Volatile organic compounds (VOCs) removal by photocatalysts: A review

Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 306; p. 135655
Main Authors Almaie, Soudeh, Vatanpour, Vahid, Rasoulifard, Mohammad Hossein, Koyuncu, Ismail
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale. [Display omitted] •Review of photocatalytic degradation of volatile organic compounds (VOCs).•Different types of photocatalyst activated by UV and visible lights are applied.•Introduction of novel and high efficiency photocatalyst in VOCs removal.•Review of effective operational parameters in the photocatalytic degradation of VOCs.•Review of visible light activation methods of the photocatalysts used in VOC removal.
AbstractList Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale.
Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale. [Display omitted] •Review of photocatalytic degradation of volatile organic compounds (VOCs).•Different types of photocatalyst activated by UV and visible lights are applied.•Introduction of novel and high efficiency photocatalyst in VOCs removal.•Review of effective operational parameters in the photocatalytic degradation of VOCs.•Review of visible light activation methods of the photocatalysts used in VOC removal.
Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale.Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale.
ArticleNumber 135655
Author Koyuncu, Ismail
Almaie, Soudeh
Vatanpour, Vahid
Rasoulifard, Mohammad Hossein
Author_xml – sequence: 1
  givenname: Soudeh
  surname: Almaie
  fullname: Almaie, Soudeh
  organization: Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
– sequence: 2
  givenname: Vahid
  orcidid: 0000-0001-9420-1644
  surname: Vatanpour
  fullname: Vatanpour, Vahid
  email: vahidvatanpour@khu.ac.ir
  organization: Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
– sequence: 3
  givenname: Mohammad Hossein
  surname: Rasoulifard
  fullname: Rasoulifard, Mohammad Hossein
  email: m_h_rasoulifard@znu.ac.ir
  organization: Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
– sequence: 4
  givenname: Ismail
  orcidid: 0000-0001-8354-1889
  surname: Koyuncu
  fullname: Koyuncu, Ismail
  organization: National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
BookMark eNqNkL1uwjAURq2KSgXad0g3OoTaTpzEXSqE6I-ExIJYLce-FKMQp7ah4u1rRIeqS5nu4O879_oMUK-1LSB0T_CYYFI8bsdqAzvruw04GFNM6ZhkrGDsCvVJVfKUUF71UB_jnKUFy9gNGni_xTiWGe-j2co2MpgGEus-ZGtUouyus_tW-2S0Wkz9Q-Ii_yCbpD4m3cYGq2SQzdEH_5RM4uPBwNctul7LxsPdzxyi5ctsOX1L54vX9-lknqqMlCEFiWtcKiIlVnWpS5UrqKgkusohz8jpQ5rHgzlheVbXtSQ54zoHKLXmTGZDNDpjO2c_9-CD2BmvoGlkC3bvBS1JRYsyL_j_0aKqGI2raIw-n6PKWe8drIUyITqxbXDSNIJgcbpMbMUv1eKkWpxVRwL_Q-ic2Ul3vKg7PXcheosunfDKQKtAGwcqCG3NBZRvKR6img
CitedBy_id crossref_primary_10_3390_ma17071585
crossref_primary_10_1016_j_envres_2024_120713
crossref_primary_10_3390_agriculture14122216
crossref_primary_10_1016_j_chemosphere_2024_142756
crossref_primary_10_1016_j_commatsci_2024_113248
crossref_primary_10_3390_molecules27206828
crossref_primary_10_1016_j_jssc_2023_124100
crossref_primary_10_1002_asia_202400993
crossref_primary_10_1080_26395940_2024_2376827
crossref_primary_10_1002_cctc_202401509
crossref_primary_10_1016_j_cattod_2024_114645
crossref_primary_10_1016_j_scitotenv_2024_170748
crossref_primary_10_1021_acsestengg_4c00586
crossref_primary_10_9767_bcrec_20042
crossref_primary_10_3390_solar5010004
crossref_primary_10_1088_2632_2153_ad9708
crossref_primary_10_1016_j_mtchem_2024_102292
crossref_primary_10_1088_1748_9326_ad4376
crossref_primary_10_1016_j_apcato_2024_206975
crossref_primary_10_1016_j_cej_2024_152193
crossref_primary_10_1016_j_electacta_2022_141336
crossref_primary_10_1016_j_jece_2025_116261
crossref_primary_10_1016_j_seppur_2022_122716
crossref_primary_10_3390_pr12061074
crossref_primary_10_1016_j_cej_2023_148488
crossref_primary_10_1016_j_envres_2024_118415
crossref_primary_10_1021_acs_iecr_4c00821
crossref_primary_10_3390_nano13091528
crossref_primary_10_1016_j_cej_2023_144437
crossref_primary_10_1039_D4TA08972C
crossref_primary_10_1016_j_coche_2024_101072
crossref_primary_10_1016_j_chemosphere_2023_137985
crossref_primary_10_1007_s42823_022_00399_7
crossref_primary_10_1016_j_seppur_2024_126980
crossref_primary_10_1016_j_jclepro_2024_141915
crossref_primary_10_1039_D4EN00151F
crossref_primary_10_1016_j_mtchem_2023_101633
crossref_primary_10_1016_j_apsadv_2024_100576
crossref_primary_10_1007_s11783_025_1946_2
crossref_primary_10_1007_s13399_023_04647_2
crossref_primary_10_1016_j_jece_2024_114087
crossref_primary_10_1016_j_gce_2023_06_001
crossref_primary_10_1039_D4EN00463A
crossref_primary_10_71267_mencom_7601
crossref_primary_10_1002_bkcs_12887
crossref_primary_10_1016_j_jece_2024_112747
crossref_primary_10_3390_catal13081203
crossref_primary_10_1016_j_mtnano_2024_100499
crossref_primary_10_1016_j_seppur_2024_131121
crossref_primary_10_3390_molecules29225484
crossref_primary_10_3390_catal14040233
crossref_primary_10_1149_1945_7111_ad2af7
crossref_primary_10_1016_j_seppur_2024_128635
crossref_primary_10_1016_j_ceramint_2025_03_172
crossref_primary_10_3390_molecules28227658
crossref_primary_10_3390_pr12081569
crossref_primary_10_1016_j_jece_2023_111322
crossref_primary_10_3390_pollutants3010011
crossref_primary_10_1016_j_nanoen_2024_109965
crossref_primary_10_1038_s41598_024_56502_7
crossref_primary_10_1016_j_commatsci_2023_112462
crossref_primary_10_1016_j_jece_2024_112120
crossref_primary_10_1016_j_cej_2023_143310
crossref_primary_10_1080_19392699_2025_2469148
crossref_primary_10_1016_j_rser_2025_115464
crossref_primary_10_1016_j_buildenv_2023_111108
crossref_primary_10_1039_D4TA03123G
crossref_primary_10_3390_nano13152173
crossref_primary_10_1016_j_applthermaleng_2024_123972
crossref_primary_10_1016_j_jes_2023_10_025
crossref_primary_10_1016_j_inoche_2023_111716
crossref_primary_10_1021_acs_inorgchem_5c00133
crossref_primary_10_1039_D4RE00151F
crossref_primary_10_1016_j_chemosphere_2024_141485
crossref_primary_10_1007_s11664_024_11491_1
crossref_primary_10_1016_j_apsusc_2024_161925
crossref_primary_10_1016_j_jece_2024_114450
crossref_primary_10_1016_j_nxmate_2024_100340
crossref_primary_10_1016_j_apsusc_2023_159048
crossref_primary_10_1016_j_pnsc_2023_08_004
crossref_primary_10_1016_j_seppur_2024_130804
crossref_primary_10_1016_j_fuel_2023_128012
crossref_primary_10_1016_j_colsurfa_2023_131494
crossref_primary_10_1016_j_ceramint_2024_08_374
crossref_primary_10_1016_j_jece_2023_111823
crossref_primary_10_1016_j_seppur_2024_130523
crossref_primary_10_1016_j_applthermaleng_2024_122552
crossref_primary_10_1016_j_colsurfa_2024_134249
crossref_primary_10_1002_cctc_202300783
crossref_primary_10_1016_j_seppur_2023_123510
crossref_primary_10_1021_acs_est_3c09331
crossref_primary_10_1016_j_fbio_2024_104771
crossref_primary_10_1007_s11270_023_06636_7
crossref_primary_10_1016_j_nanoen_2024_110364
crossref_primary_10_1039_D2CP03606A
crossref_primary_10_1016_j_jhazmat_2024_135447
crossref_primary_10_3390_molecules28207121
crossref_primary_10_1016_j_apcatb_2024_124139
crossref_primary_10_1016_j_rser_2023_113948
crossref_primary_10_1109_TIM_2024_3400335
crossref_primary_10_3390_molecules28176187
crossref_primary_10_1039_D4TA00332B
Cites_doi 10.1016/j.apcatb.2020.119447
10.1007/s40089-018-0230-x
10.1016/j.apsusc.2019.143641
10.1016/j.ces.2004.01.073
10.1016/j.cis.2021.102598
10.1021/acs.iecr.8b02873
10.3390/ijms11062336
10.1016/j.buildenv.2018.05.002
10.1007/s13201-020-01228-w
10.1016/j.jpcs.2020.109799
10.4103/2045-9912.222450
10.3390/ma12121916
10.1016/j.ces.2021.117389
10.1007/s10853-006-0574-x
10.1016/j.jhazmat.2013.02.007
10.3390/nano11123195
10.1021/cr500390v
10.3390/ijerph182413147
10.1016/j.apcatb.2003.11.010
10.1016/j.cej.2012.10.004
10.1039/C7RA02157G
10.1016/j.apcatb.2021.120885
10.1016/j.jphotochem.2004.01.012
10.1016/j.jhazmat.2016.12.004
10.1016/j.jallcom.2019.05.236
10.1016/j.jhazmat.2019.121478
10.1016/j.solener.2013.08.027
10.1016/j.jece.2019.103045
10.1016/j.apsusc.2020.146633
10.1016/j.apcatb.2013.05.009
10.1515/chem-2019-0088
10.1016/j.cej.2020.125485
10.1016/j.seppur.2021.118344
10.1016/j.apcatb.2020.119388
10.1016/j.cej.2018.09.158
10.1016/j.psep.2018.03.015
10.1080/07388550590935814
10.1039/D1GC00639H
10.1016/j.cej.2018.05.107
10.1016/j.jes.2018.01.022
10.1039/C8NJ00409A
10.1016/j.apcatb.2017.08.019
10.1016/j.ceramint.2012.03.016
10.3390/ani11051289
10.1155/2016/8324826
10.1016/j.apcata.2014.10.055
10.1016/j.cej.2020.125927
10.1016/j.jece.2019.102980
10.1007/s11270-021-05106-2
10.1016/j.apcata.2011.09.019
10.1007/s10854-016-6169-7
10.1016/j.jhazmat.2021.126577
10.1515/revce-2017-0057
10.1007/s11814-020-0684-1
10.1016/j.jhazmat.2008.07.078
10.1016/j.psep.2018.07.026
10.1016/j.solener.2021.05.087
10.1039/C9EN00891H
10.1021/acs.est.5b02350
10.1016/j.jece.2020.104162
10.1006/jcat.2000.3050
10.1016/j.cej.2018.12.136
10.1016/j.apsusc.2015.06.197
10.1039/C4RA05904B
10.1016/j.jcis.2021.08.146
10.1016/j.cej.2018.04.017
10.1016/j.apcatb.2019.03.063
10.1016/j.cattod.2016.06.047
10.1016/j.progsolidstchem.2015.09.001
10.1016/j.mssp.2021.105901
10.1016/j.apsusc.2020.146780
10.1016/j.jiec.2020.09.031
10.1016/j.colsurfa.2020.125959
10.1016/j.cej.2017.09.153
10.1016/j.cej.2018.09.167
10.1016/j.buildenv.2019.106481
10.1016/j.seppur.2019.116213
10.1016/j.cej.2016.08.068
10.1016/j.chemosphere.2021.131344
10.1016/j.chemosphere.2018.11.175
10.1016/j.jhazmat.2019.121070
10.1016/j.cej.2021.132766
10.1016/j.seppur.2021.118545
10.1002/ep.13082
10.1016/j.chemosphere.2020.126096
10.1016/j.cej.2019.03.280
10.1016/j.jhazmat.2008.04.075
10.1021/acs.est.8b02282
10.1016/j.jhazmat.2008.08.033
10.1016/j.apcatb.2016.04.009
10.1016/j.buildenv.2020.107518
10.1007/s11164-009-0026-8
10.1021/acsami.5b03948
10.3390/catal8120596
10.1016/j.jhazmat.2016.11.025
10.1016/S0926-3373(01)00274-0
10.1016/j.jhazmat.2020.123062
10.1021/acs.est.5b05418
10.1016/j.jcis.2021.07.129
