What is the most suitable statistical method for comparing the results of two TLD systems and the dicentric assay? An intercomparison at dose ranges exceeding 100 mGy
Thermoluminescent dosemeter (TLD) systems and dicentric chromosome assays (DCA) are crucial for accurate radiation dose estimation in emergencies. Ensuring that both techniques are well-calibrated and comparable is a key for safety in nuclear technology facilities. This study analysed different stat...
Saved in:
Published in | Applied radiation and isotopes Vol. 225; p. 112022 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0969-8043 1872-9800 1872-9800 |
DOI | 10.1016/j.apradiso.2025.112022 |
Cover
Abstract | Thermoluminescent dosemeter (TLD) systems and dicentric chromosome assays (DCA) are crucial for accurate radiation dose estimation in emergencies. Ensuring that both techniques are well-calibrated and comparable is a key for safety in nuclear technology facilities. This study analysed different statistical methods to compare the responses of DCA and two TLD systems, (Harshaw 3500 and Harshaw 6600 Plus), for doses exceeding 100 mGy (up to 5Gy). Data were analysed using the determination coefficient (r2), Student's t-test, ANCOVA, and ISO 14146:2018. High correlations (r2 > 0.99) were obtained, ANCOVA revealing significant differences among systems (F = 7.671; P = 0.005; η2 = 0.006), although eta-squared indicated a minor relevance for these differences. According to ISO 14146:2018, all dosimetric systems showed similar results with overlapping confidence intervals. Based on these results, ISO 14146:2018 provided the most comprehensive comparison among dosimetry techniques, identifying deviations from optimal performance.
•ISO 14146:2018 identified deviations and ensured reliable intercomparison of methods.•This is the first work to compare these techniques with ISO 14146:2018.•TLD systems accurately estimate doses without requiring recalibration above 100 mGy. |
---|---|
AbstractList | Thermoluminescent dosemeter (TLD) systems and dicentric chromosome assays (DCA) are crucial for accurate radiation dose estimation in emergencies. Ensuring that both techniques are well-calibrated and comparable is a key for safety in nuclear technology facilities. This study analysed different statistical methods to compare the responses of DCA and two TLD systems, (Harshaw 3500 and Harshaw 6600 Plus), for doses exceeding 100 mGy (up to 5Gy). Data were analysed using the determination coefficient (r2), Student's t-test, ANCOVA, and ISO 14146:2018. High correlations (r2 > 0.99) were obtained, ANCOVA revealing significant differences among systems (F = 7.671; P = 0.005; η2 = 0.006), although eta-squared indicated a minor relevance for these differences. According to ISO 14146:2018, all dosimetric systems showed similar results with overlapping confidence intervals. Based on these results, ISO 14146:2018 provided the most comprehensive comparison among dosimetry techniques, identifying deviations from optimal performance.
•ISO 14146:2018 identified deviations and ensured reliable intercomparison of methods.•This is the first work to compare these techniques with ISO 14146:2018.•TLD systems accurately estimate doses without requiring recalibration above 100 mGy. Thermoluminescent dosemeter (TLD) systems and dicentric chromosome assays (DCA) are crucial for accurate radiation dose estimation in emergencies. Ensuring that both techniques are well-calibrated and comparable is a key for safety in nuclear technology facilities. This study analysed different statistical methods to compare the responses of DCA and two TLD systems, (Harshaw 3500 and Harshaw 6600 Plus), for doses exceeding 100 mGy (up to 5Gy). Data were analysed using the determination coefficient (r ), Student's t-test, ANCOVA, and ISO 14146:2018. High correlations (r > 0.99) were obtained, ANCOVA revealing significant differences among systems (F = 7.671; P = 0.005; η = 0.006), although eta-squared indicated a minor relevance for these differences. According to ISO 14146:2018, all dosimetric systems showed similar results with overlapping confidence intervals. Based on these results, ISO 14146:2018 provided the most comprehensive comparison among dosimetry techniques, identifying deviations from optimal performance. Thermoluminescent dosemeter (TLD) systems and dicentric chromosome assays (DCA) are crucial for accurate radiation dose estimation in emergencies. Ensuring that both techniques are well-calibrated and comparable is a key for safety in nuclear technology facilities. This study analysed different statistical methods to compare the responses of DCA and two TLD systems, (Harshaw 3500 and Harshaw 6600 Plus), for doses exceeding 100 mGy (up to 5Gy). Data were analysed using the determination coefficient (r2), Student's t-test, ANCOVA, and ISO 14146:2018. High correlations (r2 > 0.99) were obtained, ANCOVA revealing significant differences among systems (F = 7.671; P = 0.005; η2 = 0.006), although eta-squared indicated a minor relevance for these differences. According to ISO 14146:2018, all dosimetric systems showed similar results with overlapping confidence intervals. Based on these results, ISO 14146:2018 provided the most comprehensive comparison among dosimetry techniques, identifying deviations from optimal performance.Thermoluminescent dosemeter (TLD) systems and dicentric chromosome assays (DCA) are crucial for accurate radiation dose estimation in emergencies. Ensuring that both techniques are well-calibrated and comparable is a key for safety in nuclear technology facilities. This study analysed different statistical methods to compare the responses of DCA and two TLD systems, (Harshaw 3500 and Harshaw 6600 Plus), for doses exceeding 100 mGy (up to 5Gy). Data were analysed using the determination coefficient (r2), Student's t-test, ANCOVA, and ISO 14146:2018. High correlations (r2 > 0.99) were obtained, ANCOVA revealing significant differences among systems (F = 7.671; P = 0.005; η2 = 0.006), although eta-squared indicated a minor relevance for these differences. According to ISO 14146:2018, all dosimetric systems showed similar results with overlapping confidence intervals. Based on these results, ISO 14146:2018 provided the most comprehensive comparison among dosimetry techniques, identifying deviations from optimal performance. |
ArticleNumber | 112022 |
Author | Mutti, Leonardo Damián Rossich, Luciano Esteban Fernández, Rubén Omar Garraza, María Soledad |
Author_xml | – sequence: 1 givenname: Leonardo Damián surname: Mutti fullname: Mutti, Leonardo Damián organization: División de Radiodosimetría Biológica, Departamento de Mediciones Dosimétricas, Gerencia Seguridad Radiológica y Nuclear, Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Constituyentes, Av. Gral. Paz 1499, Villa Maipú, B1650, Buenos Aires, Argentina – sequence: 2 givenname: María Soledad surname: Garraza fullname: Garraza, María Soledad organization: División de Monitoreo de La Radiación Externa, Departamento de Mediciones Dosimétricas, Gerencia Seguridad Radiológica y Nuclear, Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Constituyentes, Av. Gral. Paz 1499, Villa Maipú, B1650, Buenos Aires, Argentina – sequence: 3 givenname: Rubén Omar surname: Fernández fullname: Fernández, Rubén Omar organization: División de Radiodosimetría Biológica, Departamento de Mediciones Dosimétricas, Gerencia Seguridad Radiológica y Nuclear, Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Constituyentes, Av. Gral. Paz 1499, Villa Maipú, B1650, Buenos Aires, Argentina – sequence: 4 givenname: Luciano Esteban surname: Rossich fullname: Rossich, Luciano Esteban email: lucianorossich@cnea.gob.ar organization: División de Radiodosimetría Biológica, Departamento de Mediciones Dosimétricas, Gerencia Seguridad Radiológica y Nuclear, Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Constituyentes, Av. Gral. Paz 1499, Villa Maipú, B1650, Buenos Aires, Argentina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40628014$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9uEzEQxi1URNPCK1Q-ckk69m68uyeoCi1IkbgUcbQce9w42rWDx1vIC_GcbJqUK6eRRr_vmz_fBTuLKSJjVwIWAoS63i7MLhsXKC0kyOVCiKnIV2wm2kbOuxbgjM2gU928hbo6ZxdEWwCo206-Yec1KNmCqGfsz4-NKTwQLxvkQ6LCaQzFrHvkVEwJVII1PR-wbJLjPmVu07AzOcTHZ0lGGvtCPHlefiX-sPrEaU8FB-ImumfEBYux5GC5ITL7D_wm8hAL5pMTpcinHVyiyc7ERySOvy2iO8wQAHy4379lr73pCd-d6iX7fvf54fbLfPXt_uvtzWpuK9GUuYNKKeGEUN4voVbCG9-1tVRN1zS28rWqoBHgrOqg7jolppZrEZp2bdF7qC7Z-6PvLqefI1LRQyCLfW8ippF0JWW7lLKRywm9OqHjekCndzkMJu_1y28nQB0BmxNRRv8PEaAPIeqtfglRH0LUxxAn4cejEKdLnwJmTTZgtNNHMtqiXQr_s_gLstipQA |
Cites_doi | 10.1667/RR3444.1 10.1667/RR14013.1 10.1016/j.envadv.2022.100265 10.1016/S0168-583X(01)00717-0 10.1093/rpd/ncq499 10.1093/oxfordjournals.rpd.a079681 10.4028/www.scientific.net/DDF.347.75 10.1093/rpd/13.1-4.205 10.1016/j.radphyschem.2020.108683 10.1093/oxfordjournals.rpd.a006516 10.1088/1361-6498/ac0d63 10.1093/rpd/ncm137 10.1046/j.1440-1673.2001.00958.x 10.1667/RR2425.1 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.apradiso.2025.112022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1872-9800 |
ExternalDocumentID | 40628014 10_1016_j_apradiso_2025_112022 S0969804325003677 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- --K --M .55 .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WH7 WUQ X7M XPP XUV ZMT ~02 ~G- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c317t-d03661d116ff50461faf984267977c3f4630710dc690499613f4d8e078bceff03 |
IEDL.DBID | AIKHN |
ISSN | 0969-8043 1872-9800 |
IngestDate | Fri Sep 05 15:41:42 EDT 2025 Tue Sep 09 02:32:34 EDT 2025 Wed Sep 10 04:47:10 EDT 2025 Sat Sep 06 17:18:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Intercomparison ISO 14146 Dosimetry Dicentric chromosome TLD |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c317t-d03661d116ff50461faf984267977c3f4630710dc690499613f4d8e078bceff03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 40628014 |
PQID | 3228522725 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3228522725 pubmed_primary_40628014 crossref_primary_10_1016_j_apradiso_2025_112022 elsevier_sciencedirect_doi_10_1016_j_apradiso_2025_112022 |
PublicationCentury | 2000 |
PublicationDate | 2025-11-01 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Applied radiation and isotopes |
PublicationTitleAlternate | Appl Radiat Isot |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (bib24) 2008 Omanwar, Koparkar, Virk (bib20) 2014; 347 (bib28) 2011 (bib26) 2008 (bib2) 2019; 4 Monteiro-Gil, Oliveira-Martins, Rosário (bib18) 2020; 171 Deperas, Deperas-Kaminska, Lindholm, Romm, Roy, Moss, Morand, Wojcik, Edwards, Lloyd, Szuizka (bib6) 2007; 124 Solomon, Paul, Venkatachalam, Jeevanram (bib22) 1996 Di Giorgio, Barquinero, Vallerga, Radl, Taja, Seoane, Lloyd (bib7) 2011; 175 Escalona, Ryan, Balajee (bib9) 2022; 9 Beinke, Ben-Shlomo, Abend, Port (bib3) 2015; 184 Esposito-Mendes, Goes de Mendonça, Hwang, Di Giorgio, Farias de Lima, Santos (bib10) 2020; 43 Bos (bib4) 2001; 184 Rao, Natarajan (bib21) 2001; 95 (bib14) 2007; 103 Hall, Giaccia (bib11) 2012 (bib15) 2014 (bib25) 2010 Caresana, Garlati, Zorloni, Behrens, Otto, Minchillo, Rossi (bib5) 2021; 41 Venkatachalam, Paul, Prabhu, Mohankumar, Jeevanram (bib27) 2001; 45 Lloyd, Edwards, Prosser (bib17) 1986; 15 (bib13) 2003 Edwards, Lloyd, Prosser (bib8) 1985; 13 (bib16) 2018 Stadtmann, McWhan, Grimbergen, Figel, Romero, Gärtner, Hranitzky (bib23) 2018; 1 Ainsbury, Bakhanova, Barquinero, Brai, Chumak, Correcher, Darroudi, Fattibene, Gruel, Guclu (bib1) 2011; 147 Montoro, Rodriguez, Almonacid, Villaescusa, Verdú, Caballín, Barrios, Barquinero (bib19) 2005; 164 Hranitzky, Gärtner, Naber, Aslan, Duch, Haninger, Knežević (bib12) 2022 Esposito-Mendes (10.1016/j.apradiso.2025.112022_bib10) 2020; 43 Deperas (10.1016/j.apradiso.2025.112022_bib6) 2007; 124 (10.1016/j.apradiso.2025.112022_bib16) 2018 Monteiro-Gil (10.1016/j.apradiso.2025.112022_bib18) 2020; 171 (10.1016/j.apradiso.2025.112022_bib13) 2003 Escalona (10.1016/j.apradiso.2025.112022_bib9) 2022; 9 Solomon (10.1016/j.apradiso.2025.112022_bib22) 1996 Edwards (10.1016/j.apradiso.2025.112022_bib8) 1985; 13 Lloyd (10.1016/j.apradiso.2025.112022_bib17) 1986; 15 (10.1016/j.apradiso.2025.112022_bib25) 2010 (10.1016/j.apradiso.2025.112022_bib14) 2007; 103 Stadtmann (10.1016/j.apradiso.2025.112022_bib23) 2018; 1 Omanwar (10.1016/j.apradiso.2025.112022_bib20) 2014; 347 Bos (10.1016/j.apradiso.2025.112022_bib4) 2001; 184 (10.1016/j.apradiso.2025.112022_bib15) 2014 Ainsbury (10.1016/j.apradiso.2025.112022_bib1) 2011; 147 Rao (10.1016/j.apradiso.2025.112022_bib21) 2001; 95 (10.1016/j.apradiso.2025.112022_bib24) 2008 (10.1016/j.apradiso.2025.112022_bib26) 2008 (10.1016/j.apradiso.2025.112022_bib28) 2011 Beinke (10.1016/j.apradiso.2025.112022_bib3) 2015; 184 Hranitzky (10.1016/j.apradiso.2025.112022_bib12) 2022 (10.1016/j.apradiso.2025.112022_bib2) 2019; 4 Montoro (10.1016/j.apradiso.2025.112022_bib19) 2005; 164 Venkatachalam (10.1016/j.apradiso.2025.112022_bib27) 2001; 45 Di Giorgio (10.1016/j.apradiso.2025.112022_bib7) 2011; 175 Hall (10.1016/j.apradiso.2025.112022_bib11) 2012 Caresana (10.1016/j.apradiso.2025.112022_bib5) 2021; 41 |
References_xml | – volume: 184 start-page: 3 year: 2001 end-page: 28 ident: bib4 article-title: High sensitivity thermoluminescence dosimetry publication-title: Nucl. Instrum. Methods Phys. Res. B – volume: 41 start-page: 1110 year: 2021 ident: bib5 article-title: Impact of new operational dosimetric quantities on individual monitoring services publication-title: J. Radiol. Prot. – volume: 43 year: 2020 ident: bib10 article-title: Calibration curves by 60Co with low dose rate are different in terms of dose estimation – a comparative study publication-title: Genet. Mol. Biol. – volume: 147 start-page: 573 year: 2011 end-page: 592 ident: bib1 article-title: Review of retrospective dosimetry techniques for external ionising radiation exposures publication-title: Radiat. Prot. Dosim. – year: 2018 ident: bib16 article-title: Radiological Protection – Criteria and Performance Limits for the Periodic Evaluation of Dosimetry Services – year: 2008 ident: bib24 article-title: WinAlgorithms: dose calculation algorithm for type 8825 dosimeter. User's manual publication-title: Publication No. ALGM-W25-U-0908-004 – volume: 124 start-page: 115 year: 2007 end-page: 123 ident: bib6 article-title: CABAS: a freely available PC program for fitting calibration curves in chromosome aberration dosimetry publication-title: Radiat. Prot. Dosim. – year: 1996 ident: bib22 article-title: Chromosome Aberration Analysis for Biological Dosimetry: a Review – volume: 95 start-page: 17 year: 2001 end-page: 23 ident: bib21 article-title: Retrospective biological dosimetry of absorbed radiation publication-title: Radiat. Prot. Dosim. – volume: 9 year: 2022 ident: bib9 article-title: Current developments in biodosimetry tools for radiological/nuclear mass casualty incidents publication-title: Environ. Adv. – volume: 347 start-page: 75 year: 2014 end-page: 110 ident: bib20 article-title: Recent advances and opportunities in TLD materials: a review publication-title: Defect Diffus. Forum – volume: 45 start-page: 464 year: 2001 end-page: 471 ident: bib27 article-title: Comparison of chronic exposures received by radiation workers using different biological end-points with the doses recorded by TLD publication-title: Australas. Radiol. – volume: 15 start-page: 83 year: 1986 end-page: 88 ident: bib17 article-title: Chromosome aberrations induced in human lymphocytes by in vitro acute X and gamma radiation publication-title: Radiat. Prot. Dosim. – volume: 4 year: 2019 ident: bib2 article-title: Norma básica de seguridad radiológica publication-title: Rev. – volume: 171 year: 2020 ident: bib18 article-title: Use of biological dosimetry to confirm radiation exposure: case study publication-title: Radiat. Phys. Chem. – year: 2014 ident: bib15 article-title: Radiation Protection – Performance Criteria for Service Laboratories Performing Biological Dosimetry by Cytogenetics – year: 2010 ident: bib25 publication-title: Harshaw Model 6600 PLUS TLD Reader. Operator’s Manual. Publication No. 6600PC-W-O-1110-007 – year: 2008 ident: bib26 article-title: Effects of Ionizing Radiation. UNSCEAR 2006 Report, Volume I: Report to the General Assembly, Scientific Annexes A and B – volume: 13 start-page: 205 year: 1985 end-page: 209 ident: bib8 article-title: The induction of chromosome aberrations in human lymphocytes by accelerated charged particles publication-title: Radiat. Prot. Dosim. – volume: 164 start-page: 612 year: 2005 end-page: 617 ident: bib19 article-title: Biological dosimetry in a group of radiologists by the analysis of dicentrics and translocations publication-title: Radiat. Res. – year: 2003 ident: bib13 article-title: Radiaciones de referencia X y gamma para calibrar dosímetros y medidores de tasa de dosis, y para determinar su respuesta en función de la energía fotónica publication-title: Parte 3: Calibración De Dosímetros De Área Y Personas, Y Medición De Su Respuesta En Función De La Energía Y El Ángulo De Incidencia – volume: 1 year: 2018 ident: bib23 article-title: EURADOS intercomparison 2014 for whole body dosemeters in photon fields publication-title: EURADOS Report – volume: 175 start-page: 638 year: 2011 end-page: 649 ident: bib7 article-title: Biological dosimetry intercomparison exercise: an evaluation of triage and routine mode results by robust methods publication-title: Radiat. Res. – year: 2022 ident: bib12 article-title: Intercomparison IC2021area of passive area dosimetry systems publication-title: EURADOS Report 2022-01 – year: 2012 ident: bib11 article-title: Radiobiology for the Radiologist – volume: 184 start-page: 66 year: 2015 end-page: 72 ident: bib3 article-title: A case report: cytogenetic dosimetry after accidental radiation exposure during 192Ir industrial radiography testing publication-title: Radiat. Res. – year: 2011 ident: bib28 article-title: Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies publication-title: EPR-Biodosimetry – volume: 103 year: 2007 ident: bib14 publication-title: The 2007 Recommendations of the International Commission on Radiological Protection – year: 2012 ident: 10.1016/j.apradiso.2025.112022_bib11 – volume: 164 start-page: 612 issue: 5 year: 2005 ident: 10.1016/j.apradiso.2025.112022_bib19 article-title: Biological dosimetry in a group of radiologists by the analysis of dicentrics and translocations publication-title: Radiat. Res. doi: 10.1667/RR3444.1 – volume: 184 start-page: 66 issue: 1 year: 2015 ident: 10.1016/j.apradiso.2025.112022_bib3 article-title: A case report: cytogenetic dosimetry after accidental radiation exposure during 192Ir industrial radiography testing publication-title: Radiat. Res. doi: 10.1667/RR14013.1 – volume: 9 year: 2022 ident: 10.1016/j.apradiso.2025.112022_bib9 article-title: Current developments in biodosimetry tools for radiological/nuclear mass casualty incidents publication-title: Environ. Adv. doi: 10.1016/j.envadv.2022.100265 – year: 2010 ident: 10.1016/j.apradiso.2025.112022_bib25 publication-title: Harshaw Model 6600 PLUS TLD Reader. Operator’s Manual. Publication No. 6600PC-W-O-1110-007 – volume: 184 start-page: 3 issue: 1–2 year: 2001 ident: 10.1016/j.apradiso.2025.112022_bib4 article-title: High sensitivity thermoluminescence dosimetry publication-title: Nucl. Instrum. Methods Phys. Res. B doi: 10.1016/S0168-583X(01)00717-0 – year: 2011 ident: 10.1016/j.apradiso.2025.112022_bib28 article-title: Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies – year: 2018 ident: 10.1016/j.apradiso.2025.112022_bib16 – volume: 43 year: 2020 ident: 10.1016/j.apradiso.2025.112022_bib10 article-title: Calibration curves by 60Co with low dose rate are different in terms of dose estimation – a comparative study publication-title: Genet. Mol. Biol. – volume: 147 start-page: 573 issue: 4 year: 2011 ident: 10.1016/j.apradiso.2025.112022_bib1 article-title: Review of retrospective dosimetry techniques for external ionising radiation exposures publication-title: Radiat. Prot. Dosim. doi: 10.1093/rpd/ncq499 – volume: 1 year: 2018 ident: 10.1016/j.apradiso.2025.112022_bib23 article-title: EURADOS intercomparison 2014 for whole body dosemeters in photon fields publication-title: EURADOS Report – volume: 4 year: 2019 ident: 10.1016/j.apradiso.2025.112022_bib2 article-title: Norma básica de seguridad radiológica publication-title: Rev. – year: 2003 ident: 10.1016/j.apradiso.2025.112022_bib13 article-title: Radiaciones de referencia X y gamma para calibrar dosímetros y medidores de tasa de dosis, y para determinar su respuesta en función de la energía fotónica – volume: 15 start-page: 83 year: 1986 ident: 10.1016/j.apradiso.2025.112022_bib17 article-title: Chromosome aberrations induced in human lymphocytes by in vitro acute X and gamma radiation publication-title: Radiat. Prot. Dosim. doi: 10.1093/oxfordjournals.rpd.a079681 – volume: 347 start-page: 75 year: 2014 ident: 10.1016/j.apradiso.2025.112022_bib20 article-title: Recent advances and opportunities in TLD materials: a review publication-title: Defect Diffus. Forum doi: 10.4028/www.scientific.net/DDF.347.75 – volume: 13 start-page: 205 year: 1985 ident: 10.1016/j.apradiso.2025.112022_bib8 article-title: The induction of chromosome aberrations in human lymphocytes by accelerated charged particles publication-title: Radiat. Prot. Dosim. doi: 10.1093/rpd/13.1-4.205 – year: 2008 ident: 10.1016/j.apradiso.2025.112022_bib24 article-title: WinAlgorithms: dose calculation algorithm for type 8825 dosimeter. User's manual publication-title: Publication No. ALGM-W25-U-0908-004 – year: 1996 ident: 10.1016/j.apradiso.2025.112022_bib22 – volume: 171 year: 2020 ident: 10.1016/j.apradiso.2025.112022_bib18 article-title: Use of biological dosimetry to confirm radiation exposure: case study publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2020.108683 – volume: 95 start-page: 17 issue: 1 year: 2001 ident: 10.1016/j.apradiso.2025.112022_bib21 article-title: Retrospective biological dosimetry of absorbed radiation publication-title: Radiat. Prot. Dosim. doi: 10.1093/oxfordjournals.rpd.a006516 – volume: 41 start-page: 1110 issue: 4 year: 2021 ident: 10.1016/j.apradiso.2025.112022_bib5 article-title: Impact of new operational dosimetric quantities on individual monitoring services publication-title: J. Radiol. Prot. doi: 10.1088/1361-6498/ac0d63 – volume: 124 start-page: 115 year: 2007 ident: 10.1016/j.apradiso.2025.112022_bib6 article-title: CABAS: a freely available PC program for fitting calibration curves in chromosome aberration dosimetry publication-title: Radiat. Prot. Dosim. doi: 10.1093/rpd/ncm137 – volume: 45 start-page: 464 issue: 4 year: 2001 ident: 10.1016/j.apradiso.2025.112022_bib27 article-title: Comparison of chronic exposures received by radiation workers using different biological end-points with the doses recorded by TLD publication-title: Australas. Radiol. doi: 10.1046/j.1440-1673.2001.00958.x – year: 2022 ident: 10.1016/j.apradiso.2025.112022_bib12 article-title: Intercomparison IC2021area of passive area dosimetry systems publication-title: EURADOS Report 2022-01 – year: 2014 ident: 10.1016/j.apradiso.2025.112022_bib15 – volume: 175 start-page: 638 issue: 5 year: 2011 ident: 10.1016/j.apradiso.2025.112022_bib7 article-title: Biological dosimetry intercomparison exercise: an evaluation of triage and routine mode results by robust methods publication-title: Radiat. Res. doi: 10.1667/RR2425.1 – volume: 103 year: 2007 ident: 10.1016/j.apradiso.2025.112022_bib14 – year: 2008 ident: 10.1016/j.apradiso.2025.112022_bib26 |
SSID | ssj0004892 |
Score | 2.4238899 |
Snippet | Thermoluminescent dosemeter (TLD) systems and dicentric chromosome assays (DCA) are crucial for accurate radiation dose estimation in emergencies. Ensuring... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 112022 |
SubjectTerms | Chromosome Aberrations - radiation effects Dicentric chromosome Dosimetry Humans Intercomparison ISO 14146 Radiation Dosage Thermoluminescent Dosimetry - instrumentation Thermoluminescent Dosimetry - methods Thermoluminescent Dosimetry - standards Thermoluminescent Dosimetry - statistics & numerical data TLD |
Title | What is the most suitable statistical method for comparing the results of two TLD systems and the dicentric assay? An intercomparison at dose ranges exceeding 100 mGy |
URI | https://dx.doi.org/10.1016/j.apradiso.2025.112022 https://www.ncbi.nlm.nih.gov/pubmed/40628014 https://www.proquest.com/docview/3228522725 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9xADLZgUateEKWvpS1ypV7DJtk8JqdqRaHbB1wKErfR7DykIEhWm6wKF35Of2ftTELbA-qhx0Tz0nhif874swHeO6ETGxoRGLJ9QUIQPVjYyAaRKbLIqVxnHRfm5DSbnydfLtKLDTgcuDAcVtnrfq_TO23dv5n0uzlZluXkO4HvQnBGuZSTquT5JmzF0yJLR7A1-_x1fvqbHim62sjcPuAOfxCFLw_UcqU4cIdcxThlQk0Yxw_ZqIcwaGeLjndguweROPPrfAobttqFxyf9NfkuPOriOnXzDH5yam4sGySch9d102KzLlumSyFTiboszTSSryONBGDRB6WTQeu6kDO-vmobrB22P2o8-_YRfe7nBlVluiY0Kf8hLjUSDle3H3BWISehWOn7EodIazB1Q8MxlaFBe9MbTYzCEK8_3T6H8-Ojs8N50JdmCDQBjjYwtONZZKIocy7lnO1OuUKQtc8JT-qpS7IpYxejyfkmn4owg0uMsIRHFto6F05fwKiqK_sKUOSGQIVOVBKHiXKxKsh-WptbYVKj4mwMk0EYcukzcMghNO1SDuKTLD7pxTeGYpCZ_OssSTIT_-z7bhCypA-Nb09UZet1I0nzCQKreZyO4aWX_v16EmaikrO59x8zv4Yn_OR5jm9g1K7W9i0BnnaxD5sHd9F-f6x_AWoYAEs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEZQLgkLp8hwkrukmWSdxTqgqlAV2e2Er9WZ5_ZBS0WS1zqrthZ_D72QmTgocKg5cE7_kcWa-ieebYeydE5rb2IjIoO2LOEL0aGkTGyWmzBOnCp13XJj5ST495V_OsrMtdjRwYSisstf9Qad32rp_Mu53c7yqqvE3BN-loIxyGSVVKYo77C7PJgXF9R38-B3nwUVXGZlaR9T8D5rw-YFarRWF7aCjmGZEp4nT9DYLdRsC7SzR8SP2sIeQcBhW-Zht2XqX3Z_3l-S77F4X1an9E_aTEnND5QFRHlw0vgW_qVoiSwERiboczThSqCINCF8hhKSjOeu6oCu--d56aBy0lw0sZh8gZH72oGrTNcFJ6f9wpQFRuLp-D4c1UAqKtb4pcAi4BtN4HI6IDB7sVW8yIYljuPh0_ZSdHn9cHE2jvjBDpBFutJHB_c4TkyS5cxllbHfKlQJtfYFoUk8czyeEXIxG1xs9KkQMjhthEY0stXUunuyx7bqp7T4DURiEFJornsZcuVSVaD2tLawwmVFpPmLjQRhyFfJvyCEw7VwO4pMkPhnEN2LlIDP510mSaCT-2fftIGSJnxndnajaNhsvUe8JhKpFmo3YsyD9m_Vw4qGiq_n8P2Z-w3ami_lMzj6ffH3BHtCbwHh8ybbb9ca-QujTLl93R_sXl24BFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+is+the+most+suitable+statistical+method+for+comparing+the+results+of+two+TLD+systems+and+the+dicentric+assay%3F+An+intercomparison+at+dose+ranges+exceeding+100+mGy&rft.jtitle=Applied+radiation+and+isotopes&rft.au=Mutti%2C+Leonardo+Dami%C3%A1n&rft.au=Garraza%2C+Mar%C3%ADa+Soledad&rft.au=Fern%C3%A1ndez%2C+Rub%C3%A9n+Omar&rft.au=Rossich%2C+Luciano+Esteban&rft.date=2025-11-01&rft.issn=1872-9800&rft.eissn=1872-9800&rft.volume=225&rft.spage=112022&rft_id=info:doi/10.1016%2Fj.apradiso.2025.112022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-8043&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-8043&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-8043&client=summon |