Locality-constrained framework for face alignment
Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the generalization problem of AAM, we first reformulate the original AAM as sparsity-regu...
Saved in:
Published in | Frontiers of Computer Science Vol. 13; no. 4; pp. 789 - 801 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.08.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-2228 2095-2236 |
DOI | 10.1007/s11704-018-6617-z |
Cover
Abstract | Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the generalization problem of AAM, we first reformulate the original AAM as sparsity-regularized AAM, which can achieve more compact/better shape and appearance priors by selecting nearest neighbors as the bases of the shape and appearance model. To speed up the fitting procedure, the sparsity in sparsity-regularized AAM is approximated by using the locality (i.e., K-nearest neighbor), and thus inducing the locality-constrained active appearancemodel (LC-AAM). The LC-AAM solves a constrained AAM-like fitting problem with the K-nearest neighbors as the bases of shape and appearance model. To alleviate the adverse influence of inaccurate K-nearest neighbor results, the locality constraint is further embedded in the discriminative fitting method denoted as LC-DFM, which can find better K-nearest neighbor results by employing shape-indexed feature, and can also tolerate some inaccurate neighbors benefited from the regression model rather than the generative model in AAM. Extensive experiments on several datasets demonstrate that our methods outperform the state-of-the-arts in both detection accuracy and generalization ability. |
---|---|
AbstractList | Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the generalization problem of AAM, we first reformulate the original AAM as sparsity-regularized AAM, which can achieve more compact/better shape and appearance priors by selecting nearest neighbors as the bases of the shape and appearance model. To speed up the fitting procedure, the sparsity in sparsity-regularized AAM is approximated by using the locality (i.e., K-nearest neighbor), and thus inducing the locality-constrained active appearance-model (LC-AAM). The LC-AAM solves a constrained AAM-like fitting problem with the K-nearest neighbors as the bases of shape and appearance model. To alleviate the adverse influence of inaccurate K-nearest neighbor results, the locality constraint is further embedded in the discriminative fitting method denoted as LC-DFM, which can find better K-nearest neighbor results by employing shape-indexed feature, and can also tolerate some inaccurate neighbors benefited from the regression model rather than the generative model in AAM. Extensive experiments on several datasets demonstrate that our methods outperform the state-of-the-arts in both detection accuracy and generalization ability. Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the generalization problem of AAM, we first reformulate the original AAM as sparsity-regularized AAM, which can achieve more compact/better shape and appearance priors by selecting nearest neighbors as the bases of the shape and appearance model. To speed up the fitting procedure, the sparsity in sparsity-regularized AAM is approximated by using the locality (i.e., K-nearest neighbor), and thus inducing the locality-constrained active appearancemodel (LC-AAM). The LC-AAM solves a constrained AAM-like fitting problem with the K-nearest neighbors as the bases of shape and appearance model. To alleviate the adverse influence of inaccurate K-nearest neighbor results, the locality constraint is further embedded in the discriminative fitting method denoted as LC-DFM, which can find better K-nearest neighbor results by employing shape-indexed feature, and can also tolerate some inaccurate neighbors benefited from the regression model rather than the generative model in AAM. Extensive experiments on several datasets demonstrate that our methods outperform the state-of-the-arts in both detection accuracy and generalization ability. Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the generalization problem of AAM, we first reformulate the original AAM as sparsity-regularized AAM, which can achieve more compact/better shape and appearance priors by selecting nearest neighbors as the bases of the shape and appearance model. To speed up the fitting procedure, the sparsity in sparsity-regularized AAM is approximated by using the locality (i.e., K -nearest neighbor), and thus inducing the locality-constrained active appearance-model (LC-AAM). The LC-AAM solves a constrained AAM-like fitting problem with the K -nearest neighbors as the bases of shape and appearance model. To alleviate the adverse influence of inaccurate K -nearest neighbor results, the locality constraint is further embedded in the discriminative fitting method denoted as LC-DFM, which can find better K -nearest neighbor results by employing shape-indexed feature, and can also tolerate some inaccurate neighbors benefited from the regression model rather than the generative model in AAM. Extensive experiments on several datasets demonstrate that our methods outperform the state-of-the-arts in both detection accuracy and generalization ability. |
Author | CHEN, Xilin ZHANG, Jie KAN, Meina ZHAO, Xiaowei CHAI, Xiujuan SHAN, Shiguang |
Author_xml | – sequence: 1 givenname: Jie surname: ZHANG fullname: ZHANG, Jie organization: University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 2 givenname: Xiaowei surname: ZHAO fullname: ZHAO, Xiaowei organization: Alibaba Group, Hangzhou 311121, China – sequence: 3 givenname: Meina surname: KAN fullname: KAN, Meina organization: Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China – sequence: 4 givenname: Shiguang surname: SHAN fullname: SHAN, Shiguang email: sgshan@ict.ac.cn organization: Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China – sequence: 5 givenname: Xiujuan surname: CHAI fullname: CHAI, Xiujuan organization: Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China – sequence: 6 givenname: Xilin surname: CHEN fullname: CHEN, Xilin organization: Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China |
BookMark | eNp9kE1LAzEQQINUsNb-AG8LnqOZpNkkRyl-QcGLnkN2d9JubZOabJH217uyoreeZg7vzcC7JKMQAxJyDewWGFN3GUCxGWWgaVmCosczMubMSMq5KEd_O9cXZJrzmjHGGZeS8zGBRazdpu0OtI4hd8m1AZvCJ7fFr5g-Ch9T4V2NRQ8twxZDd0XOvdtknP7OCXl_fHibP9PF69PL_H5BawGqo43wMKu115XSolIOjUHkqnEIxkCjZckqWSmhatDGSI8oZSO40EKYWSO9mJCb4e4uxc895s6u4z6F_qXlBrTiTHDZUzBQdYo5J_R2l9qtSwcLzP7EsUMc28exP3HssXf44OSeDUtM_5dPSXqQVu1yhQmbXcKcrU8xdC2mU-o3zAB6sw |
Cites_doi | 10.1109/TSMCA.2007.909557 10.1016/S0262-8856(98)00175-9 10.1023/B:VISI.0000029666.37597.d3 10.1016/S0031-3203(02)00052-3 10.1109/34.927467 10.1016/j.media.2011.08.004 10.1016/S0262-8856(97)00070-X 10.1023/B:VISI.0000029664.99615.94 10.1007/s11263-014-0781-x 10.1007/s11263-013-0667-3 10.1016/j.imavis.2011.12.004 10.1007/s11704-015-5323-3 10.1016/j.patcog.2004.11.004 10.1109/TIP.2015.2505180 10.1007/s11704-016-5421-x 10.1006/cviu.1995.1004 10.1162/089976699300016728 10.1007/s11704-016-5204-4 10.1007/s11704-016-6076-3 10.1109/34.908962 10.1007/s11263-010-0380-4 10.1109/34.598235 |
ContentType | Journal Article |
Copyright | Copyright reserved, 2018, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
Copyright_xml | – notice: Copyright reserved, 2018, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature – notice: Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s11704-018-6617-z |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2095-2236 |
EndPage | 801 |
ExternalDocumentID | 10_1007_s11704_018_6617_z 10.1007/s11704-018-6617-z |
GroupedDBID | 06D 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40E 5VS 95- 95. 96X AABHQ AAEIZ AAFGU AAIAL AAJKR AANZL AAPBV AARHV AARTL AATLR AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJOX ABKAS ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABXPI ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIPQ ACKNC ACMLO ACOKC ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTIX ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGQMX AGWIL AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP ARMRJ AXYYD B-. BDATZ BGNMA C CSCUP DNIVK EBLON EBS EIOEI EJD EM ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF HG6 HMJXF HRMNR HZ IXD I~Z J-C JBSCW JZLTJ KOV M4Y MA- NQJWS NU0 O9J P4S PF0 PT4 R89 RIG ROL RSV S16 S3B SAP SCL SCO SHX SISQX SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC UG4 UNUBA UOJIU UTJUX UZXMN VFIZW VR W48 YLTOR Z7R Z7X Z81 Z83 Z88 ZMTXR -EM .VR 0R~ AACDK AAJBT AASML AATNV AAYZH ABAKF ABJNI ABTKH ABWNU ACAOD ACDTI ACMDZ ACPIV ACZOJ ADTPH AEFQL AEMSY AESKC AEVLU AFBBN AFKRA AGMZJ AGQEE AGRTI AIGIU AMXSW AMYLF AOCGG ARAPS BENPR BGLVJ BSONS CCPQU DDRTE DPUIP HCIFZ HF~ HZ~ IKXTQ IWAJR K7- LLZTM NPVJJ SJYHP SNPRN SOHCF -SI -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEI CITATION PHGZM PHGZT Q-- U1G U5S 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c317t-d3f14c8f8b783b7ae99ee27dae1991d8560b5b737c18995fee55d32383394d5f3 |
IEDL.DBID | 8FG |
ISSN | 2095-2228 |
IngestDate | Sun Sep 07 09:40:35 EDT 2025 Tue Jul 01 02:22:07 EDT 2025 Fri Feb 21 02:33:36 EST 2025 Thu Aug 18 16:19:20 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | locality-constrained AAM locality-constrained DFM sparsity-regularization face alignment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c317t-d3f14c8f8b783b7ae99ee27dae1991d8560b5b737c18995fee55d32383394d5f3 |
Notes | Document received on :2016-12-28 Document accepted on :2017-08-18 locality-constrained AAM locality-constrained DFM sparsity-regularization face alignment ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918720325 |
PQPubID | 2044369 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2918720325 crossref_primary_10_1007_s11704_018_6617_z springer_journals_10_1007_s11704_018_6617_z higheredpress_frontiers_10_1007_s11704_018_6617_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of Computer Science |
PublicationTitleAbbrev | Front. Comput. Sci |
PublicationYear | 2019 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Wu, Wang, Ji (CR32) 2013 Liu, Kan, Wu, Shan, Chen (CR2) 2017; 11 Liu, Deng, Lang, Tao, Li (CR55) 2016; 25 Asthana, Zafeiriou, Cheng, Pantic (CR14) 2013 Dollár, Welinder, Perona (CR16) 2010 Zhang, Shan, Kan, Chen (CR33) 2014 Gross, Matthews, Baker (CR9) 2005; 23 Liu (CR10) 2007 Kumar, Berg, Belhumeur, Nayar (CR49) 2009 Gao, Cao, Shan, Chen, Zhou, Zhang, Zhao (CR48) 2008; 38 Xiong, Torre (CR13) 2013 Girshick (CR29) 2015 Dalal, Triggs (CR41) 2005 Zhang, Zhan, Dewan, Metaxas, Zhou (CR25) 2012; 16 Saragih, Goecke (CR12) 2007 Maaten, Hendriks (CR22) 2010 Yang, Ma, Nie, Chang, Hauptmann (CR37) 2015; 113 Lowe (CR15) 2004; 60 Cootes, Edwards, Taylor (CR8) 2001; 23 Fasel, Luettin (CR4) 2003; 36 Zhao, Chai, Niu, Heng, Shan (CR44) 2012; 30 Phillips, Flynn, Scruggs, Bowyer, Chang, Hoffman, Marques, Min, Worek (CR46) 2005 Ciregan, Meier, Schmidhuber (CR26) 2012 Kazemi, Sullivan (CR19) 2014 Sim, Baker, Bsat (CR45) 2002 Gu, Kanade (CR51) 2008 Sun, Wang, Tang (CR31) 2013 Szegedy, Toshev, Erhan (CR28) 2013 Zhao, Shan, Chai, Chen (CR40) 2013 Cao, Wei, Wen, Sun (CR20) 2014; 107 Saragih, Lucey, Cohn (CR53) 2011; 91 Lee, Park, Yoo (CR18) 2015 Zhao, Chai, Niu, Heng, Shan (CR43) 2011 Jourabloo, Liu (CR36) 2016 Long, Shelhamer, Darrell (CR30) 2015 Norouzi, Punjani, Fleet (CR54) 2012 Phillips, Wechsler, Huang, Rauss (CR47) 1998; 16 Etyngier, Segonne, Keriven (CR24) 2007 Gao, Huang, Chen (CR38) 2016; 10 Cootes, Taylor, Cooper, Graham (CR7) 1995; 61 Zheng, Geng (CR6) 2017; 11 Zhang, Luo, Loy, Tang (CR34) 2014 Jiang, Hu, Yan, Zhang, Zhang, Gao (CR3) 2005; 38 Matthews, Baker (CR39) 2004; 60 Zhang, Yu, Mao, Gou, Zhan (CR5) 2016; 10 Wu, Liu, Doretto (CR11) 2008 Tipping, Bishop (CR23) 1999; 11 Tzimiropoulos (CR17) 2015 Trigeorgis, Snape, Nicolaou, Antonakos, Zafeiriou (CR35) 2016 Milborrow, Nicolls (CR52) 2008 Cootes, Taylor (CR21) 1999; 17 Krizhevsky, Sutskever, Hinton (CR27) 2012 Yu, Zhang, Gong (CR42) 2009 Tian, Kanade, Cohn (CR50) 2001; 23 Wiskott, Fellous, Kuiger, Malsburg (CR1) 1997; 19 G Trigeorgis (6617_CR35) 2016 D Jiang (6617_CR3) 2005; 38 X Cao (6617_CR20) 2014; 107 Y Wu (6617_CR32) 2013 M E Tipping (6617_CR23) 1999; 11 X Liu (6617_CR2) 2017; 11 D Lowe (6617_CR15) 2004; 60 X Zhao (6617_CR43) 2011 W Gao (6617_CR48) 2008; 38 T Cootes (6617_CR7) 1995; 61 V Kazemi (6617_CR19) 2014 L Maaten (6617_CR22) 2010 D Ciregan (6617_CR26) 2012 Y Yang (6617_CR37) 2015; 113 S Zhang (6617_CR25) 2012; 16 X Zhao (6617_CR40) 2013 D Lee (6617_CR18) 2015 A Jourabloo (6617_CR36) 2016 T Cootes (6617_CR21) 1999; 17 R Girshick (6617_CR29) 2015 X Zhao (6617_CR44) 2012; 30 P Phillips (6617_CR46) 2005 J Long (6617_CR30) 2015 L Wiskott (6617_CR1) 1997; 19 P Dollár (6617_CR16) 2010 Y Sun (6617_CR31) 2013 X Xiong (6617_CR13) 2013 X Liu (6617_CR55) 2016; 25 I Matthews (6617_CR39) 2004; 60 N Gao (6617_CR38) 2016; 10 S Milborrow (6617_CR52) 2008 R Gross (6617_CR9) 2005; 23 Y Tian (6617_CR50) 2001; 23 J Saragih (6617_CR53) 2011; 91 Z Zhang (6617_CR34) 2014 N Kumar (6617_CR49) 2009 A Asthana (6617_CR14) 2013 L Gu (6617_CR51) 2008 J Saragih (6617_CR12) 2007 B Fasel (6617_CR4) 2003; 36 T Sim (6617_CR45) 2002 F Zhang (6617_CR5) 2016; 10 J Zhang (6617_CR33) 2014 G Tzimiropoulos (6617_CR17) 2015 H Wu (6617_CR11) 2008 N Dalal (6617_CR41) 2005 M Norouzi (6617_CR54) 2012 H Zheng (6617_CR6) 2017; 11 C Szegedy (6617_CR28) 2013 P Phillips (6617_CR47) 1998; 16 X Liu (6617_CR10) 2007 K Yu (6617_CR42) 2009 A Krizhevsky (6617_CR27) 2012 T Cootes (6617_CR8) 2001; 23 P Etyngier (6617_CR24) 2007 |
References_xml | – volume: 38 start-page: 149 issue: 1 year: 2008 end-page: 161 ident: CR48 article-title: The CASPEAL large-scale chinese face database and baseline evaluations publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans doi: 10.1109/TSMCA.2007.909557 – volume: 17 start-page: 567 issue: 8 year: 1999 end-page: 573 ident: CR21 article-title: A mixture model for representing shape variation publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(98)00175-9 – volume: 60 start-page: 135 issue: 2 year: 2004 end-page: 164 ident: CR39 article-title: Active appearance models revisited publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000029666.37597.d3 – start-page: 947 year: 2005 end-page: 954 ident: CR46 article-title: Overview of the face recognition grand challenge publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition – start-page: 3431 year: 2015 end-page: 3440 ident: CR30 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2007 end-page: 8 ident: CR10 article-title: Generic face alignment using boosted appearance model publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 46 year: 2002 end-page: 51 ident: CR45 article-title: The CMU pose, illumination, and expression (PIE) database publication-title: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition – start-page: 1 year: 2008 end-page: 8 ident: CR11 article-title: Face alignment via boosted ranking model publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 36 start-page: 259 issue: 1 year: 2003 end-page: 275 ident: CR4 article-title: Automatic facial expression analysis: a survey publication-title: Pattern Recognition doi: 10.1016/S0031-3203(02)00052-3 – volume: 23 start-page: 681 issue: 6 year: 2001 end-page: 685 ident: CR8 article-title: Active appearance models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.927467 – volume: 16 start-page: 265 issue: 1 year: 2012 end-page: 277 ident: CR25 article-title: Towards robust and effective shape modeling: sparse shape composition publication-title: Medical Image Analysis doi: 10.1016/j.media.2011.08.004 – volume: 16 start-page: 295 issue: 5 year: 1998 end-page: 306 ident: CR47 article-title: The feret database and evaluation procedure for face recognition algorithms publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(97)00070-X – volume: 60 start-page: 91 issue: 2 year: 2004 end-page: 110 ident: CR15 article-title: Distinctive image features from scale-invariant key points publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000029664.99615.94 – start-page: 3444 year: 2013 end-page: 3451 ident: CR14 article-title: Robust discriminative response map fitting with constrained local models publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2014 ident: CR34 publication-title: Learning and transferring multitask deep representation for face alignment – start-page: 673 year: 2011 end-page: 678 ident: CR43 article-title: Context constrained facial landmark localization based on discontinuous haar-like feature publication-title: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition – volume: 113 start-page: 113 issue: 2 year: 2015 end-page: 127 ident: CR37 article-title: Multi-class active learning by uncertainty sampling with diversity maximization publication-title: International Journal of Computer Vision doi: 10.1007/s11263-014-0781-x – start-page: 1 year: 2014 end-page: 16 ident: CR33 article-title: Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment publication-title: Proceedings of the European Conference on Computer Vision – volume: 107 start-page: 177 issue: 2 year: 2014 end-page: 190 ident: CR20 article-title: Face alignment by explicit shape regression publication-title: International Journal of Computer Vision doi: 10.1007/s11263-013-0667-3 – start-page: 3476 year: 2013 end-page: 3483 ident: CR31 article-title: Deep convolutional network cascade for facial point detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 30 start-page: 136 issue: 3 year: 2012 end-page: 146 ident: CR44 article-title: Context modeling for facial landmark detection based on non-adjacent rectangle (NAR) haar-like feature publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2011.12.004 – start-page: 1 year: 2007 end-page: 8 ident: CR24 article-title: Shape priors using manifold learning techniques publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 10 start-page: 832 issue: 5 year: 2016 end-page: 844 ident: CR5 article-title: Pose-robust feature learning for facial expression recognition publication-title: Frontiers of Computer Science doi: 10.1007/s11704-015-5323-3 – volume: 38 start-page: 787 issue: 6 year: 2005 end-page: 798 ident: CR3 article-title: Efficient 3d reconstruction for face recognition publication-title: Pattern Recognition doi: 10.1016/j.patcog.2004.11.004 – start-page: 1078 year: 2010 end-page: 1085 ident: CR16 article-title: Cascaded pose regression publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 413 year: 2008 end-page: 426 ident: CR51 article-title: A generative shape regularization model for robust face alignment publication-title: Proceedings of European Conference on Computer Vision – volume: 25 start-page: 907 issue: 2 year: 2016 end-page: 919 ident: CR55 article-title: Query-adaptive reciprocal hash tables for nearest neighbor search publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2015.2505180 – volume: 10 start-page: 845 issue: 5 year: 2016 end-page: 855 ident: CR38 article-title: Multi-label active learning by model guided distribution matching publication-title: Frontiers of Computer Science doi: 10.1007/s11704-016-5421-x – volume: 61 start-page: 38 issue: 1 year: 1995 end-page: 59 ident: CR7 article-title: Active shape models-their training and application publication-title: Computer Vision and Image Understanding doi: 10.1006/cviu.1995.1004 – start-page: 3642 year: 2012 end-page: 3649 ident: CR26 article-title: Multi-column deep neural networks for image classification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 4177 year: 2016 end-page: 4187 ident: CR35 article-title: Mnemonic descent method: a recurrent process applied for end-to-end face alignment publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 532 year: 2013 end-page: 539 ident: CR13 article-title: Supervised descent method and its applications to face alignment publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3659 year: 2015 end-page: 3667 ident: CR17 article-title: Project-out cascaded regression with an application to face alignment publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 11 start-page: 443 issue: 2 year: 1999 end-page: 482 ident: CR23 article-title: Mixtures of probabilistic principal component analyzers publication-title: Neural Computation doi: 10.1162/089976699300016728 – volume: 11 start-page: 266 issue: 2 year: 2017 end-page: 275 ident: CR6 article-title: Facial expression recognition via weighted group sparsity publication-title: Frontiers of Computer Science doi: 10.1007/s11704-016-5204-4 – start-page: 365 year: 2009 end-page: 372 ident: CR49 article-title: Attribute and simile classifiers for face verification publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 1097 year: 2012 end-page: 1105 ident: CR27 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proceedings of the Advances in Neural Information Processing Systems Conference – start-page: 34 year: 2010 end-page: 41 ident: CR22 article-title: Capturing appearance variation in active appearance models publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – start-page: 886 year: 2005 end-page: 893 ident: CR41 article-title: Histograms of oriented gradients for human detection publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 11 start-page: 208 issue: 2 year: 2017 end-page: 218 ident: CR2 article-title: Viplfacenet: an open source deep face recognition SDK publication-title: Frontiers of Computer Science doi: 10.1007/s11704-016-6076-3 – start-page: 1440 year: 2015 end-page: 1448 ident: CR29 article-title: Fast R-CNN publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 23 start-page: 1080 issue: 12 year: 2005 end-page: 1093 ident: CR9 article-title: Generic vs publication-title: person specific active appearance models. Image and Vision Computing – start-page: 1867 year: 2014 end-page: 1874 ident: CR19 article-title: One millisecond face alignment with an ensemble of regression trees publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 23 start-page: 97 issue: 2 year: 2001 end-page: 115 ident: CR50 article-title: Recognizing action units for facial expression analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.908962 – start-page: 3108 year: 2012 end-page: 3115 ident: CR54 article-title: Fast search in hamming space with multi-index hashing publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2007 end-page: 8 ident: CR12 article-title: A nonlinear discriminative approach to AAM fitting publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 4188 year: 2016 end-page: 4196 ident: CR36 article-title: Large-pose face alignment via CNN-based dense 3d model fitting publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3452 year: 2013 end-page: 3459 ident: CR32 article-title: Facial feature tracking under varying facial expressions and face poses based on restricted boltzmann machines publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 91 start-page: 200 issue: 2 year: 2011 end-page: 215 ident: CR53 article-title: Deformable model fitting by regularized landmark mean-shifts publication-title: International Journal of Computer Vision doi: 10.1007/s11263-010-0380-4 – start-page: 636 year: 2013 end-page: 647 ident: CR40 article-title: Locality-constrained active appearance model publication-title: Proceedings of the Asian Conference on Computer Vision – volume: 19 start-page: 775 issue: 7 year: 1997 end-page: 779 ident: CR1 article-title: Face recognition by elastic bunch graph matching publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.598235 – start-page: 2553 year: 2013 end-page: 2561 ident: CR28 article-title: Deep neural networks for object detection publication-title: Proceedings of the Advances in Neural Information Processing Systems Conference – start-page: 504 year: 2008 end-page: 513 ident: CR52 article-title: Locating facial features with an extended active shape model publication-title: Proceedings of European Conference on Computer Vision – start-page: 2223 year: 2009 end-page: 2231 ident: CR42 article-title: Nonlinear learning using local coordinate coding publication-title: Proceedings of the 22nd International Conference on Advances in Neural Information Processing Systems – start-page: 4204 year: 2015 end-page: 4212 ident: CR18 article-title: Face alignment using cascade gaussian process regression trees publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 636 volume-title: Proceedings of the Asian Conference on Computer Vision year: 2013 ident: 6617_CR40 – start-page: 532 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2013 ident: 6617_CR13 – volume: 17 start-page: 567 issue: 8 year: 1999 ident: 6617_CR21 publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(98)00175-9 – start-page: 1440 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2015 ident: 6617_CR29 – volume-title: Learning and transferring multitask deep representation for face alignment year: 2014 ident: 6617_CR34 – volume: 16 start-page: 295 issue: 5 year: 1998 ident: 6617_CR47 publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(97)00070-X – start-page: 1078 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2010 ident: 6617_CR16 – start-page: 4177 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: 6617_CR35 – start-page: 2553 volume-title: Proceedings of the Advances in Neural Information Processing Systems Conference year: 2013 ident: 6617_CR28 – start-page: 2223 volume-title: Proceedings of the 22nd International Conference on Advances in Neural Information Processing Systems year: 2009 ident: 6617_CR42 – start-page: 365 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2009 ident: 6617_CR49 – start-page: 46 volume-title: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition year: 2002 ident: 6617_CR45 – volume: 23 start-page: 1080 issue: 12 year: 2005 ident: 6617_CR9 publication-title: person specific active appearance models. Image and Vision Computing – start-page: 673 volume-title: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition year: 2011 ident: 6617_CR43 – volume: 11 start-page: 266 issue: 2 year: 2017 ident: 6617_CR6 publication-title: Frontiers of Computer Science doi: 10.1007/s11704-016-5204-4 – volume: 16 start-page: 265 issue: 1 year: 2012 ident: 6617_CR25 publication-title: Medical Image Analysis doi: 10.1016/j.media.2011.08.004 – start-page: 1 volume-title: Proceedings of the European Conference on Computer Vision year: 2014 ident: 6617_CR33 – start-page: 1867 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2014 ident: 6617_CR19 – volume: 38 start-page: 787 issue: 6 year: 2005 ident: 6617_CR3 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2004.11.004 – volume: 30 start-page: 136 issue: 3 year: 2012 ident: 6617_CR44 publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2011.12.004 – start-page: 3431 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2015 ident: 6617_CR30 – volume: 23 start-page: 97 issue: 2 year: 2001 ident: 6617_CR50 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.908962 – start-page: 3108 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2012 ident: 6617_CR54 – start-page: 504 volume-title: Proceedings of European Conference on Computer Vision year: 2008 ident: 6617_CR52 – start-page: 3659 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2015 ident: 6617_CR17 – start-page: 1 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2007 ident: 6617_CR10 – start-page: 886 volume-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition year: 2005 ident: 6617_CR41 – start-page: 3444 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2013 ident: 6617_CR14 – volume: 107 start-page: 177 issue: 2 year: 2014 ident: 6617_CR20 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-013-0667-3 – start-page: 34 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops year: 2010 ident: 6617_CR22 – start-page: 1097 volume-title: Proceedings of the Advances in Neural Information Processing Systems Conference year: 2012 ident: 6617_CR27 – start-page: 413 volume-title: Proceedings of European Conference on Computer Vision year: 2008 ident: 6617_CR51 – volume: 11 start-page: 208 issue: 2 year: 2017 ident: 6617_CR2 publication-title: Frontiers of Computer Science doi: 10.1007/s11704-016-6076-3 – volume: 19 start-page: 775 issue: 7 year: 1997 ident: 6617_CR1 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.598235 – volume: 91 start-page: 200 issue: 2 year: 2011 ident: 6617_CR53 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-010-0380-4 – start-page: 4204 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2015 ident: 6617_CR18 – start-page: 4188 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: 6617_CR36 – start-page: 1 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2008 ident: 6617_CR11 – volume: 38 start-page: 149 issue: 1 year: 2008 ident: 6617_CR48 publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans doi: 10.1109/TSMCA.2007.909557 – volume: 113 start-page: 113 issue: 2 year: 2015 ident: 6617_CR37 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-014-0781-x – start-page: 3452 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2013 ident: 6617_CR32 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 6617_CR15 publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 11 start-page: 443 issue: 2 year: 1999 ident: 6617_CR23 publication-title: Neural Computation doi: 10.1162/089976699300016728 – volume: 10 start-page: 832 issue: 5 year: 2016 ident: 6617_CR5 publication-title: Frontiers of Computer Science doi: 10.1007/s11704-015-5323-3 – volume: 10 start-page: 845 issue: 5 year: 2016 ident: 6617_CR38 publication-title: Frontiers of Computer Science doi: 10.1007/s11704-016-5421-x – volume: 25 start-page: 907 issue: 2 year: 2016 ident: 6617_CR55 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2015.2505180 – start-page: 947 volume-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition year: 2005 ident: 6617_CR46 – volume: 61 start-page: 38 issue: 1 year: 1995 ident: 6617_CR7 publication-title: Computer Vision and Image Understanding doi: 10.1006/cviu.1995.1004 – start-page: 3642 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2012 ident: 6617_CR26 – volume: 36 start-page: 259 issue: 1 year: 2003 ident: 6617_CR4 publication-title: Pattern Recognition doi: 10.1016/S0031-3203(02)00052-3 – start-page: 3476 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2013 ident: 6617_CR31 – volume: 23 start-page: 681 issue: 6 year: 2001 ident: 6617_CR8 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.927467 – start-page: 1 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2007 ident: 6617_CR24 – start-page: 1 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2007 ident: 6617_CR12 – volume: 60 start-page: 135 issue: 2 year: 2004 ident: 6617_CR39 publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000029666.37597.d3 |
SSID | ssj0002025522 |
Score | 2.1357121 |
Snippet | Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be... |
SourceID | proquest crossref springer higheredpress |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 789 |
SubjectTerms | Alignment Computer Science Constraints face alignment locality-constrained AAM locality-constrained DFM Regression models Research Article Sparsity sparsity-regularization |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMcful0Ecf7E-YsePCkZa5M06XGIc6h42mCeQvNLQZjiusv-epO2oWyosHPT0L6X9H3o--Y9gOuUUitNhpFhfYkIUxzJxKaIWhPnhPSNzEu1xUs6mpDHKZ3W57jnQe0eUpLll7o57BazUjHBkYspDC23oU1jnvEWtAcPr0_Nr5XEc3KZP0gcQCD_jyPkM3-bZyUi7b6X8gqjSxnqCnauZUrLADTswDg8eqU7-egtCtlTy7Wqjhu-2z7s1UAaDaoVdABbZnYIndDsIar3_hHEzz7qOWZHyiOl7yxhdGSDtity8BvZXJnIDXorJQbHMBnej-9GqO63gJSjiAJpbGOiuOWScSxZbrLMmITp3Hh9lOYOjiSVDDPlzJ45bxpKNXYxH-OMaGrxCbRmnzNzChHDDiS0SQmzikhrc0yxUtKxiqaKU92Fm2Bz8VWV1RBNAWVvDOGMIbwxxLIL8YpXhPW1HXyn8P_uuQieE_WunIski7lPOye0C7fBEc3lPyc722j0Oew4qsoqleAFtIrvhbl05FLIq3ql_gDhV-Se priority: 102 providerName: Springer Nature |
Title | Locality-constrained framework for face alignment |
URI | https://journal.hep.com.cn/fcs/EN/10.1007/s11704-018-6617-z https://link.springer.com/article/10.1007/s11704-018-6617-z https://www.proquest.com/docview/2918720325 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV27TsMwFLWgXZAQb0ShVBmYQBY4tmtnQgX1IUAVQlQqkxW_YGoLLUu_nms3oSoSnTIk8XD8OCf3ntyL0EWTc69dRrETNxozYSTWqW9i7h3JGbtxOo9ui36zN2APQz4sAm7TwlZZnonxoLZjE2Lk12lGZEgZpvx28olD16iQXS1aaGyiKgGmCetcdrq_MZY0COaYSEhBSeAQ7CgTm_HvOSKiBUNiICmB5yvUtP0RfRbORj_qiv78kzKNTNTZQzuFhExaiznfRxtudIB2y_YMSbFbDxF5CjwFKhubIAJDLwhnE1-6sRKQq4nPjUvgofdoCjhCg0779b6Hiw4J2ADvz7ClnjAjvdRCUi1yl2XOpcLmLjiarAQ5o7kWVBgC31WAv-PcUmBpSjNmuafHqDIaj9wJSgQF6reuyYQ3THufU06N0aAuLDeS2xq6LMFRk0UhDLUseRyQVICkCkiqeQ2RFfiUD9UYQm_vde_US4hVsY-majnrNXRVwr68_e9gp-sHO0NbIHyyhZGvjiqzr293DuJiphtxBTVQtdV9e2zD9a7df375AeRgzZA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcgCp4tWiLuWRA1xaWd3E9jo5VIinFlhWVQUSNze2x_S00LJVVX5Uf2PH3pjVIsGNcxIr-jLxfJ75ZgZgpyulN1hxhqpjmFC2ZKbwXSY95rUQHTR1VFsMur0rcXYtr2fgX6qFCbLKtCfGjdrd2hAj_1xUeRlShoXcu_vJwtSokF1NIzTGZnGOf__Qke3-y-kRfd_dojg5vjzssWaqALPkK0fMcZ8LW_rSqJIbVWNVIRbK1RhUQK4kCmCkUVzZnM4i9M4opePk2TivhJOe07qzMCdCRWsL5g6OB1-_PUZ1ikDRY-qiIO7CQnglpVJjvV6uouijZOQWFXuYcoZvfkRlB7qogJ1ivE-StNH3nSzDYkNas_2xla3ADA5XYSkNhMia_eEt5P3gGYnXMxtoZ5g-gS7zSf-VEUHOfG0xo5tuogzhHVy9Cnpr0BreDvE9ZIoT2XDYFcpbYbyvueTWGuIzTtpSujZ8TODou3HrDT1pshyQ1ISkDkjqhzbkU_BpH_o_hGniLz2zkSDWzZ97ryd21oZPCfbJ5WcXW395sW2Y711e9HX_dHD-ARaIdlVjGeEGtEa_fuMmUZuR2WrsKYPvr23C_wGm6giI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS8MwEMcP3UAEcf7E6dQ--KRkW5tkaR-HOqcbwwcFfYrNLwVhinYv--tN2oaxoYL43DSQu7T3ae7bO4CTDqVG6AQjzdoCESZjJCLTQdToMCWkrUWaqy1Gnf49uXmgD2Wf00-vdvcpyeKfBlelaZy13pVpzX58C1munoiRjS8MTZehStqW_StQ7V49DmbHLJFj5jyXEFmYQO68w-c2v5tnLjqtveRSC61ySeocgi5kTfNg1KvBk19GoUF5bU4y0ZTThQqP_1jnBqyXoBp0i521CUt6vAU13wQiKN8J2xAOXTS0LI-kQ03XcUKrwHjNV2ChODCp1IEd9JxLD3bgvnd5d95HZR8GJC1dZEhhExIZm1iwGAuW6iTROmIq1U43pWILTYIKhpkM7deb9bKmVGHLAhgnRFGDd6EyfhvrPQgYtoChdIcwI4kwJsUUSykswygqY6rqcOrtz9-Lcht8VljZGYNbY3BnDD6tQzjnIW5czQfXQfy3exrei7x8Wj95lISxS0dHtA5n3imzyz9Otv-n0cewcnvR48Pr0eAAVi14JYWQsAGV7GOiDy3cZOKo3MBfiL_wXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locality-constrained+framework+for+face+alignment&rft.jtitle=Frontiers+of+Computer+Science&rft.au=Zhang%2C+Jie&rft.au=Zhao%2C+Xiaowei&rft.au=Kan%2C+Meina&rft.au=Shan%2C+Shiguang&rft.date=2019-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-2228&rft.eissn=2095-2236&rft.volume=13&rft.issue=4&rft.spage=789&rft.epage=801&rft_id=info:doi/10.1007%2Fs11704-018-6617-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2228&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2228&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2228&client=summon |