10.1007/s11356-019-05436-z
10.1039/C7CY02572F
10.1038/s41467-021-22839-0
10.1007/s11771-014-2398-1
10.1016/j.clay.2017.11.040
10.1016/j.apcatb.2010.03.039
10.1016/j.cej.2018.09.040
10.1016/j.jcis.2021.05.186
10.1016/j.molstruc.2021.130023
10.1016/j.cattod.2020.03.063
10.1021/acs.iecr.7b02526
10.1016/j.jclepro.2020.125462
10.1016/j.jscs.2019.01.004
10.1007/s11244-020-01347-3
10.1016/j.jphotochemrev.2015.07.001
10.1016/j.apsusc.2017.12.054
10.1016/j.apcatb.2021.120489
10.1016/j.apcatb.2017.02.066
10.1016/j.ultsonch.2019.04.031
10.1021/acs.chemrev.8b00408
10.1039/C5RA06390F
10.1007/s11814-011-0179-1
10.1016/j.scitotenv.2020.138425
10.1007/s11356-016-6494-7
10.1016/j.apcatb.2020.118755
10.3390/catal10091017
10.1016/j.atmosenv.2016.05.031
10.1016/j.jphotochem.2015.07.004
10.1016/j.apcatb.2019.117880
10.1016/j.apcatb.2021.120118
10.1016/j.envres.2021.112036
10.1016/S0011-9164(99)00095-8
10.1016/j.cej.2019.122102
10.1016/j.cej.2020.126602
10.1016/j.cej.2020.125932
10.1016/j.cej.2021.129112
10.1016/j.apsusc.2012.01.075
10.1039/c1ra00382h
10.3390/catal6080121
10.1016/j.molcata.2014.12.007
10.1007/s11696-018-0621-5
10.1039/C9RA01209E
10.1016/j.cep.2017.02.015
10.1007/s11356-021-12932-8
10.1007/s10971-021-05532-y
10.1016/j.jece.2019.103247
10.1002/advs.202102376
10.1021/acs.iecr.8b04134
10.1016/j.jphotochem.2020.112534
10.1016/j.cej.2015.03.135
10.1016/j.cej.2020.126280
10.1016/j.jhazmat.2020.123402
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2022.135655
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID 10_1016_j_chemosphere_2022_135655
S0045653522021488
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c317t-ea0b07c1aa0cb7d7c4ce82a1d84e4311016d912991543bbba1459d4ee7dd95a3
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Fri Jul 11 05:16:33 EDT 2025
Fri Jul 11 08:09:35 EDT 2025
Tue Jul 01 02:08:27 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Sat Jan 18 16:10:38 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Volatile organic compounds
Nanomaterials
Photo-degradation
Environmental pollution removal
Photocatalysts
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-ea0b07c1aa0cb7d7c4ce82a1d84e4311016d912991543bbba1459d4ee7dd95a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8354-1889
0000-0001-9420-1644
PQID 2688522992
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2718267469
proquest_miscellaneous_2688522992
crossref_citationtrail_10_1016_j_chemosphere_2022_135655
crossref_primary_10_1016_j_chemosphere_2022_135655
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2022_135655
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Chemosphere (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bueno-alejo, Graus, Arenal, Lafuente, Bottega-pergher, Hueso (bib6) 2021; 362
Molinari, Lavorato, Argurio (bib83) 2017; 281
An, Zhang, Wang, Sheng, Fu (bib3) 2005; 80
Qu, Liu, Ma, Cao (bib96) 2009; 35
Nasrollahi, Ghalamchi, Vatanpour, Khataee (bib88) 2021; 93
Huang, Zhang, Yuan, Zhang, Zhang (bib36) 2015; 353
Kaneco, Rahman, Suzuki, Katsumata, Ohta (bib44) 2004; 163
Tseng, Lin, Chen, Chu (bib130) 2010; 11
Weon, He, Choi (bib139) 2019; 6
Yasui, Sekiguchi, Yoshida, Kim, Tamura (bib147) 2021; 232
Zhang, Pu, Chen, Xu, Wang, Yang, Gong (bib153) 2020; 384
Li, Zhang, Yang, Wang, Yan, Ran (bib65) 2020; 235
Jo, Kim (bib41) 2009; 164
Ye, Ye, Nikiforov, Chen, Zhou, Chen, Wang, Zhang (bib148) 2021; 407
Khataee, Sadeghi Rad, Nikzat, Hassani, Aslan, Kobya, Demirbaş (bib50) 2019; 375
Chen, Chen, Wang, Rao, Sun, Chen, Xie (bib14) 2022; 605
Abatement, Boaretti, Vitiello, Luciani, Lorenzetti, Modesti, Roso (bib1) 2020; 10
Gao, Gan, Xiao, Zhan, Li (bib26) 2015; 5
Chen, Wang, Rao, Tang, Shi, Wang, Lu, Xie, Chen, Sun (bib15) 2022; 303
Pham, Jung, Kim (bib91) 2021; 224
Gao, Zhang, Su, Wang, Liu, Liu, Zhan, Liu, Sang (bib27) 2018; 346
Kim, Dey, Seo, Kim, Lim, Lee (bib54) 2011; 408
Lyu, Zhou, Shao, Zhou, Gao, Li, Dong, Wang (bib75) 2020; 400
Sheydaei, Fattahi, Ghalamchi, Vatanpour (bib121) 2019; 56
Ge, Zhang, Park (bib28) 2019; 12
Yu, Wang, Sun, Ye (bib150) 2018; 73
He, Jeon, Choi (bib32) 2021; 12
Selishchev, Filippov, Lyulyukin, Kozlov (bib113) 2019; 370
Fujimoto, Ponczek, Rochetto, Landers, Tomaz (bib25) 2017; 24
Jafari, Kalantari, Kermani, Firooz (bib39) 2019; 73
Priya, Suresh, Kumar, Rajendran, Vo, Soto-moscoso (bib92) 2021; 284
Luo, Zuo, Feng, Qian, Zheng, Lin, Huang, Chen (bib74) 2019; 357
Ren, Qiu, Zhang, He, Chen (bib103) 2015; 398
Zhao, Wu, Zhang, Szeto, Wang, Pan, Li, Leung (bib157) 2022; 250
Yao, Fu, Ge, Wang, Wang, Zhong (bib146) 2020; 727
Zhao, Zhang, Wu, Szeto, Wang, Pan, Leung (bib155) 2020; 527
Li, Li, Zhang, Ji, Zhou, Guo, Zhao, Liu, Han (bib67) 2021; 9
Chen, Li, Yang, Cheng, Li, Zuo (bib11) 2019; 356
Ducom, Cabassud (bib23) 1999; 124
Gholami, Khataee, Soltani, Dinpazhoh, Bhatnagar (bib29) 2020; 382
Xue, Chen, Gong (bib142) 2021; 132
Shayegan, Haghighat, Lee (bib119) 2020; 401
Cao, Gao, Suib, Obee, Hay, Freihaut (bib7) 2000; 196
Rooke, Barakat, Finol, Billemont, De Weireld, Li, Cousin, Giraudon, Siffert, Lamonier (bib104) 2013; 142
Selishchev, Svintsitskiy, Kovtunova, Gerasimov, Gladky, Kozlov (bib114) 2021; 612
Torres-martínez, Lu (bib128) 2021; 134
Muangmora, Kemacheevakul, Chuangchote (bib86) 2020; 16
Vatanpour, Karami, Sheydaei (bib131) 2017; 116
Cheng, Zhang (bib16) 2020
Chae, Yu, Young, Il (bib8) 2019; 496
Hu, Li, Sun, Song, Zheng (bib35) 2020; 168
Liu, Wang, Qu, Li, Shi, Zhang (bib72) 2019; 257
Guo, Wen, Li, An (bib30) 2021; 281
Kong, Jiang, Rui, Liu, Xian, Ji, Ji (bib56) 2020; 397
Zhuang, Gu, Long, Lin, Lin, Wang (bib159) 2014; 4
Sekiguchi, Morinaga, Sakamoto, Tamura, Yasui, Mehrjouei, Müller, Möller (bib112) 2010; 97
Roso, Boaretti, Pelizzo, Lauria, Modesti, Lorenzetti (bib105) 2017; 56
Yao, Zhang, Wang, Chen, Huang, Cao, Ho, Lee (bib145) 2017; 7
Chen, Wang, Rao, Tang, Wang, Shi, Lu, Xie, Chen, Sun (bib13) 2021; 416
Truc, Pham, Van Thuan, Tran, Nguyen, Dang, Trang (bib129) 2019; 798
Malayeri, Haghighat, Lee (bib78) 2021; 404
Oladipo, Garlisi, Al-Ali, Azar, Palmisano (bib89) 2019; 7
Rajabi, Khani, Shamsipur, Vatanpour (bib98) 2013; 250–251
Qiu, Wang, Li, Cao, Ouyang, Zhu (bib95) 2018; 8
Deng, He, Xie, Yang, Liu, Guo, Dai (bib22) 2015; 49
Wang, Xu, Wu, C (bib134) 2018; 8
Liu, Chen, Li, Wang, Chen, Wang, Li, Dong (bib73) 2022; 606
Roso, Falcomer, Azzano, Boaretti, Donadini, Lorenzetti, Modesti (bib107) 2019; 7
He, Cheng, Zhang, Douthwaite, Pattisson, Hao (bib31) 2019; 119
Zou, Zhao, Zhang, Sun, Pan, Guo (bib161) 2019; 17
Konstantinou, Albanis (bib58) 2004; 49
Fiorenza, Bellardita, D'Urso, Compagnini, Palmisano, Scirè (bib24) 2016; 6
Laokiat, Khemthong, Grisdanurak, Sreearunothai (bib59) 2012; 29
Saucedo-Lucero, Arriaga (bib111) 2015; 312
Li, Jia, Zhang, Zhang, Tang (bib62) 2014; 21
Pui, Yusoff, Aroua (bib93) 2019; 35
Shayegan, Haghighat, Lee (bib120) 2021; 287
Sun, Ding, Bao, Gao, Qi, Yang, He, Li (bib124) 2012; 258
An, Jimmy (bib2) 2011; 1
Rad, Ansarian, Soltani, Khataee, Orooji, Vafaei (bib97) 2020; 399
Zou, Yuan, Cui, Dong, Chen, Ge, Ke (bib162) 2021; 266
Nagaraju, Harikaranahalli, Wantala, Shahmoradi (bib87) 2020; 10
Zhang, Wu, Wang, Kwok, Pan, Szeto, Huang, Leung (bib154) 2021; 280
Zhou, Ou, Li, Qin, Fang, Lee, Wang, Ho (bib158) 2021; 8
Chen, Wang, Wang, Ji, Wang, Dong, Gao (bib12) 2021; 38
Liao, Xie, Liu, Chen, Li, Wu (bib69) 2012; 38
Saldanha, das Graças Santos, Tomaz (bib109) 2021; 263
Qian, Yue, Tian, Reng, Zhu, Kan, Zhang, Zhao (bib94) 2016; 193
Mahmodi, Sharifnia, Madani, Vatanpour (bib76) 2013; 97
Jafari, Arfaeinia, Badi, Kalantary, Kermani (bib38) 2019; 38
Rangkooy, Jahani, Siahi Ahangar (bib101) 2020; 7
Kannangara, Wijesena, Rajapakse, de Silva (bib45) 2018; 8
Wang, Yang (bib133) 2015; 115
Tai, Chook, Lai, Lee, Yang, Chong, Juan (bib125) 2019; 9
Xie, Li, Shi, Zhao, Zhao, Fang, Zheng, Wang (bib141) 2012; 213
Ao, Lee (bib4) 2005; 60
Karimi, Rajabi, Kavoshi (bib46) 2020; 397
Chen, Katsumata, Chiu, Okada, Matsushita, Hsu (bib9) 2015; 490
Kim, Lee, Han, Park (bib53) 2006; 41
Kamal, Razzak, Hossain (bib43) 2016; 140
Lin, Chen (bib70) 2021; 11
Degefu, Liao (bib19) 2021; 98
Van Thuan, Hanh, Vy, Hang, Van Ha, Pham, Sharma, Nguyen, Dang, Truc (bib126) 2020; 63
Hu, Song, Jiang, Wei (bib33) 2015; 274
Zhang, Liu, Hashisho, Sun, Zheng, Zhong (bib152) 2020; 525
Kong, Xiang, Li, An (bib57) 2020; 269
Shayegan, Haghighat, Lee (bib117) 2019; 357
Mishra, Mehta, Kainth, Basu (bib82) 2018; 153
David, Niculescu (bib18) 2021; 18
Jouyandeh, Mousavi Khadem, Habibzadeh, Esmaeili, Abida, Vatanpour, Rabiee, Bagherzadeh, Iravani, Reza Saeb, Varma (bib42) 2021; 23
Meng, Wang, Yang, Hu, Guo, Yang (bib81) 2019; 251
Moure, Peña (bib85) 2015; 43
Shu, Ji, Xu, Deng, Huang, He, Leung, Wu, Liu, Liu (bib123) 2018; 220
Tomatis, Xu, He, Zhang (bib127) 2016; 2016
Wang, Rao, Mahmood, Wang, Wang, Xie, Sun (bib135) 2021; 602
Shayegan, Lee, Haghighat (bib116) 2018; 334
Li, Li, Sui, Du, Zhuang, Zhang (bib66) 2021; 1231
Zou, Gao, Ok, Dong (bib160) 2019; 218
Kim, Kim, Park, Park, Kim, Jeong, Yang, Choi, Yeom, Song, Lee (bib55) 2022; 204
Hu, Chen, Fu, Ba, Sun, Zhang, Zou (bib34) 2018; 436
Kim, Hong (bib51) 2002; 35
Lee, Koziel, Murphy, Jenks, Chen, Li, Banik (bib61) 2021; 11
Weon, Choi, Kim, Kim, Park, Kim, Kim, Choi (bib138) 2018; 52
Pham, Lee (bib90) 2017; 307
Wu, Ye, Qiao, Li, Niemantsverdriet, Richards, Pan, Su (bib140) 2021
Shayegan, Haghighat, Lee (bib118) 2020; 8
Yang, Liu, Li, Chen, Rui (bib144) 2020; 249
Li, Cai, Xu, Chen, Chen, Jia, Chen (bib64) 2017; 325
Weon, Choi (bib137) 2016; 50
Assadi, Armaghan, Taheri (bib5) 2021; 161
Chen, He, Li, An, Shi, Li (bib10) 2017; 209
Li, Sang, Chen, Zhang, Zhu, Ma, Su, Wang (bib63) 2015; 7
Moma, Baloyi (bib84) 2019
Rangkooy, Ghaedi, Jahani (bib100) 2019; 7
Yousefi, Zandavar, Pourmortazavi, Rajabi, Sajadiasl, Ganjali, Mirsadeghi (bib149) 2021; 28
ctro-Fenton and electrocoagulation processes: a comparative study. J. Hazard Mater. 161, 1225–1233.
Rangkooy, Tanha, Jaafarzadeh, Mohammadbeigi (bib99) 2017; 7
Khataee, A.R., Vatanpour, V., Amani Ghadim, A.R., 2009. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, el
Li, Fang, Qian, Tian (bib68) 2022; 428
Rao, Lu, Chen, Mahmood, Shi, Tang, Xie, Sun (bib102) 2022; 430
Delhoménie, Heitz (bib20) 2005; 25
Kim, Lee (bib52) 2018; 119
Lee, Wei-Chieh Chung (bib60) 2019; 26
Wang, Li, Yang, Liu, Wang, Geng, Dong (bib136) 2021; 297
Zang, Zhao, Wang, Chen (bib151) 2019; 23
Mahmood, Shi, Wang, Rao, Xiao, Xie, Sun (bib77) 2021; 401
Mamaghani, Haghighat, Lee (bib79) 2018; 138
Shahna, Bahrami, Alimohammadi, Yarahmadi, Jaleh, Gandomi, Ebrahimi, Abedi (bib115) 2017; 324
Roso, Boaretti, Bonora, Modesti, Lorenzetti (bib106) 2018; 57
Ji, Shen, Kong, Rui, Tong (bib40) 2018; 57
Jafari, Kalantary, Esrafili, Arfaeinia (bib37) 2018; 116
Roushani, Mavaei, Daneshfar, Rajabi (bib108) 2017; 28
Sansotera, Kheyli, Baggioli, Bianchi, Pedeferri, Diamanti, Navarrini (bib110) 2019; 361
Xue, Gong, Chen, Chen (bib143) 2021; 150
Cheng, Gao, Zhang, Su, Wang, Wang (bib17) 2018; 42
Zhao, Deng, Li, Huang, Sun, Li (bib156) 2021; 420
Lin, Xie, Wang, Wang, Segets, Sun (bib71) 2018; 349
Verbruggen (bib132) 2015; 24
Demeestere, Dewulf, Ohno, Herrera, Langenhove (bib21) 2005; vol. 61
Khan, Kim (bib48) 2009; 163
Shojaei, Ghafourian, Yadegarian, Lari, Sadatipour (bib122) 2021
Keyikoglu, Khataee, Yoon (bib47) 2022; 300
Mamaghani, Haghighat, Lee (bib80) 2021; 189
Mamaghani (10.1016/j.chemosphere.2022.135655_bib80) 2021; 189
Roso (10.1016/j.chemosphere.2022.135655_bib107) 2019; 7
Cao (10.1016/j.chemosphere.2022.135655_bib7) 2000; 196
Delhoménie (10.1016/j.chemosphere.2022.135655_bib20) 2005; 25
Liu (10.1016/j.chemosphere.2022.135655_bib73) 2022; 606
Gao (10.1016/j.chemosphere.2022.135655_bib26) 2015; 5
Yao (10.1016/j.chemosphere.2022.135655_bib145) 2017; 7
Liu (10.1016/j.chemosphere.2022.135655_bib72) 2019; 257
Chen (10.1016/j.chemosphere.2022.135655_bib9) 2015; 490
Guo (10.1016/j.chemosphere.2022.135655_bib30) 2021; 281
Li (10.1016/j.chemosphere.2022.135655_bib66) 2021; 1231
Verbruggen (10.1016/j.chemosphere.2022.135655_bib132) 2015; 24
Gholami (10.1016/j.chemosphere.2022.135655_bib29) 2020; 382
Nasrollahi (10.1016/j.chemosphere.2022.135655_bib88) 2021; 93
An (10.1016/j.chemosphere.2022.135655_bib2) 2011; 1
Sun (10.1016/j.chemosphere.2022.135655_bib124) 2012; 258
Weon (10.1016/j.chemosphere.2022.135655_bib137) 2016; 50
Kim (10.1016/j.chemosphere.2022.135655_bib53) 2006; 41
Hu (10.1016/j.chemosphere.2022.135655_bib33) 2015; 274
Li (10.1016/j.chemosphere.2022.135655_bib63) 2015; 7
Khataee (10.1016/j.chemosphere.2022.135655_bib50) 2019; 375
Yao (10.1016/j.chemosphere.2022.135655_bib146) 2020; 727
Moma (10.1016/j.chemosphere.2022.135655_bib84) 2019
Zhao (10.1016/j.chemosphere.2022.135655_bib155) 2020; 527
Shu (10.1016/j.chemosphere.2022.135655_bib123) 2018; 220
Zhang (10.1016/j.chemosphere.2022.135655_bib152) 2020; 525
Deng (10.1016/j.chemosphere.2022.135655_bib22) 2015; 49
Xie (10.1016/j.chemosphere.2022.135655_bib141) 2012; 213
Lin (10.1016/j.chemosphere.2022.135655_bib71) 2018; 349
Kamal (10.1016/j.chemosphere.2022.135655_bib43) 2016; 140
Sekiguchi (10.1016/j.chemosphere.2022.135655_bib112) 2010; 97
Mahmodi (10.1016/j.chemosphere.2022.135655_bib76) 2013; 97
Pham (10.1016/j.chemosphere.2022.135655_bib90) 2017; 307
Jafari (10.1016/j.chemosphere.2022.135655_bib37) 2018; 116
Chen (10.1016/j.chemosphere.2022.135655_bib14) 2022; 605
Jouyandeh (10.1016/j.chemosphere.2022.135655_bib42) 2021; 23
Kong (10.1016/j.chemosphere.2022.135655_bib57) 2020; 269
Ge (10.1016/j.chemosphere.2022.135655_bib28) 2019; 12
Gao (10.1016/j.chemosphere.2022.135655_bib27) 2018; 346
Sheydaei (10.1016/j.chemosphere.2022.135655_bib121) 2019; 56
He (10.1016/j.chemosphere.2022.135655_bib32) 2021; 12
Chen (10.1016/j.chemosphere.2022.135655_bib12) 2021; 38
Ren (10.1016/j.chemosphere.2022.135655_bib103) 2015; 398
Rooke (10.1016/j.chemosphere.2022.135655_bib104) 2013; 142
Zou (10.1016/j.chemosphere.2022.135655_bib162) 2021; 266
Zou (10.1016/j.chemosphere.2022.135655_bib160) 2019; 218
Mishra (10.1016/j.chemosphere.2022.135655_bib82) 2018; 153
Shayegan (10.1016/j.chemosphere.2022.135655_bib118) 2020; 8
Saucedo-Lucero (10.1016/j.chemosphere.2022.135655_bib111) 2015; 312
Selishchev (10.1016/j.chemosphere.2022.135655_bib114) 2021; 612
Hu (10.1016/j.chemosphere.2022.135655_bib35) 2020; 168
Qu (10.1016/j.chemosphere.2022.135655_bib96) 2009; 35
Laokiat (10.1016/j.chemosphere.2022.135655_bib59) 2012; 29
Malayeri (10.1016/j.chemosphere.2022.135655_bib78) 2021; 404
Sansotera (10.1016/j.chemosphere.2022.135655_bib110) 2019; 361
Zou (10.1016/j.chemosphere.2022.135655_bib161) 2019; 17
Cheng (10.1016/j.chemosphere.2022.135655_bib16) 2020
Meng (10.1016/j.chemosphere.2022.135655_bib81) 2019; 251
Weon (10.1016/j.chemosphere.2022.135655_bib139) 2019; 6
Rangkooy (10.1016/j.chemosphere.2022.135655_bib100) 2019; 7
Wang (10.1016/j.chemosphere.2022.135655_bib135) 2021; 602
Chen (10.1016/j.chemosphere.2022.135655_bib10) 2017; 209
Roso (10.1016/j.chemosphere.2022.135655_bib105) 2017; 56
Torres-martínez (10.1016/j.chemosphere.2022.135655_bib128) 2021; 134
Molinari (10.1016/j.chemosphere.2022.135655_bib83) 2017; 281
Chen (10.1016/j.chemosphere.2022.135655_bib13) 2021; 416
Chen (10.1016/j.chemosphere.2022.135655_bib11) 2019; 356
Li (10.1016/j.chemosphere.2022.135655_bib67) 2021; 9
Muangmora (10.1016/j.chemosphere.2022.135655_bib86) 2020; 16
Selishchev (10.1016/j.chemosphere.2022.135655_bib113) 2019; 370
Shayegan (10.1016/j.chemosphere.2022.135655_bib117) 2019; 357
David (10.1016/j.chemosphere.2022.135655_bib18) 2021; 18
Zhou (10.1016/j.chemosphere.2022.135655_bib158) 2021; 8
Xue (10.1016/j.chemosphere.2022.135655_bib143) 2021; 150
Pham (10.1016/j.chemosphere.2022.135655_bib91) 2021; 224
Jo (10.1016/j.chemosphere.2022.135655_bib41) 2009; 164
Hu (10.1016/j.chemosphere.2022.135655_bib34) 2018; 436
He (10.1016/j.chemosphere.2022.135655_bib31) 2019; 119
Qiu (10.1016/j.chemosphere.2022.135655_bib95) 2018; 8
Shayegan (10.1016/j.chemosphere.2022.135655_bib116) 2018; 334
An (10.1016/j.chemosphere.2022.135655_bib3) 2005; 80
Rad (10.1016/j.chemosphere.2022.135655_bib97) 2020; 399
Rao (10.1016/j.chemosphere.2022.135655_bib102) 2022; 430
Bueno-alejo (10.1016/j.chemosphere.2022.135655_bib6) 2021; 362
Mamaghani (10.1016/j.chemosphere.2022.135655_bib79) 2018; 138
Cheng (10.1016/j.chemosphere.2022.135655_bib17) 2018; 42
Jafari (10.1016/j.chemosphere.2022.135655_bib38) 2019; 38
Rangkooy (10.1016/j.chemosphere.2022.135655_bib101) 2020; 7
Roushani (10.1016/j.chemosphere.2022.135655_bib108) 2017; 28
Liao (10.1016/j.chemosphere.2022.135655_bib69) 2012; 38
Qian (10.1016/j.chemosphere.2022.135655_bib94) 2016; 193
Li (10.1016/j.chemosphere.2022.135655_bib64) 2017; 325
Nagaraju (10.1016/j.chemosphere.2022.135655_bib87) 2020; 10
Zhuang (10.1016/j.chemosphere.2022.135655_bib159) 2014; 4
Zhang (10.1016/j.chemosphere.2022.135655_bib154) 2021; 280
Tseng (10.1016/j.chemosphere.2022.135655_bib130) 2010; 11
Luo (10.1016/j.chemosphere.2022.135655_bib74) 2019; 357
Xue (10.1016/j.chemosphere.2022.135655_bib142) 2021; 132
Lee (10.1016/j.chemosphere.2022.135655_bib60) 2019; 26
Roso (10.1016/j.chemosphere.2022.135655_bib106) 2018; 57
Zhao (10.1016/j.chemosphere.2022.135655_bib157) 2022; 250
Ji (10.1016/j.chemosphere.2022.135655_bib40) 2018; 57
Wang (10.1016/j.chemosphere.2022.135655_bib136) 2021; 297
Shahna (10.1016/j.chemosphere.2022.135655_bib115) 2017; 324
Ao (10.1016/j.chemosphere.2022.135655_bib4) 2005; 60
Rangkooy (10.1016/j.chemosphere.2022.135655_bib99) 2017; 7
Demeestere (10.1016/j.chemosphere.2022.135655_bib21) 2005; vol. 61
Yousefi (10.1016/j.chemosphere.2022.135655_bib149) 2021; 28
Wu (10.1016/j.chemosphere.2022.135655_bib140) 2021
Lee (10.1016/j.chemosphere.2022.135655_bib61) 2021; 11
Saldanha (10.1016/j.chemosphere.2022.135655_bib109) 2021; 263
Kaneco (10.1016/j.chemosphere.2022.135655_bib44) 2004; 163
Karimi (10.1016/j.chemosphere.2022.135655_bib46) 2020; 397
Kim (10.1016/j.chemosphere.2022.135655_bib51) 2002; 35
Yu (10.1016/j.chemosphere.2022.135655_bib150) 2018; 73
Kong (10.1016/j.chemosphere.2022.135655_bib56) 2020; 397
Moure (10.1016/j.chemosphere.2022.135655_bib85) 2015; 43
Khan (10.1016/j.chemosphere.2022.135655_bib48) 2009; 163
Assadi (10.1016/j.chemosphere.2022.135655_bib5) 2021; 161
Kim (10.1016/j.chemosphere.2022.135655_bib52) 2018; 119
Keyikoglu (10.1016/j.chemosphere.2022.135655_bib47) 2022; 300
Tomatis (10.1016/j.chemosphere.2022.135655_bib127) 2016; 2016
Ye (10.1016/j.chemosphere.2022.135655_bib148) 2021; 407
Kim (10.1016/j.chemosphere.2022.135655_bib55) 2022; 204
Tai (10.1016/j.chemosphere.2022.135655_bib125) 2019; 9
Li (10.1016/j.chemosphere.2022.135655_bib68) 2022; 428
Shayegan (10.1016/j.chemosphere.2022.135655_bib120) 2021; 287
Chae (10.1016/j.chemosphere.2022.135655_bib8) 2019; 496
Weon (10.1016/j.chemosphere.2022.135655_bib138) 2018; 52
Abatement (10.1016/j.chemosphere.2022.135655_bib1) 2020; 10
Pui (10.1016/j.chemosphere.2022.135655_bib93) 2019; 35
Yang (10.1016/j.chemosphere.2022.135655_bib144) 2020; 249
Ducom (10.1016/j.chemosphere.2022.135655_bib23) 1999; 124
Yasui (10.1016/j.chemosphere.2022.135655_bib147) 2021; 232
Kannangara (10.1016/j.chemosphere.2022.135655_bib45) 2018; 8
Rajabi (10.1016/j.chemosphere.2022.135655_bib98) 2013; 250–251
Shojaei (10.1016/j.chemosphere.2022.135655_bib122) 2021
Fujimoto (10.1016/j.chemosphere.2022.135655_bib25) 2017; 24
10.1016/j.chemosphere.2022.135655_bib49
Vatanpour (10.1016/j.chemosphere.2022.135655_bib131) 2017; 116
Wang (10.1016/j.chemosphere.2022.135655_bib133) 2015; 115
Jafari (10.1016/j.chemosphere.2022.135655_bib39) 2019; 73
Van Thuan (10.1016/j.chemosphere.2022.135655_bib126) 2020; 63
Degefu (10.1016/j.chemosphere.2022.135655_bib19) 2021; 98
Mahmood (10.1016/j.chemosphere.2022.135655_bib77) 2021; 401
Priya (10.1016/j.chemosphere.2022.135655_bib92) 2021; 284
Shayegan (10.1016/j.chemosphere.2022.135655_bib119) 2020; 401
Wang (10.1016/j.chemosphere.2022.135655_bib134) 2018; 8
Huang (10.1016/j.chemosphere.2022.135655_bib36) 2015; 353
Li (10.1016/j.chemosphere.2022.135655_bib65) 2020; 235
Zhao (10.1016/j.chemosphere.2022.135655_bib156) 2021; 420
Chen (10.1016/j.chemosphere.2022.135655_bib15) 2022; 303
Fiorenza (10.1016/j.chemosphere.2022.135655_bib24) 2016; 6
Konstantinou (10.1016/j.chemosphere.2022.135655_bib58) 2004; 49
Oladipo (10.1016/j.chemosphere.2022.135655_bib89) 2019; 7
Truc (10.1016/j.chemosphere.2022.135655_bib129) 2019; 798
Li (10.1016/j.chemosphere.2022.135655_bib62) 2014; 21
Lyu (10.1016/j.chemosphere.2022.135655_bib75) 2020; 400
Kim (10.1016/j.chemosphere.2022.135655_bib54) 2011; 408
Zang (10.1016/j.chemosphere.2022.135655_bib151) 2019; 23
Zhang (10.1016/j.chemosphere.2022.135655_bib153) 2020; 384
Lin (10.1016/j.chemosphere.2022.135655_bib70) 2021; 11
References_xml – volume: 18
  year: 2021
  ident: bib18
  article-title: Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 7
  start-page: 260
  year: 2017
  ident: bib99
  article-title: The influence of ZnO-SnO
  publication-title: Med. Gas Res.
– volume: 287
  year: 2021
  ident: bib120
  article-title: Anatase/brookite biphasic surface fluorinated Fe–TiO2 photocatalysts to enhance photocatalytic removal of VOCs under visible and UV light
  publication-title: J. Clean. Prod.
– volume: 12
  start-page: 1916
  year: 2019
  ident: bib28
  article-title: Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: a mini review
  publication-title: Materials
– volume: 258
  start-page: 5031
  year: 2012
  end-page: 5037
  ident: bib124
  article-title: Photocatalytic degradation of gaseous toluene on Fe-TiO
  publication-title: Appl. Surf. Sci.
– volume: 8
  year: 2021
  ident: bib158
  article-title: Photocatalytic air purification using functional polymeric carbon nitrides
  publication-title: Adv. Sci.
– volume: 52
  start-page: 9330
  year: 2018
  end-page: 9340
  ident: bib138
  article-title: Active {001} facet exposed TiO
  publication-title: Environ. Sci. Technol.
– volume: 269
  year: 2020
  ident: bib57
  article-title: Introduce oxygen vacancies into CeO
  publication-title: Appl. Catal. B Environ.
– volume: 21
  start-page: 4066
  year: 2014
  end-page: 4070
  ident: bib62
  article-title: Photocatalytic degradation of formaldehyde using mesoporous TiO
  publication-title: J. Cent. South Univ.
– volume: 193
  start-page: 16
  year: 2016
  end-page: 21
  ident: bib94
  article-title: Carbon quantum dots decorated Bi
  publication-title: Appl. Catal. B Environ.
– volume: 43
  start-page: 123
  year: 2015
  end-page: 148
  ident: bib85
  article-title: Recent advances in perovskites: processing and properties
  publication-title: Prog. Solid State Chem.
– volume: 397
  year: 2020
  ident: bib56
  article-title: Photothermocatalytic synergistic oxidation: an effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 13714
  year: 2015
  end-page: 13721
  ident: bib63
  article-title: Enhanced visible photovoltaic response of TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  start-page: 4471
  year: 2019
  end-page: 4568
  ident: bib31
  article-title: Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources
  publication-title: Chem. Rev.
– volume: 353
  start-page: 949
  year: 2015
  end-page: 957
  ident: bib36
  article-title: One-pot facile synthesis of branched Ag-ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst
  publication-title: Appl. Surf. Sci.
– volume: 93
  start-page: 101
  year: 2021
  end-page: 116
  ident: bib88
  article-title: Photocatalytic-membrane technology: a critical review for membrane fouling mitigation
  publication-title: J. Ind. Eng. Chem.
– volume: 8
  start-page: 596
  year: 2018
  ident: bib95
  article-title: Photocatalytic oxidation of toluene on fluorine doped TiO
  publication-title: Catalysts
– volume: 98
  start-page: 605
  year: 2021
  end-page: 614
  ident: bib19
  article-title: Photocatalytic degradation of volatile organic compounds using nanocomposite of P-type and N-type transition metal semiconductors
  publication-title: J. Sol. Gel Sci. Technol.
– volume: 7
  year: 2019
  ident: bib107
  article-title: Design and development of nanostructured filter media for VOCs abatement in closed environments
  publication-title: J. Environ. Chem. Eng.
– volume: 73
  start-page: 138
  year: 2018
  end-page: 146
  ident: bib150
  article-title: Enhanced photocatalytic activity of rGO/TiO
  publication-title: J. Environ. Sci. (China)
– volume: 80
  start-page: 251
  year: 2005
  end-page: 258
  ident: bib3
  article-title: Photocatalytic degradation of gaseous trichloroethene using immobilized ZnO/SnO
  publication-title: J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol.
– volume: 140
  start-page: 117
  year: 2016
  end-page: 134
  ident: bib43
  article-title: Catalytic oxidation of volatile organic compounds (VOCs)–A review
  publication-title: Atmos. Environ.
– volume: 138
  start-page: 275
  year: 2018
  end-page: 282
  ident: bib79
  article-title: Photocatalytic degradation of VOCs on various commercial titanium dioxides: impact of operating parameters on removal efficiency and by-products generation
  publication-title: Build. Environ.
– volume: 29
  start-page: 377
  year: 2012
  end-page: 383
  ident: bib59
  article-title: Photocatalytic degradation of benzene, toluene, ethylbenzene, and xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglass cloth
  publication-title: Kor. J. Chem. Eng.
– volume: 41
  start-page: 6150
  year: 2006
  end-page: 6153
  ident: bib53
  article-title: Preparation of dip-coated TiO
  publication-title: J. Mater. Sci.
– volume: 97
  start-page: 186
  year: 2013
  end-page: 194
  ident: bib76
  article-title: Photoreduction of carbon dioxide in the presence of H
  publication-title: Sol. Energy
– start-page: 1
  year: 2020
  end-page: 11
  ident: bib16
  article-title: Enhanced photocatalytic performance of tungsten-based photocatalysts for degradation of volatile organic compounds: a review
  publication-title: Tungsten
– volume: 5
  start-page: 52985
  year: 2015
  end-page: 52992
  ident: bib26
  article-title: Enhancement of photo-catalytic degradation of formaldehyde through loading anatase TiO
  publication-title: RSC Adv.
– volume: 23
  start-page: 4931
  year: 2021
  ident: bib42
  article-title: Quantum dots for photocatalysis: synthesis and environmental applications
  publication-title: Green Chem.
– volume: 250
  year: 2022
  ident: bib157
  article-title: Bifunctional Mn
  publication-title: Chem. Eng. Sci.
– volume: 56
  start-page: 361
  year: 2019
  end-page: 371
  ident: bib121
  article-title: Systematic comparison of sono-synthesized Ce-, La- and Ho-doped ZnO nanoparticles and using the optimum catalyst in a visible light assisted continuous sono-photocatalytic membrane reactor
  publication-title: Ultrason. Sonochem.
– volume: 404
  year: 2021
  ident: bib78
  article-title: Kinetic modeling of the photocatalytic degradation of methyl ethyl ketone in air for a continuous-flow reactor
  publication-title: Chem. Eng. J.
– reference: ctro-Fenton and electrocoagulation processes: a comparative study. J. Hazard Mater. 161, 1225–1233.
– volume: 361
  start-page: 885
  year: 2019
  end-page: 896
  ident: bib110
  article-title: Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO
  publication-title: Chem. Eng. J.
– volume: 384
  year: 2020
  ident: bib153
  article-title: Oxygen vacancies enhanced photocatalytic activity towards VOCs oxidation over Pt deposited Bi
  publication-title: J. Hazard Mater.
– volume: 274
  start-page: 102
  year: 2015
  end-page: 112
  ident: bib33
  article-title: Enhanced photocatalytic activity of Pt-doped TiO
  publication-title: Chem. Eng. J.
– volume: 73
  start-page: 635
  year: 2019
  end-page: 644
  ident: bib39
  article-title: Photocatalytic oxidation of benzene by ZnO coated on glass plates under simulated sunlight
  publication-title: Chem. Pap.
– volume: 401
  year: 2021
  ident: bib77
  article-title: Carbon quantum dots-TiO
  publication-title: J. Hazard Mater.
– volume: 399
  year: 2020
  ident: bib97
  article-title: Sonophotocatalytic activities of FeCuMg and CrCuMg LDHs: influencing factors, antibacterial effects, and intermediate determination
  publication-title: J. Hazard Mater.
– start-page: 1
  year: 2021
  end-page: 10
  ident: bib122
  article-title: Removal of volatile organic compounds (VOCs) from waste air stream using ozone assisted zinc oxide (ZnO) nanoparticles coated on zeolite
  publication-title: J. Environ. Heal. Sci. Eng.
– volume: 401
  year: 2020
  ident: bib119
  article-title: Surface fluorinated Ce-doped TiO
  publication-title: Chem. Eng. J.
– volume: 168
  year: 2020
  ident: bib35
  article-title: Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO
  publication-title: Build. Environ.
– volume: 116
  start-page: 68
  year: 2017
  end-page: 75
  ident: bib131
  article-title: Central composite design optimization of Rhodamine B degradation using TiO
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 218
  start-page: 845
  year: 2019
  end-page: 859
  ident: bib160
  article-title: Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review
  publication-title: Chemosphere
– volume: 163
  start-page: 1179
  year: 2009
  end-page: 1184
  ident: bib48
  article-title: Preparation and application of visible-light-responsive Ni-doped and SnO
  publication-title: J. Hazard Mater.
– volume: 235
  year: 2020
  ident: bib65
  article-title: Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review
  publication-title: Separ. Purif. Technol.
– volume: 356
  start-page: 255
  year: 2019
  end-page: 261
  ident: bib11
  article-title: Ce-modified mesoporous γ-Al
  publication-title: Chem. Eng. J.
– volume: 346
  start-page: 77
  year: 2018
  end-page: 84
  ident: bib27
  article-title: Construction of bimetallic Pd-Ag enhanced AgBr/TiO
  publication-title: Chem. Eng. J.
– volume: 28
  start-page: 5135
  year: 2017
  end-page: 5143
  ident: bib108
  article-title: Application of graphene quantum dots as green homogenous nanophotocatalyst in the visible-light-driven photolytic process
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 12
  start-page: 10
  year: 2021
  end-page: 13
  ident: bib32
  article-title: Photocatalytic air purification mimicking the self-cleaning process of the atmosphere
  publication-title: Nat. Commun.
– volume: 1231
  start-page: 2
  year: 2021
  end-page: 10
  ident: bib66
  article-title: Removal of volatile organic compounds from air using supported ionic liquid membrane containing ultraviolet-visible light-driven Nd-TiO
  publication-title: J. Mol. Struct.
– year: 2019
  ident: bib84
  article-title: Modified titanium dioxide for photocatalytic applications
  publication-title: Photocatalysts - Applications and Attributes
– volume: 307
  start-page: 63
  year: 2017
  end-page: 73
  ident: bib90
  article-title: Selective removal of polar VOCs by novel photocatalytic activity of metals co-doped TiO
  publication-title: Chem. Eng. J.
– volume: 119
  start-page: 164
  year: 2018
  end-page: 171
  ident: bib52
  article-title: Enhanced photocatalytic decomposition of VOCs by visible-driven photocatalyst combined Cu-TiO
  publication-title: Process Saf. Environ. Protect.
– volume: 496
  year: 2019
  ident: bib8
  article-title: Hybrid poly (3-hexylthiophene) (P3HT) nanomesh/ZnO nanorod p-n junction visible photocatalyst for efficient indoor air purification
  publication-title: Appl. Surf. Sci.
– volume: 606
  start-page: 1435
  year: 2022
  end-page: 1444
  ident: bib73
  article-title: Promote the activation and ring opening of intermediates for stable photocatalytic toluene degradation over Zn-Ti-LDH
  publication-title: J. Colloid Interface Sci.
– volume: 132
  year: 2021
  ident: bib142
  article-title: Materials Science in Semiconductor Processing Fast electron transfer and enhanced visible light photocatalytic activity of silver and Ag
  publication-title: Mater. Sci. Semicond. Process.
– volume: 297
  year: 2021
  ident: bib136
  article-title: Promote reactants activation and key intermediates formation for facilitated toluene photodecomposition via Ba active sites construction
  publication-title: Appl. Catal. B Environ.
– volume: 357
  start-page: 395
  year: 2019
  end-page: 403
  ident: bib74
  article-title: Good interaction between well dispersed Pt and LaCoO
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib87
  article-title: Preparation of modified ZnO nanoparticles for photocatalytic degradation of chlorobenzene
  publication-title: Appl. Water Sci.
– volume: 280
  year: 2021
  ident: bib154
  article-title: Fluorinated TiO
  publication-title: Appl. Catal. B Environ.
– volume: 10
  start-page: 1017
  year: 2020
  ident: bib1
  article-title: Electrospun active media based on polyvinylidene fluoride (PVDF)-graphene-TiO
  publication-title: Catalysts
– volume: 727
  year: 2020
  ident: bib146
  article-title: Preparation and characterization of a copper phosphotungstate/titanium dioxide (Cu-H
  publication-title: Sci. Total Environ.
– volume: 349
  start-page: 708
  year: 2018
  end-page: 718
  ident: bib71
  article-title: Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO
  publication-title: Chem. Eng. J.
– reference: Khataee, A.R., Vatanpour, V., Amani Ghadim, A.R., 2009. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, el
– volume: 134
  year: 2021
  ident: bib128
  article-title: Materials Science in Semiconductor Processing Earth-abundant ZnS/ZnO/CuFeS
  publication-title: Mater. Sci. Semicond. Process.
– volume: 303
  year: 2022
  ident: bib15
  article-title: One-pot synthesis of the MIL-100 (Fe) MOF/MOX homojunctions with tunable hierarchical pores for the photocatalytic removal of BTXS
  publication-title: Appl. Catal. B Environ.
– volume: 370
  start-page: 1440
  year: 2019
  end-page: 1449
  ident: bib113
  article-title: Uranyl-modified TiO
  publication-title: Chem. Eng. J.
– volume: 163
  start-page: 419
  year: 2004
  end-page: 424
  ident: bib44
  article-title: Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide
  publication-title: J. Photochem. Photobiol. Chem.
– volume: 49
  start-page: 1
  year: 2004
  end-page: 14
  ident: bib58
  article-title: TiO
  publication-title: Appl. Catal. B Environ.
– volume: 375
  year: 2019
  ident: bib50
  article-title: Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of moxifloxacin
  publication-title: Chem. Eng. J.
– volume: 204
  year: 2022
  ident: bib55
  article-title: Practical scale evaluation of a photocatalytic air purifier equipped with a Titania-zeolite composite bead filter for VOC removal and viral inactivation
  publication-title: Environ. Res.
– volume: 430
  year: 2022
  ident: bib102
  article-title: Photocatalytic oxidation mechanism of Gas-Phase VOCs: unveiling the role of holes, •OH and •O
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 121
  year: 2016
  ident: bib24
  article-title: Au/TiO
  publication-title: Catalysts
– volume: 408
  start-page: 148
  year: 2011
  end-page: 155
  ident: bib54
  article-title: Photocatalytic decomposition of toluene by nanodiamond-supported TiO
  publication-title: Appl. Catal. Gen.
– volume: 334
  start-page: 2408
  year: 2018
  end-page: 2439
  ident: bib116
  article-title: TiO
  publication-title: Chem. Eng. J.
– volume: 407
  year: 2021
  ident: bib148
  article-title: Influence of mixed-phase TiO
  publication-title: Chem. Eng. J.
– volume: 281
  start-page: 144
  year: 2017
  end-page: 164
  ident: bib83
  article-title: Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review
  publication-title: Catal. Today
– volume: 357
  start-page: 533
  year: 2019
  end-page: 546
  ident: bib117
  article-title: Photocatalytic oxidation of volatile organic compounds for indoor environment applications: three different scaled setups
  publication-title: Chem. Eng. J.
– volume: 23
  start-page: 645
  year: 2019
  end-page: 654
  ident: bib151
  article-title: A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts
  publication-title: J. Saudi Chem. Soc.
– volume: 57
  start-page: 16635
  year: 2018
  end-page: 16644
  ident: bib106
  article-title: Nanostructured active media for volatile organic compounds abatement: the synergy of graphene oxide and semiconductor coupling
  publication-title: Ind. Eng. Chem. Res.
– volume: 490
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib9
  article-title: ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation
  publication-title: Appl. Catal. Gen.
– volume: 436
  start-page: 319
  year: 2018
  end-page: 326
  ident: bib34
  article-title: Hydrothermal synthesis of BiVO
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 41
  year: 2020
  end-page: 47
  ident: bib101
  article-title: Photocatalytic removal of xylene as a pollutant in the air using ZnO-activated carbon, TiO
  publication-title: Environ. Heal. Eng. Manag. J.
– volume: 24
  start-page: 6390
  year: 2017
  end-page: 6396
  ident: bib25
  article-title: Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO
  publication-title: Environ. Sci. Pollut. Res.
– volume: 164
  start-page: 360
  year: 2009
  end-page: 366
  ident: bib41
  article-title: Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 3185
  year: 2019
  end-page: 3214
  ident: bib139
  article-title: Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation
  publication-title: Environ. Sci. Nano
– volume: 284
  year: 2021
  ident: bib92
  article-title: A review on recent advancements in photocatalytic remediation for harmful inorganic and organic gases
  publication-title: Chemosphere
– volume: 397
  year: 2020
  ident: bib46
  article-title: Application of decorated magnetic nanophotocatalysts for efficient photodegradation of organic dye: a comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots
  publication-title: J. Photochem. Photobiol. Chem.
– start-page: 120118
  year: 2021
  ident: bib140
  article-title: Inhibit the formation of toxic methylphenolic by-products in photo-decomposition of formaldehyde–toluene/xylene mixtures by pd cocatalyst on TiO
  publication-title: Appl. Catal. B Environ.
– volume: 420
  year: 2021
  ident: bib156
  article-title: Efficient photocatalytic toluene degradation over heterojunction of GQDs@BiOCl ultrathin nanosheets with selective benzoic acid activation
  publication-title: J. Hazard Mater.
– volume: 266
  year: 2021
  ident: bib162
  article-title: Construction of zinc-indium-sulfide/indium oxide step-scheme junction catalyst for enhanced photocatalytic activities of pollutant degradation and hydrogen generation
  publication-title: Separ. Purif. Technol.
– volume: 49
  start-page: 11089
  year: 2015
  end-page: 11095
  ident: bib22
  article-title: Ultralow loading of silver nanoparticles on Mn
  publication-title: Environ. Sci. Technol.
– volume: 35
  start-page: 649
  year: 2019
  end-page: 668
  ident: bib93
  article-title: A review on activated carbon adsorption for volatile organic compounds (VOCs)
  publication-title: Rev. Chem. Eng.
– volume: 1
  start-page: 1426
  year: 2011
  end-page: 1434
  ident: bib2
  article-title: Graphene-based photocatalytic composites
  publication-title: RSC Adv.
– volume: 153
  start-page: 144
  year: 2018
  end-page: 153
  ident: bib82
  article-title: Effect of different plasmonic metals on photocatalytic degradation of volatile organic compounds (VOCs) by bentonite/M-TiO
  publication-title: Appl. Clay Sci.
– volume: 527
  year: 2020
  ident: bib155
  article-title: Carbon doped ultra-small TiO
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 3195
  year: 2021
  ident: bib70
  article-title: Graphene family nanomaterials (GFN)-TiO
  publication-title: Nanomaterials
– volume: 161
  year: 2021
  ident: bib5
  article-title: Photocatalytic oxidation of ketone group volatile organic compounds in an intensified fluidized bed reactor using nano-TiO
  publication-title: Chem. Eng. Process. Intensif.
– volume: 312
  start-page: 28
  year: 2015
  end-page: 33
  ident: bib111
  article-title: Study of ZnO-photocatalyst deactivation during continuous degradation of n-hexane vapors
  publication-title: J. Photochem. Photobiol. Chem.
– volume: 428
  year: 2022
  ident: bib68
  article-title: Z-scheme heterojunction of low conduction band potential MnO
  publication-title: Chem. Eng. J.
– volume: vol. 61
  start-page: 140
  year: 2005
  end-page: 149
  ident: bib21
  publication-title: Visible Light Mediated Photocatalytic Degradation of Gaseous Trichloroethylene and Dimethyl Sulfide on Modified Titanium Dioxide
– volume: 11
  start-page: 1289
  year: 2021
  ident: bib61
  article-title: Evaluation of TiO
  publication-title: Animals
– volume: 25
  start-page: 53
  year: 2005
  end-page: 72
  ident: bib20
  article-title: Biofiltration of air: a review
  publication-title: Crit. Rev. Biotechnol.
– volume: 400
  year: 2020
  ident: bib75
  article-title: Synthesis of TiO
  publication-title: Chem. Eng. J.
– volume: 9
  year: 2021
  ident: bib67
  article-title: Study on the performance and mechanism of degradation of toluene with non-thermal plasmas synergized supported TiO
  publication-title: J. Environ. Chem. Eng.
– volume: 249
  year: 2020
  ident: bib144
  article-title: Promotion effect of strong metal-support interaction to thermocatalytic, photocatalytic, and photothermocatalytic oxidation of toluene on Pt/SrTiO
  publication-title: Chemosphere
– volume: 28
  start-page: 33344
  year: 2021
  end-page: 33354
  ident: bib149
  article-title: UV and visible-assisted photocatalytic degradation of pharmaceutical pollutants in the presence of rational designed biogenic Fe
  publication-title: Environ. Sci. Pollut. Res.
– volume: 4
  start-page: 34315
  year: 2014
  end-page: 34324
  ident: bib159
  article-title: Visible light-driven decomposition of gaseous benzene on robust Sn
  publication-title: RSC Adv.
– volume: 150
  year: 2021
  ident: bib143
  article-title: A facile synthesis of Ag/Ag
  publication-title: J. Phys. Chem. Solid.
– volume: 281
  year: 2021
  ident: bib30
  article-title: Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review
  publication-title: Appl. Catal. B Environ.
– volume: 612
  year: 2021
  ident: bib114
  article-title: Surface modification of TiO
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 16
  start-page: 185
  year: 2020
  end-page: 201
  ident: bib86
  article-title: Titanium dioxide and its modified forms as photocatalysts for air treatment
  publication-title: Curr. Anal. Chem.
– volume: 209
  start-page: 146
  year: 2017
  end-page: 154
  ident: bib10
  article-title: Visible-light-enhanced photothermocatalytic activity of ABO
  publication-title: Appl. Catal. B Environ.
– volume: 35
  start-page: 305
  year: 2002
  end-page: 315
  ident: bib51
  article-title: Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO
  publication-title: Appl. Catal. B Environ.
– volume: 7
  year: 2019
  ident: bib89
  article-title: Combined photocatalytic properties and energy efficiency via multifunctional glass
  publication-title: J. Environ. Chem. Eng.
– volume: 50
  start-page: 2556
  year: 2016
  end-page: 2563
  ident: bib137
  article-title: TiO
  publication-title: Environ. Sci. Technol.
– volume: 35
  start-page: 313
  year: 2009
  end-page: 320
  ident: bib96
  article-title: Research on photodegradation of formaldehyde by nanocrystalline N-TiO
  publication-title: Res. Chem. Intermed.
– volume: 324
  start-page: 544
  year: 2017
  end-page: 553
  ident: bib115
  article-title: Chlorobenzene degradation by non-thermal plasma combined with EG-TiO
  publication-title: J. Hazard Mater.
– volume: 213
  start-page: 218
  year: 2012
  end-page: 224
  ident: bib141
  article-title: Novel effect of significant enhancement of gas-phase photocatalytic efficiency for nano ZnO
  publication-title: Chem. Eng. J.
– volume: 798
  start-page: 12
  year: 2019
  end-page: 18
  ident: bib129
  article-title: Superior activity of Cu-NiWO
  publication-title: J. Alloys Compd.
– volume: 416
  year: 2021
  ident: bib13
  article-title: In-situ synthesis of Z-Scheme MIL-100 (Fe)/α-Fe
  publication-title: Chem. Eng. J.
– volume: 250–251
  start-page: 370
  year: 2013
  end-page: 378
  ident: bib98
  article-title: High-performance pure and Fe
  publication-title: J. Hazard Mater.
– volume: 8
  start-page: 31
  year: 2018
  end-page: 39
  ident: bib45
  article-title: Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide
  publication-title: Int. Nano Lett.
– volume: 7
  start-page: 24683
  year: 2017
  end-page: 24689
  ident: bib145
  article-title: Enhanced photocatalytic removal of NO over titania/hydroxyapatite (TiO
  publication-title: RSC Adv.
– volume: 196
  start-page: 253
  year: 2000
  end-page: 261
  ident: bib7
  article-title: Photocatalytic oxidation of toluene on nanoscale TiO
  publication-title: J. Catal.
– volume: 398
  start-page: 215
  year: 2015
  end-page: 222
  ident: bib103
  article-title: Degradation of benzene on TiO
  publication-title: J. Mol. Catal. Chem.
– volume: 142
  start-page: 149
  year: 2013
  end-page: 160
  ident: bib104
  article-title: Influence of hierarchically porous niobium doped TiO
  publication-title: Appl. Catal. B Environ.
– volume: 8
  year: 2020
  ident: bib118
  article-title: Carbon-doped TiO
  publication-title: J. Environ. Chem. Eng.
– volume: 605
  start-page: 674
  year: 2022
  end-page: 684
  ident: bib14
  article-title: Rare-earth single atoms decorated 2D-TiO2 nanosheets for the photodegradation of gaseous O-xylene
  publication-title: J. Colloid Interface Sci.
– volume: 382
  year: 2020
  ident: bib29
  article-title: Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite
  publication-title: J. Hazard Mater.
– volume: 325
  start-page: 261
  year: 2017
  end-page: 270
  ident: bib64
  article-title: Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light
  publication-title: J. Hazard Mater.
– volume: 2016
  year: 2016
  ident: bib127
  article-title: Recent development of catalysts for removal of volatile organic compounds in flue gas by combustion: a review
  publication-title: J. Chem.
– volume: 42
  start-page: 9252
  year: 2018
  end-page: 9259
  ident: bib17
  article-title: Synthesis of a TiO
  publication-title: New J. Chem.
– volume: 9
  start-page: 18076
  year: 2019
  end-page: 18086
  ident: bib125
  article-title: Effective photoreduction of graphene oxide for photodegradation of volatile organic compounds
  publication-title: RSC Adv.
– volume: 38
  start-page: 4437
  year: 2012
  end-page: 4444
  ident: bib69
  article-title: Comparison on photocatalytic degradation of gaseous formaldehyde by TiO
  publication-title: Ceram. Int.
– volume: 232
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib147
  article-title: Complete decomposition of 2-propanol using TiO
  publication-title: Water, Air, Soil Pollut.
– volume: 7
  year: 2019
  ident: bib100
  article-title: Removal of xylene vapor pollutant from the air using new hybrid substrates of TiO
  publication-title: J. Environ. Chem. Eng.
– volume: 24
  start-page: 64
  year: 2015
  end-page: 82
  ident: bib132
  article-title: TiO
  publication-title: J. Photochem. Photobiol. C Photochem. Rev.
– volume: 525
  year: 2020
  ident: bib152
  article-title: Adsorption and photocatalytic degradation performances of TiO
  publication-title: Appl. Surf. Sci.
– volume: 60
  start-page: 103
  year: 2005
  end-page: 109
  ident: bib4
  article-title: Indoor air purification by photocatalyst TiO
  publication-title: Chem. Eng. Sci.
– volume: 38
  year: 2019
  ident: bib38
  article-title: Ozone‐Assisted photocatalytic degradation of benzene using nano‐zinc oxide impregnated granular activated carbon (ZnO–GAC) in a continuous fluidized bed reactor
  publication-title: Environ. Prog. Sustain. Energy
– volume: 8
  start-page: 1366
  year: 2018
  end-page: 1374
  ident: bib134
  article-title: Nonstoichiometric tungsten oxide residing in a 3D nitrogen doped carbon matrix, a composite photocatalyst for oxygen vacancy induced VOC degradation and H2 production
  publication-title: Catal. Sci. Technol.
– volume: 26
  start-page: 20908
  year: 2019
  end-page: 20919
  ident: bib60
  article-title: Photocatalytic oxidation of toluene and isopropanol by LaFeO
  publication-title: Environ. Sci. Pollut. Res.
– volume: 56
  start-page: 9980
  year: 2017
  end-page: 9992
  ident: bib105
  article-title: Nanostructured photocatalysts based on different oxidized graphenes for VOCs removal
  publication-title: Ind. Eng. Chem. Res.
– volume: 362
  start-page: 97
  year: 2021
  end-page: 103
  ident: bib6
  article-title: Anisotropic Au-ZnO photocatalyst for the visible-light expanded oxidation of n-hexane
  publication-title: Catal. Today
– volume: 17
  start-page: 779
  year: 2019
  end-page: 787
  ident: bib161
  article-title: Preparation of ternary ZnO/Ag/cellulose and its enhanced photocatalytic degradation property on phenol and benzene in VOCs
  publication-title: Open Chem
– volume: 300
  year: 2022
  ident: bib47
  article-title: Layered double hydroxides for removing and recovering phosphate: recent advances and future directions
  publication-title: Adv. Colloid Interface Sci.
– volume: 263
  year: 2021
  ident: bib109
  article-title: Photocatalytic ethylbenzene degradation associated with ozone (TiO
  publication-title: Separ. Purif. Technol.
– volume: 602
  start-page: 699
  year: 2021
  end-page: 711
  ident: bib135
  article-title: Improved photocatalytic oxidation performance of gaseous acetaldehyde by ternary g-C
  publication-title: J. Colloid Interface Sci.
– volume: 251
  start-page: 168
  year: 2019
  end-page: 180
  ident: bib81
  article-title: Enhanced gas-phase photocatalytic removal of aromatics over direct Z- scheme-dictated H
  publication-title: Appl. Catal. B Environ.
– volume: 11
  start-page: 2336
  year: 2010
  end-page: 2361
  ident: bib130
  article-title: A review of photocatalysts prepared by sol-gel method for VOCs removal
  publication-title: Int. J. Mol. Sci.
– volume: 115
  start-page: 4893
  year: 2015
  end-page: 4962
  ident: bib133
  article-title: Recent advances in polyoxometalate-catalyzed reactions
  publication-title: Chem. Rev.
– volume: 116
  start-page: 377
  year: 2018
  end-page: 387
  ident: bib37
  article-title: Synthesis of silica-functionalized graphene oxide/ZnO coated on fiberglass and its application in photocatalytic removal of gaseous benzene
  publication-title: Process Saf. Environ. Protect.
– volume: 97
  start-page: 190
  year: 2010
  end-page: 197
  ident: bib112
  article-title: Degradation of VOC gases in liquid phase by photocatalysis at the bubble interface
  publication-title: Appl. Catal. B Environ.
– volume: 224
  start-page: 18
  year: 2021
  end-page: 26
  ident: bib91
  article-title: Enhanced photodegradation of toxic volatile organic pollutants using Ni-doped graphitic carbon nitride under natural solar light
  publication-title: Sol. Energy
– volume: 63
  start-page: 1077
  year: 2020
  end-page: 1085
  ident: bib126
  article-title: Synthesis of N and S Co-doped TiO
  publication-title: Top. Catal.
– volume: 38
  start-page: 46
  year: 2021
  end-page: 54
  ident: bib12
  article-title: Facile fabrication of copper oxide modified activated carbon composite for efficient CO
  publication-title: Kor. J. Chem. Eng.
– volume: 57
  start-page: 12766
  year: 2018
  end-page: 12773
  ident: bib40
  article-title: Synergistic performance between visible-light photocatalysis and thermocatalysis for VOCs oxidation over robust Ag/F-codoped SrTiO
  publication-title: Ind. Eng. Chem. Res.
– volume: 257
  year: 2019
  ident: bib72
  article-title: Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene
  publication-title: Appl. Catal. B Environ.
– volume: 124
  start-page: 115
  year: 1999
  end-page: 123
  ident: bib23
  article-title: Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production
  publication-title: Desalination
– volume: 220
  start-page: 78
  year: 2018
  end-page: 87
  ident: bib123
  article-title: Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO
  publication-title: Appl. Catal. B Environ.
– volume: 189
  year: 2021
  ident: bib80
  article-title: Effect of titanium dioxide properties and support material on photocatalytic oxidation of indoor air pollutants
  publication-title: Build. Environ.
– volume: 7
  start-page: 41
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib101
  article-title: Photocatalytic removal of xylene as a pollutant in the air using ZnO-activated carbon, TiO2-activated carbon, and TiO2/ZnO-activated carbon nanocomposites
  publication-title: Environ. Heal. Eng. Manag. J.
– volume: 281
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib30
  article-title: Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119447
– volume: 428
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135655_bib68
  article-title: Z-scheme heterojunction of low conduction band potential MnO2 and biochar-based g-C3N4 for efficient formaldehyde degradation
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 31
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib45
  article-title: Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide
  publication-title: Int. Nano Lett.
  doi: 10.1007/s40089-018-0230-x
– volume: 496
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib8
  article-title: Hybrid poly (3-hexylthiophene) (P3HT) nanomesh/ZnO nanorod p-n junction visible photocatalyst for efficient indoor air purification
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143641
– volume: 60
  start-page: 103
  year: 2005
  ident: 10.1016/j.chemosphere.2022.135655_bib4
  article-title: Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.01.073
– volume: 300
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135655_bib47
  article-title: Layered double hydroxides for removing and recovering phosphate: recent advances and future directions
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2021.102598
– volume: 57
  start-page: 12766
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib40
  article-title: Synergistic performance between visible-light photocatalysis and thermocatalysis for VOCs oxidation over robust Ag/F-codoped SrTiO3
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b02873
– volume: 11
  start-page: 2336
  year: 2010
  ident: 10.1016/j.chemosphere.2022.135655_bib130
  article-title: A review of photocatalysts prepared by sol-gel method for VOCs removal
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms11062336
– volume: 138
  start-page: 275
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib79
  article-title: Photocatalytic degradation of VOCs on various commercial titanium dioxides: impact of operating parameters on removal efficiency and by-products generation
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.05.002
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib87
  article-title: Preparation of modified ZnO nanoparticles for photocatalytic degradation of chlorobenzene
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-020-01228-w
– volume: 150
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib143
  article-title: A facile synthesis of Ag/Ag2O@TiO2 for toluene degradation under UV– visible light: effect of Ag formation by partial reduction of Ag2O on photocatalyst stability
  publication-title: J. Phys. Chem. Solid.
  doi: 10.1016/j.jpcs.2020.109799
– volume: 7
  start-page: 260
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135655_bib99
  article-title: The influence of ZnO-SnO2 nanoparticles and activated carbon on the photocatalytic degradation of toluene using continuous flow mode
  publication-title: Med. Gas Res.
  doi: 10.4103/2045-9912.222450
– volume: 12
  start-page: 1916
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib28
  article-title: Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: a mini review
  publication-title: Materials
  doi: 10.3390/ma12121916
– volume: 250
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135655_bib157
  article-title: Bifunctional Mn2+ grafted ultra-small TiO2 nanoparticles on carbon cloth with efficient toluene degradation in a continuous flow reactor
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117389
– volume: 41
  start-page: 6150
  year: 2006
  ident: 10.1016/j.chemosphere.2022.135655_bib53
  article-title: Preparation of dip-coated TiO2 photocatalyst on ceramic foam pellets
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0574-x
– year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib84
  article-title: Modified titanium dioxide for photocatalytic applications
– volume: 250–251
  start-page: 370
  year: 2013
  ident: 10.1016/j.chemosphere.2022.135655_bib98
  article-title: High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.02.007
– start-page: 1
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib122
  article-title: Removal of volatile organic compounds (VOCs) from waste air stream using ozone assisted zinc oxide (ZnO) nanoparticles coated on zeolite
  publication-title: J. Environ. Heal. Sci. Eng.
– volume: 11
  start-page: 3195
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib70
  article-title: Graphene family nanomaterials (GFN)-TiO2 for the photocatalytic removal of water and air pollutants: synthesis, characterization, and applications
  publication-title: Nanomaterials
  doi: 10.3390/nano11123195
– volume: 115
  start-page: 4893
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135655_bib133
  article-title: Recent advances in polyoxometalate-catalyzed reactions
  publication-title: Chem. Rev.
  doi: 10.1021/cr500390v
– volume: 18
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib18
  article-title: Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph182413147
– volume: 80
  start-page: 251
  year: 2005
  ident: 10.1016/j.chemosphere.2022.135655_bib3
  article-title: Photocatalytic degradation of gaseous trichloroethene using immobilized ZnO/SnO2 coupled oxide in a flow‐through photocatalytic reactor
  publication-title: J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol.
– volume: 49
  start-page: 1
  year: 2004
  ident: 10.1016/j.chemosphere.2022.135655_bib58
  article-title: TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2003.11.010
– volume: 213
  start-page: 218
  year: 2012
  ident: 10.1016/j.chemosphere.2022.135655_bib141
  article-title: Novel effect of significant enhancement of gas-phase photocatalytic efficiency for nano ZnO
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.10.004
– volume: 7
  start-page: 24683
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135655_bib145
  article-title: Enhanced photocatalytic removal of NO over titania/hydroxyapatite (TiO2/HAp) composites with improved adsorption and charge mobility ability
  publication-title: RSC Adv.
  doi: 10.1039/C7RA02157G
– volume: 303
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135655_bib15
  article-title: One-pot synthesis of the MIL-100 (Fe) MOF/MOX homojunctions with tunable hierarchical pores for the photocatalytic removal of BTXS
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120885
– volume: 163
  start-page: 419
  year: 2004
  ident: 10.1016/j.chemosphere.2022.135655_bib44
  article-title: Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide
  publication-title: J. Photochem. Photobiol. Chem.
  doi: 10.1016/j.jphotochem.2004.01.012
– volume: 325
  start-page: 261
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135655_bib64
  article-title: Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2016.12.004
– volume: 798
  start-page: 12
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib129
  article-title: Superior activity of Cu-NiWO4/g-C3N4 Z direct system for photocatalytic decomposition of VOCs in aerosol under visible light
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.05.236
– volume: 384
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib153
  article-title: Oxygen vacancies enhanced photocatalytic activity towards VOCs oxidation over Pt deposited Bi2WO6 under visible light
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.121478
– volume: 97
  start-page: 186
  year: 2013
  ident: 10.1016/j.chemosphere.2022.135655_bib76
  article-title: Photoreduction of carbon dioxide in the presence of H2, H2O and CH4 over TiO2 and ZnO photocatalysts
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.08.027
– volume: 7
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib107
  article-title: Design and development of nanostructured filter media for VOCs abatement in closed environments
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.103045
– volume: 525
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib152
  article-title: Adsorption and photocatalytic degradation performances of TiO2/diatomite composite for volatile organic compounds: effects of key parameters
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146633
– volume: 161
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib5
  article-title: Photocatalytic oxidation of ketone group volatile organic compounds in an intensified fluidized bed reactor using nano-TiO2/UV process: an experimental and modeling study
  publication-title: Chem. Eng. Process. Intensif.
– volume: 142
  start-page: 149
  year: 2013
  ident: 10.1016/j.chemosphere.2022.135655_bib104
  article-title: Influence of hierarchically porous niobium doped TiO2 supports in the total catalytic oxidation of model VOCs over noble metal nanoparticles
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2013.05.009
– volume: 17
  start-page: 779
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib161
  article-title: Preparation of ternary ZnO/Ag/cellulose and its enhanced photocatalytic degradation property on phenol and benzene in VOCs
  publication-title: Open Chem
  doi: 10.1515/chem-2019-0088
– volume: 397
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib56
  article-title: Photothermocatalytic synergistic oxidation: an effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125485
– volume: 263
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib109
  article-title: Photocatalytic ethylbenzene degradation associated with ozone (TiO2/UV/O3) under different percentages of catalytic coating area: evaluation of process parameters
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118344
– volume: 280
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib154
  article-title: Fluorinated TiO2 coupling with α-MnO2 nanowires supported on different substrates for photocatalytic VOCs abatement under vacuum ultraviolet irradiation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119388
– volume: 357
  start-page: 395
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib74
  article-title: Good interaction between well dispersed Pt and LaCoO3 nanorods achieved rapid Co3+/Co2+ redox cycle for total propane oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.158
– volume: 116
  start-page: 377
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib37
  article-title: Synthesis of silica-functionalized graphene oxide/ZnO coated on fiberglass and its application in photocatalytic removal of gaseous benzene
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2018.03.015
– volume: 25
  start-page: 53
  year: 2005
  ident: 10.1016/j.chemosphere.2022.135655_bib20
  article-title: Biofiltration of air: a review
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388550590935814
– volume: 23
  start-page: 4931
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib42
  article-title: Quantum dots for photocatalysis: synthesis and environmental applications
  publication-title: Green Chem.
  doi: 10.1039/D1GC00639H
– volume: 9
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib67
  article-title: Study on the performance and mechanism of degradation of toluene with non-thermal plasmas synergized supported TiO2/γ-Al2O3 catalyst
  publication-title: J. Environ. Chem. Eng.
– volume: 349
  start-page: 708
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib71
  article-title: Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO2 photocatalyst
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.107
– volume: 73
  start-page: 138
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib150
  article-title: Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/j.jes.2018.01.022
– volume: 42
  start-page: 9252
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib17
  article-title: Synthesis of a TiO2-Cu2O composite catalyst with enhanced visible light photocatalytic activity for gas-phase toluene
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ00409A
– volume: 220
  start-page: 78
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib123
  article-title: Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.08.019
– volume: 38
  start-page: 4437
  year: 2012
  ident: 10.1016/j.chemosphere.2022.135655_bib69
  article-title: Comparison on photocatalytic degradation of gaseous formaldehyde by TiO2, ZnO and their composite
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.03.016
– volume: 11
  start-page: 1289
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib61
  article-title: Evaluation of TiO2 based photocatalytic treatment of odor and gaseous emissions from swine manure with UV-A and UV-C
  publication-title: Animals
  doi: 10.3390/ani11051289
– volume: 2016
  year: 2016
  ident: 10.1016/j.chemosphere.2022.135655_bib127
  article-title: Recent development of catalysts for removal of volatile organic compounds in flue gas by combustion: a review
  publication-title: J. Chem.
  doi: 10.1155/2016/8324826
– volume: 490
  start-page: 1
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135655_bib9
  article-title: ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation
  publication-title: Appl. Catal. Gen.
  doi: 10.1016/j.apcata.2014.10.055
– volume: 400
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib75
  article-title: Synthesis of TiO2/H2Ti3O7 composite with nanoscale spiny hollow hierarchical structure for photocatalytic mineralization of VOCs
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125927
– volume: 7
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib89
  article-title: Combined photocatalytic properties and energy efficiency via multifunctional glass
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.102980
– volume: 232
  start-page: 1
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib147
  article-title: Complete decomposition of 2-propanol using TiO2 immobilized on a nonwoven fabric under UV light irradiation by adding H2O2 and O3 microbubbles
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1007/s11270-021-05106-2
– volume: 408
  start-page: 148
  year: 2011
  ident: 10.1016/j.chemosphere.2022.135655_bib54
  article-title: Photocatalytic decomposition of toluene by nanodiamond-supported TiO2 prepared using atomic layer deposition
  publication-title: Appl. Catal. Gen.
  doi: 10.1016/j.apcata.2011.09.019
– volume: 28
  start-page: 5135
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135655_bib108
  article-title: Application of graphene quantum dots as green homogenous nanophotocatalyst in the visible-light-driven photolytic process
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-016-6169-7
– volume: 420
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib156
  article-title: Efficient photocatalytic toluene degradation over heterojunction of GQDs@BiOCl ultrathin nanosheets with selective benzoic acid activation
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.126577
– volume: 35
  start-page: 649
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib93
  article-title: A review on activated carbon adsorption for volatile organic compounds (VOCs)
  publication-title: Rev. Chem. Eng.
  doi: 10.1515/revce-2017-0057
– volume: 38
  start-page: 46
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib12
  article-title: Facile fabrication of copper oxide modified activated carbon composite for efficient CO2 adsorption
  publication-title: Kor. J. Chem. Eng.
  doi: 10.1007/s11814-020-0684-1
– volume: 163
  start-page: 1179
  year: 2009
  ident: 10.1016/j.chemosphere.2022.135655_bib48
  article-title: Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2008.07.078
– volume: 119
  start-page: 164
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib52
  article-title: Enhanced photocatalytic decomposition of VOCs by visible-driven photocatalyst combined Cu-TiO2 and activated carbon fiber
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2018.07.026
– volume: 224
  start-page: 18
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib91
  article-title: Enhanced photodegradation of toxic volatile organic pollutants using Ni-doped graphitic carbon nitride under natural solar light
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.05.087
– volume: 6
  start-page: 3185
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib139
  article-title: Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C9EN00891H
– volume: 49
  start-page: 11089
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135655_bib22
  article-title: Ultralow loading of silver nanoparticles on Mn2O3 nanowires derived with molten salts: a high-efficiency catalyst for the oxidative removal of toluene
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b02350
– volume: 8
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib118
  article-title: Carbon-doped TiO2 film to enhance visible and UV light photocatalytic degradation of indoor environment volatile organic compounds
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.104162
– volume: 196
  start-page: 253
  year: 2000
  ident: 10.1016/j.chemosphere.2022.135655_bib7
  article-title: Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: studies of deactivation and regeneration
  publication-title: J. Catal.
  doi: 10.1006/jcat.2000.3050
– volume: 361
  start-page: 885
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib110
  article-title: Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO2 nanopowders for air purification
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.136
– volume: 353
  start-page: 949
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135655_bib36
  article-title: One-pot facile synthesis of branched Ag-ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.06.197
– volume: 4
  start-page: 34315
  year: 2014
  ident: 10.1016/j.chemosphere.2022.135655_bib159
  article-title: Visible light-driven decomposition of gaseous benzene on robust Sn2+-doped anatase TiO2 nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C4RA05904B
– volume: 606
  start-page: 1435
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135655_bib73
  article-title: Promote the activation and ring opening of intermediates for stable photocatalytic toluene degradation over Zn-Ti-LDH
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.146
– volume: 346
  start-page: 77
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib27
  article-title: Construction of bimetallic Pd-Ag enhanced AgBr/TiO2 hierarchical nanostructured photocatalytic hybrid capillary tubes and devices for continuous photocatalytic degradation of VOCs
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.017
– volume: 251
  start-page: 168
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib81
  article-title: Enhanced gas-phase photocatalytic removal of aromatics over direct Z- scheme-dictated H3PW12O40/g-C3N4 film-coated optical fi bers
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.03.063
– volume: 281
  start-page: 144
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135655_bib83
  article-title: Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.06.047
– volume: 43
  start-page: 123
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135655_bib85
  article-title: Recent advances in perovskites: processing and properties
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/j.progsolidstchem.2015.09.001
– volume: 132
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib142
  article-title: Materials Science in Semiconductor Processing Fast electron transfer and enhanced visible light photocatalytic activity of silver and Ag2O co-doped titanium dioxide with the doping of electron mediator for removing gaseous toluene
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2021.105901
– volume: 527
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib155
  article-title: Carbon doped ultra-small TiO2 coated on carbon cloth for e ffi cient photocatalytic toluene degradation under visible LED light irradiation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146780
– volume: 93
  start-page: 101
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib88
  article-title: Photocatalytic-membrane technology: a critical review for membrane fouling mitigation
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2020.09.031
– volume: 612
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib114
  article-title: Surface modification of TiO2 with Pd nanoparticles for enhanced photocatalytic oxidation of benzene micropollutants
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2020.125959
– volume: 334
  start-page: 2408
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib116
  article-title: TiO2 photocatalyst for removal of volatile organic compounds in gas phase–A review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.153
– volume: 134
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib128
  article-title: Materials Science in Semiconductor Processing Earth-abundant ZnS/ZnO/CuFeS2 films for air purification and solar fuels production
  publication-title: Mater. Sci. Semicond. Process.
– volume: 357
  start-page: 533
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib117
  article-title: Photocatalytic oxidation of volatile organic compounds for indoor environment applications: three different scaled setups
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.167
– volume: 168
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib35
  article-title: Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO2/sepiolite composite under solar and visible light
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106481
– volume: 235
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib65
  article-title: Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116213
– volume: 307
  start-page: 63
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135655_bib90
  article-title: Selective removal of polar VOCs by novel photocatalytic activity of metals co-doped TiO2/PU under visible light
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.068
– volume: 284
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib92
  article-title: A review on recent advancements in photocatalytic remediation for harmful inorganic and organic gases
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131344
– volume: 218
  start-page: 845
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib160
  article-title: Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.11.175
– volume: 382
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib29
  article-title: Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.121070
– volume: 430
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135655_bib102
  article-title: Photocatalytic oxidation mechanism of Gas-Phase VOCs: unveiling the role of holes, •OH and •O2−
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132766
– volume: 266
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib162
  article-title: Construction of zinc-indium-sulfide/indium oxide step-scheme junction catalyst for enhanced photocatalytic activities of pollutant degradation and hydrogen generation
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118545
– volume: 38
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib38
  article-title: Ozone‐Assisted photocatalytic degradation of benzene using nano‐zinc oxide impregnated granular activated carbon (ZnO–GAC) in a continuous fluidized bed reactor
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.13082
– volume: 249
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib144
  article-title: Promotion effect of strong metal-support interaction to thermocatalytic, photocatalytic, and photothermocatalytic oxidation of toluene on Pt/SrTiO3
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126096
– volume: 370
  start-page: 1440
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib113
  article-title: Uranyl-modified TiO2 for complete photocatalytic oxidation of volatile organic compounds under UV and visible light
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.280
– ident: 10.1016/j.chemosphere.2022.135655_bib49
  doi: 10.1016/j.jhazmat.2008.04.075
– volume: 52
  start-page: 9330
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib138
  article-title: Active {001} facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: from material development to commercial indoor air cleaner application
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02282
– volume: 164
  start-page: 360
  year: 2009
  ident: 10.1016/j.chemosphere.2022.135655_bib41
  article-title: Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.08.033
– volume: 193
  start-page: 16
  year: 2016
  ident: 10.1016/j.chemosphere.2022.135655_bib94
  article-title: Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.04.009
– volume: 189
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib80
  article-title: Effect of titanium dioxide properties and support material on photocatalytic oxidation of indoor air pollutants
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.107518
– volume: 35
  start-page: 313
  year: 2009
  ident: 10.1016/j.chemosphere.2022.135655_bib96
  article-title: Research on photodegradation of formaldehyde by nanocrystalline N-TiO2 powders under visible light irradiation
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-009-0026-8
– volume: 7
  start-page: 13714
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135655_bib63
  article-title: Enhanced visible photovoltaic response of TiO2 thin film with an all-inorganic donor-acceptor type polyoxometalate
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03948
– volume: 8
  start-page: 596
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib95
  article-title: Photocatalytic oxidation of toluene on fluorine doped TiO2/SiO2 catalyst under simulant sunlight in a flat reactor
  publication-title: Catalysts
  doi: 10.3390/catal8120596
– volume: 324
  start-page: 544
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135655_bib115
  article-title: Chlorobenzene degradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: effect of photocatalyst on CO2 selectivity and byproducts reduction
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2016.11.025
– volume: 35
  start-page: 305
  year: 2002
  ident: 10.1016/j.chemosphere.2022.135655_bib51
  article-title: Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/S0926-3373(01)00274-0
– volume: 399
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib97
  article-title: Sonophotocatalytic activities of FeCuMg and CrCuMg LDHs: influencing factors, antibacterial effects, and intermediate determination
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.123062
– volume: 50
  start-page: 2556
  year: 2016
  ident: 10.1016/j.chemosphere.2022.135655_bib137
  article-title: TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05418
– volume: 605
  start-page: 674
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135655_bib14
  article-title: Rare-earth single atoms decorated 2D-TiO2 nanosheets for the photodegradation of gaseous O-xylene
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.07.129
– volume: 26
  start-page: 20908
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib60
  article-title: Photocatalytic oxidation of toluene and isopropanol by LaFeO3/black-TiO2
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05436-z
– volume: 8
  start-page: 1366
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib134
  article-title: Nonstoichiometric tungsten oxide residing in a 3D nitrogen doped carbon matrix, a composite photocatalyst for oxygen vacancy induced VOC degradation and H2 production
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY02572F
– volume: 12
  start-page: 10
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib32
  article-title: Photocatalytic air purification mimicking the self-cleaning process of the atmosphere
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22839-0
– volume: 21
  start-page: 4066
  year: 2014
  ident: 10.1016/j.chemosphere.2022.135655_bib62
  article-title: Photocatalytic degradation of formaldehyde using mesoporous TiO2 prepared by evaporation-induced self-assembly
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-014-2398-1
– volume: 153
  start-page: 144
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib82
  article-title: Effect of different plasmonic metals on photocatalytic degradation of volatile organic compounds (VOCs) by bentonite/M-TiO2 nanocomposites under UV/visible light
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2017.11.040
– volume: 97
  start-page: 190
  year: 2010
  ident: 10.1016/j.chemosphere.2022.135655_bib112
  article-title: Degradation of VOC gases in liquid phase by photocatalysis at the bubble interface
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2010.03.039
– volume: 356
  start-page: 255
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib11
  article-title: Ce-modified mesoporous γ-Al2O3 supported Pd-Pt nanoparticle catalysts and their structure-function relationship in complete benzene oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.040
– volume: 602
  start-page: 699
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib135
  article-title: Improved photocatalytic oxidation performance of gaseous acetaldehyde by ternary g-C3N4/Ag-TiO2 composites under visible light
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.05.186
– volume: 1231
  start-page: 2
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib66
  article-title: Removal of volatile organic compounds from air using supported ionic liquid membrane containing ultraviolet-visible light-driven Nd-TiO2 nanoparticles
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2021.130023
– volume: 362
  start-page: 97
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib6
  article-title: Anisotropic Au-ZnO photocatalyst for the visible-light expanded oxidation of n-hexane
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2020.03.063
– volume: 56
  start-page: 9980
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135655_bib105
  article-title: Nanostructured photocatalysts based on different oxidized graphenes for VOCs removal
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b02526
– volume: 287
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib120
  article-title: Anatase/brookite biphasic surface fluorinated Fe–TiO2 photocatalysts to enhance photocatalytic removal of VOCs under visible and UV light
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125462
– volume: 23
  start-page: 645
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib151
  article-title: A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts
  publication-title: J. Saudi Chem. Soc.
  doi: 10.1016/j.jscs.2019.01.004
– volume: 63
  start-page: 1077
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib126
  article-title: Synthesis of N and S Co-doped TiO2 nanotubes for advanced photocatalytic degradation of volatile organic compounds (VOCs) in gas phase
  publication-title: Top. Catal.
  doi: 10.1007/s11244-020-01347-3
– volume: 24
  start-page: 64
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135655_bib132
  article-title: TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement
  publication-title: J. Photochem. Photobiol. C Photochem. Rev.
  doi: 10.1016/j.jphotochemrev.2015.07.001
– volume: 436
  start-page: 319
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib34
  article-title: Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.12.054
– volume: 297
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib136
  article-title: Promote reactants activation and key intermediates formation for facilitated toluene photodecomposition via Ba active sites construction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120489
– volume: 209
  start-page: 146
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135655_bib10
  article-title: Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.02.066
– volume: 56
  start-page: 361
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib121
  article-title: Systematic comparison of sono-synthesized Ce-, La- and Ho-doped ZnO nanoparticles and using the optimum catalyst in a visible light assisted continuous sono-photocatalytic membrane reactor
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.04.031
– volume: 119
  start-page: 4471
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib31
  article-title: Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00408
– start-page: 1
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib16
  article-title: Enhanced photocatalytic performance of tungsten-based photocatalysts for degradation of volatile organic compounds: a review
  publication-title: Tungsten
– volume: vol. 61
  start-page: 140
  year: 2005
  ident: 10.1016/j.chemosphere.2022.135655_bib21
– volume: 5
  start-page: 52985
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135655_bib26
  article-title: Enhancement of photo-catalytic degradation of formaldehyde through loading anatase TiO2 and silver nanoparticle films on wood substrates
  publication-title: RSC Adv.
  doi: 10.1039/C5RA06390F
– volume: 29
  start-page: 377
  year: 2012
  ident: 10.1016/j.chemosphere.2022.135655_bib59
  article-title: Photocatalytic degradation of benzene, toluene, ethylbenzene, and xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglass cloth
  publication-title: Kor. J. Chem. Eng.
  doi: 10.1007/s11814-011-0179-1
– volume: 727
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib146
  article-title: Preparation and characterization of a copper phosphotungstate/titanium dioxide (Cu-H3PW12O40/TiO2) composite and the photocatalytic oxidation of high-concentration ammonia nitrogen
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138425
– volume: 24
  start-page: 6390
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135655_bib25
  article-title: Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO2, and TiO2/Pd
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6494-7
– volume: 269
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib57
  article-title: Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.118755
– volume: 10
  start-page: 1017
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib1
  article-title: Electrospun active media based on polyvinylidene fluoride (PVDF)-graphene-TiO2 nanocomposite materials for methanol and acetaldehyde gas-phase abatement
  publication-title: Catalysts
  doi: 10.3390/catal10091017
– volume: 140
  start-page: 117
  year: 2016
  ident: 10.1016/j.chemosphere.2022.135655_bib43
  article-title: Catalytic oxidation of volatile organic compounds (VOCs)–A review
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.05.031
– volume: 312
  start-page: 28
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135655_bib111
  article-title: Study of ZnO-photocatalyst deactivation during continuous degradation of n-hexane vapors
  publication-title: J. Photochem. Photobiol. Chem.
  doi: 10.1016/j.jphotochem.2015.07.004
– volume: 257
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib72
  article-title: Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117880
– start-page: 120118
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib140
  article-title: Inhibit the formation of toxic methylphenolic by-products in photo-decomposition of formaldehyde–toluene/xylene mixtures by pd cocatalyst on TiO2
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120118
– volume: 204
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135655_bib55
  article-title: Practical scale evaluation of a photocatalytic air purifier equipped with a Titania-zeolite composite bead filter for VOC removal and viral inactivation
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.112036
– volume: 124
  start-page: 115
  year: 1999
  ident: 10.1016/j.chemosphere.2022.135655_bib23
  article-title: Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production
  publication-title: Desalination
  doi: 10.1016/S0011-9164(99)00095-8
– volume: 375
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib50
  article-title: Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of moxifloxacin
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122102
– volume: 404
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib78
  article-title: Kinetic modeling of the photocatalytic degradation of methyl ethyl ketone in air for a continuous-flow reactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126602
– volume: 401
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib119
  article-title: Surface fluorinated Ce-doped TiO2 nanostructure photocatalyst: a trap and remove strategy to enhance the VOC removal from indoor air environment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125932
– volume: 416
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib13
  article-title: In-situ synthesis of Z-Scheme MIL-100 (Fe)/α-Fe2O3 heterojunction for enhanced adsorption and Visible-light photocatalytic oxidation of O-xylene
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129112
– volume: 258
  start-page: 5031
  year: 2012
  ident: 10.1016/j.chemosphere.2022.135655_bib124
  article-title: Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: a study on the structure, activity and deactivation mechanism
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.01.075
– volume: 1
  start-page: 1426
  year: 2011
  ident: 10.1016/j.chemosphere.2022.135655_bib2
  article-title: Graphene-based photocatalytic composites
  publication-title: RSC Adv.
  doi: 10.1039/c1ra00382h
– volume: 6
  start-page: 121
  year: 2016
  ident: 10.1016/j.chemosphere.2022.135655_bib24
  article-title: Au/TiO2-CeO2 catalysts for photocatalytic water splitting and VOCs oxidation reactions
  publication-title: Catalysts
  doi: 10.3390/catal6080121
– volume: 398
  start-page: 215
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135655_bib103
  article-title: Degradation of benzene on TiO2/SiO2/Bi2O3 photocatalysts under UV and visible light
  publication-title: J. Mol. Catal. Chem.
  doi: 10.1016/j.molcata.2014.12.007
– volume: 73
  start-page: 635
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib39
  article-title: Photocatalytic oxidation of benzene by ZnO coated on glass plates under simulated sunlight
  publication-title: Chem. Pap.
  doi: 10.1007/s11696-018-0621-5
– volume: 9
  start-page: 18076
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib125
  article-title: Effective photoreduction of graphene oxide for photodegradation of volatile organic compounds
  publication-title: RSC Adv.
  doi: 10.1039/C9RA01209E
– volume: 16
  start-page: 185
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib86
  article-title: Titanium dioxide and its modified forms as photocatalysts for air treatment
  publication-title: Curr. Anal. Chem.
– volume: 116
  start-page: 68
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135655_bib131
  article-title: Central composite design optimization of Rhodamine B degradation using TiO2 nanoparticles/UV/PVDF process in continuous submerged membrane photoreactor
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2017.02.015
– volume: 28
  start-page: 33344
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib149
  article-title: UV and visible-assisted photocatalytic degradation of pharmaceutical pollutants in the presence of rational designed biogenic Fe3O4-Au nanocomposite
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-12932-8
– volume: 98
  start-page: 605
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib19
  article-title: Photocatalytic degradation of volatile organic compounds using nanocomposite of P-type and N-type transition metal semiconductors
  publication-title: J. Sol. Gel Sci. Technol.
  doi: 10.1007/s10971-021-05532-y
– volume: 7
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135655_bib100
  article-title: Removal of xylene vapor pollutant from the air using new hybrid substrates of TiO2-WO3 nanoparticles immobilized on the ZSM-5 zeolite under UV radiation at ambient temperature: experimental towards modeling
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.103247
– volume: 8
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib158
  article-title: Photocatalytic air purification using functional polymeric carbon nitrides
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202102376
– volume: 57
  start-page: 16635
  year: 2018
  ident: 10.1016/j.chemosphere.2022.135655_bib106
  article-title: Nanostructured active media for volatile organic compounds abatement: the synergy of graphene oxide and semiconductor coupling
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b04134
– volume: 397
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135655_bib46
  article-title: Application of decorated magnetic nanophotocatalysts for efficient photodegradation of organic dye: a comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots
  publication-title: J. Photochem. Photobiol. Chem.
  doi: 10.1016/j.jphotochem.2020.112534
– volume: 274
  start-page: 102
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135655_bib33
  article-title: Enhanced photocatalytic activity of Pt-doped TiO2 for NOx oxidation both under UV and visible light irradiation: a synergistic effect of lattice Pt4+ and surface PtO
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.135
– volume: 407
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib148
  article-title: Influence of mixed-phase TiO2 on the activity of adsorption-plasma photocatalysis for total oxidation of toluene
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126280
– volume: 401
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135655_bib77
  article-title: Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: an experimental and DFT studies of adsorption and electronic structure of the interface
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.123402
SSID ssj0001659
Score 2.659576
SecondaryResourceType review_article
Snippet Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135655
SubjectTerms air quality
Environmental pollution removal
environmental sustainability
human health
light
Nanomaterials
Photo-degradation
photocatalysis
Photocatalysts
toxicity
Volatile organic compounds
Title Volatile organic compounds (VOCs) removal by photocatalysts: A review
URI https://dx.doi.org/10.1016/j.chemosphere.2022.135655
https://www.proquest.com/docview/2688522992
https://www.proquest.com/docview/2718267469
Volume 306
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hUAsXRKGovCIj9VAOW7Jee71GXKIoUQoSvaQRN8svqUFpNsouh1z47Xj2UUqFEBLHtWzJOzMaf979vhmAr9Q5nabSRlx4FrE4XHcMl2lkjY-tS7TNfMW2uElHv9jVLb9dg36rhUFaZZP765xeZetm5Lyx5vliOkWNL6IRBBBY9ytDwS9jAqP8-8MTzSNOeQ2BGY9w9kc4feJ4Bbv8yQvU72PFTEqxC0SKqr-Xz6j_snV1BA13YLvBjqRXb-8TrPn5Lmz225Ztu_BhUNWgXu3BYJIjyW3mSd22yRLkjmMLpYJ8m_zsF2dkGTYVwoyYFVn8zsu8-pCzKsrigvRIrWj5DOPhYNwfRU3HhMgGHFBGXndNV9hY6641wgnLrM-ojl3GfEAK-NZOhhNeBuCUGGN0zLh0zHvhnOQ62Yf1eT73X4BoyaUWATvEuss8F4ZSk1XFvWgAPElyAFlrImWbauLY1GKmWtrYnfrHugqtq2rrHgD9u3RRl9R4y6LL1g_qWXyokPrfsvy09Z0KPsGfInru8_tC0TTLQghJSV-ZI_AWJlgqD9-3jSPYwqday3gM6-Xy3p8EUFOaThW1Hdjo_bge3TwCnGz29A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5cmza9lOZRkvS1gR6Sg4i12tXull6McXAedS9uyG3ZFyQlsUykHPzvs6NHkpZSAr1KGhjNDDPfSjPfAHyh3ps8Vy7hIrCEpfG4Y7nKE2dD6nxmnAx1t8Usn_5kJxf8ogfjbhYG2yrb3N_k9Dpbt1cOW2seLq-ucMYX0QgCCOT9kvIFDJCdivdhMDo-nc4eEnKa8wYFM56gwCvYe2zziqa5KUoc4UfSTEpxEUSOg39_L1N_JOy6Ch29hTctfCSjRsN16IXFBqyNu61tG_ByUtNQrzZhcl5gn9t1IM3mJkewfRy3KJVk__zHuDwgt1GpGGnErsjysqiK-lvOqqzKr2REmqGWLZgfTebjadIuTUhchAJVEszQDoVLjRk6K7xwzAVJTeolCxEs4Ft7FYu8itgps9aalHHlWQjCe8VN9g76i2IRtoEYxZURET6kZsgCF5ZSK2t-LxoxT5btgOxMpF1LKI57La511zn2Sz-xrkbr6sa6O0AfRJcNq8ZzhL51ftC_hYiO2f854nud73T0Cf4XMYtQ3JWa5lLGKFKK_uMZgQcxwXK1-39qfIa16fz7mT47np2-h9d4pxlt_AD96vYufIwYp7Kf2hi-BxIc-aU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volatile+organic+compounds+%28VOCs%29+removal+by+photocatalysts%3A+A+review&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Almaie%2C+Soudeh&rft.au=Vatanpour%2C+Vahid&rft.au=Rasoulifard%2C+Mohammad+Hossein&rft.au=Koyuncu%2C+Ismail&rft.date=2022-11-01&rft.issn=0045-6535&rft.volume=306&rft.spage=135655&rft_id=info:doi/10.1016%2Fj.chemosphere.2022.135655&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2022_135655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon