title: Animals – volume: 25 start-page: 53 year: 2005 end-page: 72 ident: bib20 article-title: Biofiltration of air: a review publication-title: Crit. Rev. Biotechnol. – volume: 400 year: 2020 ident: bib75 article-title: Synthesis of TiO publication-title: Chem. Eng. J. – volume: 9 year: 2021 ident: bib67 article-title: Study on the performance and mechanism of degradation of toluene with non-thermal plasmas synergized supported TiO publication-title: J. Environ. Chem. Eng. – volume: 249 year: 2020 ident: bib144 article-title: Promotion effect of strong metal-support interaction to thermocatalytic, photocatalytic, and photothermocatalytic oxidation of toluene on Pt/SrTiO publication-title: Chemosphere – volume: 28 start-page: 33344 year: 2021 end-page: 33354 ident: bib149 article-title: UV and visible-assisted photocatalytic degradation of pharmaceutical pollutants in the presence of rational designed biogenic Fe publication-title: Environ. Sci. Pollut. Res. – volume: 4 start-page: 34315 year: 2014 end-page: 34324 ident: bib159 article-title: Visible light-driven decomposition of gaseous benzene on robust Sn publication-title: RSC Adv. – volume: 150 year: 2021 ident: bib143 article-title: A facile synthesis of Ag/Ag publication-title: J. Phys. Chem. Solid. – volume: 281 year: 2021 ident: bib30 article-title: Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review publication-title: Appl. Catal. B Environ. – volume: 612 year: 2021 ident: bib114 article-title: Surface modification of TiO publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 16 start-page: 185 year: 2020 end-page: 201 ident: bib86 article-title: Titanium dioxide and its modified forms as photocatalysts for air treatment publication-title: Curr. Anal. Chem. – volume: 209 start-page: 146 year: 2017 end-page: 154 ident: bib10 article-title: Visible-light-enhanced photothermocatalytic activity of ABO publication-title: Appl. Catal. B Environ. – volume: 35 start-page: 305 year: 2002 end-page: 315 ident: bib51 article-title: Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO publication-title: Appl. Catal. B Environ. – volume: 7 year: 2019 ident: bib89 article-title: Combined photocatalytic properties and energy efficiency via multifunctional glass publication-title: J. Environ. Chem. Eng. – volume: 50 start-page: 2556 year: 2016 end-page: 2563 ident: bib137 article-title: TiO publication-title: Environ. Sci. Technol. – volume: 35 start-page: 313 year: 2009 end-page: 320 ident: bib96 article-title: Research on photodegradation of formaldehyde by nanocrystalline N-TiO publication-title: Res. Chem. Intermed. – volume: 324 start-page: 544 year: 2017 end-page: 553 ident: bib115 article-title: Chlorobenzene degradation by non-thermal plasma combined with EG-TiO publication-title: J. Hazard Mater. – volume: 213 start-page: 218 year: 2012 end-page: 224 ident: bib141 article-title: Novel effect of significant enhancement of gas-phase photocatalytic efficiency for nano ZnO publication-title: Chem. Eng. J. – volume: 798 start-page: 12 year: 2019 end-page: 18 ident: bib129 article-title: Superior activity of Cu-NiWO publication-title: J. Alloys Compd. – volume: 416 year: 2021 ident: bib13 article-title: In-situ synthesis of Z-Scheme MIL-100 (Fe)/α-Fe publication-title: Chem. Eng. J. – volume: 250–251 start-page: 370 year: 2013 end-page: 378 ident: bib98 article-title: High-performance pure and Fe publication-title: J. Hazard Mater. – volume: 8 start-page: 31 year: 2018 end-page: 39 ident: bib45 article-title: Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide publication-title: Int. Nano Lett. – volume: 7 start-page: 24683 year: 2017 end-page: 24689 ident: bib145 article-title: Enhanced photocatalytic removal of NO over titania/hydroxyapatite (TiO publication-title: RSC Adv. – volume: 196 start-page: 253 year: 2000 end-page: 261 ident: bib7 article-title: Photocatalytic oxidation of toluene on nanoscale TiO publication-title: J. Catal. – volume: 398 start-page: 215 year: 2015 end-page: 222 ident: bib103 article-title: Degradation of benzene on TiO publication-title: J. Mol. Catal. Chem. – volume: 142 start-page: 149 year: 2013 end-page: 160 ident: bib104 article-title: Influence of hierarchically porous niobium doped TiO publication-title: Appl. Catal. B Environ. – volume: 8 year: 2020 ident: bib118 article-title: Carbon-doped TiO publication-title: J. Environ. Chem. Eng. – volume: 605 start-page: 674 year: 2022 end-page: 684 ident: bib14 article-title: Rare-earth single atoms decorated 2D-TiO2 nanosheets for the photodegradation of gaseous O-xylene publication-title: J. Colloid Interface Sci. – volume: 382 year: 2020 ident: bib29 article-title: Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite publication-title: J. Hazard Mater. – volume: 325 start-page: 261 year: 2017 end-page: 270 ident: bib64 article-title: Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light publication-title: J. Hazard Mater. – volume: 2016 year: 2016 ident: bib127 article-title: Recent development of catalysts for removal of volatile organic compounds in flue gas by combustion: a review publication-title: J. Chem. – volume: 42 start-page: 9252 year: 2018 end-page: 9259 ident: bib17 article-title: Synthesis of a TiO publication-title: New J. Chem. – volume: 9 start-page: 18076 year: 2019 end-page: 18086 ident: bib125 article-title: Effective photoreduction of graphene oxide for photodegradation of volatile organic compounds publication-title: RSC Adv. – volume: 38 start-page: 4437 year: 2012 end-page: 4444 ident: bib69 article-title: Comparison on photocatalytic degradation of gaseous formaldehyde by TiO publication-title: Ceram. Int. – volume: 232 start-page: 1 year: 2021 end-page: 15 ident: bib147 article-title: Complete decomposition of 2-propanol using TiO publication-title: Water, Air, Soil Pollut. – volume: 7 year: 2019 ident: bib100 article-title: Removal of xylene vapor pollutant from the air using new hybrid substrates of TiO publication-title: J. Environ. Chem. Eng. – volume: 24 start-page: 64 year: 2015 end-page: 82 ident: bib132 article-title: TiO publication-title: J. Photochem. Photobiol. C Photochem. Rev. – volume: 525 year: 2020 ident: bib152 article-title: Adsorption and photocatalytic degradation performances of TiO publication-title: Appl. Surf. Sci. – volume: 60 start-page: 103 year: 2005 end-page: 109 ident: bib4 article-title: Indoor air purification by photocatalyst TiO publication-title: Chem. Eng. Sci. – volume: 38 year: 2019 ident: bib38 article-title: Ozone‐Assisted photocatalytic degradation of benzene using nano‐zinc oxide impregnated granular activated carbon (ZnO–GAC) in a continuous fluidized bed reactor publication-title: Environ. Prog. Sustain. Energy – volume: 8 start-page: 1366 year: 2018 end-page: 1374 ident: bib134 article-title: Nonstoichiometric tungsten oxide residing in a 3D nitrogen doped carbon matrix, a composite photocatalyst for oxygen vacancy induced VOC degradation and H2 production publication-title: Catal. Sci. Technol. – volume: 26 start-page: 20908 year: 2019 end-page: 20919 ident: bib60 article-title: Photocatalytic oxidation of toluene and isopropanol by LaFeO publication-title: Environ. Sci. Pollut. Res. – volume: 56 start-page: 9980 year: 2017 end-page: 9992 ident: bib105 article-title: Nanostructured photocatalysts based on different oxidized graphenes for VOCs removal publication-title: Ind. Eng. Chem. Res. – volume: 362 start-page: 97 year: 2021 end-page: 103 ident: bib6 article-title: Anisotropic Au-ZnO photocatalyst for the visible-light expanded oxidation of n-hexane publication-title: Catal. Today – volume: 17 start-page: 779 year: 2019 end-page: 787 ident: bib161 article-title: Preparation of ternary ZnO/Ag/cellulose and its enhanced photocatalytic degradation property on phenol and benzene in VOCs publication-title: Open Chem – volume: 300 year: 2022 ident: bib47 article-title: Layered double hydroxides for removing and recovering phosphate: recent advances and future directions publication-title: Adv. Colloid Interface Sci. – volume: 263 year: 2021 ident: bib109 article-title: Photocatalytic ethylbenzene degradation associated with ozone (TiO publication-title: Separ. Purif. Technol. – volume: 602 start-page: 699 year: 2021 end-page: 711 ident: bib135 article-title: Improved photocatalytic oxidation performance of gaseous acetaldehyde by ternary g-C publication-title: J. Colloid Interface Sci. – volume: 251 start-page: 168 year: 2019 end-page: 180 ident: bib81 article-title: Enhanced gas-phase photocatalytic removal of aromatics over direct Z- scheme-dictated H publication-title: Appl. Catal. B Environ. – volume: 11 start-page: 2336 year: 2010 end-page: 2361 ident: bib130 article-title: A review of photocatalysts prepared by sol-gel method for VOCs removal publication-title: Int. J. Mol. Sci. – volume: 115 start-page: 4893 year: 2015 end-page: 4962 ident: bib133 article-title: Recent advances in polyoxometalate-catalyzed reactions publication-title: Chem. Rev. – volume: 116 start-page: 377 year: 2018 end-page: 387 ident: bib37 article-title: Synthesis of silica-functionalized graphene oxide/ZnO coated on fiberglass and its application in photocatalytic removal of gaseous benzene publication-title: Process Saf. Environ. Protect. – volume: 97 start-page: 190 year: 2010 end-page: 197 ident: bib112 article-title: Degradation of VOC gases in liquid phase by photocatalysis at the bubble interface publication-title: Appl. Catal. B Environ. – volume: 224 start-page: 18 year: 2021 end-page: 26 ident: bib91 article-title: Enhanced photodegradation of toxic volatile organic pollutants using Ni-doped graphitic carbon nitride under natural solar light publication-title: Sol. Energy – volume: 63 start-page: 1077 year: 2020 end-page: 1085 ident: bib126 article-title: Synthesis of N and S Co-doped TiO publication-title: Top. Catal. – volume: 38 start-page: 46 year: 2021 end-page: 54 ident: bib12 article-title: Facile fabrication of copper oxide modified activated carbon composite for efficient CO publication-title: Kor. J. Chem. Eng. – volume: 57 start-page: 12766 year: 2018 end-page: 12773 ident: bib40 article-title: Synergistic performance between visible-light photocatalysis and thermocatalysis for VOCs oxidation over robust Ag/F-codoped SrTiO publication-title: Ind. Eng. Chem. Res. – volume: 257 year: 2019 ident: bib72 article-title: Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene publication-title: Appl. Catal. B Environ. – volume: 124 start-page: 115 year: 1999 end-page: 123 ident: bib23 article-title: Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production publication-title: Desalination – volume: 220 start-page: 78 year: 2018 end-page: 87 ident: bib123 article-title: Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO publication-title: Appl. Catal. B Environ. – volume: 189 year: 2021 ident: bib80 article-title: Effect of titanium dioxide properties and support material on photocatalytic oxidation of indoor air pollutants publication-title: Build. Environ. – volume: 7 start-page: 41 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib101 article-title: Photocatalytic removal of xylene as a pollutant in the air using ZnO-activated carbon, TiO2-activated carbon, and TiO2/ZnO-activated carbon nanocomposites publication-title: Environ. Heal. Eng. Manag. J. – volume: 281 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib30 article-title: Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119447 – volume: 428 year: 2022 ident: 10.1016/j.chemosphere.2022.135655_bib68 article-title: Z-scheme heterojunction of low conduction band potential MnO2 and biochar-based g-C3N4 for efficient formaldehyde degradation publication-title: Chem. Eng. J. – volume: 8 start-page: 31 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib45 article-title: Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide publication-title: Int. Nano Lett. doi: 10.1007/s40089-018-0230-x – volume: 496 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib8 article-title: Hybrid poly (3-hexylthiophene) (P3HT) nanomesh/ZnO nanorod p-n junction visible photocatalyst for efficient indoor air purification publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143641 – volume: 60 start-page: 103 year: 2005 ident: 10.1016/j.chemosphere.2022.135655_bib4 article-title: Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.01.073 – volume: 300 year: 2022 ident: 10.1016/j.chemosphere.2022.135655_bib47 article-title: Layered double hydroxides for removing and recovering phosphate: recent advances and future directions publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2021.102598 – volume: 57 start-page: 12766 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib40 article-title: Synergistic performance between visible-light photocatalysis and thermocatalysis for VOCs oxidation over robust Ag/F-codoped SrTiO3 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b02873 – volume: 11 start-page: 2336 year: 2010 ident: 10.1016/j.chemosphere.2022.135655_bib130 article-title: A review of photocatalysts prepared by sol-gel method for VOCs removal publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms11062336 – volume: 138 start-page: 275 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib79 article-title: Photocatalytic degradation of VOCs on various commercial titanium dioxides: impact of operating parameters on removal efficiency and by-products generation publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.05.002 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib87 article-title: Preparation of modified ZnO nanoparticles for photocatalytic degradation of chlorobenzene publication-title: Appl. Water Sci. doi: 10.1007/s13201-020-01228-w – volume: 150 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib143 article-title: A facile synthesis of Ag/Ag2O@TiO2 for toluene degradation under UV– visible light: effect of Ag formation by partial reduction of Ag2O on photocatalyst stability publication-title: J. Phys. Chem. Solid. doi: 10.1016/j.jpcs.2020.109799 – volume: 7 start-page: 260 year: 2017 ident: 10.1016/j.chemosphere.2022.135655_bib99 article-title: The influence of ZnO-SnO2 nanoparticles and activated carbon on the photocatalytic degradation of toluene using continuous flow mode publication-title: Med. Gas Res. doi: 10.4103/2045-9912.222450 – volume: 12 start-page: 1916 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib28 article-title: Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: a mini review publication-title: Materials doi: 10.3390/ma12121916 – volume: 250 year: 2022 ident: 10.1016/j.chemosphere.2022.135655_bib157 article-title: Bifunctional Mn2+ grafted ultra-small TiO2 nanoparticles on carbon cloth with efficient toluene degradation in a continuous flow reactor publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117389 – volume: 41 start-page: 6150 year: 2006 ident: 10.1016/j.chemosphere.2022.135655_bib53 article-title: Preparation of dip-coated TiO2 photocatalyst on ceramic foam pellets publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-0574-x – year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib84 article-title: Modified titanium dioxide for photocatalytic applications – volume: 250–251 start-page: 370 year: 2013 ident: 10.1016/j.chemosphere.2022.135655_bib98 article-title: High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2013.02.007 – start-page: 1 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib122 article-title: Removal of volatile organic compounds (VOCs) from waste air stream using ozone assisted zinc oxide (ZnO) nanoparticles coated on zeolite publication-title: J. Environ. Heal. Sci. Eng. – volume: 11 start-page: 3195 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib70 article-title: Graphene family nanomaterials (GFN)-TiO2 for the photocatalytic removal of water and air pollutants: synthesis, characterization, and applications publication-title: Nanomaterials doi: 10.3390/nano11123195 – volume: 115 start-page: 4893 year: 2015 ident: 10.1016/j.chemosphere.2022.135655_bib133 article-title: Recent advances in polyoxometalate-catalyzed reactions publication-title: Chem. Rev. doi: 10.1021/cr500390v – volume: 18 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib18 article-title: Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph182413147 – volume: 80 start-page: 251 year: 2005 ident: 10.1016/j.chemosphere.2022.135655_bib3 article-title: Photocatalytic degradation of gaseous trichloroethene using immobilized ZnO/SnO2 coupled oxide in a flow‐through photocatalytic reactor publication-title: J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. – volume: 49 start-page: 1 year: 2004 ident: 10.1016/j.chemosphere.2022.135655_bib58 article-title: TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2003.11.010 – volume: 213 start-page: 218 year: 2012 ident: 10.1016/j.chemosphere.2022.135655_bib141 article-title: Novel effect of significant enhancement of gas-phase photocatalytic efficiency for nano ZnO publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.10.004 – volume: 7 start-page: 24683 year: 2017 ident: 10.1016/j.chemosphere.2022.135655_bib145 article-title: Enhanced photocatalytic removal of NO over titania/hydroxyapatite (TiO2/HAp) composites with improved adsorption and charge mobility ability publication-title: RSC Adv. doi: 10.1039/C7RA02157G – volume: 303 year: 2022 ident: 10.1016/j.chemosphere.2022.135655_bib15 article-title: One-pot synthesis of the MIL-100 (Fe) MOF/MOX homojunctions with tunable hierarchical pores for the photocatalytic removal of BTXS publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120885 – volume: 163 start-page: 419 year: 2004 ident: 10.1016/j.chemosphere.2022.135655_bib44 article-title: Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide publication-title: J. Photochem. Photobiol. Chem. doi: 10.1016/j.jphotochem.2004.01.012 – volume: 325 start-page: 261 year: 2017 ident: 10.1016/j.chemosphere.2022.135655_bib64 article-title: Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.12.004 – volume: 798 start-page: 12 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib129 article-title: Superior activity of Cu-NiWO4/g-C3N4 Z direct system for photocatalytic decomposition of VOCs in aerosol under visible light publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.05.236 – volume: 384 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib153 article-title: Oxygen vacancies enhanced photocatalytic activity towards VOCs oxidation over Pt deposited Bi2WO6 under visible light publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.121478 – volume: 97 start-page: 186 year: 2013 ident: 10.1016/j.chemosphere.2022.135655_bib76 article-title: Photoreduction of carbon dioxide in the presence of H2, H2O and CH4 over TiO2 and ZnO photocatalysts publication-title: Sol. Energy doi: 10.1016/j.solener.2013.08.027 – volume: 7 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib107 article-title: Design and development of nanostructured filter media for VOCs abatement in closed environments publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.103045 – volume: 525 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib152 article-title: Adsorption and photocatalytic degradation performances of TiO2/diatomite composite for volatile organic compounds: effects of key parameters publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146633 – volume: 161 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib5 article-title: Photocatalytic oxidation of ketone group volatile organic compounds in an intensified fluidized bed reactor using nano-TiO2/UV process: an experimental and modeling study publication-title: Chem. Eng. Process. Intensif. – volume: 142 start-page: 149 year: 2013 ident: 10.1016/j.chemosphere.2022.135655_bib104 article-title: Influence of hierarchically porous niobium doped TiO2 supports in the total catalytic oxidation of model VOCs over noble metal nanoparticles publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.05.009 – volume: 17 start-page: 779 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib161 article-title: Preparation of ternary ZnO/Ag/cellulose and its enhanced photocatalytic degradation property on phenol and benzene in VOCs publication-title: Open Chem doi: 10.1515/chem-2019-0088 – volume: 397 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib56 article-title: Photothermocatalytic synergistic oxidation: an effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125485 – volume: 263 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib109 article-title: Photocatalytic ethylbenzene degradation associated with ozone (TiO2/UV/O3) under different percentages of catalytic coating area: evaluation of process parameters publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2021.118344 – volume: 280 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib154 article-title: Fluorinated TiO2 coupling with α-MnO2 nanowires supported on different substrates for photocatalytic VOCs abatement under vacuum ultraviolet irradiation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119388 – volume: 357 start-page: 395 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib74 article-title: Good interaction between well dispersed Pt and LaCoO3 nanorods achieved rapid Co3+/Co2+ redox cycle for total propane oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.158 – volume: 116 start-page: 377 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib37 article-title: Synthesis of silica-functionalized graphene oxide/ZnO coated on fiberglass and its application in photocatalytic removal of gaseous benzene publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2018.03.015 – volume: 25 start-page: 53 year: 2005 ident: 10.1016/j.chemosphere.2022.135655_bib20 article-title: Biofiltration of air: a review publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388550590935814 – volume: 23 start-page: 4931 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib42 article-title: Quantum dots for photocatalysis: synthesis and environmental applications publication-title: Green Chem. doi: 10.1039/D1GC00639H – volume: 9 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib67 article-title: Study on the performance and mechanism of degradation of toluene with non-thermal plasmas synergized supported TiO2/γ-Al2O3 catalyst publication-title: J. Environ. Chem. Eng. – volume: 349 start-page: 708 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib71 article-title: Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO2 photocatalyst publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.107 – volume: 73 start-page: 138 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib150 article-title: Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2018.01.022 – volume: 42 start-page: 9252 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib17 article-title: Synthesis of a TiO2-Cu2O composite catalyst with enhanced visible light photocatalytic activity for gas-phase toluene publication-title: New J. Chem. doi: 10.1039/C8NJ00409A – volume: 220 start-page: 78 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib123 article-title: Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.08.019 – volume: 38 start-page: 4437 year: 2012 ident: 10.1016/j.chemosphere.2022.135655_bib69 article-title: Comparison on photocatalytic degradation of gaseous formaldehyde by TiO2, ZnO and their composite publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.03.016 – volume: 11 start-page: 1289 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib61 article-title: Evaluation of TiO2 based photocatalytic treatment of odor and gaseous emissions from swine manure with UV-A and UV-C publication-title: Animals doi: 10.3390/ani11051289 – volume: 2016 year: 2016 ident: 10.1016/j.chemosphere.2022.135655_bib127 article-title: Recent development of catalysts for removal of volatile organic compounds in flue gas by combustion: a review publication-title: J. Chem. doi: 10.1155/2016/8324826 – volume: 490 start-page: 1 year: 2015 ident: 10.1016/j.chemosphere.2022.135655_bib9 article-title: ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation publication-title: Appl. Catal. Gen. doi: 10.1016/j.apcata.2014.10.055 – volume: 400 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib75 article-title: Synthesis of TiO2/H2Ti3O7 composite with nanoscale spiny hollow hierarchical structure for photocatalytic mineralization of VOCs publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125927 – volume: 7 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib89 article-title: Combined photocatalytic properties and energy efficiency via multifunctional glass publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.102980 – volume: 232 start-page: 1 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib147 article-title: Complete decomposition of 2-propanol using TiO2 immobilized on a nonwoven fabric under UV light irradiation by adding H2O2 and O3 microbubbles publication-title: Water, Air, Soil Pollut. doi: 10.1007/s11270-021-05106-2 – volume: 408 start-page: 148 year: 2011 ident: 10.1016/j.chemosphere.2022.135655_bib54 article-title: Photocatalytic decomposition of toluene by nanodiamond-supported TiO2 prepared using atomic layer deposition publication-title: Appl. Catal. Gen. doi: 10.1016/j.apcata.2011.09.019 – volume: 28 start-page: 5135 year: 2017 ident: 10.1016/j.chemosphere.2022.135655_bib108 article-title: Application of graphene quantum dots as green homogenous nanophotocatalyst in the visible-light-driven photolytic process publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-016-6169-7 – volume: 420 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib156 article-title: Efficient photocatalytic toluene degradation over heterojunction of GQDs@BiOCl ultrathin nanosheets with selective benzoic acid activation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.126577 – volume: 35 start-page: 649 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib93 article-title: A review on activated carbon adsorption for volatile organic compounds (VOCs) publication-title: Rev. Chem. Eng. doi: 10.1515/revce-2017-0057 – volume: 38 start-page: 46 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib12 article-title: Facile fabrication of copper oxide modified activated carbon composite for efficient CO2 adsorption publication-title: Kor. J. Chem. Eng. doi: 10.1007/s11814-020-0684-1 – volume: 163 start-page: 1179 year: 2009 ident: 10.1016/j.chemosphere.2022.135655_bib48 article-title: Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2008.07.078 – volume: 119 start-page: 164 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib52 article-title: Enhanced photocatalytic decomposition of VOCs by visible-driven photocatalyst combined Cu-TiO2 and activated carbon fiber publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2018.07.026 – volume: 224 start-page: 18 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib91 article-title: Enhanced photodegradation of toxic volatile organic pollutants using Ni-doped graphitic carbon nitride under natural solar light publication-title: Sol. Energy doi: 10.1016/j.solener.2021.05.087 – volume: 6 start-page: 3185 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib139 article-title: Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation publication-title: Environ. Sci. Nano doi: 10.1039/C9EN00891H – volume: 49 start-page: 11089 year: 2015 ident: 10.1016/j.chemosphere.2022.135655_bib22 article-title: Ultralow loading of silver nanoparticles on Mn2O3 nanowires derived with molten salts: a high-efficiency catalyst for the oxidative removal of toluene publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02350 – volume: 8 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib118 article-title: Carbon-doped TiO2 film to enhance visible and UV light photocatalytic degradation of indoor environment volatile organic compounds publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104162 – volume: 196 start-page: 253 year: 2000 ident: 10.1016/j.chemosphere.2022.135655_bib7 article-title: Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: studies of deactivation and regeneration publication-title: J. Catal. doi: 10.1006/jcat.2000.3050 – volume: 361 start-page: 885 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib110 article-title: Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO2 nanopowders for air purification publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.136 – volume: 353 start-page: 949 year: 2015 ident: 10.1016/j.chemosphere.2022.135655_bib36 article-title: One-pot facile synthesis of branched Ag-ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.06.197 – volume: 4 start-page: 34315 year: 2014 ident: 10.1016/j.chemosphere.2022.135655_bib159 article-title: Visible light-driven decomposition of gaseous benzene on robust Sn2+-doped anatase TiO2 nanoparticles publication-title: RSC Adv. doi: 10.1039/C4RA05904B – volume: 606 start-page: 1435 year: 2022 ident: 10.1016/j.chemosphere.2022.135655_bib73 article-title: Promote the activation and ring opening of intermediates for stable photocatalytic toluene degradation over Zn-Ti-LDH publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.146 – volume: 346 start-page: 77 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib27 article-title: Construction of bimetallic Pd-Ag enhanced AgBr/TiO2 hierarchical nanostructured photocatalytic hybrid capillary tubes and devices for continuous photocatalytic degradation of VOCs publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.017 – volume: 251 start-page: 168 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib81 article-title: Enhanced gas-phase photocatalytic removal of aromatics over direct Z- scheme-dictated H3PW12O40/g-C3N4 film-coated optical fi bers publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.03.063 – volume: 281 start-page: 144 year: 2017 ident: 10.1016/j.chemosphere.2022.135655_bib83 article-title: Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review publication-title: Catal. Today doi: 10.1016/j.cattod.2016.06.047 – volume: 43 start-page: 123 year: 2015 ident: 10.1016/j.chemosphere.2022.135655_bib85 article-title: Recent advances in perovskites: processing and properties publication-title: Prog. Solid State Chem. doi: 10.1016/j.progsolidstchem.2015.09.001 – volume: 132 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib142 article-title: Materials Science in Semiconductor Processing Fast electron transfer and enhanced visible light photocatalytic activity of silver and Ag2O co-doped titanium dioxide with the doping of electron mediator for removing gaseous toluene publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2021.105901 – volume: 527 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib155 article-title: Carbon doped ultra-small TiO2 coated on carbon cloth for e ffi cient photocatalytic toluene degradation under visible LED light irradiation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146780 – volume: 93 start-page: 101 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib88 article-title: Photocatalytic-membrane technology: a critical review for membrane fouling mitigation publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2020.09.031 – volume: 612 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib114 article-title: Surface modification of TiO2 with Pd nanoparticles for enhanced photocatalytic oxidation of benzene micropollutants publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2020.125959 – volume: 334 start-page: 2408 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib116 article-title: TiO2 photocatalyst for removal of volatile organic compounds in gas phase–A review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.153 – volume: 134 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib128 article-title: Materials Science in Semiconductor Processing Earth-abundant ZnS/ZnO/CuFeS2 films for air purification and solar fuels production publication-title: Mater. Sci. Semicond. Process. – volume: 357 start-page: 533 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib117 article-title: Photocatalytic oxidation of volatile organic compounds for indoor environment applications: three different scaled setups publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.167 – volume: 168 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib35 article-title: Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO2/sepiolite composite under solar and visible light publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106481 – volume: 235 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib65 article-title: Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2019.116213 – volume: 307 start-page: 63 year: 2017 ident: 10.1016/j.chemosphere.2022.135655_bib90 article-title: Selective removal of polar VOCs by novel photocatalytic activity of metals co-doped TiO2/PU under visible light publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.068 – volume: 284 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib92 article-title: A review on recent advancements in photocatalytic remediation for harmful inorganic and organic gases publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131344 – volume: 218 start-page: 845 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib160 article-title: Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.11.175 – volume: 382 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib29 article-title: Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.121070 – volume: 430 year: 2022 ident: 10.1016/j.chemosphere.2022.135655_bib102 article-title: Photocatalytic oxidation mechanism of Gas-Phase VOCs: unveiling the role of holes, •OH and •O2− publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132766 – volume: 266 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib162 article-title: Construction of zinc-indium-sulfide/indium oxide step-scheme junction catalyst for enhanced photocatalytic activities of pollutant degradation and hydrogen generation publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2021.118545 – volume: 38 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib38 article-title: Ozone‐Assisted photocatalytic degradation of benzene using nano‐zinc oxide impregnated granular activated carbon (ZnO–GAC) in a continuous fluidized bed reactor publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.13082 – volume: 249 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib144 article-title: Promotion effect of strong metal-support interaction to thermocatalytic, photocatalytic, and photothermocatalytic oxidation of toluene on Pt/SrTiO3 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126096 – volume: 370 start-page: 1440 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib113 article-title: Uranyl-modified TiO2 for complete photocatalytic oxidation of volatile organic compounds under UV and visible light publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.280 – ident: 10.1016/j.chemosphere.2022.135655_bib49 doi: 10.1016/j.jhazmat.2008.04.075 – volume: 52 start-page: 9330 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib138 article-title: Active {001} facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: from material development to commercial indoor air cleaner application publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02282 – volume: 164 start-page: 360 year: 2009 ident: 10.1016/j.chemosphere.2022.135655_bib41 article-title: Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.08.033 – volume: 193 start-page: 16 year: 2016 ident: 10.1016/j.chemosphere.2022.135655_bib94 article-title: Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.04.009 – volume: 189 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib80 article-title: Effect of titanium dioxide properties and support material on photocatalytic oxidation of indoor air pollutants publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.107518 – volume: 35 start-page: 313 year: 2009 ident: 10.1016/j.chemosphere.2022.135655_bib96 article-title: Research on photodegradation of formaldehyde by nanocrystalline N-TiO2 powders under visible light irradiation publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-009-0026-8 – volume: 7 start-page: 13714 year: 2015 ident: 10.1016/j.chemosphere.2022.135655_bib63 article-title: Enhanced visible photovoltaic response of TiO2 thin film with an all-inorganic donor-acceptor type polyoxometalate publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03948 – volume: 8 start-page: 596 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib95 article-title: Photocatalytic oxidation of toluene on fluorine doped TiO2/SiO2 catalyst under simulant sunlight in a flat reactor publication-title: Catalysts doi: 10.3390/catal8120596 – volume: 324 start-page: 544 year: 2017 ident: 10.1016/j.chemosphere.2022.135655_bib115 article-title: Chlorobenzene degradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: effect of photocatalyst on CO2 selectivity and byproducts reduction publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.11.025 – volume: 35 start-page: 305 year: 2002 ident: 10.1016/j.chemosphere.2022.135655_bib51 article-title: Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst publication-title: Appl. Catal. B Environ. doi: 10.1016/S0926-3373(01)00274-0 – volume: 399 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib97 article-title: Sonophotocatalytic activities of FeCuMg and CrCuMg LDHs: influencing factors, antibacterial effects, and intermediate determination publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.123062 – volume: 50 start-page: 2556 year: 2016 ident: 10.1016/j.chemosphere.2022.135655_bib137 article-title: TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05418 – volume: 605 start-page: 674 year: 2022 ident: 10.1016/j.chemosphere.2022.135655_bib14 article-title: Rare-earth single atoms decorated 2D-TiO2 nanosheets for the photodegradation of gaseous O-xylene publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.07.129 – volume: 26 start-page: 20908 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib60 article-title: Photocatalytic oxidation of toluene and isopropanol by LaFeO3/black-TiO2 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-05436-z – volume: 8 start-page: 1366 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib134 article-title: Nonstoichiometric tungsten oxide residing in a 3D nitrogen doped carbon matrix, a composite photocatalyst for oxygen vacancy induced VOC degradation and H2 production publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY02572F – volume: 12 start-page: 10 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib32 article-title: Photocatalytic air purification mimicking the self-cleaning process of the atmosphere publication-title: Nat. Commun. doi: 10.1038/s41467-021-22839-0 – volume: 21 start-page: 4066 year: 2014 ident: 10.1016/j.chemosphere.2022.135655_bib62 article-title: Photocatalytic degradation of formaldehyde using mesoporous TiO2 prepared by evaporation-induced self-assembly publication-title: J. Cent. South Univ. doi: 10.1007/s11771-014-2398-1 – volume: 153 start-page: 144 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib82 article-title: Effect of different plasmonic metals on photocatalytic degradation of volatile organic compounds (VOCs) by bentonite/M-TiO2 nanocomposites under UV/visible light publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2017.11.040 – volume: 97 start-page: 190 year: 2010 ident: 10.1016/j.chemosphere.2022.135655_bib112 article-title: Degradation of VOC gases in liquid phase by photocatalysis at the bubble interface publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2010.03.039 – volume: 356 start-page: 255 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib11 article-title: Ce-modified mesoporous γ-Al2O3 supported Pd-Pt nanoparticle catalysts and their structure-function relationship in complete benzene oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.040 – volume: 602 start-page: 699 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib135 article-title: Improved photocatalytic oxidation performance of gaseous acetaldehyde by ternary g-C3N4/Ag-TiO2 composites under visible light publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.05.186 – volume: 1231 start-page: 2 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib66 article-title: Removal of volatile organic compounds from air using supported ionic liquid membrane containing ultraviolet-visible light-driven Nd-TiO2 nanoparticles publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2021.130023 – volume: 362 start-page: 97 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib6 article-title: Anisotropic Au-ZnO photocatalyst for the visible-light expanded oxidation of n-hexane publication-title: Catal. Today doi: 10.1016/j.cattod.2020.03.063 – volume: 56 start-page: 9980 year: 2017 ident: 10.1016/j.chemosphere.2022.135655_bib105 article-title: Nanostructured photocatalysts based on different oxidized graphenes for VOCs removal publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b02526 – volume: 287 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib120 article-title: Anatase/brookite biphasic surface fluorinated Fe–TiO2 photocatalysts to enhance photocatalytic removal of VOCs under visible and UV light publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.125462 – volume: 23 start-page: 645 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib151 article-title: A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts publication-title: J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2019.01.004 – volume: 63 start-page: 1077 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib126 article-title: Synthesis of N and S Co-doped TiO2 nanotubes for advanced photocatalytic degradation of volatile organic compounds (VOCs) in gas phase publication-title: Top. Catal. doi: 10.1007/s11244-020-01347-3 – volume: 24 start-page: 64 year: 2015 ident: 10.1016/j.chemosphere.2022.135655_bib132 article-title: TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement publication-title: J. Photochem. Photobiol. C Photochem. Rev. doi: 10.1016/j.jphotochemrev.2015.07.001 – volume: 436 start-page: 319 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib34 article-title: Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.12.054 – volume: 297 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib136 article-title: Promote reactants activation and key intermediates formation for facilitated toluene photodecomposition via Ba active sites construction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120489 – volume: 209 start-page: 146 year: 2017 ident: 10.1016/j.chemosphere.2022.135655_bib10 article-title: Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.02.066 – volume: 56 start-page: 361 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib121 article-title: Systematic comparison of sono-synthesized Ce-, La- and Ho-doped ZnO nanoparticles and using the optimum catalyst in a visible light assisted continuous sono-photocatalytic membrane reactor publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.04.031 – volume: 119 start-page: 4471 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib31 article-title: Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00408 – start-page: 1 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib16 article-title: Enhanced photocatalytic performance of tungsten-based photocatalysts for degradation of volatile organic compounds: a review publication-title: Tungsten – volume: vol. 61 start-page: 140 year: 2005 ident: 10.1016/j.chemosphere.2022.135655_bib21 – volume: 5 start-page: 52985 year: 2015 ident: 10.1016/j.chemosphere.2022.135655_bib26 article-title: Enhancement of photo-catalytic degradation of formaldehyde through loading anatase TiO2 and silver nanoparticle films on wood substrates publication-title: RSC Adv. doi: 10.1039/C5RA06390F – volume: 29 start-page: 377 year: 2012 ident: 10.1016/j.chemosphere.2022.135655_bib59 article-title: Photocatalytic degradation of benzene, toluene, ethylbenzene, and xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglass cloth publication-title: Kor. J. Chem. Eng. doi: 10.1007/s11814-011-0179-1 – volume: 727 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib146 article-title: Preparation and characterization of a copper phosphotungstate/titanium dioxide (Cu-H3PW12O40/TiO2) composite and the photocatalytic oxidation of high-concentration ammonia nitrogen publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138425 – volume: 24 start-page: 6390 year: 2017 ident: 10.1016/j.chemosphere.2022.135655_bib25 article-title: Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO2, and TiO2/Pd publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6494-7 – volume: 269 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib57 article-title: Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118755 – volume: 10 start-page: 1017 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib1 article-title: Electrospun active media based on polyvinylidene fluoride (PVDF)-graphene-TiO2 nanocomposite materials for methanol and acetaldehyde gas-phase abatement publication-title: Catalysts doi: 10.3390/catal10091017 – volume: 140 start-page: 117 year: 2016 ident: 10.1016/j.chemosphere.2022.135655_bib43 article-title: Catalytic oxidation of volatile organic compounds (VOCs)–A review publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.05.031 – volume: 312 start-page: 28 year: 2015 ident: 10.1016/j.chemosphere.2022.135655_bib111 article-title: Study of ZnO-photocatalyst deactivation during continuous degradation of n-hexane vapors publication-title: J. Photochem. Photobiol. Chem. doi: 10.1016/j.jphotochem.2015.07.004 – volume: 257 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib72 article-title: Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117880 – start-page: 120118 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib140 article-title: Inhibit the formation of toxic methylphenolic by-products in photo-decomposition of formaldehyde–toluene/xylene mixtures by pd cocatalyst on TiO2 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120118 – volume: 204 year: 2022 ident: 10.1016/j.chemosphere.2022.135655_bib55 article-title: Practical scale evaluation of a photocatalytic air purifier equipped with a Titania-zeolite composite bead filter for VOC removal and viral inactivation publication-title: Environ. Res. doi: 10.1016/j.envres.2021.112036 – volume: 124 start-page: 115 year: 1999 ident: 10.1016/j.chemosphere.2022.135655_bib23 article-title: Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production publication-title: Desalination doi: 10.1016/S0011-9164(99)00095-8 – volume: 375 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib50 article-title: Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of moxifloxacin publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122102 – volume: 404 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib78 article-title: Kinetic modeling of the photocatalytic degradation of methyl ethyl ketone in air for a continuous-flow reactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126602 – volume: 401 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib119 article-title: Surface fluorinated Ce-doped TiO2 nanostructure photocatalyst: a trap and remove strategy to enhance the VOC removal from indoor air environment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125932 – volume: 416 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib13 article-title: In-situ synthesis of Z-Scheme MIL-100 (Fe)/α-Fe2O3 heterojunction for enhanced adsorption and Visible-light photocatalytic oxidation of O-xylene publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129112 – volume: 258 start-page: 5031 year: 2012 ident: 10.1016/j.chemosphere.2022.135655_bib124 article-title: Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: a study on the structure, activity and deactivation mechanism publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.01.075 – volume: 1 start-page: 1426 year: 2011 ident: 10.1016/j.chemosphere.2022.135655_bib2 article-title: Graphene-based photocatalytic composites publication-title: RSC Adv. doi: 10.1039/c1ra00382h – volume: 6 start-page: 121 year: 2016 ident: 10.1016/j.chemosphere.2022.135655_bib24 article-title: Au/TiO2-CeO2 catalysts for photocatalytic water splitting and VOCs oxidation reactions publication-title: Catalysts doi: 10.3390/catal6080121 – volume: 398 start-page: 215 year: 2015 ident: 10.1016/j.chemosphere.2022.135655_bib103 article-title: Degradation of benzene on TiO2/SiO2/Bi2O3 photocatalysts under UV and visible light publication-title: J. Mol. Catal. Chem. doi: 10.1016/j.molcata.2014.12.007 – volume: 73 start-page: 635 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib39 article-title: Photocatalytic oxidation of benzene by ZnO coated on glass plates under simulated sunlight publication-title: Chem. Pap. doi: 10.1007/s11696-018-0621-5 – volume: 9 start-page: 18076 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib125 article-title: Effective photoreduction of graphene oxide for photodegradation of volatile organic compounds publication-title: RSC Adv. doi: 10.1039/C9RA01209E – volume: 16 start-page: 185 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib86 article-title: Titanium dioxide and its modified forms as photocatalysts for air treatment publication-title: Curr. Anal. Chem. – volume: 116 start-page: 68 year: 2017 ident: 10.1016/j.chemosphere.2022.135655_bib131 article-title: Central composite design optimization of Rhodamine B degradation using TiO2 nanoparticles/UV/PVDF process in continuous submerged membrane photoreactor publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2017.02.015 – volume: 28 start-page: 33344 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib149 article-title: UV and visible-assisted photocatalytic degradation of pharmaceutical pollutants in the presence of rational designed biogenic Fe3O4-Au nanocomposite publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-12932-8 – volume: 98 start-page: 605 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib19 article-title: Photocatalytic degradation of volatile organic compounds using nanocomposite of P-type and N-type transition metal semiconductors publication-title: J. Sol. Gel Sci. Technol. doi: 10.1007/s10971-021-05532-y – volume: 7 year: 2019 ident: 10.1016/j.chemosphere.2022.135655_bib100 article-title: Removal of xylene vapor pollutant from the air using new hybrid substrates of TiO2-WO3 nanoparticles immobilized on the ZSM-5 zeolite under UV radiation at ambient temperature: experimental towards modeling publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.103247 – volume: 8 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib158 article-title: Photocatalytic air purification using functional polymeric carbon nitrides publication-title: Adv. Sci. doi: 10.1002/advs.202102376 – volume: 57 start-page: 16635 year: 2018 ident: 10.1016/j.chemosphere.2022.135655_bib106 article-title: Nanostructured active media for volatile organic compounds abatement: the synergy of graphene oxide and semiconductor coupling publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b04134 – volume: 397 year: 2020 ident: 10.1016/j.chemosphere.2022.135655_bib46 article-title: Application of decorated magnetic nanophotocatalysts for efficient photodegradation of organic dye: a comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots publication-title: J. Photochem. Photobiol. Chem. doi: 10.1016/j.jphotochem.2020.112534 – volume: 274 start-page: 102 year: 2015 ident: 10.1016/j.chemosphere.2022.135655_bib33 article-title: Enhanced photocatalytic activity of Pt-doped TiO2 for NOx oxidation both under UV and visible light irradiation: a synergistic effect of lattice Pt4+ and surface PtO publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.135 – volume: 407 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib148 article-title: Influence of mixed-phase TiO2 on the activity of adsorption-plasma photocatalysis for total oxidation of toluene publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126280 – volume: 401 year: 2021 ident: 10.1016/j.chemosphere.2022.135655_bib77 article-title: Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: an experimental and DFT studies of adsorption and electronic structure of the interface publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.123402 |
SSID | ssj0001659 |
Score | 2.659576 |
SecondaryResourceType | review_article |
Snippet | Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 135655 |
SubjectTerms | air quality Environmental pollution removal environmental sustainability human health light Nanomaterials Photo-degradation photocatalysis Photocatalysts toxicity Volatile organic compounds |
Title | Volatile organic compounds (VOCs) removal by photocatalysts: A review |
URI | https://dx.doi.org/10.1016/j.chemosphere.2022.135655 https://www.proquest.com/docview/2688522992 https://www.proquest.com/docview/2718267469 |
Volume | 306 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hUAsXRKGovCIj9VAOW7Jee71GXKIoUQoSvaQRN8svqUFpNsouh1z47Xj2UUqFEBLHtWzJOzMaf979vhmAr9Q5nabSRlx4FrE4XHcMl2lkjY-tS7TNfMW2uElHv9jVLb9dg36rhUFaZZP765xeZetm5Lyx5vliOkWNL6IRBBBY9ytDwS9jAqP8-8MTzSNOeQ2BGY9w9kc4feJ4Bbv8yQvU72PFTEqxC0SKqr-Xz6j_snV1BA13YLvBjqRXb-8TrPn5Lmz225Ztu_BhUNWgXu3BYJIjyW3mSd22yRLkjmMLpYJ8m_zsF2dkGTYVwoyYFVn8zsu8-pCzKsrigvRIrWj5DOPhYNwfRU3HhMgGHFBGXndNV9hY6641wgnLrM-ojl3GfEAK-NZOhhNeBuCUGGN0zLh0zHvhnOQ62Yf1eT73X4BoyaUWATvEuss8F4ZSk1XFvWgAPElyAFlrImWbauLY1GKmWtrYnfrHugqtq2rrHgD9u3RRl9R4y6LL1g_qWXyokPrfsvy09Z0KPsGfInru8_tC0TTLQghJSV-ZI_AWJlgqD9-3jSPYwqday3gM6-Xy3p8EUFOaThW1Hdjo_bge3TwCnGz29A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5cmza9lOZRkvS1gR6Sg4i12tXull6McXAedS9uyG3ZFyQlsUykHPzvs6NHkpZSAr1KGhjNDDPfSjPfAHyh3ps8Vy7hIrCEpfG4Y7nKE2dD6nxmnAx1t8Usn_5kJxf8ogfjbhYG2yrb3N_k9Dpbt1cOW2seLq-ucMYX0QgCCOT9kvIFDJCdivdhMDo-nc4eEnKa8wYFM56gwCvYe2zziqa5KUoc4UfSTEpxEUSOg39_L1N_JOy6Ch29hTctfCSjRsN16IXFBqyNu61tG_ByUtNQrzZhcl5gn9t1IM3mJkewfRy3KJVk__zHuDwgt1GpGGnErsjysqiK-lvOqqzKr2REmqGWLZgfTebjadIuTUhchAJVEszQDoVLjRk6K7xwzAVJTeolCxEs4Ft7FYu8itgps9aalHHlWQjCe8VN9g76i2IRtoEYxZURET6kZsgCF5ZSK2t-LxoxT5btgOxMpF1LKI57La511zn2Sz-xrkbr6sa6O0AfRJcNq8ZzhL51ftC_hYiO2f854nud73T0Cf4XMYtQ3JWa5lLGKFKK_uMZgQcxwXK1-39qfIa16fz7mT47np2-h9d4pxlt_AD96vYufIwYp7Kf2hi-BxIc-aU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volatile+organic+compounds+%28VOCs%29+removal+by+photocatalysts%3A+A+review&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Almaie%2C+Soudeh&rft.au=Vatanpour%2C+Vahid&rft.au=Rasoulifard%2C+Mohammad+Hossein&rft.au=Koyuncu%2C+Ismail&rft.date=2022-11-01&rft.issn=0045-6535&rft.volume=306&rft.spage=135655&rft_id=info:doi/10.1016%2Fj.chemosphere.2022.135655&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2022_135655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |